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Abstract 

Reliability evaluation of interconnection networks are 

important to the design and maintenance of multiprocessor 

systems. The component connectivity is an important 

measure for the reliability of interconnection networks. 

The bubble-sort network Bn is a popular underlying 

topology for distributed systems. The t-component (edge) 

connectivity κ
t
(G) (λ

t
(G)) of a graph G = (V, E) is the 

minimum vertex (edge) number of a set F⊂  V such that 

G − F is not connected and G – F has at least t 

components. In this paper, we determine the κ
t
(Bn) and 

λ
t
(Bn) for small t. 

Keywords: Distributed systems, Interconnection networks, 

Bubble-sort graphs, Fault tolerance 

1 Introduction 

Interconnection networks are the underlying 

topologies for many large-scale multi- processor 

systems. A multiprocessor system may contain 

hundreds or even thousands of nodes, some of which 

may be faulty when the system is implemented. As the 

number of processors in a system increases, the 

possibility that its processors may become faulty also 

increases. Because designing such systems without 

defects is nearly impossible, reliability and fault 

tolerance are two of the most critical concerns of 

multiprocessor systems. 

A graph G = (V, E) with n vertices and m edges 

consists of the vertex set V = {v1, v2, ..., vn} and edge 

set E = {e1, e2, ..., em}, where each edge consists of two 

vertices called, endpoints. An element in V is called a 

vertex of G. An element of E is called an edge of G. 

We may also use a node for a vertex and a link for an 

edge in this paper. A graph G = (V, E) can represent 

the interconnection network, where every node in V 

denotes a processor, and every edge in E denotes a 

communication link. Failures of processors and links 

are inevitable in a large-scale multiprocessor system. 

The connectivity of graphs can measure the fault 

tolerance of networks. The possibility of failure with 

all neighbors of a vertex or all edges incident to a 

vertex is very small. Hence there are many kinds of 

connectivities to assess the fault tolerance of 

interconnection networks. Fault tolerance of 

interconnection networks becomes an essential 

problem and has been widely studied, such as, [1] 

hamiltonian path of Bubble-sort graphs with edge 

faults, [6, 8] distance connectivity of graphs, [10] 

pessimistic diagnosability of Cayley graphs generated 

by transpositions, [12] extra connectivity of bubble-

sort star graphs, [15] g-extra conditional diagnosability 

of hierarchical cubic networks, [20] conditional 

connectivity of Cayley graphs generated by unicyclic 

graphs. 

The classic parameter is the edge connectivity λ(G) 

and connectivity κ(G). In general, the larger λ(G) or 

κ(G) is, the more stable the network is. Notice that 

κ(G) ≤λ(G) ≤ δ(G). In general, the larger λ(G) or κ(G) 

is, the more stable the network is. Notice that κ(G) ≤ If 

every minimum vertex cut F = N (u) or minimum edge 

cut F = E(u) for some vertex u, then graph G is super-κ 

or super-λ. If G is super-κ or super-λ, then we obtain 

that κ(G) = δ(G) or λ(G) = δ(G). If the graph G − S is 

not connected and each component of G −S has more 

than one vertex, then the edge set or vertex set S⊂ E is 

said to be a restricted edge cut or a restricted cut. The 

restricted edge connectivity λ'(G) or restricted 

connectivity κ'(G) of G is the edge number of a 

minimum restricted edge cut or the vertex number of a 

minimum restricted cut of G. Let T be a vertex set of G. 

If G − T has at least t components, then T is a t-

component cut of G. The t-component connectivity 

κt(G) of G is the vertex number of a smallest t-

component cut. We can obtain the t-component edge 

connectivity λt(G) similarly. The t-component (edge) 

connectivity was introduced in [3] and [16] 

independently. It can be seen that κt+1(G) ≥ κt(G) and 

λt+1(G) ≥ λt(G) for each integer t ≥ 1. By the definition, 

we have that κ(G) = κ2(G) and λ(G) = λ2(G). For more 

references about component connectivity, we can see 

[4] locally twisted cubes, [5] twisted cubes, [7] BC 

networks, [9] regular networks, [11] alternating group 

graphs and split-star networks, [13, 21] hypercubes, 

and so on. 

Definition 1. The vertex set V of bubble-sort network 

Bn, V (Bn) = {x1x2 ... xn : x1x2 ... xn is a permutation on 

{1, 2, ..., n}}. Two distinct vertices y = y1y2 ... yn and x 
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= x1x2 ... xn in Bn have an edge if and only if y is got by 

swapping the two elements xi and xi+1 of x, i.e., yi+1 = xi 

and yi = xi+1. We can see Figure 1. 

 

Figure 1. Illustration of the bubble-sort graphs B2, B3, B4 

The bubble-sort network has n! vertices and is n − 1 

regular, bipartite, vertex transitive. It can be defined 

recursively. The bubble-sort graphs, which belong to 

the class of Cayley graphs, have been attractive 

alternative to the hypercubes. They have some good 

topological properties such as highly symmetry and 

recursive structure. The bubble-sort network Bn can be 

partitioned into n subgraphs Bn(i), where Bn(i) is 

induced by the vertex set {x1x2 ... xn : xn = i} (1 ≤ i ≤ n) 

and Bn(i) is isomorphic to Bn−1. And the number of 

edges between Bn(i) and Bn(j) is (n − 2)!. Many authors 

study the properties of bubble-sort graphs, for example, 

[14] generalized 3-connectivity, [17] faulty nodes, [18] 

decycling number, [19] connectivity and super 

connectivity. 

Let G = (V, E) be a connected graph. We use N (v) 

to denote the neighborhood of a vertex v and E(v) to 

denote the edges incident to v. Suppose T⊂ V, G[T] is 

the subgraph induced by T, NG(T ) = ∪v∈T N (v) − T, 

NG[T] = NG(T ) ∪  T, and G − T represents the 

subgraph of G induced by the set of V − T . For X, 

Y⊂ V, [X, Y] represents the edge set of G in which one 

end is in X and the other is in Y . For all the notations 

and symbols, we can see Table 1. 

Table 1. Notations and symbols 

G a graph 

V, V (G) vertex set of a graph 

E, E(G) edge set of a graph 

λ(G), κ(G) connectivity of a graph 

λ'(G), κ'(G) restricted connectivity of a graph 

λt(G), κt(G) component connectivity of a graph 

δ(G) minimum degree of a graph 

Bn the bubble-sort network 

N (v) the neighborhood of a vertex v 

E(v) the edges incident to v 

G[T] the subgraph induced by T 

G − T the subgraph of G induced by the set of V − T 

NG(T ) ∪v∈T N (v) − T 

NG[T] NG(T ) ∪ T 

[X, Y] the edge set of G in which one end is in X and the other is in Y 

 

Throughout this paper, we only consider undirected 

simple connected graphs. We follow Bondy and Murty 

[2] for terminology and definitions. 

Our aim in this paper is to determine the κt(Bn) and 

λt(Bn) for small t. In the last, we give a conclusion. 

2 Component Connectivity of Bubble-sort 

Networks 

In [19], the authors determined the connectivity and 

restricted connectivity of bubble-sort networks. 
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Lemma 2.1. [19] κ(Bn) = λ(Bn) = n − 1(n ≥ 2). 

Lemma 2.2. [19] κ'(Bn) = λ'(Bn) = 2n − 4(n ≥ 3). 

From Lemma 2.1 and 2.2, we can derive Proposition 

2.3 and Theorem 2.4 easily. 

Proposition 2.3. Bn is super-λ and super-κ (n ≥ 4). 

Theorem 2.4. λ2，(Bn) = n−1 (n ≥2). 

We will obtain the component connectivity of Bn. 

Theorem 2.5. λ3(Bn) = 2n − 3(n ≥ 3). 

Proof. We will prove it by induction. if n = 3, then it is 

true. We assume that n ≥ 4 and the result holds when n 

≤ k − 1. We will prove it for n = k. 

Take an edge e = xy and F = E(x) ∪ E(y). Then |F | 

= 2n − 3 and Bn − F has at least three components. 

Hence λ3(Bn) ≤ 2n − 3. It suffices to show λ3(Bn) ≥ 2n 

− 3.  

Suppose that there is an edge set F with |F | ≤ 2n − 

4, and Bn − F has at least three components. Since Bn 

can be decomposed to n subgraphs Bn(i)(i = 1, 2, ..., n), 

we set Fi = E(Bn(i)) ∩ F (i = 1, 2, ..., n). Without loss 

of generality, we assume|F1| ≥ |F2| ≥ ... ≥ |Fn|. Note 

that λ(Bn−1) = n − 2.  

Case 1. |F1| ≤ n − 3. 

Each Bn(i) − F is connected (i = 1, 2, ..., n). And the 

number of edges between Bn(i) and Bn(j) is (n−2)! > 

2n−4(n ≥ 6). Then Bn −F is connected, a contradiction.  

If n = 4, then (n − 2)! = 2 and 2n − 4 = 4. There are 

at most two [Bn(i), Bn(j)]’s which are contained in F . 

Furthermore, Bn − F has at most two components, a 

contradiction. 

If n = 5 and there are i, j such that |[Bn(i), Bn(j)]| = (n 

− 2)! = 2n − 4, thenF = [Bn(i), Bn(j)]. Hence Bn − F is 

also connected, a contradiction. 

Case 2. n − 2 ≤ |F1| ≤ 2n − 6. 

If each Bn(i) − F is connected (i = 1, 2, ..., n), then 

Bn − F is connected. Hence there is some i such that 

Bn(i) − F is not connected. And there are at most two 

subgraphs Bn(i) and Bn(j) which are not connected in Bn 

− F . From the inductive hypothesis, Bn(i) − F and Bn(j) 

− F have at most two components. 

Subcase 2.1. Only one Bn(i) − Fi is not connected. 

Without loss of generality, we assume that i = 1. By 

the inductive hypothesis, Bn(1) − F1 has two 

components.  

Since (n − 2)! ≥ (2n − 4) − (n − 2)(n ≥ 4), there are 

at most two subgraphs Bn(i) and Bn(j) such that [Bn(i), 

Bn(j)] ⊆  F . Thus the induced graph by 
2

n

i=

∪  Bn(i) is 

connected in Bn − F . 

Furthermore, |[Bn(1), Bn − Bn(1)]| = (n − 1)! > 2n − 

4 − (n − 2)(n ≥ 4). At least one component of Bn(1) − 

F is connected to 
2

n

i=

∪  Bn(i). Hence, Bn − F has at most 

two components, a contradiction. 

Subcase 2.2. Bn(1) − F1 and Bn(2) − F2 are not 

connected in Bn − F . 

It follows that |E(Bn(1) ∩ F )| = n − 2 and |E(Bn(2) 

∩ F )| = n − 2. Bn(i)(i = 1, 2) is super-λ by Proposition 

2.3. Notice that |F | ≤ 2n − 4. It is similar to Subcase 

2.1, we can obtain Bn − F is connected, a contradiction. 

We can see Figure 2. 

 

Figure 2. Illustration of subcase 2.2 

Case 3. 2n − 5 ≤ |F1| ≤ 2n − 4. 

Then Bn(i) − F is connected for i = 2, 3, ..., n. 

Furthermore, 
2

n

i=

∪  Bn(i) − F is connected in Bn − F . 

Note that at most one vertex of Bn(1) has no neighbors 

in Bn − Bn(1). Hence, Bn − F has at most two 

components, a contradiction. 

Hence λ3(Bn) ≥ 2n − 3. 

Theorem 2.6. λ4(Bn) = 3n − 5(n ≥ 3). 

Proof. We prove the theorem by induction. It is true 

if n = 3. We assume that n ≥ 4 and the result holds 

when n ≤ k − 1. We will prove it for n = k. 

Take a path P = xyz and F = E(x)∪E(y)∪E(z). Then 

|F | = 3n−5 and Bn −F has at least four components. 

Hence λ4(Bn) ≤ 3n − 5. It suffices to show λ4(Bn) ≥ 3n 

− 5.  

Suppose that there is an edge set F with |F | ≤ 3n − 

6, and Bn − F has at least four components. Since Bn 

can be decomposed to n subgraphs Bn(i)(i = 1, 2, ..., n), 

we set Fi = E(Bn(i)) ∩ F (i = 1, 2, ..., n). Without loss 

of generality, we assume |F1| ≥ |F2| ≥ ... ≥ |Fn|. 

Case 1. |F1| ≤ n − 3. 

Note that λ(Bn−1) = n − 2. Each Bn(i) − F is 

connected (i = 1, 2, ..., n). And the number of edges 

between Bn(i) and Bn(j) is (n − 2)! > 3n − 6(n ≥ 7). 

Then Bn − F is connected, a contradiction. 

If n = 4, then there exist at least one [Bn(i), Bn(j)]�  

F . Hence Bn − F has at most three components, a 

contradiction. 

If n = 5, then (n − 2)! = 6 and at most one [Bn(i), 

Bn(j)] is contained in F . (If there is not [Bn(i), 

Bn(j)]⊆ F, then Bn − F is connected, a contradiction.) 

But |[Bn(p), Bn(q)]| = (n − 2)! > 9 − 6 for p ≠ i, j or q 

≠i, j. Since each Bn(i) − F is connected (i = 1, 2, ..., n), 

Bn − F is connected, a contradiction. 

If n = 6, then (n − 2)! = 12 = 3n − 6 and there are i, j 

such that [Bn(i), Bn(j)] = F. Hence Bn − F is also 

connected, a contradiction. 

Case 2. n − 2 ≤ |F1| ≤ 3n − 8. 

If each Bn(i) − F is connected (i = 1, 2, ..., n), and 

|[Bn(p), Bn(q)]| = (n − 2)! > 3n − 6 − (n − 2)(n ≥ 6), 

then Bn − F is connected, a contradiction. We assume n 

= 5. And there are some i, j such that |[Bn(i), Bn(j)]| = 

(n − 2)! > 3n − 6 − (n − 2) = 6. Hence F = F1 ∪ [Bn(i), 
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Bn(j)] and Bn − F is also connected, a contradiction. 

We suppose there are some i’s such that Bn(i) − F is 

not connected. But λ(Bn−1) = n− 2, at most three 

subgraphs Bn(i)’s are not connected in Bn −F. From the 

inductive hypothesis, Bn(i) − F has at most three 

components. 

Subcase 2.1. Only one Bn(i) − Fi is not connected in Bn 

− F. 

First, assume i = 1. It is similar to Case 1, 
2

n

i=

∪  Bn(i) 

is connected in Bn − F . Since|[Bn(1), Bn − Bn(1)]| = (n 

− 1)! > 3n − 6 − (n − 2)(n ≥ 4). Hence, Bn − F has at 

most three components, a contradiction. 

Suppose that i = 2. Then |F1| ≥ |F2| ≥ n − 2(i = 1, 2) 

and 
3

n

j=
∪  Bn(j) ∪ Bn(1) is connected in Bn – F. Because 

Bn(j) ∪ Bn(1) is |[Bn(2), Bn−Bn(2)]| = (n−1)! > 

3n−6−(2n−4)(n ≥ 4). Hence, Bn − F has at most three 

components, a contradiction. 

If i ≤ 3, then |F1| ≥ |F2| ≥ |Fi| ≥ n − 2. It follows that 

|F1| = |F2| = |Fi| = n − 2 and F = F1 ∪ F2 ∪ Fi. It is 

similar the above discussion, Bn − F has at most three 

components, a contradiction. 

Subcase 2.2. There are only two Bn(i) − Fi and Bn(j) − 

Fj that are not connected in Bn − F. And i, j ≤ 3. 

Subcase 2.2.1. Assume i = 1, j = 2. 

Furthermore, we can obtain that 
3

n

j=
∪  Bn(i) − F is 

connected in Bn − F. And |F1| ≤ 3n − 6 − (n − 2) = 2n 

− 4. 

If Bn(1) − F has three components, then |F1| ≥ 2n − 

5 according to Theorem 2.5. But |F2| ≥ n − 2 and |F | ≤ 

3n − 6, at most one components of Bn(i) − F (i = 1, 2) 

is not connected to 
3

n

j=
∪

 Bn(i) − F. Then Bn − F has at 

most two components, a contradiction. We can see 

Figure 3 and the dotted line represents that the 

component may be connected to another component. 

 

Figure 3. Illustration of Bn(1) − F has three components 

Hence we assume that Bn(i) − F (i = 1, 2) has only 

two components. Note that |[Bn(i), Bn(j)]| = (n − 2)! > 

3n − 6 − (2n − 4)(n ≥ 4). At least one components of 

Bn(i) − F (i = 1, 2) is connected to 
3

n

i=

∪
 Bn(i) − F . Then 

Bn − F has at most three components, a contradiction. 

We can see Figure 4 and the dotted lines represent that 

the component may be connected to another 

component. 

 

Figure 4. Illustration of Bn(i) − F (i = 1, 2) has only 

two components 

Subcase 2.2.2. Assume i = 1, j = 3. 

And |F1| ≥ |F2| ≥ |F3| ≥ n − 2. It follows that F = F1 

∪ F2 ∪ F3 and |F1| = |F2| =|F3| = n − 2. By 

Proposition 2.3, Bn(i) − F (i = 1, 3) is super-λ. Since 

3

n

i=

∪
 Bn(i) −F is connected, Bn − F is connected, a 

contradiction. 

Subcase 2.2.3. i = 2, j = 3. It is similar to subcase 2.2.2. 

Case 3. 3n − 7 ≤ |F1| ≤ 3n − 6. 

Then Bn(i) − F is connected for i = 2, 3, ..., n. 

Furthermore, 
2

n

i=

∪
 Bn(i) −F is connected in Bn – F. 

Note that at most one vertex of Bn(1) has no 

neighbors in 

Bn − Bn(1). Hence, Bn − F has at most two 

components, a contradiction. We can see Figure 5 and 

the dotted line represents that x may be connected to 

another component. 

 

Figure 5. Illustration of case 3 

Hence λ4(Bn) ≥ 3n − 5. 

We can easily obtain κ3(Bn) for n = 3. 

Theorem 2.7. κ3(B3) = 3. 

Theorem 2.8. κ3(Bn) = 2n − 4(n ≥ 4). 

Proof. By induction. It is true if n = 4. We assume that 

n ≥ 5 and the result holds when n ≤ k − 1. We will 

prove it for n = k. 

Take a cycle C4 = x1x2x3x4 and F = N ({x1, x3}). Then 

|F | = 2n−4 and Bn −F has at least three components. 

Hence κ3(Bn) ≤ 2n − 4. It suffices to show κ3(Bn) ≥ 2n 

− 4. Suppose that there is a vertex set F with |F | ≤ 2n 

− 5, and Bn − F has at least three components. Since Bn 

can be decomposed to n subgraphs Bn(i)(i = 1, 2, ..., n), 

we set S1 = {Bn(i) : |V (Bn(i)) ∩ F | ≥ n − 2} and S2 = 

{Bn(i) : |V (Bn(i)) ∩ F | ≤ n − 3}. Because 2(n − 2) > 

2n − 5 ≥ |F |, we can obtain |S1| ≤ 1 and S2 φ≠ . We 
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obtain S2 − F is connected since κ(Bn−1) = n −2. If 

S1 φ= , then Bn − F is connected, a contradiction. 

Hence S1 φ≠ . Assume S1 = {Bn(1)}. If Bn(1) − F is 

connected, then Bn − F has at most two components, a 

contradiction. 

Suppose Bn(1)−F is not connected. Because κ(Bn(1)) 

= n−2 and |V (Bn(1))∩F | ≥ n − 2. If Bn(1) − F has at 

least three components, then |V (Bn(1)) ∩ F | ≥ 2n − 6 

from the inductive hypothesis. Since |F | ≤ 2n − 5, at 

most one vertex of Bn(1) has no neighbors in S2 − F . 

Hence Bn − F has at most two components, a 

contradiction. We can see Figure 5. 

Suppose that Bn(1) − F has only two components. 

The neighbors of Bn(1) in S2 is (n − 1)! > 2n − 5(n ≥ 5). 

Then at least one component of Bn(1) − F is connected 

to S2 − F . Furthermore, Bn − F has at most two 

components, a contradiction. We can see Figure 6 and 

the dotted line represents that the component may be 

connected to another component. 

 

Figure 6. Illustration of Bn(1) − F has only two 

components 

Theorem 2.9. κ4(Bn) = 3n − 6(n ≥ 4). 

Proof. By induction. It is true if n = 4. We assume that 

n ≥ 5 and the result holds when n ≤ k − 1. We will 

prove it for n = k. 

Take a cycle C6 = x1x2 ... x6 and A = {x1, x3, x5}. Then 

|N (A)| = 3n − 6 and Bn − N (A) has at least four 

components. Hence κ4(Bn) ≤ 3n − 6. It suffices to show 

κ4(Bn) ≥ 3n − 6. 

Suppose that there is a vertex set F with |F | ≤ 3n − 

7, and Bn − F has at least four components. Since Bn 

can be decomposed to n subgraphs Bn(i)(i = 1, 2, ..., n), 

we set S1 = {Bn(i) : |V (Bn(i))∩F | ≥ (3 7) / 2n −⎢ ⎥⎣ ⎦ +1} 

and S2 = {Bn(i) : |V (Bn(i))∩F | ≤ (3 7) / 2n −⎢ ⎥⎣ ⎦ }. 

Because 2( (3 7) / 2n −⎢ ⎥⎣ ⎦ + 1) > 3n − 7 ≥ |F |, we can 

obtain |S1| ≤ 1 and S2 φ≠ . 

Case 1. S1 φ= . 

Because of κ(Bn−1) = n − 2, there are at most two 

subgraphs Bn(i) and Bn(j) which are not connected in S2 

− F . Without loss of generality, assume i = 1, j = 2. 

Subcase 1.1. There is only one Bn(1) that is not 

connected in S2 − F . 

It follows that |V (Bn(1)) ∩ F | ≥ n − 2. From 

the inductive hypothesis, κ4(Bn(1)) = 3n − 9 > 

(3 7) / 2n −⎢ ⎥⎣ ⎦  (n ≥ 5). Hence Bn(1) − F has at most 

three components. Note that each vertex of Bn(t) has 

only one neighbor in Bn − Bn(t). And the number of 

edges between Bn(t) and Bn(s) is (n − 2)! > 2n − 5(n ≥ 

5). Then S* = 
2

n

i=

∪
 Bn(i) is connected in Bn − F . 

If Bn(1) − F has three components, then κ3(Bn(1)) = 

2n − 6 by Theorem 2.8. And there are at most two 

isolated vertices in Bn(1) − F . Because Bn(1) has (n − 

1)! neighbors in Bn − Bn(1) and (n − 1)! > 3n − 7(n ≥ 

5), at least one component of Bn(1) − F is connected to 

S*. Furthermore, Bn − F has at most three components, 

a contradiction. We can see Figure 7 and the dotted 

lines represent that the component may be connected to 

another component. 

 

Figure 7. Illustration of Bn(1) − F has three components 

If Bn(1) − F has only two components, then it is 

obviously a contradiction. 

Subcase 1.2. There are only two subgraphs Bn(1) and 

Bn(2) that are not connected in S2 − F . 

It is similar to Subcase 1.1, S* = 
3

n

i=

∪
 Bn(i) is 

connected in Bn − F . We obtain |V (Bn(1)) ∩ F | ≥ n − 

2 and |V (Bn(2)) ∩ F | ≥ n − 2. From the inductive 

hypothesis, Bn(1) − F and Bn(2) − F do not have more 

than three components, respectively. Because of the 

definition of S2, Bn(1) − F and Bn(2) − F have only two 

components, respectively. Since the number of 

neighbors of Bn(i) in S* is (n − 1)! − (n − 2)! > 3n − 

7(n ≥ 5) for i = 1, 2. Then at least one component of 

Bn(i) − F is connected to S* for i = 1, 2. It follows that 

Bn − F has at most three components, a contradiction. 

We can see Figure 4. 

Case 2. S1 φ≠ . Assume S1 = {Bn(1)}. 

Because |V (Bn(1)) ∩ F | ≥ (3 7) / 2n −⎢ ⎥⎣ ⎦ + 1 and |F | 

≤ 3n − 7, at most one subgraph of S2 is not connected. 

Subcase 2.1. Each subgraph of S2 is connected. 

It is similar to Subcase 1.1, S* = 
2

n

i=

∪
 Bn(i) is 

connected in Bn − F . 

If Bn(1) − F has at least four components, then by 

induction, κ4(Bn(1)) = 3n − 9. Because each vertex of 

Bn(1) has only one neighbor in S* and |F | ≤ 3n − 7, at 

most two vertices of Bn(1) are not connected to S*. It 

follows that Bn − F has at most three components, a 

contradiction. 

If Bn(1) − F has three components, then κ3(Bn(1)) = 

2n − 6. The number of neighbors of Bn(i) in S* is (n − 

1)! > 3n − 7(n ≥ 5). Then at least one component of 
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Bn(1) − F is connected to S*. It follows that Bn − F has 

at most three components, a contradiction. We can see 

Figure 7. 

If Bn(1) − F has only two components, then 

obviously, it is a contradiction. 

Subcase 2.2. Only one subgraph of S2 is not connected. 

Suppose Bn(2) is not connected. 

Note that S* = 
3

n

i=

∪
 Bn(i) is connected. If Bn(2) − F 

has at least three components, then |V (Bn(2)) ∩ F | + 

|V (Bn(1)) ∩ F | > 3n − 7 by Theorem 2.8 and |V (Bn(1)) 

∩ F | ≥ (3 7) / 2n −⎢ ⎥⎣ ⎦ + 1(n ≥ 5), a contradiction. Hence 

Bn(2) − F has only two components and |V (Bn(2)) ∩ F 

| ≥ n − 2. 

If Bn(1) − F has at least four components, then by 

induction, |V (Bn(1)) ∩ F | ≥ κ4(Bn(1)) = 3n − 9. But n 

− 2 + 3n − 9 > 3n − 7(n ≥ 5), a contradiction. 

If Bn(1) − F has three components, then |V (Bn(1)) ∩ 

F | ≥ κ3(Bn(1)) = 2n − 6. Note that |V (Bn(2)) ∩ F | ≥ n 

− 2, |F | ≤ 3n − 7 and S* is connected. After deleting at 

most one vertex, at least one component of Bn(2) − F is 

connected to S* and at least two components of Bn(1) − 

F are connected to S*. Hence Bn − F has at most two 

components, a contradiction. We can see Figure 8 and 

the dotted line represents that the component may be 

connected to another component. 

 

Figure 8. Illustration of Bn(1) − F has three components 

If Bn(1) − F has only two components, then |V 

(Bn(1)) ∩ F | ≥ n − 2. Note that |V (Bn(2)) ∩ F | ≥ n − 

2. Since the number of neighbors of Bn(i) in S* is (n − 

1)! − (n − 2)! > 3n − 7(n ≥ 5) for i = 1, 2. Then at least 

one component of Bn(i) − F is connected to S* for i = 1, 

2. It follows that Bn − F has at most three components, 

a contradiction. We can see Figure 9 and the dotted 

lines represent that the component may be connected to 

another component. 

If Bn(1) − F is connected, then obviously, it is a 

contradiction. 

 

Figure 9. Illustration of Bn(1) − F has two components 

3 Conclusions 

The component connectivity is a measurement of the 

reliability and fault-tolerant ability of networks. We 

determine the small component connectivity of bubble-

sort networks. We will study the larger component 

connectivity of bubble-sort networks in the future work. 
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