
Design Issues for Communication Protocols Conversion Scheme of IoT Devices 657

Design Issues for Communication Protocols Conversion

Scheme of IoT Devices

Shin-Jer Yang, Ting-Chen Wei

Dept. of Computer Science and Information Management, Soochow University, Taipei, Taiwan

sjyang@csim.scu.edu.tw, wtbmop@gmail.com*

*Corresponding Author: Shin-Jer Yang; E-mail: sjyang@csim.scu.edu.tw

DOI: 10.3966/160792642021052203015

Abstract

Despite IoT technology provides an open and

distributed networking environment, there is no

compulsory standard of communication protocol for the

description of object information. As a result, IoT devices

with different communication protocols would require

relevant converters to perform semantic analysis, or else

communication between IoT devices may fail. Therefore,

this paper proposes to design the conversion scheme for

communication protocols of IoT devices (IoT-CPCS).

This proposed scheme aims to integrate the formats of the

data collected by different IoT devices, convert these data

into useful and important information, present the

converted information in readable message formats, and

consequently store these messages in virtual servers built

in the cloud platform. In addition, we conduct simulation

experiments on IoT-CPCS and original MQTT

transmission mechanism called MQTT Broker, and

evaluate them with three key performance indicators

(KPIs) such as average conversion time, system

throughput, and average latency time. The simulation

results indicate that the improving ratios for using the

IoT-CPCS in average conversion time are 22.7%, 26.2%,

16.8%, 13.7%, 16.7% under 300, 500, 100, 2000, and

4000 packets respectively, and the system throughput is

improved by 58.9% in average. Although IoT-CPCS in

average latency time is a little poor than the MQTT

Broker, but the latency ratio may not exceed 10%. The

proposed IoT-CPCS scheme can improve the application

compatibility of IoT for facilitating wider promotion, and

raise the applicability level of IoT. In the future, we will

consider another common communication protocols used

in the IoT such as AMQP, and accuracy ratio of other

KPI to evaluate the IoT-CPCS scheme with a larger

amount of data.

Keywords: Cloud computing, IoT-CPCS, MQTT Broker,

CoAP, Modbus-TCP

1 Introduction

In 1995, Bill Gates mentioned the concept of

connection of objects in “The Road Ahead”. At that

time, this concept could neither be achieved nor attract

public attention because of the limitation on wireless

networking and hardware as well as various sensing

devices. As technology continues to advance over

years, the International Telecommunication Union

formally proposed the concept of IoT in 2005 [1] and

therefore IoT has gained the attention from all sectors.

The IoT is used to connect millions and billions of

devices to communicate and share the information to

all users [2].

With the active development of many equipment

manufacturers, various IoT-related devices and

applications have been explored, such as smart home,

smart transportation, smart medicine, etc. [3], as well

as smart city using sensors and smart information

processing systems for managing the daily traffic in

city [4]. Also, home energy management systems assist

users to effectively know electronic appliance usage

[5]. In addition, Cloud computing offers computing

resources that delivered as a service across the entire

local net or the Internet [6]. However, there is no

standard of communication protocol for the description

of object information and format nowadays such that

the description of the information by sensor objects

may differ from vendor to vendor. Therefore, it is

impossible for various IoT devices to understand each

other’s information contents. Therefore, this paper

proposes to design a communication protocols

conversion scheme for IoT devices (IoT-CPCS). This

proposed scheme aims to integrate the formats of the

data collected by different IoT devices, convert these

data into useful and essential information by

performing a specific communication protocol and

semantic analysis, present the converted information in

readable message formats, and consequently store

these messages in virtual servers built in the cloud

platform. In this way, the communication between IoT

devices from different vendors will no longer be

restricted by communication protocols, which facilitate

the subsequent development of related IoT applications

and services as well as decrease the cost of semantic

conversion and simplifies the steps of semantic

conversion.

658 Journal of Internet Technology Volume 22 (2021) No.3

In summary, the main purposes and the content of

this paper are described as follows:

(1) The communication protocols used in different

fields of IoT applications are various. As a result, these

protocols need to be semantically analyzed through a

specific converter, or communication between IoT

devices cannot carry out. Therefore, this paper

proposes the communication protocols conversion

scheme for IoT devices.

(2) This paper proposes and designs a

communication protocols conversion scheme for IoT

devices, i.e., IoT-CPCS. This scheme provides the

function of semantic conversion by extracting the

essences of various communication protocols, converts

collected data into useful and essential information,

presents the converted information in readable message

formats, and consequently stores these messages in

virtual servers built in the cloud platform.

(3) The key performance indicators (KPIs) such as

the average conversion time, average latency time, and

system throughput are listed. These KPIs are to

compare and evaluate between IoT-CPCS and original

MQTT transmission mechanism called MQTT Broker.

(4) Finally, we will perform simulations to prove

that the proposed IoT-CPCS can obtain better

performance based on above three KPIs. Hence, the

IoT-CPCS can solve the communication problems

between IoT applications in different fields, and

integrates them to achieve the goals of complete effect

and substantial benefit.

The remainder of this paper is organized as follows.

Section 1 presents research background, research

motivation and research purpose. The Section 2 is the

literature on the communication protocols commonly

used in the field of IoT applications. Section 3

introduces the operation flowchart and algorithm

design for the IoT-CPCS scheme. Section 4 presents

the simulation experimental environments and results

analysis, including the simulation environments, the

description of simulation process operations, the

definition of KPIs, and the analysis of the experimental

results. Section 5 draws a conclusion for elaborating

research results and examining contributions of this

paper as well as future research directions.

2 Related Work

 This paper investigates three communication

protocols commonly used in the IoT application field,

namely MQTT, CoAP, and Modbus-TCP. Figure 1

shows the protocol stack of the IoT system [7]. It is

obvious from Figure 1 that the transmissions of the

three communication protocols mentioned above are

based on TCP or UDP. These communication

protocols can be described as following in detail.

Figure 1. Protocol stack of the IoT system

2.1 MQTT

MQTT (Message Queuing Telemetry Transport) is a

communication protocol developed by IBM and

Eurotech. According to the introduction of the official

website, MQTT is a protocol designed especially for

IoT [8]. In 2003, IBM handed over MQTT to OASIS

(The Organization for the Advancement of Structured

Information Standards) for standardization of the

protocol. Since IBM has always considered protocols

as open sources for prevalence purpose, more and more

people use MQTT in various fields gradually. The

MQTT uses Publish/Subscribe and Broker’s message

transmission mechanism. Publisher, the source of the

message, sends a message to Broker with its topic.

Subscriber registers with Broker to request for the

topic of the message. When the Publisher sends a

message with its topic to Broker, all Subscribers that

register with Broker will receive this message. The

diagram of MQTT message transmission mechanism is

shown in Figure 2.

Figure 2. Diagram of MQTT message transmission

mechanism

The message structure of MQTT is mainly

composed of three parts. As shown in Figure 3, the

message structure consists of the Fixed Header, the

Variable Header, and Payload. Fixed Header is of 2

bytes. The first byte contains Message Type, DUP,

QoS Level, and Retain. The second byte is Remaining

Length, which includes the Variable Header and

Payload, and can be extended up to 4 bytes.

Figure 3. Message structure of MQTT

Design Issues for Communication Protocols Conversion Scheme of IoT Devices 659

There are many examples of systems that often use

MQTT in IoT applications such as the Nursing Home

Patient Monitoring System [9], Web-Based IoT

Solution for Monitoring Data [10], and the MQTT

Based Secured Home Automation System [11]. The

Nursing Home Patient Monitoring System is one of the

IoT application cases. This system is responsible for

collecting the vital sign measurements of patients and

transmitting them to multiple nursing stations. Using

the features of the MQTT Broker, the sensor data is

published to the MQTT Broker, and the server of the

nursing station obtains the subscribed sensor data from

the MQTT Broker according to the topic of interest.

This system uses MQTT in the transmission process. If

the communication protocols commonly used in

various fields of IoT applications can be integrated,

with the characteristics of the MQTT Broker, the

application level of the IoT can be improved.

2.2 CoAP

At present, this world is composed of personal

computers. Message exchange is realized through TCP

and HTTP (the application layer protocol). It has the

feature that data transmission is confirmed through

Client/Server. Therefore, it has high reliability.

However, it is an excessive requirement for IoT

devices to implement the TCP and HTTP protocols

because the confirmation of data transmission will

consume more hardware resources. Many devices in

the wireless IoT are resource-constrained. These

devices have a small amount of internal storage

capacity and limited computation ability only. In order

to allow these devices to access the IoT networking,

the work team of CoRE (Constrained RESTful

Environment) in IETF (Internet Engineering Task

Force) proposed an application layer protocol based on

REST architecture, which is the Constrained

Application Protocol (CoAP), it is one of the basic

desires for communication among various physical

devices [12].

The CoAP is an application layer protocol that runs

on the UDP protocol. Its message structure is shown in

Figure 4, which consists of Ver, T, TKL, Code,

Message ID, Token, Options, Payload Marker, and

Payload. The CoAP protocol is very small in size, and

the smallest data packet occupies four bytes only.

Therefore, it is indeed a better solution to small devices

like IoT devices [13]. CoAP uses the same request-

response work mode as HTTP. There are four different

message types in CoAP [14], namely CON, NON,

ACK and RST.

2.3 Modbus-TCP

Modbus is a communication protocol for the

controller of the application layer, which is used

mainly for monitoring and managing devices in a

master/slave mode [15]. It was originally developed by

Modicon in 1979 and can be roughly divided into

Figure 4. Message structure of CoAP

Modbus-RTU, Modbus ASCII, and Modbus-TCP.

Modbus-TCP uses Ethernet TCP/IP to transfer data,

which is suitable for industrial control systems in the

IoT application field.

Modbus-TCP provides operation services for Client/

Server Communication Models in a Master/Slave

Communication Structure as well as specific function

codes [16]. That is, there is one master only and 247

slaves in the network. Only the master can send a

request message to start the communication.

The message structure of Modbus-TCP is shown in

Figure 5. A whole message is called ADU (Application

Data Unit), which contains MBAP (Modbus

Application Protocol) Header and PDU (Protocol Data

Unit) [16]. MBAP Header is composed of Transaction

ID, Protocol ID, Length, and Unit ID while PDU is

composed of Function Code and Data.

Figure 5. Message structure of Modbus-TCP

2.4 JSON

JSON (JavaScript Object Notation) was conceived

and designed by Douglas Crockford. It is a lightweight

data exchange language based on text, which is easy to

read [17]. JSON uses not only a completely language-

independent text format but also features similar to the

C language family, which makes JSON an ideal data

exchange language [18]. Therefore, we incorporate

JSON into the scheme proposed in this paper and

present the converted data in JSON message format.

The structure of JSON can be divided into five types,

namely object, array, value, string, and number.

2.5 Comparisons of IoT Communication

Protocols

This paper compares in detail the IoT

communication protocols introduced above and

analyzes the characteristics of each communication

protocol according to various criteria. The complete

comparisons for these IoT communication protocols

are shown in Table 1. The advantages and

disadvantages of IoT communication protocols are

show in Table 2.

660 Journal of Internet Technology Volume 22 (2021) No.3

Table 1. Summarized comparisons of IoT communication protocols

 MQTT CoAP Modbus-TCP

Year 1999 2010 1979

Standard OASIS, Eclipse Foundations IETF, Eclipse Foundation de facto

Structure Client/Broker Client/Server or Client/Broker Master/Slave

Mechanism Publish/Subscribe Request/Response or Publish/Subscribe Request/Response

Sematic/Method
Connect, Disconnect, Publish,

Subscribe, Unsubscribe, Close
Get, Post, Put, Delete Read, Write

Communication Protocol TCP UDP TCP/UDP

Table 2. The advantages and disadvantages of IoT communication protocols

 MQTT CoAP Modbus-TCP

Advantages

Provides real-time and reliable

messaging services to connected

remote devices with limited

bandwidth

Small devices with low power

consumption, low computing and

communication capabilities can

interact through RESTful

Allow multiple devices to

communicate on the same

network

Disadvantages

Only save the latest Retain

Message, which may cause the

message to be lost or duplicated

[19]

Due to lack of Internet

infrastructure support, it is not

compatible with firewalls, proxy

servers and routers [20]

There are security concerns

such as lack of confidentiality

and data integrity

Application Fields

Data transmission and monitoring

of remote equipment under low

frequency or unreliable networks

Communication IP network with

limited resources
Industrial remote monitoring

The MQTT protocol is the most used and preferred

for simple and complex IoT implementations [21].

Since the MQTT transmission mechanism is published

or subscribed, this study is based on the point of view

of the patient monitoring system in the nursing home.

This system is one case of any IoT applications to

extract different communication protocols used in

various fields of IoT applications and convert them

into useful and important information. After converting

it into usable and essential information, in addition to

presenting it in a readable message format, this system

is also build an MQTT Broker environment called

Mosquitto on the cloud platform to store the converted

data in this environment, which is convenient for cloud

platform developers to follow-up processing and

application. The IoT-CPCS mechanism is to utilize the

same configuration of IoT device data and analyze the

features of MQTT Broker. Hence, to verify the

differences between the IoT-CPCS and the MQTT

Broker in terms of KPIs will perform simulations, after

the conversion of the three communication protocols:

MQTT, CoAP, and Modbus-TCP.

3 Operation and Design Issues in IoT-

CPCS

3.1 Operational Flow of IoT-CPCS

The IoT-CPCS proposed in this paper covers four

relational procedures, as shown in Figure 6. The

functions of this mechanism are to collect data from

different IoT devices, convert them into useful and

essential information after identification, and finally

present the converted information in JSON message

format and store it in the virtual server build in the

cloud platform. Therefore, the four relational

procedures of the IoT-CPCS scheme include MQTT_

CONVERSION, CoAP_CONVERSION, Modbus-

TCP_CONVERSION, and UPLOAD. Each procedure

has their own feature, and the description is listed as

follows.

Figure 6. The operational flow cf IoT-CPCS

(1) MQTT_CONVERSION: In this procedure,

MQTT data can be received. Message structures

include Message Type, DUP, QoS Level, Retain,

Remaining Length, Variable Length Header, and

Design Issues for Communication Protocols Conversion Scheme of IoT Devices 661

Variable Length Message Payload. Useful and

essential information including Message Type and

Variable Length Message Payload can be extracted and

then converted into easy-to-understand information.

The comparison table before and after MQTT

conversion is shown in Table 3. The message structure

extracted from this procedure is the information

converted by the proposed scheme, as shown in Table

4.

Table 3. The comparisons before and after MQTT

conversion

MQTT

Before After

‧Message Type

‧DUP

‧QoS Level

‧Retain

‧Remaining Length

‧Variable Length Header

‧Variable Length Message

Payload

‧Message Type

‧Variable Length Message

Payload

Table 4. Message structure list of MQTT

Message Structure Status Descriptions

Message Type Action
Message type of that

message

Variable Length

Message Payload
Topic

This structure contains

the topic of the message

(2) CoAP_CONVERSION: In this procedure, CoAP

data can be received. Message structures include Ver,

T, TKL, Code, Message ID, Token, Options, Payload

Marker, and Payload. Useful and essential information

including T and Code can be extracted and then

converted into easy-to-understand information. The

comparison table before and after CoAP conversion is

shown in Table 5. The message structure extracted

from this procedure is the information converted by the

proposed scheme, as shown in Table 6.

Table 5. The comparisons before and after COAP

conversion

CoAP

Before After

‧Ver

‧T

‧TKL

‧Code

‧Message ID

‧Token

‧Options

‧Payload Marker

‧Payload

‧T

‧Code

Table 6. Message structure list of CoAP

Message Structure Status Descriptions

T Message Type
Message type of that

message

Code Action

Presentation formats

of Request/ Response

are different.

(3) Modbus-TCP_CONVERSION: In this procedure,

Modbus-TCP data can be received. Message structures

include Transaction ID, Protocol ID, Length, Unit ID,

Function Code, and Data. Useful and essential

information including Transaction ID, Unit ID, and

Function Code can be extracted and then converted

into easy-to-understand information. The comparison

table before and after Modbus-TCP conversion is

shown in Table 7. The message structure extracted

from this procedure is the information converted by the

proposed scheme, as shown in Table 8.

Table 7. The comparisons before and after Modbus-

TCP conversion

Modbus-TCP

Before After

‧Transaction ID

‧Protocol ID

‧Length

‧Unit ID

‧Function Code

‧Data

‧Function Code

‧Unit ID

‧Transaction ID

Table 8. Message structure list of Modbus-TCP

Message Structure Status Descriptions

Transaction ID Transaction ID

Communication ID of

Modbus Request/

Response

Unit ID Unit ID

Identification code of

remote equipment

(Slave)

Function Code Action

Master informs Slave

what operation to

implement.

(4) UPLOAD: This module is responsible for saving

data in JSON message format in a virtual server built

in the cloud platform.

3.2 Algorithm Design for IoT-CPCS

According to the operational flow of the IoT-CPCS

as depicted in above Figure 6, the design and

description of the algorithm using pseudocode is

shown as follows.

662 Journal of Internet Technology Volume 22 (2021) No.3

Algorithm IoT-CPCS(){

Input:

mqtt_list = [] # Store MQTT data

mqtt_dict = {}

coap_list = [] #Store CoAP data

coap_dict = {}

mbstcp_list = [] # Store Modbus-TCP data

mbstcp_dict = {}

Output:

 To complete conversion to useful data and response message to device and upload to Mosquitto

Method:

BEGIN{

/#Read protocol data

 InputData = sensor.load()

/#Identify the protocol type of the data

 for i in InputData:

/#Extract useful information from MQTT and store it in JSON message format

 if (InputData [i] belong to MQTT):

 MQTT_CONVERSION(InputData [i])

 break

/#Extract useful information from CoAP and store it in JSON message format

 elif (InputData [i] belong to CoAP):

 COAP_CONVERSION(InputData [i])

 break

/#Extract useful information from Modbus-TCP and store it in JSON message format

 elif (InputData [i] belong to Modbus-TCP):

 Modbus-TCP _CONVERSION(InputData [i])

 break

 else:

 Return (“Not Identifiable Message”)

 GO TO BEGIN

/#Save data in JSON message format in a virtual server built in the cloud platform

 UPLOAD(mqtt_list, coap_list, mbstcp_list)

/#Identify whether communication protocol data are received or not?

 if (sensor.load() != null):

 GO TO BEGIN

 else:

 break

}END

Procedure MQTT_CONVERSION(InputData [i]){

//#Extract useful information from MQTT and present it in JSON message format

 mqtt_dict = {

 ‘Time’ : InputData [i][time],

 ‘Action’ : InputData [i][Message Type],

 ‘Topic’ : InputData [i][Variable Length Message Payload]

 }

 mqtt_list.append(mqtt_dict)

 return mqtt_list

}END

Procedure CoAP_CONVERSION(InputData [i]){

/#Extract useful information from CoAP and present it in JSON message format

 coap_dict = {

 ‘Time’ : InputData [i][time],

 ‘Message Type’ : InputData [i][T],

 ‘Action’ : InputData [i][Code]

 }

 coap_list.append(coap _dict)

 return coap_list

Design Issues for Communication Protocols Conversion Scheme of IoT Devices 663

}END

Procedure Modbus-TCP_CONVERSION(InputData [i]){

/#Extract useful information from Modbus-TCP and present it in JSON message format

 mbstcp_dict = {

 ‘Time’ : InputData [i][time],

 ‘Transaction ID’ : InputData [i][Transaction ID],

 ‘Unit ID’ : InputData [i][Unit ID],

 ‘Function Code’ : InputData [i][Function Code],

 }

 mbstcp_list.append(mbstcp_dict)

 return mbstcp_list

}END

Procedure UPLOAD(mqtt_list, coap_list, mbstcp_list){

/#Save data in JSON message format of the MQTT Broker (Mosquitto) of a virtual server built in the cloud

platform

 Upload mqtt_list, coap_list, mbstcp_list to Mosquitto

}END

}END IoT-CPCS

4 Simulation Environments Setup and

Results Analysis

4.1 Simulation Environments Design

The simulation environment is divided mainly into

three steps. Step one is IoT devices, and they will be

responsible for data collection from different fields and

utilize the WireShark tool to capture packets of each

communication protocol. Then it passes them to the

next step. Step two is the IoT-CPCS, the core part of

the simulation environment. This scheme will identify

the type of the communication protocol based on

received data, convert the received data into useful and

essential information, and present it in JSON format.

The last step is to upload from converted data into

AWS cloud platform. These converted data through the

IoT-CPCS can be transferred to store in the virtual

server (i.e. to be connected to Mosquitto) built in the

Amazon AWS platform. The chart of related

simulation environment architecture is shown in Figure

7. The hardware and software specifications of the

related physical and virtual servers are illustrated in

Table 9. The descriptions of the simulation experiment

tools used in this paper are shown in Table 10.

Figure 7. Simulation environment architecture diagram

Table 9. The hardware and software specifications of

the physical and virtual servers

Hardware / Software

Configurations

Physical Server

Specifications

Virtual Server

Specifications

Operation System Windows 10 Ubuntu

CPU 4 Cores
1 Core with

2.6 GHz

Memory 8GB or above 2GB or above

Disk 1TB or above 20GB or above

Table 10. The descriptions of the simulation

experiment tools

Simulation

Experiment Tools
Descriptions

Amazon Web

Services (AWS)

AWS is a cloud computing service

established by Amazon, it adopts a

pay-as-you-go mechanism. Hence, the

cloud users can use it according to

their needs and charges.

WireShark 3.2.3

The WireShark tool is the open and

free source network packet analysis

software. Through the user-friendly

interface operations, it can quickly

retrieve the required packets.

Python 3.7

Python is a general-purpose interpreter

programming language. It is easy to

use and has many components, which

can accomplish the task what you want

easily and efficiently.

4.2 KPIs Definition and Description

Through simulation experiments, this paper

compares and analyzes the IoT-CPCS and the MQTT

Broker using three KPIs, i.e., average conversion time,

average latency time, and system throughput. The

purposes of KPIs are shown in Table 11. The

calculation method of each KPI is shown in Formulas

664 Journal of Internet Technology Volume 22 (2021) No.3

(1), (2), and (3).

Table 11. KPIs’ definitions and descriptions

KPIs Purposes

Average

Conversion Time

(ACT)

Unit: ms

It represents the average conversion

time (ACT) between the receipt of the

message data (N) from all IoT devices

and the completion of conversion. The

calculation method of ACT is shown

in Formula (1).

Average Latency

Time (ALT)

Unit: ms

It is used to detect the total delay time

(TDT) of all packet data in the process

of semantic conversion between the

packet and the packet (N-1) of the IoT

device. The calculation method of

ALT is as shown in Formula (2).

System

Throughput (ST)

Unit: packet

Use simulation tools to evaluate the

total message data volume (K) of all

IoT devices that actually process

within a fixed period of time. That is,

to identify the amount of data that can

be processed within a unit of time

(1000 ms). The calculation method of

ST is shown in Formula (3).

 ACT = CT / N (1)

 ALT = TDT / (N – 1) (2)

 ST = K / Unit of time (1000 ms) (3)

4.3 Simulation Results and Analysis

In this paper, the simulation environment is set up

by a physical host and a virtual host. The physical host

is responsible for connecting with IoT devices to

capture the packets generated during connections as

well as generating the packets of the devices that

cannot be simulated. Finally, the obtained packets are

converted into useful and essential information through

the IoT-CPCS and are presented in JSON format. The

virtual host is responsible for transferring to store the

converted JSON data in the virtual server built in

Amazon AWS (There is a Mosquitto to be connected).

Through the connection with IoT devices and the

setting of the simulation program, the amount of data

received at the same time are set as 300, 500, 1000,

2000, and 4000 as well as the simulation is performed

7 rounds for each amount of data, and ignore the

maximum and the minimum to obtain the average

value. A simulation experiment was conducted on the

MQTT Broker and the conversion scheme of the IoT-

CPCS mentioned in this paper. The results prove that

the improved ratios in average conversion time using

the IoT-CPCS are 22.7%, 26.2%, 16.8%, 13.7%, and

16.7% and in average latency time are -8.3%, -7.7%, -

6.7%, -10%, and -7.7% under 300, 500, 1000, 2000,

and 4000 packets, respectively. Also, the system

throughput improved by 58.5%. The average

conversion time, average latency time, and system

throughput will be described in detail below. Also, the

simulated KPIs are summarized in Table 12.

Table 12. simulation results of KPIs

Schemes IoT-CPCS
MQTT

Broker

Improved

Ratios

300

packets
160 207 22.7%

500

packets
270 366 26.2%

1000

packets
502 603 16.8%

2000

packets
998 1156 13.7%

ACT

(Unit: ms)

4000

packets
1938 2327 16.7%

300

packets
13 12 -8.3%

500

packets
14 13 -7.7%

1000

packets
16 15 -6.7%

2000

packets
25 22 -10%

ALT

(Unit: ms)

4000

packets
28 26 -7.7%

ST (Unit: packets) 1950 1230 58.5%

(1) Average conversion time (ACT): Calculate the

conversion time during the period from receipt to

response, and record them in the amount of 300, 500,

1000, 2000, and 4000 packets of data respectively. The

average conversion time of the IoT-CPCS in this paper

is lower than the MQTT Broker because the IoT-CPCS

only extract useful and essential information, and the

MQTT Broker needs to transmit a complete packet.

The average conversion time is shown in Figure 8.

Figure 8. Comparisons of ACT between IoT-CPCS

and MQTT Broker

(2) Average latency time (ALT): Record the

processing time of 300, 500, 1000, 2000, and 4000

packets data for five times, subtract the average

conversion time and divide by the total number of

times to obtain the average value. Because the IoT-

Design Issues for Communication Protocols Conversion Scheme of IoT Devices 665

CPCS mechanism proposed in this paper needs to

retrieve available and important information and

present it in a readable format, while the MQTT

Broker program only needs to transmit packets, the

results show that this mechanism has a higher average

delay time. But the delay ratio will not exceed 10%, as

shown in Figure 9.

Figure 9. Comparisons of ALT between IoT-CPCS

and MQTT Broker

(3) System throughput (ST): Evaluate the actual

amount of data that can be processed within a unit of

time period (set as 1000 milliseconds) and individually

calculate the system throughput of the IoT-CPCS

proposed in this paper and the MQTT Broker based on

5 simulation rounds. The results show that the amount

of data that IoT-CPCS can process in a unit of time

(1,950 packets) is about 1.59 times than that of the

MQTT Broker (1,230 packets). The results are shown

in Figure 10.

Figure 10. Comparisons of ST between IoT-CPCS and

MQTT Broker

4.4 Summary of Results and Overall Analysis

In the average conversion time, the experimental

results of IoT-CPCS under different data packets is

lower than the MQTT Broker: the average reduction

were 47 ms, 96 ms, 101 ms, 158 ms, and 389 ms under

300, 500, 1000, 2000 and 4000 packets. This paper

analyzes the reason is the mechanism only needs to

retrieve the available and important information of

each communication protocol, while the MQTT Broker

needs to transmit a complete packet. In the average

latency time, the experimental results of IoT-CPCS

under different data packets is all a little higher than

the MQTT tBroker: under 300, 500, 1000, 2000 and

4000 packets, the average increase is 1 ms, 1 ms, 1 ms,

3 ms and 2 ms, respectively. This paper analyzes the

reason is IoT-CPCS will be presented in a readable

format after conversion, and the MQTT Broker only

needs to transmit packets. Although the average

latency time of IoT-CPCS are slightly higher than the

MQTT Broker, but the latency ratio will not exceed

10%; in the system throughput, the experimental

results of IoT-CPCS at a fixed interval (set to 1000 ms)

is greater than the MQTT Broker. After five

simulations, the improved ratios were 62.5%, 53.8%,

68.6%, 55.2% and 54.4%, respectively. After average,

the system throughput of IoT-CPCS is about 1.59 times

than the MQTT Broker. From the above simulation

data, it is proved that the IoT-CPCS proposed in this

paper has poor results in average latency time, but the

latency ratio will not exceed 10%, and the average

conversion time and system throughput of IoT-CPCS

are more effective and efficient than the MQTT Broker.

5 Conclusions

In this paper, the overall research results and

contributions are illustrated as follows:

(1) The communication protocols used in different

IoT fields are various, which lead to the need for

specific conversion of these communication protocols.

(2) The IoT-CPCS provides the function of

protocols conversion. The communication protocols

used in different IoT fields are extracted and converted

into usable and essential information, and then be

presented in a readable message format and stored on

the cloud platform.

(3) This paper proposes three KPIs such as average

conversion time, average latency time, and system

throughput. They are compared and analyzed through

simulation experiments to verify that the IoT-CPCS is

more efficient than the MQTT Broker.

(4) The simulation results indicate that the improved

ratios in average conversion time using the IoT-CPCS

are 22.7%, 26.2%, 16.8%, 13.7%, 16.7% and also the

average latency time are -8.3%, -7.7%, -6.7%, -10%, -

7.7% under 300, 500, 1000, 2000, and 4000 packets,

respectively. Also, the system throughput using the

IoT-CPCS is improved by 58.5%, which is better than

the MQTT Broker.

The IoT-CPCS can be employed in IoT applications.

It can be regarded as an MQTT Broker, which can

identify and process communication protocols three

times more than the MQTT Broker. The Broker of the

IoT-CPCS can also act as a Publisher to transmit the

received message to other Brokers that need the topic

of this message. In this way, the IoT-CPCS can extend

to a distributed structure. This application is

666 Journal of Internet Technology Volume 22 (2021) No.3

convenient for cloud developers to use data. They do

not need to understand the message structure of each

communication protocol in depth. They only need to

apply or analyze the converted data. Hence, the

proposed IoT-CPCS converts the data of IoT devices

into useful and essential information and presents it in

a readable format, is different from the general

conversion. It omitted some of the characteristics of the

communication protocol, and only did semantic

conversion. Although the average conversion time and

system throughput is better than the MQTT Broker,

cloud developers who want to understand the message

structure of each communication protocol need to

spend more time researching because of the omission

of some communication protocol’s characteristics.

In the future research on the IoT-CPCS, we will add

other KPIs such as accuracy ratio, and test with a larger

amount of data to obtain more objective and precise

results. Additionally, the collected data will be

presented in real time and be used for more application

development. We expect that the proposed IoT-CPCS

can improve the application compatibility of IoT for

facilitating wider promotion, and raise the usable level

of IoT.

Acknowledgements

The authors would like to thank two anonymous

reviewers for constructive comments that improve the

paper.

References

[1] ITU, The Internet of Things, 2005, https://www.itu.int/net/

wsis/tunis/newsroom/stats/The-Internet-of-Things-2005.pdf,

Retrieved on September 15, 2018.

[2] G. Ranganathan, R. Bestak, C. O. Chow, Guest Editorial:

Special Issue on “Computational Approaches in Cloud Based

IoT”, Journal of Internet Technology, Vol. 21, No. 1, pp. 147-

148, January, 2020.

[3] M. Soliman, T. Abiodun, T. Hamouda, J. Zhou, C.-H. Lung,

Smart Home: Integrating Internet of Things with Web

Services and Cloud Computing, In Proceedings of 2013 IEEE

International Conference on Cloud Computing Technology

and Science (CloudCom), Bristol, UK, December, 2013, pp.

317-320.

[4] P. Sethi, S. R. Sarangi, Internet of Things: Architectures,

Protocols, and Applications, Journal of Electrical and

Computer Engineering, Vol. 2017, pp. 1-26, January, 2017.

[5] W. T. Cho, Y. W. Ma, Y. M. Huang, A smart socket-based

multiple home appliance recognition approach over IoT

architecture, Journal of Internet Technology, Vol. 16, No. 7,

pp. 1227-1238, December, 2015.

[6] X. J. Chen, B. D. Chen, X. M. Jiang, X. B. Chen, W. H. Cai,

Improved Cloud Computing Architecture for the Internet of

Things, Journal of Internet Technology, Vol. 17, No. 4, pp.

683-693, July, 2016.

[7] N. Naik, Choice of effective messaging protocols for IoT

systems: MQTT, CoAP, AMQP and HTTP, In 2017 IEEE

international systems engineering symposium (ISSE), Vienna,

Austria, October, 2017, pp. 1-7.

[8] U. Hunkeler, H. L. Truong, A. Stanford-Clark, MQTT-S—A

Publish/Subscribe Protocol for Wireless Sensor Networks, In

Proceedings of 2008 3rd International Conference on

Communication Systems Software and Middleware and

Workshops (COMSWARE ’08), Bangalore, India, January,

2008, pp. 1-8.

[9] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M.

Ayyash, Internet of Things: A Survey on Enabling

Technologies, Protocols, and Applications, Journal of IEEE

Communications Surveys & Tutorials, Vol. 17, No. 4, pp.

2347-2376, Fourth Quarter, 2015.

[10] K. Grgić, L. Špeh, I. Heđi, A Web-Based IoT Solution for

Monitoring Data Using MQTT Protocol, In Proceedings of

2016 International Conference on Smart Systems and

Technologies (SST), Osijek, Croatia, October, 2016, pp. 249-

253.

[11] Y. Upadhyay, A. Borole, D. Dileepan, MQTT Based Secured

Home Automation System, In Proceedings of 2016

Symposium on Colossal Data Analysis and Networking

(CDAN), Indore, India, March, 2016, pp. 1-4.

[12] J. Sidna, B. Amine, N. Abdallah, H. El Alami, Analysis and

evaluation of communication Protocols for IoT Applications,

In Proceedings of the 13th International Conference on

Intelligent Systems: Theories and Applications, Rabat,

Morocco, September, 2020, pp. 1-6.

[13] Z. Shelby, K. Hartke, C. Bormann, The Constrained

Application Protocol (CoAP), Internet Engineering Task

Force (IETF), RFC7252, June, 2014.

[14] CoAP, https://coap.technology/, Retrieved on November 15,

2019.

[15] J. Kuang, G. Wang, J. Bian, A Modbus Protocol Stack

Compatible with RTU/TCP Frames and Embedded

Application, in: M. Zhu (Eds.), Business, Economics,

Financial Sciences, and Management, Springer, Berlin,

Heidelberg, 2012, pp. 765-770.

[16] W. Shang, Q. Qiao, M. Wan, P. Zeng, Design and

Implementation of Industrial Firewall for Modbus/TCP,

Journal of Computers, Vol. 11, No. 5, pp. 432-438,

September, 2016.

[17] JSON, https://www.json.org/json-en.html, Retrieved on

November 20, 2019.

[18] P. Wehner, C. Piberger, D. Göhringer, Using JSON to

Manage Communication Between Services in the Internet of

Things, In Proceedings of 2014 9th International Symposium

on Reconfigurable and Communication-Centric Systems-on-

Chip (ReCoSoC), Montpellier, France, May, 2014, pp. 1-4.

[19] C. Parian, T. Guldimann, S. Bhatia, Fooling the Master:

Exploiting Weaknesses in the Modbus Protocol, Procedia

Computer Science, Vol. 171, pp. 2453-2458, 2020.

[20] X. Wu, N. Li, Improvements of MQTT Retain Message

Storage Mechanism, In 2018 2nd IEEE Advanced

Design Issues for Communication Protocols Conversion Scheme of IoT Devices 667

Information Management, Communicates, Electronic and

Automation Control Conference (IMCEC), Xi’an, China, May,

2018, pp. 957-961.

[21] D. Glaroudis, A. Iossifides, P. Chatzimisios, Survey, comparison

and research challenges of IoT application protocols for smart

farming, Computer Networks, Vol. 168, Article No. 107037,

February, 2020.

Biographies

Shin-Jer Yang is currently a full

Professor in the Department of

Computer Science and Information

Management, Soochow University,

Taipei, Taiwan. Professor Yang is the

author/coauthor of more than 126

refereed technical papers (Journals and Conferences)

on Wired/Wireless Networking and Applications,

Cloud/Internet Computing Applications and Services,

and Network Management and Security. Also, he takes

in charge of more than 30 research projects. His

research interests include Wired/Wireless Networking

Technologies and Applications, Cloud/Internet

Computing and Applications, AIoT Applications,

Network Management and Security, and Information

Management.

Ting-Chen Wei. Currently, She is a

Teaching Assistant in the Department

of Computer Science and Information

Management, Soochow University,

Taipei, Taiwan. Her research interests

include Cloud Computing and Service,

IoT Applications, and Web Applications

Design.

668 Journal of Internet Technology Volume 22 (2021) No.3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

