
Distributed and Efficient Network Hypervisor for SDN Virtualization 625 

 

Distributed and Efficient Network Hypervisor for  

SDN Virtualization 

Ling Xia Liao1,2, Jian Wang3, Han-Chieh Chao2, Bin Qin4 

1 School of Electronic Information and Automation, Guilin University of Aerospace Technology, China 
2 Department of Electrical Engineering, National Dong Hwa University, Taiwan 

3 School of Information and Communication, Guilin University of Electronic Technology, China 
4 Information Center, Guilin University of Aerospace Technology, China 

Liaolx@guat.edu.cn, Wangjian@guet.edu.cn, hcc@gms.ndhu.edu.tw, qinbin@guat.edu.cn* 

                                                           
*Corresponding Author: Han-Chieh Chao; E-mail: hcc@gms.ndhu.edu.tw 

DOI: 10.3966/160792642021052203012 

Abstract 

This article proposes a novel Distributed and Efficient 

Network Hypervisor (DeNH) to virtualize Software 

Defined Networking systems. DeNH adopts container-

based architecture to reduce the extra delay imposed by 

the hypervisor, and provides efficient inter-hypervisor 

coordination to support global network embedding and 

global network addressing and control logic mapping 

table, leading to larger network scalability and higher 

network performance. A lightweight caching system with 

a record pre-fetching mechanism is proposed to 

significantly increase the cache hit rate for a further delay 

reduction in setting up flow entries. DeNH proposes to 

use the packets forwarded to the hypervisors in the 

control plane for flow setup to generate global network 

statistics. Such strategy significantly reduces the 

overhead imposed by shipping statistics from data to 

control planes. Evaluations over emulated SDN systems 

demonstrate the extra flow setup delay added by DeNH is 

very short. While the cache hit rate of DeNH is estimated 

to 100% using the traces of real data centres, the statistics 

maintained by DeNH can give an accurate detection of 

elephant flows in networks. 

Keywords: Distributed network hypervisor, Virtualization, 

SDN, Cache, Detection of elephant flows 

1 Introduction 

Network virtualization and Software Defined 

Networking (SDN) [1] are two of the key technologies 

for complicated systems to achieve efficient and 

intelligent resource sharing and management [2]. As 

similar as computer hypervisors allocating resources to 

and manage virtual machines in computer virtualization, 

network hypervisors (NHs) allocate resources to and 

manage the operation of virtual networks (VNs) in 

network virtualization [3]. While network resources 

may be virtualized at different networking layers [4], 

NHs can virtualize networks across layers to form fully 

virtualized networks [5].  

Fully virtualized networks have VNs managed by 

their own controllers with their own network resources 

[3]. They are highly demanded by current data centres, 

as they allow multiple VNs to share the same physical 

infrastructure [3]. However, employing an NH to fully 

virtualize a conventional computer and communication 

network (CCN) is challenging, because that need the 

NH to coordinate with all the devices in the network. 

However, enabling such coordination over a 

conventional CCN is difficult due to the lack of 

mechanisms to flexibly configure and manage the wide 

range of networking devices. As SDN systems have 

control planes separated from networking devices, with 

standardized protocols and interfaces [6] to configure 

and program the devices, SDN control planes make the 

perfect place for launching NHs.  

Current research has proposed some NHs over SDN 

systems [3]. No matter such solutions are centralized or 

distributed (centralized solutions utilize a single NH 

entity in the control plane, distributed solutions can 

have multiple NH entities), each packet of flows 

forwarded to tenant controllers for the installation of 

flow entries over VNs must go through the NH entity 

for the conversion of control logic and network 

addresses between virtual and physical networks (PNs), 

leading to an extra delay imposed by the NH entities 

[7]. Tenant controllers manage VNs over a PN. Having 

a low flow setup delay is crucial for a better quality of 

service and user experience over virtualized SDN 

systems.  

A centralized compact design that enables one 

container-level NH entity and multiple tenant 

controllers can reduce such delays, because container-

level NH and tenant controller entities in a compact 

design are application modules sharing the same 

operating system and physical host [5], and their 

interaction is simplified. However, having the NH and 

tenant controller modules residing in the same host 



626 Journal of Internet Technology Volume 22 (2021) No.3 

 

limits the number of tenant controller modules a host 

can launch, and hence the number of VNs an NH entity 

can manage, given each VN has its own tenant 

controller module [3]. The number of VNs a PN can 

support is a metric to measure the scalability of an NH 

solution [1]. To address this issue, distributed and 

compact designs with multiple hypervisor entities, as 

illustrated in Figure 1, can be applied [5]. 

 

Figure 1. Distributed and compact solution with 

container-level NH and tenant controllers 

However, such designs often lack inter-hypervisor 

coordination [5, 8-10], causing a difficulty in 

assembling global network view and enabling global 

network embedding, leading to limited network 

scalability. The lack of inter-hypervisor coordination 

also makes the maintenance of the global mapping 

table very challenging. Global mapping tables consist 

of mapping records that convert the control logic and 

network addresses for all the VNs at each hypervisor 

entity. Maintaining a global mapping table at an NH 

entity is crucial as it allows an NH entity to quickly 

take over the work of the other NH entities when they 

are overloaded or in failures. 

Previously proposed distributed NHs often 

implemented a read caching system caching the 

mapping records at an NH entity to reduce the extra 

delay imposed by NH entities, but that reduction is 

trivial. The cache system often loads a mapping record 

from the original storage when the first packet of a 

flow is forwarded to the control plane. However, the 

cached mapping record may not be visited again, 

because many flows in the networks are short flows 

and they only forward their first packets to the control 

plane, leading to a cache hit rate of 0 [5, 8-9].  

Previously proposed distributed NHs also lack 

efficient approaches to collect global network statistics 

to support intelligent resource management [9, 11-14]. 

Network statistics often have big volumes and must be 

shipped from switches to controllers in SDN systems. 

Shipping network statistics adds extra overhead on 

both control and data planes, reducing the network 

performance and scalability [8].  

To address these issues, we adopt the distributed and 

compact design and make the following major 

contributions in this article:  

(1) A distributed and efficient network hypervisor 

(DeNH) with container-level hypervisor and tenant 

controllers, is proposed by extending our previous 

proposed distributed controller (DisCon) [15]. DeNH 

maintains a global network topology and global 

mapping table for a larger scalability. 

(2) A lightweight mapping table cache with a record 

pre-fetching mechanism is proposed to effectively 

reduce the flow setup latency over VNs.  

(3) Flow statistics is collected based on the packets 

of flows forwarded to the control plane to significantly 

reduce the overhead of both control and data planes. 

(4) Extensive evaluations are provided to demonstrate 

that the scalability of DeNH can be enhanced by using 

multiple hypervisor entities, although the physical 

resources of a computer hosting a DeNH entity still 

limits the scalability of DeNH. As the mapping table 

cache of DeNH has a cache hit rate of 100%, the extra 

delay imposed by the NH is very small. The proposed 

flow statistics demonstrates a high accuracy in 

detecting elephant flows that often last a long period 

with many packets to heavily impact the network 

performance [16]. 

The rest of this article is organized as the follows. 

Section 2 summarizes the related work and background. 

DeNH is proposed and prototyped in Sections 3 and 4, 

respectively. Evaluations are given in Section 5, and 

conclusions are drawn in Section 6. 

2 Background and Related Work 

2.1 Mechanisms for Network Hypervisors 

Network virtualization should provide resource 

abstraction and isolation for VNs. PNs can be 

virtualized in widely various levels. The lowest level 

provides a transparent one-to-one mapping in which 

virtual topologies are constructed over the physical 

topology, while the highest level virtualizes the entire 

physical topology as a single virtual link or node, and 

generally, there is a wide range of levels between of 

them [3].  

NHs are VN monitors that can fully virtualize SDN 

systems and provide various levels of abstraction and 

isolation [5, 17]. At the data plane, NHs can employ 

Link Layer Discovery Protocol (LLDP) [18] to abstract 

network topology, VLAN [19] and NVGRE [20] 

protocols to abstract link capabilities, and OpenFlow 

protocols [6] to slice port queues of switches. At the 

control plane, NHs assign a unique ID to a slice of 

links [19-20] or a VN [5]. VNs may have distinct 

segments of PN addressing space or overlapped 

network addressing spaces [5]. NHs can allow each 

VN to have its own tenant controller [1, 9, 11-12, 21] 

or container-level tenant controller [5] to isolate the 

control logic from other VNs. 



Distributed and Efficient Network Hypervisor for SDN Virtualization 627 

 

2.2 Hypervisors Over SDN Systems 

FlowVisor [21] is the first centralized NH solution 

that uses OpenFlow protocols to virtualize SDN 

systems. It introduces the flowspace and allocates a 

VN its own flowspace to differentiate from the other 

VNs. However, it does not hide physical switches and 

network addresses in VNs. AdVisor [11], VeRTIGO 

[12], Enhanced FlowVisor [17], and OpenVirteX [8] 

are centralized NHs extending FlowVisor in different 

ways. OpenVirteX can hide physical switches and 

network addresses in VNs by providing a mapping 

table to convert control logic and network addresses 

between PNs and VNs, while the other three cannot. 

There are also centralized NHs not based on FlowVisor. 

They may focus on the isolation between virtual slices 

sharing SDN switches [2] or target specific networking 

scenarios such as wireless and mobile networks [1]. 

While DFVisor [10] is a distributed NH solution 

based on FlowVisor and does not hide the physical 

switches and network addresses for VNs, some non-

FlowVisor based distributed NHs such as NVP [13], 

FlowN [5], ONVisor [9], and AutoSlice [14] do. 

FlowN does it by converting the control logic and 

network addresses between VNs and PNs using a 

mapping table. It reduces the flow setup latency over 

VNs by employing a compact design with container-

level hypervisors and tenant controllers. It maintains 

global mapping table by replicating data among 

databases. It provides no inter-hypervisor coordination 

to abstract network topology and embed VNs globally, 

but NVP, ONVisor, and our proposed DeNH do by 

inheriting it form some distributed controller solutions. 

For instance, NVP wraps Onix [22] controller, 

ONVisor inherits the distributed design from ONOS 

[23], and the proposed DeNH extends DisCon. While 

ONVisor allows each VN to be managed by an 

individual controller, NVP and DeNH do not. NVP 

acts as a controller to manage the application and flows 

over VNs, while ONVisor uses a distributed data store 

to store and share the global network view among 

multiple nodes. DeNH has a distributed and compact 

design similar as FlowN but provides a more efficient 

inter-hypervisor coordination. While NVP, ONVisor, 

and AutoSlice focus on developing novel mechanism 

for resource abstraction and isolation, DeNH makes 

great efforts on reducing the flow setup latency of VNs 

and the overhead of statistics collection. 

2.3 Caches Over SDN Systems 

SDN controller solutions often implement read 

caches to avoid directly operating the original global 

network view in the databases or DSs [22-23]. Read 

caches load a new record from the original storage 

when a cache miss is generated. Hypervisor solutions 

such as FlowN, NVP, ONVisor, AutoSlice, and 

OpenVirteX also implemented read caches to cache 

mapping table records. However, they often suffer a 

low cache hit rate in SDN systems, in which the first 

packets of new flows are forwarded to the control 

plane for the installation of the flow entries. In NH 

solutions, such first packets need to visit the mapping 

cache to convert their control logic and network 

addresses. Since they are the first packets of the new 

flows, they suffer a cache miss and load new mapping 

records from the original mapping table to the cache. 

This allows the following packets of the flow 

forwarded to the control plane to directly retrieve the 

mapping record without involving the original 

mapping table again. Since many flows in current 

networks are mice flows that only forward their first 

packets to the control plane [24], many mapping 

records loaded by the first packets will never be read 

again, leading to a high cache miss rate. Such a high 

cache miss rate increases the flow setup latency, and 

cannot be decreased by increasing the size of the cache. 

DeNH addresses this issue by developing a mapping 

records pre-fetching mechanism. 

2.4 Statistics Over SDN Systems 

Network statistics are a major part of the global 

network view. While conventional CCNs often deploy 

traffic analysis tools to sample network packets and 

generate the network statistics based on the samples, 

SDN systems can count flow statistics at switches 

without sampling. SDN systems may employ active or 

passive methods to collect statistics. Active methods 

often let the conrollers to repeatedly poll the network 

statistics from switches, while passive methods force 

switches to report their statistics automatically. Since 

the flow statistics generated by both types of methods 

are counted by all flow entries at switches, shipping 

flow statistics from switches to controllers are 

unavoidable. This imposes extra overhead on both 

control and data planes [16]. DeNH addresses this 

issue by counting the flow statistics using the packets 

of flows forwarded to the control plane instead of 

shipping statistics from switches to controllers. 

3 Distributed and Efficient Network 

Hypervisor 

3.1 DisCon’s Architecture and Major 

Mechanisms 

Our previous work, DisCon is a distributed 

controller with multiple controller entities (nodes), as 

shown in Figure 2(a). It proposed a novel event 

coordination system (ECS) to enable the inter-

controller coordination. As shown in Figure 2(b), ECS 

consists of multiple nodes, each containing an ECS 

server and multiple clients. An ECS server contains 

three processes, the server, the in-memory data store 

(DS), and the Corosync Cluster Engine (CCE) [25], 

running on the same host. An ECS server should run 



628 Journal of Internet Technology Volume 22 (2021) No.3 

 

independently. An ECS client should be integrated into 

the local controlling entities to operate the local DS via 

the local ECS server. ECS uses CCE to fully replicate 

the local events among all the node.  

 

(a) Architecture of DisCon 

 

(b) Architecture of ECS 

Figure 2. Architecture of DisCon and ECS 

3.2 DeNH’s Architecture and Functions 

DeNH is a distributed NH solution extended from 

DisCon for the virtualization of SDN systems. 

Compared with DisCon consisting of multiple 

controllers, each managing a subset of switches of an 

SDN system, DeNH consists of multiple hypervisor 

entities, each managing a subset of VNs over the PN. 

Particularly, as shown in Figure 3(a), DeNH inserts an 

NH module into a DisCon entity and allows a VN to 

have its own tenant controller module. 

Given a VN with the requirements on network 

topology and resources, the NH module at a DeNH 

node can embed it onto the PN using any existing 

network embedding algorithm. DeNH uses a 4-byte 

integer (the tenant ID) to identify a VN. After a VN is 

successfully embedded, a tenant ID is assigned. As 

DisCon can construct the global network topology at 

each controller using the ECS, each DeNH entity (node) 

can abstract the global network topology and embed a 

VN globally.  

Ports are the basic resources of switches. Current 

OpenFlow protocols define logical ports and allow to 

allocate resources (such as bandwidth) to them. DeNH 

uses logical ports to abstract and isolate the resource of 

switches and links at the data plane. Particularly, 

DeNH launches a virtual machine for each VN 

connecting to a logical port of a switch using a one-to-

one match system, as shown in Figure 3(c). The virtual 

machine with physical IP address over the PN can be 

identified by the combination of the logical port 

(identified by the port #) and the physical switch 

(identified by its datapathid) that the virtual machine 

connects to. Let a VN have a tenant ID, the 

combination of the virtual switch (identified by the 

tenant datapathid) and its port (identified by the tenant 

port#) that connects the virtual machine to the VN 

identifies a host (the virtual machine with tenant IP 

address) within the VN. The combination of the tenant 

ID, the tenant datapathid, and the tenant port# 

identifies a host among all the VNs over the given PN. 

This matching system allows VNs to have overlapped 

network addresses and facilitates the conversion of 

network addresses between VNs and PNs, while 

providing isolation at both control and data planes.  

At the control plane, although DeNH allows each 

VN to have its own tenant controller module, the NH 

and OpenFlow message processing modules at a node 

are shared by VNs managed by the node. However, we 

can avoid a VN affecting the performance of the other 

VNs by setting the maximal number of OpenFlow 

messages a VN can process.  

Figure 3(b) illustrates the workflow of DeNH. 

Particularly, when running applications over a VN, 

packets of flows are generated by the applications and 

forwarded by the involved switches (1). If such 

switches set up flows reactively, the first packet of 

each flow will be packed to a packet-in message and 

forwarded to the control plane for the installation of a 

flow entry (2).  

The packet-in message will be received by the 

OpenFlow message processing module at a DeNH 

entity, and further packed to an event and sent to the 

NH module (3). The NH module converts the received 

event from the physical network to virtual networks 

and sends it to their corresponding tenant controller 

module for processing (4). The corresponding tenant 

controller module receives the event, generates the 

response, and sends it back to the NH module (5), in 

which the response is converted from the VN to the 

physical network and sent to the OpenFlow message 

processing module (6) again. The OpenFlow message 

processing module further packs the response to an 

OpenFlow message and forwards it back to the 

corresponding switch (7). The switch processes the 

received message, installs the corresponding flow entry, 

and forwards the received packet based on the installed 

flow entries (8). In (4) and (5), the NH module relies 

on the mapping table to convert the events between 

VNs and PNs. 

The mapping table in DeNH is generated based on 

the one-to-one matching system and written to the DS 

of an ECS server. Since the ECS server can replicate 

its write operations to other ECS servers, the update of 

a mapping table at a DeNH entity can be synchronized 

to the other mapping tables, such that a global mapping  



Distributed and Efficient Network Hypervisor for SDN Virtualization 629 

 

 

(a) Architecture (b) workflow (c) one-to-one matching system 

Figure 3. DeNH’s architecture, work flow, and matching system 

table consisting of the mapping records of all the 

virtual networks can be maintained at each DeNH node. 

In the case that some DeNH nodes are overloaded or in 

failures, maintaining a global mapping table at each 

DeNH node allows a DeNH node to quickly take over 

the works of the other DeNH nodes without replicating 

the mapping records from the other mapping tables to 

improve the network availability. 

3.3 Performance and Scalability Enhancement 

To enhance the whole system’s performance and 

scalability, DeNH uses the distributed and compact 

design with inter-hypervisor coordination facilitated by 

ECS. DeNH splits its VNs into two groups: the VNs 

having particular concerns on control logic and 

security and the VNs having no such concern. A 

default tenant controller module is provided to manage 

the former group. DeNH also develops the following 

mechanisms for the enhancement. 

3.3.1 Mapping Table Cache with Record Pre-

fetching 

NH solutions over SDN systems often have a low 

cache hit rate, leading to a longer network setup 

latency that decreases the network performance. DeNH 

proposes a lightweight read cache system with record 

pre-fetching mechanism. DeNH stores its mapping 

table in the DS of ECS. As listed in Table 1, DeNH 

classifies the mapping records as two categories: Cat1 

records that convert flows from a VN to the PN, and 

Cat2 records that convert flows from the PN to a VN. 

Each record in the cache has the same key and value as 

that in the original mapping table.  

Table 1. Mapping table of DeNH 

Type Key Value For 

Cat1 tenant ID, ten-ant datapathid, tenant port # Datapathid, port# Virtual-physical  

Cat2 Cat1’s Value Cat1’s Key Physical-virtual 

 

Since the NH module always maintains a list of 

tenant IDs identifying the VNs managed, and all the 

Cat1 records in the mapping table place tenant IDs in 

their keys, the NH module can integrate an ECS client 

to register the Cat1 records that have tenant IDs in the 

list. When these Cat1 records are established or 

updated in the DS, the involved write operations are 

notified to the ECS client.  

Therefore, the NH module that integrates the ECS 

client receive the write operations and synchronize the 

updates to its mapping table cache. This way, all the 

Cat1 records are loaded to the cache without triggered 

by cache misses. Since every Cat1 record has a 

corresponding Cat2 record with the key and value 

switched in the mapping table, the corresponding Cat2 

record also can be synchronized to the cache. 

 

 

When mapping records need to be updated, the 

updates are always made over the original mapping 

table via ECS write operations. These updates are then 

synchronized to the cache using the procedure 

discussed above. Figure 4 shows this synchronization 

process between the original mapping table and its 

cache within a DeNH entity. Since ECS can replicate 

write operations among multiple ECS servers, the 

mapping records written to a mapping table are also 

synchronized to the other mapping tables located in 

other DeNH entities. This synchronization among 

multiple mapping tables, as also shown in Figure 4, 

enables each DeNH entity to have its own global 

mapping table such that a DeNH entity can quickly 

take over the work of the other DeNH entities for load 

balancing or higher network availability. 



630 Journal of Internet Technology Volume 22 (2021) No.3 

 

 

Figure 4. Synchronization mapping tables and the 

cache 

3.3.2 Flow Statistics 

Since the packets of flows forwarded to the control 

plane must firstly retrieve mapping record from the 

mapping table cache to convert their control logic and 

network addresses, the mapping table cache can count 

the packets forwarded to the control plane. Particularly, 

DeNH lets the cached mapping record i count the total 

number of times ( ),
i
c the very first time ( ),i firstt

−

 and 

the most recent time ( )
i recent
t
−

 it has been read, and the 

total bytes of the packets ( )
i
p  that have visited it. The 

statistics are attached to the end of each cached 

mapping record.  

SDN switches only forward the packets of flows to 

the control plane when the matched flow entries are not 

found in their flow tables [6]. There are two scenarios 

in which the matched flow entries may not be found: 1) 

the flow entries have not been installed and 2) the 

installed flow entries have timed out. The first scenario 

makes the first packet of a flow forwarded to the 

control plane, and the second scenario determines if 

one of the following packets of a flow should be 

forwarded to the control plane. 

Given a measurement period T, let F be the set of 

flows passing through the network. Let flow 
i
f F∈  

consist of a sequence of packets, 
ij
p  be the jth packet 

of 
i
f , 

ij
t  be the arriving time of 

ij
p , and 

i
P  be the 

total number of packets of 
i
f . The total number of 

packets of flows passing through the network (P) 

during the T is computed by equation (1), and the total 

number of packets forwarded to the mapping table 

cache ( )
c
P  is calculated by equation (2), where 

i
δ  is 

the number of packets of 
i
f  returning the control plane 

caused by the timed-out flow entry.  

 

i

i

f F

P P

∈

= ∑  (1) 

 (1 )
i

c i

f F

P δ

∈

= +∑  (2) 

 

, ( 1), , , 1ij i ik i

i ij

p p j p f k j j

aδ

− ∈ < >

= ∑  (3) 

 

1, , 1
and

0, ,

ij ik hard ij

ij

if t t t j if a
a k

otherwise k otherwise

− ≥ =⎧ ⎧⎪ ⎪
= =⎨ ⎨
⎪ ⎪⎩ ⎩

 (4) 

 

( 1)1,

0,

ij i j idle

ij

if t t t
a

otherwise

−

− ≥⎧⎪
= ⎨
⎪⎩

 (5) 

 (1 ) /
i

i

f F

A Pδ

∈

= +∑  (6) 

To compute 
i

δ , we consider two scenarios: the flow 

entries with hard and idle timeouts. For each 
i i
p f∈  

we define a binary variable 
ij
a . We let 1

ij
a = if 

ij
p  

returns to the control plane, and 0
ij
a =  otherwise. In 

the case of flow entries with hard timeout 
hard
t , let 

ik
p  

renew the flow entry ( ),k j<  and the packets between 

ik
p  and 

ij
p  haven’t renewed the flow entry. Then, we 

let 1
ij
a = and k j=  if ;ij ik hardt t t− ≥  and 0

ij
a =  

otherwise, as shown in equation (4). This means that 

ij
p  will be forwarded to the control plane if at its 

arriving time the flow entry has stayed in the flow table 

longer than the given hard timeout. In the case of flow 

entries with idle timeout ,
idle
t  we compute the time 

difference between ( 1)ij i j
t t

−

−  and compare it with 
idle
t . 

We let 1
ij
a =  if ( 1) ,ij i j idlet t t

−

− ≥  and 0
ij
a =  otherwise, 

as shown in equation (5), which means that 
ij
p  will be 

forwarded to the control plane if the idle time of the 

flow entry is not less than .

idle
t  Therefore, the 

parameter A that represents the percentage of the total 

number of packets of flows counted by the statistics 

can be computed by eqation (6). All the variables used 

in the equations are listed in Table 2. 

4 DeNH Prototyping 

Current DeNH implementation consists of an NH 

module developed from scratch, and an OpenFlow 

message processing module, a topology discovery 

module, a default tenant switching module (TSM), and 

a default tenant routing module (TRM) respectively 

extended from DisCon. 

The NH module incorporates the functions of 

embedding VNs, generating mapping records, 

converting network addresses, and converting control 

logics. A VN can be embedded by a DeNH entity in a 

global manner. After a VN is embedded successfully, 

its mapping records are generated based on the 

matching system and written to the mapping table that 

is stored in the DS of ECS. The function of converting  



Distributed and Efficient Network Hypervisor for SDN Virtualization 631 

 

Table 2. Symbols and their descriptions 

Symbols Descriptions 

T the measurement period 

F the set of flows during T 

P the total number of packets of flows in F  

A the percentage of total number of packets of flows sent to control plane  

i
c  the number of times the cached record i has been visited 

i firstt
−

 the very first time when the cached record i has been visited 

i recent
t
−

 the most recent time when the cached record i has been visited 

i
p  the total bytes of packets that have visited the cached record i 

i
f  the flow i in F 

i
P  the total number of packets in 

i
f  

c
P  the total number of packets of flows sent to the control plane in T 

ij
p  the jth packet of 

i
f  

ij
t  the arriving time of 

ij
p  

ik
t  the time when the flow entry with hard timeout of 

i
f  is set up  

i
δ  the number of returning packets of 

i
f   

ij
a  the binary integer showing if 

ij
p  is forwarded to the control plane 

hard
t  the hard timeout value 

idle
t  the idle timeout value 

 

network addresses translates network addresses 

between virtual and physical networks. The function of 

converting control logic translates the events between 

tenant controller and OpenFlow message processing 

modules. The NH module uses a hashmap to 

implement a mapping table cache. The Flow statistics 

are attached to the end of each cached mapping record. 

The OpenFlow message processing module at a 

DeNH entity handles the OpenFlow messages of that 

entity, and it is shared by all the tenant controller 

modules of that entity. The topology discovery module 

discovers the physical topology over a network 

partition and constructs the global physical topology 

over the entire network partitions. To discover the 

topology of VNs, for each received topology event, the 

NH module is called to convert the received event from 

the physical network to the corresponding VN. The 

network topology is stored in a data structure (DpInfo) 

proposed by NOX [26]. DeNH allows each VN to 

deploy its own tenant controller module or use the 

default TSM and TRM, which implement a general 

flow switching procedure and a routing procedure [26] 

over VNs, respectively. 

5 Evaluation 

5.1 Mapping Table Synchronization 

As each write operation issued by a DeNH entity is 

replicated to the other DeNH entities in the control 

plane, the mapping records written to one mapping 

table is synchronized to the other mapping tables of the 

other DeNH entities, leading to a synchronization 

delay. We simply use the half Round Trip Time (RTT) 

between the two DeNH entities to estimate the 

synchronization delay between two mapping tables as 

the write operations are multicasted by ECS servers. 

The half RTT in our test bed in a 1000M local area 

network is about 0.1ms. 

5.2 Mapping Table Cache Synchronization 

A DeNH entity can synchronize its original mapping 

table to the mapping table cache using the ECS. We 

measure the time difference between the time sending a 

write operation that updates a mapping record to its 

original mapping table and the time receiving the 

notification of the write operation such that the 

mapping table cache can be updated accordingly at a 

DeNH entity, to estimate the cache synchronization 

delay. We do not consider the half RTT to be the part 

of the cache synchronization delay, because the 

original mapping table and its mapping table cache are 

located on the same host. We let each write operation 

update 1-Kbyte data since the volume of each mapping 

record in the mapping table is smaller than 1-Kbyte. 

We let each such write request have a timestamp to 

record the time when the request is sent. We calculate 

the time difference between the time that the request 

sent and the notification received. We also calculate 

the delay in updating a mapping record to its original 

mapping table, using the synchronization write delay 



632 Journal of Internet Technology Volume 22 (2021) No.3 

 

of ECS when each write operating 1-Kbyte data. The 

results are shown in Figure 5. 

 

Figure 5. Original mapping table updating delay and 

mapping table cache synchronization delay 

Apparently, the two delays do not increase 

significantly as more mapping records are included in a 

mapping table. This implies the delay imposed by a 

longer watch list that collects all the mapping records 

registered by a DeNH entity is not significant 

regarding the synchronization delay between a 

mapping table and its cache and the synchronization 

delay between two mapping tables. The cache 

synchronization delay remains 1.031 ms to 1.124 ms 

when the number of registered mapping records 

increases from 0 to 20K. Since a DeNH entity needs to 

register the Cat1 records for those VNs whose tenant 

controller modules are launched on the same host that 

hosts the DeNH entity, the number of registered 

mapping records implies the number of mapping 

records belonging to the supervised VNs, and hence 

the number of VNs a DeNH entity can supervise. In 

this sense, increasing the number of VNs supervised by 

a DeNH entity does not increase the cache 

synchronization delay and the mapping table 

synchronization delay. 

5.3 Flow Setup Latency 

To measure the flow setup latency of DeNH over 

VNs and have a clear comparison with some 

previously proposed solutions, we construct a test 

scenario similar as the ones described in [5] and [8]. 

Particularly, as listed in Table 3, we use a laptop to 

generate two virtual machines: one has three 

processors and 2GB memory to run a hypervisor entity, 

and the other has one processor and 2GB memory to 

run Cbench [27]. We let each physical port of a switch 

split up to 100 logical ports and construct 100 virtual 

networks that have the exact topology copy of the 

physical network as used in FlowN [5] and 

OpenVirteX [8]. We manually generate mapping tables, 

and we run Cbench to calculate the average latency of 

a switch from sending a packet-in message to receiving 

its response. This latency is the flow setup latency of 

DeNH. We let DeNH retrieve mapping records from its 

mapping table cache and compare its flow setup 

latency to those of FlowN, OpenVirteX, FlowVisor, 

and a non-virtualized base line (NOX), as shown in 

Figure 6, where FlowN and OpenVirteX also retrieve 

mapping records from their mapping table caches.  

Table 3. Test setting for flow setup latency comparison 

Solution Testbed Descriptions VN 

DeNH and NOX laptop (i5-2700 CPU, 3.3G clock speed) 100 

FlowN &FlowVisor laptop (i5-2700 CPU, 3.3G clock speed) 100 

OpenVirteX laptop (i7-3500 CPU, 2.7G clock speed) 

one virtual machine for hypervisor 

entity, one virtual machine for Cbench, 

same topology for physical and VNs 100 

 

 

Figure 6. Flow setup latency Comparison 



Distributed and Efficient Network Hypervisor for SDN Virtualization 633 

 

It is apparent that the flow setup latency of the listed 

hypervisors does not significantly change as the 

number of VNs increases. DeNH has much shorter 

flow setup latency than FlowN, FlowVisor, and 

OpenVirteX. The overall increase of the flow setup 

latency in DeNH against to NOX is less than 0.015 ms. 

We cannot compare DeNH’ flow setup latency to 

ONVisor’s [9, 28] and NVP’s [13], since they are not 

open sourced, and their flow setup latencies have not 

been published.  

We also compare the flow setup rate of a DeNH 

entity with a NOX controller. We emulate a linear 

network with 100 switches and 100 hosts, and we 

deploy a NOX controller (activating the switching 

module) to manage it. We generate 60 VNs with the 

same topology as the PNs and manage such a network 

using a DeNH entity respectively running a TSM and a 

TRM. We use Cbench to measure the flow setup rate 

of the control plane in these two scenarios. The results 

show that NOX can set up around 40K flows per 

second, DeNH running the TSM can set up about 35K 

flows per second, and DeNH running the TRM can set 

up about 17K flows per second. This implies that 

adding a hypervisor module between switches and 

tenant controllers reduces the control plane’s flow 

setup rate due to the increased flow setup latency. 

Using TRM to set up flows has a lower flow setup rate 

than using TSM, because TRM must maintain global 

network topology while TSM does not. Maintaining 

global network topology adds overhead on the control 

plane, resulting a reduced flow setup rate.  

5.4 Cache Hit Rate 

Figure 6 was obtained by measuring the flow setup 

latency of FlowN and OpenVirteX when they have a 

100% cache hit rate. However, FlowN and OpenVirteX 

cannot provide such a high cache hit rate in practice. 

To estimate it, we consider a packet trace that lasts 5 

minutes and consists of 1,005,395 packets [28]. We let 

the packets with the same source and destination 

addresses constitute a flow and identify 3562 flows in 

the trace. We allow the flow entries to have idle and 

hard timeouts, and varying the value of timeouts from 

0.05 to 0.1, 1, 5, and 10s. As a base line we count the 

number of packets of each flow in the trace. We count 

the number of packets of a flow in the trace being sent 

to the control plane under a certain timeout. This 

number is given by 1
i

δ+  for 
i
f  by (2), where 

i
δ  is the 

number of returning packets of 
i
f . Therefore, the 

cache hit rate of FlowN and OpenVirteX can be 

calculated by (1 ),
i i

δ δ+  since the first packet 

forwarded to the control plane suffers a cache miss that 

loads the mapping record to the cache; and the cache 

hit rate of DeNH is given by (1 ) /(1 )
i i

δ δ+ + = 100%, 

since all the mapping records have been pre-loaded. 

It is apparent that each flow at least sent one packet 

(the first packet of a flow) to the control plane, and the 

number of packets that a flow sent to the control plane 

was significantly smaller than the total packets of the 

flow, especially for those flows with many packets. 

Particularly, as listed in Table 4, 17.7%, 18.3%, 25.5%, 

33.9%, and 38% of the flows only send their first 

packets to the control plane, if flow entries have idle 

timeout that is set as 0.05, 0.1, 1, 5, and 10 s, 

respectively. If flow entries have hard timeout set as 

0.05, 0.1, 1, 5s, and 10s, such percentage increases to 

18.7%, 19.5%, 30.2%, 44.5%, and 51.6%, respectively. 

This implies that a certain percentage of flows have 

0,
i

δ =  leading to a cache hit rate of 0, and the rest of 

the flows in the network will have a low cache hit rate 

if their 
i

δ  is small. Accordingly, the real flow setup 

latency of FlowN and OpenVirteX can be much larger 

than that provided in Figure 6. However, the flow setup 

latency of DeNH provided in Figure 6 represents the 

real flow setup latency of DeNH over an SDN system, 

because all the mapping records managed by a DeNH 

entity can be pre-loaded to the mapping table cache, 

which leads to a cache hit rate of 100%. 

Table 4. Flows in the trace that only send their first 

packets to the control plane (%) 

Timeout 0.05s 0.1s 1s 5s 10s 

Idle 17.7 18.3 25.5 33.9 38 

Hard 18.7 19.5 30.2 44.5 51.6 

 

5.5 Flow Statistics 

We firstly use the same packet trace as used in 

Section 5.4 and compute the percentage of the total 

number of packets of flows counted by the statistics 

using equation (5). As shown in Figure 7(a), the 

percentage is highly dependent on the timeout of flow 

entries. The shorter the timeout is, the more packets of 

flows are counted. This is because a shorter timeout 

makes more packets of flows sent to the control plane. 

Having the same timeout, the flow statistics under hard 

timeouts count more packets of flows than those under 

idle timeouts, because idle timeouts may make 

switches only forward the first packets of the elephant 

flows to the control plane, if the packets of the flows 

arrive frequently; whereas hard timeouts make 

switches forward the packets of the flows to the control 

plane periodically.  

Although only less than 20% of the total packets of 

flows were sent to the control plane, we can use such 

flow statistics to detect the elephant flows in the 

network. Detecting the elephant flows in a network is 

crucial for optimizing the network resource usage, 

because elephant flows consume most of the network 

bandwidth. Particularly, we firstly sort the flows in the 

trace and in the collected flow statistics descendingly 

regarding the number of packets of a flow, respectively; 

then we select the top 10% to 60% of the flows from 

the trace as the base line, and compare them with the 



634 Journal of Internet Technology Volume 22 (2021) No.3 

 

top 10% to 60% of the flows selected from the 

collected flow statistics when the flow entries have 

various timeouts.  

 

(a) Statistics collected by controllers 

 

(b) Real elephants detected in the flow picked 

Figure 7. Accuracy of the top flows picked by the flow statistics, i-idle timeout, h-hard timeout 

As shown in Figure 7(b), when the timeout of flow 

entries was set to be 0.1s or less, a comparison between 

the sets of the top 30%, 40%, 50%, and 60% of the 

flows selected from the counted statistics and the trace 

was made, respectively. We found that 70%, 84%, 

87%, and 90% of flows in two sets were matched, 

respectively. If we increased the timeout of flow 

entries to be 1s or larger, 50%, 60%, 70%, and 80% of 

the flows in the two sets were matched, respectively. 

The more candidates of elephant flows were selected 

from the statistics, the higher probability of the 

selected flows was the real elephant flows in the 

network. Such a probability is the accuracy of the 

statistics in detecting the elephant flows. In most of the 

time, a shorter timeout leads to a higher accuracy in the 

detection, and hard timeouts achieve higher detecting 

accuracy than idle timeouts. This is because a shorter 

idle timeout does not enforce an elephant flow with 

packets arriving frequently to send more packets to the 

control plane, while a shorter hard timeout does. Since 

most of the elephant flows can be identified by such 

detections, the flow statistics maintained by DeNH 

reflects the states of the network without adding large 

overhead on both control and data planes.  

However, shorter timeouts enforce the control plane 

to be more frequently involved in forwarding lows, 

leading to an increased flow forwarding delay at 

switches. An advanced timeout adjustment mechanism 

should be developed in our future work to increase the 

accuracy of elephant flow detection without degrading 

the flow forwarding delay of switches [29]. Counting 

statistics may cause each mapping record to be updated 

every time it gets visited, leading to a huge cache 

syncronization overhead in DeNH [30]. In practice, 

DeNH should implement an individual module to 

count the statistics without involving the mapping table 

cache.  

6 Conclusion 

A distributed and efficient network hypervisor 

solution called DeNH has been proposed. It 

incorporates multiple entities to fully virtualize a 

network by converting network addresses and control 

logic between virtual and physical networks. DeNH 

provides resource abstraction and isolation based on 

logical ports of switches at the data plane, and supports 

a container-level isolation at the control plane. DeNH 



Distributed and Efficient Network Hypervisor for SDN Virtualization 635 

 

maintains fully duplicates of global network topology 

and mapping table at each node to allow VNs to be 

embedded globally for better scalability. DeNH uses 

default tenant controller module to manage the VNs 

without extra requirements and concerns about control 

and security to increase the number of VNs an NH 

entity can support. DeNH provides a novel lightweight 

mapping table caching system with a record pre-

fetching mechanism to increases the cache hit rate to 

100% and effectively reduces the extra delay incurred 

by the conversion and the flow setup latency of the 

control plane. DeNH can maintain the statistics of the 

received packets of flows in its mapping table cache. 

The evaluations over emulated SDN systems have 

demonstrated the performance of DeNH and the flow 

statistics can give an accurate detection of elephant 

flows in the network. 

Acknowledgements 

This work was supported by the National Nature 

Science Foundation of China under Grant number 

61962016. 

References 

[1] Open Networking Foundation, Software-defined networking: 

The new norm for networks, White Paper, pp. 2-6, April, 2012. 

[2] I. Alam, K. Sharif, F. Li, Z. Latif, M. M. Karim, S. Biswas, B. 

Nour, Y. Wang, A Survey of Network Virtualization 

Techniques for Internet of Things Using SDN and NFV, 

ACM Computing Surveys, Vol. 53, No. 2, pp. 1-40, June, 

2020.  

[3] A. Blenk, A. Basta, M. Reisslein, V. Kellerer, Survey on 

network virtualization hypervisors for software defined 

networking, IEEE Communications Surveys & Tutorials, Vol. 

18, No. 1, pp. 655-685, First Quarter, 2016.  

[4] J. Li, D. Li, Y. Yu, Y. Huang, J. Zhu, J. Geng, Towards full 

virtualization of SDN infrastructure, Computer Networks, Vol. 

143, pp. 1-14, October, 2018. 

[5] D. Drutskoy, E. Keller, J. Rexford, Scalable network 

virtualization in software-defined networks, IEEE Internet 

Computing, Vol. 17, No. 2, pp. 20-27, March/April, 2013. 

[6] B. Heller, Openflow switch specification, version 1.0. 0. Wire, 

ONF TS-001, December, 2009. 

[7] A. Blenk, A. Basta, W. Kellerer, S. Schmid, On the impact of 

the network hypervisor on virtual network performance, IFIP 

Networking, Warsaw, Poland, 2019, pp. 1-9. 

[8] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, G. 

Parulkar, E. Salvadori, B. Snow, OpenVirteX: Make your 

virtual SDNs programmable, the third workshop on Hot 

topics in software defined networking- HotSDN’2014, 

Chicago, IL, USA, 2014, pp. 25-30. 

[9] Y. Han, T. Vachuska, A. Al‐ Shabibi, J. Li, H. Huang, W. 

Snow, J. W. K. Hong, ONVisor: Towards a scalable and 

flexible SDN ‐ based network virtualization platform on 

ONOS, International Journal of Network Management, Vol. 

28, No. 2, e2012, March/April, 2018.  

[10] L. X. Liao, A. Shami, V. C. Leung, Distributed FlowVisor: a 

distributed FlowVisor platform for quality of service aware 

cloud network virtualisation, IET Networks, Vol. 4, No. 5, pp. 

270-277, September, 2015.  

[11] E. Salvadori, R. D. Corin, A. Broglio, M. Gerola, 

Generalizing virtual network topologies in OpenFlow-based 

networks, 2011 IEEE Global Telecommunications 

Conference-GLOBECOM’2011, Houston, TX, USA, 2011, 

pp. 1-6. 

[12] R. D. Corin, M. Gerola, R. Riggio, F. De Pellegrini, E. 

Salvadori, Vertigo: Network virtualization and beyond, 2012 

European Workshop on Software Defined Networking- 

EWSDN’2012, Darmstadt, Germany, 2012, pp. 24-29. 

[13] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, 

B. Fulton, Network virtualization in multi-tenant datacenters, 

the 11th USENIX Conference on Networked Systems Design 

and Implementation- NSDI’14, Seattle, WA, USA, 2014, pp. 

203-216. 

[14] Z. Bozakov, P. Papadimitriou, Autoslice: automated and 

scalable slicing for software-defined networks, the 2012 ACM 

conference on CoNEXT student workshop -ACM CoNEXT 

2012, Nice, France, 2012, pp. 3-4. 

[15] L. X. Liao, C. F. Lai, J. Wan, V. C. M. Leung, T.-C. Huang, 

Scalable distributed control plane for On-line social networks 

support cognitive neural computing in software defined 

networks, Future Generation Computer Systems, Vol. 93, pp. 

993-1001, April, 2019.  

[16] L. X. Liao, H. C. Chao, M. Y. Chen, Intelligently modeling, 

detecting, and scheduling elephant flows in software defined 

energy cloud: A survey, Journal of Parallel and Distributed 

Computing, Vol. 146, pp. 64-78, December, 2020.  

[17] S. Min, S. Kim, J. Lee, B. Kim, W. Hong, J. Kong, 

Implementation of an OpenFlow network virtualization for 

multi-controller environment, 14th International Conference 

on Advanced Communication Technology- ICACT 2012, 

PyeongChang, Korea, 2012, pp. 589-592. 

[18] P. Congdon, Link layer discovery protocol and MIB. V1, pp. 

1-25, May, 2002. 

[19] H. Keen, IEEE 802.1Q Virtual Bridged Local Area Networks, 

IEEE Network, Vol. 14, No. 4, pp. 3-3, July/August, 2000.  

[20] P. Garg, Y. Wang, NVGRE: Network virtualization using 

generic routing encapsulation, RFC 7637, September, 2015. 

[21] R. Sherwood, G. Gibb, K. K. Yap, G. Appenzeller, M. 

Casado, N. McKeown, G. Parulkar, Flowvisor: A network 

virtualization layer, OpenFlow Switch Consortium, Tech. 

Rep, OPENFLOW-TR-2009-1, October, 2009.  

[22] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, 

M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, S. 

Shenker, Onix: A distributed control platform for large-scale 

production networks, the 9th USENIX conference on 

Operating systems design and implementation- OSDI 2010, 

Vancouver, Canada, 2010, Vol. 10, pp. 351-364.  

[23] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. 

Koide, B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, G. 



636 Journal of Internet Technology Volume 22 (2021) No.3 

 

Parulkar, ONOS: towards an open, distributed SDN OS, the 

third workshop on Hot topics in software defined networking- 

HotSDN 2014, Chicago, IL, USA, 2014, pp. 1-6. 

[24] T. Benson, A. Akella, D. A. Maltz, Network traffic 

characteristics of data centers in the wild, the 10th ACM 

SIGCOMM conference on Internet measurement- IMC’10, 

Melbourne, Australia, 2010, pp. 267-280.  

[25] S. C. Dake, C. Caulfield, A. Beekhof, The corosync cluster 

engine, Linux Symposium, Vol. 1, Ottawa, Ontario, Canada, 

2008, pp. 85-99.  

[26] Nicira Networks, NOX network control platform, 

https://github.com/noxrepo/ nox, retrieved in August 2019. 

[27] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, A. W. Moore, 

OFLOPS: An open framework for OpenFlow switch 

evaluation, In International Conference on Passive and 

Active Network Measurement, Vienna, Austria, 2012, pp. 85-

95.  

[28] Data Set, 2010, http://pages.cs.wisc.edu/~tbenson 

/IMC10_Data.html, retrieved in August 2019. 

[29] B. Isyaku, K. A. Bakar, M. S. M. Zahid, M. N. Yusuf, 

Adaptive and Hybrid Idle–Hard Timeout Allocation and Flow 

Eviction Mechanism Considering Traffic Characteristics, 

Electronics, Vol. 9, No. 11, pp. 1983, November, 2020. 

[30] K. Gao, T. Nojima, H. Yu, Y. R. Yang, Trident: Toward 

Distributed Reactive SDN Programming With Consistent 

Updates, IEEE Journal on Selected Areas in Communications, 

Vol. 38, No. 7, pp. 1322-1334, July, 2020. 

Biographies 

Ling Xia Liao is currently a Full 

Professor with the School of 

Electronic Information and Automation, 

Guilin University of Aerospace 

Technology, China. She received her 

bachelor degree from Tsing Huang 

University, China and studied her MS 

and Ph.D degrees in the University of 

British Columbia, Canada. She has authored or co-

authored over 20 refereed papers in journals, 

conferences, and workshop proceedings. She is the 

editor of the journal of Industry and Mine Automationt 

(Chinese core journal of science and technology). She 

is currently the PI and has participated many projects 

supported by National Nature Science Foundation of 

China, Natural Sciences and Engineering Research 

Council of Canada, and MITACs Canada. Her research 

interests include computer and network system 

technology, intelligent control technology, and big data 

analysis.  

 

 

 

 

 

 

 

Jian Wang is currently an Full 

Associate Professor with the School of 

Information and Communication, 

Guilin University of Electronic 

Technology. She received her 

Bachelor and Master degrees from th 

e University of Electronic Technology, 

China. Her research interests include intelligent signal 

processing 

 

Han-Chieh Chao is a Full Professor 

and Chair of the Department of 

Electrical Engineering, National Dong 

Hwa University, Taiwan, R.O.C. His 

research interests include High Speed 

Networks, Wireless Networks, IPv6 

based Networks and Digital Divide. 

He received his MS and Ph.D. degrees from Purdue 

University. He has authored or co-authored 3 books 

and has published about 100 refereed professional 

research papers. Dr. Chao has received many research 

awards, including Purdue University SRC awards, and 

NSC research awards (National Science Council of 

Taiwan). He also received many funded research 

grants from NSC, Ministry of Education (MOE), 

RDEC, Industrial Technology of Research Institute, 

Institute of Information Industry and FarEasTone 

Telecommunications Lab. 

 

Bin Qin is currently a Senior 

Engineer of the Department of 

Information Center, Guilin University 

of Aerospace Technology, China. He 

was graduated from South China 

University of Technology, China. His 

research interests include network 

management and optimization, information security, 

and big data analysis. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9.354330
      /MarksWeight 0.141730
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


