
Multi-Target Stance Detection Based on GRU-PWV-CNN Network Model 593

Multi-Target Stance Detection Based on GRU-PWV-CNN

Network Model

Wenfa Li1,2, Yilong Xu3, Gongming Wang4,5

1 Institute of Scientific and Technical Information of China, China
2 College of Robotics, Beijing Union University, China

3 Beijing North Great Wall Photoelectric Instruments Co., Ltd., China
4 Beijing Tianyuan Network Co., Ltd., China

5 Inspur Software Group Co., Ltd., China

644085325@qq.com, 312551615@qq.com, gongmingwang@126.com*

*Corresponding Author: Gongming Wang; E-mail: gongmingwang@126.com

DOI: 10.3966/160792642021052203009

Abstract

To uncover opinions on different people and events

from text on the internet, stance detection must be

performed, which requires an algorithm to mine stance

tags for different targets (people or events). Some text

contain multiple targets, and the content describing

different targets is related, which results in poor stance

detection performances. Therefore, stance detection for

such data is defined as multi-target stance detection. To

address this issues, a network model composed of a gated

recurrent unit, a position weight vector, and a

convolutional neural network (GRU-PWV-CNN) is

proposed. First, the bidirectional GRU (Bi-GRU) is

employed to extract the unstructured features, and a

position-weight vector is designed to represent the

correlation between every word and the given target.

Next, these two forms of information are fused and

transmitted to a CNN to complete the secondary

extraction of features. Finally, a softmax function is used

to carry out the final classification. A multi-target stance

detection corpus for the 2016 US election was used to

compare the performances of our method and other

methods, including the Seq2Seq and AH-LSTM. The

experimental results showed that the proposed method

achieved well and had a 2.82% improvement in the

macro-averaged F1-score.

Keywords: CNN, GRU, Position-weight vector, Multi-

target, Stance detection

1 Introduction

In recent years, with the rise of the mobile Internet,

many online social applications have developed rapidly.

Social media services such as Twitter have become the

main source of public opinion analysis on the Internet,

due to its high degree of openness, high levels of

interaction, and rapid information dissemination. In

particular, public opinion about subjects such as

products and events is an important source of feedback

that can help decision makers understand public

opinions in real time [1].

To analyze text containing public comments

automatically, a stance detection task for social text

was proposed in 2016 [2-3]. This is defined as

automatically analyzing text and determining whether

the text expresses a “favor,” “against,” or “neither”

attitude for given target [4]. Unlike sentiment analysis,

which has been widely used for public opinion analysis,

stance detection only mines the target-related stance

from the text. Therefore, it is possible to obtain more

valuable tags when analyzing opinions. Thus, many

researchers have used stance detection to analyze

political topics [5] and fake news [6].

Some text contains multiple targets, which often

appears when discussing candidates for elections or

different brands of the same product. In addition, the

targets in this type of data are related, which leads to

similar text content describing different targets.

Consequently, it is more difficult for the algorithm to

mine the target-related stance. As a result, traditional

stance detection algorithms achieve lower accuracy

when processing such text. Therefore, researchers

began to discuss stance detection for these types of

data separately, which is defined as a multi-target

stance detection task [7].

Traditional and multi-target stance detection

examples are shown in Figure 1. In the traditional

stance detection task, the text only mentions one target

(e.g., Hillary Clinton), and the algorithm also only

detects the stance category of this target. However, in

multi-target stance detection, the text mentions two or

more targets (e.g., Hillary Clinton and Donald Trump),

which requires the algorithm to find the stance

categories of multiple targets from one text passage.

Therefore, for multi-target stance detection, the

algorithm must complete two tasks: (1) detect the

594 Journal of Internet Technology Volume 22 (2021) No.3

stance label of each target in the same way as the

traditional stance detection task, and (2) find the

content describing the different targets. Because the

targets in such tasks are related, the contents describing

different targets are similar, which increases the

difficulty of the stance detection process.

Figure 1. Examples of traditional stance detection and

mul-ti-target stance detection

In this paper, a network model composed of a gated

recurrent unit, position weight vector, and

convolutional neural network (GRU-PWV-CNN) is

proposed for multi-target stance detection. The model

contains three main parts: a gated recursive unit (GRU),

a position-weight vector (PWV), and a convolutional

neural network (CNN). The GRU is used to obtain

features from the text data, the PWV is used to

represent the position relationship between each word

in the text and each target to help the algorithm

distinguish the content describing the different targets,

and the CNN is used to re-extract the information

obtained from the other two parts. The multi-target

stance detection corpus of the 2016 US election was

used to validate our method. The experimental results

showed that this method has advantages over other

algorithms.

2 Related Work

The related research is introduced from two aspects:

A. traditional stance detection, and B. mul-ti-target

stance detection.

2.1 Traditional Stance Detection

The task of stance detection for social media

(traditional stance detection) was proposed because the

overall emotion of a text passage does not fully express

its attitude toward the particular subject when using

sentiment analysis to analyze public opinion. The

stance detection task requires mining the stance tags

for a specific target in the text, rather than the attitude

of the entire text, which makes it possible to obtain

more valuable results, especially in the field of public

opinion analysis [8].

At a technical level, the difficulty of stance detection

is determining how to allow the algorithm to

selectively extract features from text based on the

target information. Early researchers used

machine/deep learning methods (such as a support

vector machine (SVM) [9], a convolutional neural

network (CNN) [10], and long short-term memory

(LSTM)) to find the relationships between text and

labels through training data.

Augenstein et al. [11] proposed a bidirectional

conditional encoding LSTM model. This method used

the last hidden state of the LSTM of the processed

target as the initial state of the LSTM of the processed

text. These researchers hoped to combine the LSTM’s

ability for processing time series data to transmit the

target information to the network that processes the

text, so that the algorithm could detect the stance label.

Dey et al. [12] proposed a two-stage LSTM model

from the perspective of a classifier. This model

decomposed the three-category stance detection task

into two subtasks: (1) distinguishing whether there was

a stance label, and (2) judging whether it was “favor”

or “against”. This model subdivided the processing

tasks of a single network model, thereby reducing the

difficulty of stance detection.

Researchers subsequently began to introduce the

fusion network model [13] and the attention

mechanism [14] into the stance detection task. The

former combined the characteristics of multiple

network models to increase the algorithm’s ability to

mine features. The latter could selectively retain the

features mined from the text, which is in line with the

requirement of the stance detection task to shield

information that is not related to the target.

Li et al. [15] designed a fusion network by

combining a CNN model and a GRU model. Although

the CNN had excellent down-sampling capabilities, it

could not analyze time series data. Therefore, GRU

was combined with the CNN to supplement the ability

of the CNN to extract time series features. Chopra et al.

[16] used an attention mechanism to increase the

connection between the network that processed the

target and the network that processed the text, thereby

enhancing the algorithm’s ability to mine target-related

features.

Some researchers hoped to improve the

effectiveness of stance detection through external

information or data [17]. One of the most used types of

data is the emotion tag, because the stance detection

task is derived from the sentiment analysis task, and

the labels of the two tasks have a certain similarity [4].

Ebrahimi et al. [18] proposed a stance classification

model based on the correlation between stance tags and

emotion tags. This method added an emotional

dimension into the relationship between the target, text,

and stance label, thereby improving the effect of stance

detection. Zarrella et al. [19] obtained additional data

from the Twitter platform and used the transfer

learning method to learn from these external data to

improve the detection effect.

Multi-Target Stance Detection Based on GRU-PWV-CNN Network Model 595

2.2 Multi-target Stance Detection

With the application of stance detection technology,

researchers have found a type of text that contains

multiple targets. This text appears commonly when

discussing different candidates in an election or

different brands of a product. In addition, the corpora

structures and stance labels are more complicated,

which causes traditional stance detection methods to

perform poorly for such data. Therefore, this type of

data greatly affects opinion mining based on traditional

stance detection technology in various fields, such as

election predictions and product feedback. Therefore,

the multi-target stance detection problem is defined as

a sub-task of stance detection [7].

Some researchers believed that multi-target stance

tags are relevant (e.g., in election-related corpora, few

people support multiple candidates simultaneously, and

most support only one or none). Therefore, to consider

the mutual influence of the stance labels of the

different targets, the algorithm they designed

considered the stances of other targets when detecting

the stance of one target. Therefore, this algorithm

typically predicted the stances of multiple targets

simultaneously [20].

Sobhani et al. [21] supposed that there was a certain

relationship between the stances of multiple targets.

Therefore, the Seq2Seq model, which is widely used in

text translation and other fields, was used to detect

multi-target stances. When predicting a stance, this

method considered the previous predictions to detect

the stance of the current target. Thus, this method

could not only consider the relationship between many

labels simultaneously, it also produced multiple

outputs for multi-target stance detection. Wei et al. [22]

designed an extended network. This network was

shared when predicting labels for different targets.

Therefore, this method could combine the contents of

multiple tags to detect the stances of multiple goals.

Other researchers viewed multi-target stance

detection as complex stance detection task. Therefore,

the input and output of such algorithms are in the form

of single target stance detection (the target and text are

input, and the target’s stance is predicted). Among

these methods, expanding the fusion network and

region segmentation are commonly used methods. The

former can enhance the ability of the model to adapt to

different goals, and the latter can segment the input text

containing multiple goals to help the algorithm divide

the content describing different targets.

Siddiqua et al. [23] used a network model containing

multiple CNN models, attention mechanisms, and

LSTMs to complete multi-target stance detection. This

model had a larger size and more diverse structures,

which made it more adaptable when dealing with

complex problems. Liu et al. [24] designed an

unsupervised range extraction method to divide text

containing two targets into four parts. In this way,

content describing different goals was separated to

reduce the impact between them.

However, expanding a fusion network not only

increases the time complexity, it also enlarges the risk

of algorithm overfitting while increasing the

adaptability. Although the region segmentation method

of Liu et al. [24] reduces the risk of interactions

between different targets, it was designed to only

segment text with two targets, and the given four parts

cannot adapt to other types of text passages. Thus, this

method has low robustness.

Aiming at the shortcomings of this region

segmentation method, a position-weight vector was

designed. Text describing different targets is divided

into multiple sub-text passages, which is a different

approach from that of the segmentation method. The

position-weight vector represents the positional

relationship between the each target and each word in

the text, and it is embedded into the deep learning

model, which makes it possible to highlight text that

describes different goals while maintaining the

integrity of the text. This method is introduced in the

next section.

3 Method

The architecture of our model is shown in Figure 2.

It consists of the following five modules: an embedded

layer, a Bi-GRU layer, a position-weight fusion layer, a

CNN, and a softmax classifier and model training

module. The input of the model is the text of the target

and the subject (target + text).

Figure 2. Model architecture

3.1 Embedding Layer

The purpose of this layer is to convert words in the

text into corresponding word embeddings. It converts a

word of natural language into a vector with a specific

meaning so that the algorithm can better analyze the

potential semantics. In this process, each word will be

596 Journal of Internet Technology Volume 22 (2021) No.3

sequentially converted into a 1 × d vector. Thus, the

entire text is converted into a l × d tensor, where l is

the text size, and d is the dimension of the word vector.

3.2 Bi-GRU Layer

To extract valid features from the unstructured text,

a GRU is used to encode the text. The GRU can

describe the long-distance lexical dependency in the

text and is suitable for text data modeling [25]. The

input of the GRU is a tensor formed by arranging the

embedded vectors of the words to be processed in

order from front to back. The corresponding output is a

tensor composed of implicit states of the GRU units in

order from front to back.

However, the traditional one-way GRU cannot

describe the dependence between words in the

direction from back to front. Therefore, a bidirectional

GRU (Bi-GRU) composed of a forward GRU and a

backward GRU is used. It has been proven that using

bidirectional encoding technology to process time-

series data is very effective [26].The input of the

forward GRU network is composed of the embedded

vectors of words arranged in order from front to back,

and the input of the backward GRU network is a series

of the embedded vectors of words arranged in the

opposite order. They are designed to mine the textual

features based on the past and future contexts,

respectively. After this, the outputs of the forward and

backward GRUs at each unit are spliced. Thus, the Bi-

GRU can describe the dependence relationship

between words in the directions from front to back and

back to front. Therefore, each input word of Bi-GRU

will be first transmitted to the forward GRU and then

to the backward GRU, and the output of the Bi-GRU is

the spliced result of the hidden states of the above two

GRUs.

In the GRU model [27], a unit t is calculated as

follows:

1

()z z

t t t
z xU h Wσ

−

= + (1)

1

()r r

t t t
r xU h Wσ

−

= + (2)

1

tan (())s s

t t t t
s h xU h r W

−

= + ⋅ (3)

1

(1)
t t t t t
h z s z h

−

= − ⋅ + ⋅ (4)

where d

t
x R∈ represents the word embedding vector

entered at position t, and n

t
h R∈ is the hidden state at

position t, n

t
s R∈ is the output at position t. Moreover,

t
z and

t
r are two gates (update gate and reset gate,

respectively) at position t, σ and tan h represent

sigmoid and tanh activation functions, and d n
U R

×

∈

and n n

W R
×

∈ are weight matrices. For d
R , n

R , and
d n

R
× , d is the dimension of the word vector, and n is

the size of the output of the GRU network.

In the Bi-GRU, the hidden states of the forward and

backward GRUs at each moment t are concatenated

and sent to the output. This process is shown in Figure

3.

Figure 3. Model architecture of the bidirectional GRU,

where the solid line represents the forward GRU, the

dashed line represents the reverse GRU, and +

represents the cascade

3.3 Position-weight Fusion Layer

When using the Bi-GRU to extract unstructured

features, it is difficult to distinguish the contexts that

describe different targets. Thus, in this section, a

position-weight vector is proposed to represent the

positional relationship between each word and the

different targets. This vector is then fused into the

feature tensors extracted by the GRU, which enlarges

the differences of the text describing different targets,

thereby helping this algorithm to distinguish the

contexts describing different targets.

3.3.1 Position-weight Vector

The position-weight vector is designed to extract the

positional relationship between each word in the text

and the different targets. In this process, it is assumed

that in the text, words that are closer to the target word

have a greater influence on the target, and conversely,

words that are farther away have a smaller influence.

This distance is defined as the number of words in

between words. The specific calculation method is as

follows.
m

k
w represents the impact weight of the k-th word on

the m-th target, which is expressed as follows:

 max
| |

1 m

k

MAX

k
w

k

τ−

= − (5)

where
m

τ is the serial number of the m-th target word

(1 ,
MAX MAX

m m m≤ ≤ is the number of times that the

target appears in the text), which represents the

position of the m-th target word in the text, and
MAX
k is

the number of words included in the entire text. To

deal with the case where one target appears multiple

times in the text, the maximum of m

k
w among all the

targets is taken as the maximal weight of the k-th word,

which is expressed as max

k
w :

Multi-Target Stance Detection Based on GRU-PWV-CNN Network Model 597

 max 1 2max{ , , ..., , }MAX
mm

k k k k k
w w w w w= (6)

All the maximum weights max

k
w are then filled into

the position vector E, which is shown as follows:

 max max max

1 2
{ , ..., }

MAX
k

E w w w= (7)

At this point, each component of vector E (where

each element ranges from 0 to 1) represents the impact

of each word on the target, as shown in Figure 4.

Figure 4. Position-weight vector of two targets in the same text

In the model, the two main parts are the Bi-GRU for

mining unstructured features and the PWV for mining

linguistic features. Before fusing their outputs, their

working processes are independent. Thus, it is

necessary to discuss the effects of the two types of

characteristics on predicting the stance. To control the

effect of the two types of features on the entire system,

each component of vector E is expanded by

multiplying by a factor of µ. This factor can adjust the

ratio of the output tensors of the Bi-GRU and PWV.

Therefore, the effect of the position weight on the

entire system can be changed by adjusting µ. When the

value of µ increases, it indicates that the influence of

the position vector on the entire model increases, and

the influence of the Bi-GRU decreases, as follows:

 E E
µ

µ= × (8)

where E
µ

 is the position-weight vector (where each

element ranges from 0 to µ). Each component of E
µ

 is

composed of two parts: one is the position-weight
max

k
w in E, indicating the impact of the each word on

the target, and the other is the coefficient µ, expressing

the impact of the position-weight max

k
w on the entire

system.

The coefficient µ is defined as a trainable variable in

the process of building model, which is suitable for

finding the global optimum value of the model. The

coefficient µ is regarded as a parameter rather than a

hyper-parameter. The training process of µ is the same

as other parameters (weights and biases) in the model.

The value one is recommended to initialize this

coefficient and a learning rate of 0.05 is used to train

this coefficient. In addition, in order to make this

coefficient have a better effect, the L2 regularizer [28]

is added to prevent it from overfitting.

3.3.2 Concatenating Position-weight Vector and

Output of Bi-GRU

After the position-weight vector is calculated, it

should be fused with the feature tensor extracted by the

Bi-GRU. In this process, the feature tensor extracted

by the Bi-GRU is concatenated with the corresponding

element in the position-weight vector. This

concatenated tensor is (2 1)l n
Y R

× × +

∈ , where n is the size

of the output of a unidirectional GRU, 2 1n× +

represents the dimension of the output of the Bi-GRU

plus the corresponding position weight, and l is the size

of the text passage to be sent to the CNN, which is no

less than
MAX
k in Equation (5). This tensor can not

only describe the dependence between words in the

different directions, but it can also describe the impact

of a word on the different targets.

3.4 CNN

CNN networks are less used than RNNs when

processing time series data. Although a CNN can

extract local one-dimensional plaques (subsequences)

from a sequence and recognize the local patterns

within a convolution window, it cannot mine the logic

relationship between words in a context like RNNs can

[29]. However, the context logic relationship has been

extracted through the Bi-GRU and position-weight

vector, and the subsequent operation is to re-extract

these extracted features. Thus, a CNN was chosen to

complete the re-extraction process. The CNN model is

shown in Figure 5.

There are two components of the CNN: the

convolution layer and the pooling layer

598 Journal of Internet Technology Volume 22 (2021) No.3

Figure 5. Model architecture of CNN

3.4.1 Convolution Layer

In the convolution layer, the input is the feature

memory stitched together from the previous layer

arranged in time. This feature memory is (2 1)l n
Y R

× × +

∈ ,

where n is the size of the output of the GRU network, 1

represents the dimension of the corresponding position

weight, and l represents the size of the text.

The CNN network will then use J × K filters

(convolution kernels) to convolve the input, where J is

time domain length of the convolution kernel, and K is

input dimension (K = 2 1n× +) and the number of

filters [10]. After this, activation functions are used to

process these features, and the result is sent to the

pooling layer.

3.4.2 Pooling Layer

A pooling layer is commonly used to reduce the

features mined by the network model and is often

placed behind the convolutional layer. Therefore, after

the feature is extracted by the convolutional layer, the

pooling layer is used to extract features again to obtain

more critical elements. Global max-pooling is used in

this layer.

3.5 Softmax Classifier and Model Training

The output of the CNN layer is taken as the input of

this layer, and the softmax classifier [30] is used to

predict the stance labels of the different targets. It

consists of multilayer perceptron and softmax

activation function. In addition, loss function is the

minimum cross entropy, which is shown as follows:

0

ˆ ˆ(,) log
K

i l

i

H y y y y
=

= −∑ (9)

where y is the true result, ŷ is the output of the

softmax classifier (the dimensions of y and ŷ are K),

and
i
y and ˆ

l
y are the i-th elements of y and ˆ,y

respectively.

During the training process, we save the model after

each epoch. And then, the model that has the best

effect in the development set among these models is

chosen as the output model.

4 Experiments

4.1 Experimental Setting

4.1.1 Data, Data Preprocessing, and Hyper-

parameter Settings

Dataset: The multi-target stance detection corpus

provided by Sobhani et al. was used to verify the

effectiveness of our model [7]; it contained text from

Twitter discussing candidates in the 2016 US election.

This corpus contained three sub-datasets corresponding

to three groups of targets (Clinton–Sanders, Clinton–

Trump, and Cruz–Trump). Table 1 shows the

distribution of the training set, development set and test

set in each sub-dataset.

Table 1. Details of the experimental datasets

Target Train Dev Test Total

Clinton–Sanders 957 137 272 1366

Clinton–Trump 1240 177 355 1722

Cruz–Trump 922 132 263 1317

Total 3199 446 890 4455

Data preprocessing: There were many misspellings

(e.g., “Hilary”) and word concatenations (e.g.,

“Trumpforpresident”) in this dataset, because the

language of social media is not usually standardized,

and the corpus producer is not concerned with

processing noisy text. Therefore, we simply

normalized all the target words in the text. For example,

“Hilary” was modified to “Hillary” and

“Trumpforpresident” was modified to “Trump for

president”.

Text size: The structure of the model was fixed, but

the number of words in each text passage was different.

Thus, a fixed size should be set to define our model.

We choose the length of the text containing the most

words in the data set as the text size.

Word embedding: A 300-dimensional pre-trained

word embedding from fastText [31] was used to

complete the feature representation.

Hyper-parameters: The optimization method is

Adagrad, the learning rate is 1e-3, the minimum batch

is 16, loss function is the minimum cross entropy，and

the epoch is 20. The GRU output is 256, the kernel size

is 5, the number of filters is 513, the pooling method is

max-pooling, and all the parameter matrices values are

initialized by Xavier [32]. In addition, the model that

achieved the best results in the development set is

selected to validate in the test set.

4.1.2 Evaluation Method

The stance detection task was more inclined to

achieve a better prediction for “Favor” and “Against”

labels. Therefore, the average of F1-score was chosen

to evaluate the effect of the stance detection task,

Multi-Target Stance Detection Based on GRU-PWV-CNN Network Model 599

which is defined as follows:

2

FAVOR AGAINST

avg

F F
F

+

= (10)

where
FAVOR

F and
AGAINST

F are the F1-score that

support and do not support the target, respectively.

In addition, in order to evaluate the prediction effect

of multiple targets in a sub dataset, the average of
avg

F

of all targets in one dataset is used to evaluate the

effectiveness in the corresponding dataset, which is

called “Avg” for short. To evaluate the effectiveness of

the model on different sub-datasets, the macro-

averaged F1-score [21] that is the average of “Avg” in

all sub-dataset is selected to evaluate the performance

of the model, which is called “F-Macro” for short. In

the following section of this paper, the sign “Avg” and

“F-Macro” are used to represent the above two

evaluation indicators.

4.1.3 Other Methods

To demonstrate the performance of our algorithm,

some methods of multi-target stance detection were

compared, which is described as follows.

Sequence-to-sequence (Seq2Seq) [21]: Recently, the

Seq2seq model has achieved good performance when

dealing with timing problems. Therefore, Sobhani et al.

applied this model to the multi-target stance detection

problem. In this method, text is used as the input of the

model, and the stance labels representing different

targets are the output. The advantage of this algorithm

is that it not only mine the stance related to the target

from the text, but also consider to the relationship

between multiple targets.

Attention-Based Hierarchical LSTM (AH-LSTM)

[24]: In 2018, this method was proposed by Liu et al.

for multi-target stance detection. First, based on the

position of the target in the text, the text containing

multiple targets is split into four parts. The

corresponding target and text word embeddings are

then spliced based on these parts, and they are

processed with four separate LSTMs. After this, the

outputs of the four LSTMs are input into a Bi-LSTM

network with an attention mechanism. Finally, the

stance of the tweet is detected by a softmax classifier

that accepts the output of the Bi-LSTM.

4.2 Results and Discussion

To evaluate the effectiveness of the proposed

method, it was compared with the methods introduced

in Section 4.1.3 first. After this, the effects of using a

Bi-LSTM and GRU to mine the unstructured features

were compared. The impact of the position-weight

vector on the system was then discussed. Finally, the

effects of using different methods to complete feature

re-extraction were analyzed.

4.2.1 Comparison Between Our Method and

Related Methods

The comparison with other methods (as described in

Section 4.1.3) are shown in Table 2.

Table 2. Performances of our approach and other methods (Unit: %)

Clinton-Sanders Clinton-Trump Cruz-Trump
Methods

Clinton Sanders Avg Clinton Trump Avg Cruz Trump Avg
F-Macro

Seq2Seq 55.59 53.86 54.72 54.46 58.74 55.60 47.02 59.21 53.12 54.81

AH-LSTM 52.26 58.38 55.32 60.63 61.98 61.31 52.88 50.30 51.59 56.07

GRU-PWV-CNN 55.45 58.65 57.13 60.03 66.17 63.10 52.88 60.02 56.45 58.89

Improvement with

our method (%)
- - 1.81 - - 1.89 - - 3.33 2.82

Note. The items in columns “Clinton”, “Sanders”, and “Trump” are all the
avg

F and directly cited from the experimental results

in the corresponding references.

By comparing the Avg and the F-Macro of the

different methods, the performances is ranked as

follows: Seq2Seq < AH-LSTM < GRU-PWV-CNN.

From this result, we found the following results.

1. Seq2Seq method placed third in terms of

performance. Although this method has the ability to

detect positions with reference to different targets, it

does not take into account the effect of the positional

relationship between the text and the target. This may

be the reason why its effect is lower than AH-LSTM

and our method.

2. The performance of the AH-LSTM placed second

in terms of performance. Although it uses position

information to reduce the influence between different

text passages describing different targets, this method

has some problems. This method attempts to segment

the text describing different targets into multiple sub-

texts describing one target by the positions of the

words. However, the inherent logic of natural language

is flexible, and the method cannot flexibly segment text

describing different targets, which leads to a poor

stance detection effect. In addition, segmenting one

text passage into four parts would cause the structure

of the text segmentation to be destroyed. This may be

the main reason for its poor performance.

In the GRU-PWV-CNN model, the position

600 Journal of Internet Technology Volume 22 (2021) No.3

information is fused into the model in the form of a

vector, which ensures the integrity of the text while

providing the model with position information. This

may have been the reason for the superior performance

of our method.

3. Our method achieved the best results, with a

2.82% increase in the Macro
avg

F , which proved its

advantages over the other methods. There are three

main components of this method as follows: 1. the Bi-

GRU layer for mining text features, 2. the position-

weight fusion layer for mining position information

and fusing it into the model, and 3. the CNN layer for

secondary extraction of information from the fused

information. The impact of the three parts will be

discussed separately below.

4.2.2 Comparing Effects of Bi-LSTM and GRU

The unstructured features are extracted by the Bi-

GRU, as described in Section 3.2. However, the LSTM

can also achieve the same effect. Thus, two alternative

networks were designed, and their effects were

compared using the same encoding method, model

structure, and three datasets. The model with the Bi-

GRU is denoted as GRU-PWV-CNN, and the model

with the Bi-LSTM is denoted as LSTM-PWV-CNN.

The experimental results on the development set and

test set are shown in Figure 6, where the y-axis refers

to the Avg.

Figure 6. Avg of GRU-PWV-CNN and LSTM-PWV-

CNN

By comparing the Avg of the two methods for the

three datasets, the feature extraction performance of the

GRU was better than that of the LSTM. In addition,

because the GRU simplified the number of gates while

ensuring the implementation of the LSTM function, the

GRU-based model also had a slightly smaller time

complexity than the LSTM. Thus, the GRU was used

to complete the feature extraction of unstructured text.

4.2.3 Comparison of Different Coefficients in Posi-

tion-weight Fusion Layer

In this paper, the position-weight vector is used to

map the positional relationship between each word and

the target into a vector. This vector is then embedded

into the model to reduce the impact between different

targets. To compare the effect of this vector on the

model, the coefficient µ is used to scale each element

in the vector proportionally. In addition, since the

memory of the GRU fused with this vector passes

through the tanh function, the memory tensor fused

with this vector is between -1 and 1. Therefore,

expanding the position-weight vector can expand the

impact on the entire system. Although the optimal

coefficient µ can be achieved through training, we still

want to show the influences of the different fixed

coefficients on the prediction results. So the effect of

models with different µ values on the development set

and test set, as shown in Figure 7.

Figure 7. Avg for different fixed µ and automatically µ

in the proposed method

In this picture, the x-axis denotes the µ size, and the

y-axis refers to the Avg. Where automatic at the line

with dots is the Avg obtained by the algorithm of using

the µ as a trainable variable and initialized by 0, 1, 2, 3,

4, and 5. Fixation at the line with squares is the average

of
avg

F obtained by the algorithm when µ is 0, 1, 2, 3,

4, and 5.

Multi-Target Stance Detection Based on GRU-PWV-CNN Network Model 601

The description in Figure 7 shows three important

points: (1) it is found that the results of the model have

obvious changes with the adjustment of the coefficient

µ, and usually the performance when µ ≠ 0 is better

than the effect when μ = 0. This proves that PWV can

help the algorithm to obtain better results in the stance

detection task. (2) In most cases, the effect of

automatically adjusting the coefficient µ is better than

the fixed coefficient µ, because the coefficient obtained

by training is easy to reach to the global optimal value

compared to the one by adjusting manually. Therefore,

this proves that the automatic acquisition of the

coefficient µ not only omits the process of adjusting

the hyper-parameters, but also has a better effect. (3)

The effect of the algorithm in the development set is

better than the one in the test set. Because the

development set is used to adjust the parameters of our

model to get the best effect, but the test set is not.

4.2.4 Comparing Effects of Different Feature Re-

extraction Methods

After completing the final fusion of the position-

weight vector with the extraction results from the

unstructured text, the re-extraction should be processed,

as mentioned in Section III.D. To find a suitable model

to re-extract the fused features, three models were

compared—a CNN, LSTM, and GRU. The results on

the development set and test set are shown in Figure 8.

Figure 8. Average of
avg

F of GRU-PWV-GRU, GRU-

PWV-LSTM and GRU-PWV-CNN. The y-axis refers

to the average of
avg

F

From this picture, it is found that the overall

performance of the CNN model is always better than

the GRU and LSTM models in the development set

and test set. Therefore, it is used to complete the re-

extraction process. This may also prove that the fusion

of RNN and CNN models can achieve better results.

Because different network structures have their own

advantages, the combination of them can solve the

more complex problems.

5 Conclusion

People publish text containing various attitudes

about other people, events, and other goals on social

media. Mining this information has become an

important channel for decision makers to obtain

feedback of the public opinion. The purpose of stance

detection technology is to automatically analyze the

text in social media to obtain an attitude toward a

specific target, which has played an important role in

public opinion analysis. Because input text containing

multiple targets has a complex structure and large

amount of information, the multi-target stance

detection task is separately defined as a sub-task of

stance detection.

In this study, a GRU-PWV-CNN network for multi-

target stance detection is proposed. First, a Bi-GRU is

used to extract the original features from the

unstructured input text. The corresponding position of

the target in the input text is then calculated using the

final position-weight vector. After this, the above two

features are merged into the position weighted fusion

layer. Subsequently, a CNN is used to re-extract

features from the merged information. Finally, the

softmax classification is used to determine the stances

of different targets. The stance detection corpus for the

US 2016 general election was used to validate our

method. The experimental results showed that this

method achieved and a 2.82% improvement in F-

Macro.

To use deep learning to extract data features, adding

multi-target position information to expand the

tolerance of the input differences is a good method for

improving the effectiveness of multi-target stance

detection. In the future, more non-English multi-target

stance detection data will be used, such as the Chinese

corpus for the Taiwan 2020 election, for further

experiments. This will expand the research scope on

stance detection and allow stance detection technology

to serve the Chinese corpus.

Acknowledgements

This work was supported in part by the National

Natural Science Foundation of China under Grants

61972040, and the Premium Funding Project for

Academic Human Resources Development in Beijing

602 Journal of Internet Technology Volume 22 (2021) No.3

Union University under Grant BPHR2020AZ03. In

addition, we thank Parinaz Sobhani, Diana Inkpen, and

Xiaodan Zhu for providing the data used for our

experiments, and Ai studio for providing us with a

computing platform.

References

[1] P. Sobhani, Stance Detection and Analysis in Social Media,

Ph. D. Thesis, University of Ottawa, Ottawa, Canada, 2017.

[2] S. M. Mohammad, S. Kiritchenko, P. Sobhani, X. D. Zhu, C.

Cherry, Semeval-2016 Task 6: Detecting Stance in Tweets,

The 10th International Workshop on Semantic Evaluation

(SemEval-2016), San Diego, CA, USA, 2016, pp. 31-41.

[3] R. Xu, Y. Zhou, D. Wu, L. Gui, J. Du, Y. Xue, Overview of

NLPCC Shared Task 4: Stance Detection in Chinese

Microblogs, The 24th International Conference on Computer

Processing of Oriental Languages, Kunming, China, 2016,

pp. 907-916.

[4] S. M. Mohammad, P. Sobhani, S. Kiritchenko, Stance and

Sentiment in Tweets, ACM Transactions on Internet

Technology, Vol. 17, No. 3, pp. 1-23, July, 2017.

[5] R. Lehmann, Stance Detection in Danish Politics, Ph. D.

Thesis, IT University of Copenhagen, Copenhagen, Denmark,

2019.

[6] M. Umer, Z. Imtiaz, S. Ullah, A. Mehmood, G. S. Choi, B. W.

On, Fake News Stance Detection Using Deep Learning

Architecture (CNN-LSTM), IEEE Access, Vol. 8, pp.

156695-156706, August, 2020.

[7] P. Sobhani, D. Inkpen, X. D. Zhu, A Dataset for Multi-Target

Stance Detection, The 15th Conference of the European

Chapter of the Association for Computational Linguistics,

Valencia, Spain, 2017, pp. 551-557.

[8] J. J. Lin, Q. C. Kong, W. J. Mao, L. Wang, A Topic Enhanced

Approach to Detecting Multiple Standpoints in Web Texts,

Information Sciences, Vol. 501, pp. 483-494, October, 2019.

[9] C. Liu, W. Li, B. Demarest, Y. Chen, S. Couture, D. Dakota,

N. Haduong, N. Kaufman, A. Lamont, M. Pancholi, K.

Steimel, S. Kübler, IUCL at SemEval-2016 Task 6: An

Ensemble Model for Stance Detection in Twitter, The 10th

International Workshop on Semantic Evaluation (SemEval-

2016), San Diego, CA, USA, 2016, pp. 394-400.

[10] Y. Igarashi, H. Komatsu, S. Kobayashi, N. Okazaki, K. Inui,

Tohoku at SemEval-2016 Task 6: Feature-based Model

versus Convolutional Neural Network for Stance Detection,

The 10th International Workshop on Semantic Evaluation

(SemEval-2016), San Diego, CA, USA, 2016, pp. 401-407.

[11] I. Augenstein, T. Rocktäschel, A. Vlachos, K. Bontcheva,

Stance Detection with Bidirectional Conditional Encoding,

The 2016 Conference on Empirical Methods in Natural

Language Processing, Austin, TX, USA, 2016, pp. 876-885.

[12] K. Dey, R. Shrivastava, S. Kaushik, Topical Stance Detection

for Twitter: A Two-Phase LSTM Model Using Attention, The

40th European Conference on Information Retrieval

Research, Grenoble, France, 2018, pp. 529-536.

[13] N. Yu, D. Pan, M. S. Zhang, G. H. Fu, Stance Detection in

Chinese MicroBlogs with Neural Networks, The 24th

International Conference on Computer Processing of

Oriental Languages, Kunming, China, 2016, pp. 893-900.

[14] Q. Y. Sun, Z. Q. Wang, Q. M. Zhu, G. D. Zhou, Stance

Detection with Hierarchical Attention Network, The 27th

International Conference on Computational Linguistics,

Santa Fe, New Mexico, USA, 2018, pp. 2399-2409.

[15] W. F. Li, Y. L. Xu, G. M. Wang, Stance Detection of

Microblog Text Based on Two-Channel CNN-GRU Fusion

Network, IEEE Access, Vol. 7, pp. 145944-145952,

September, 2019.

[16] S. Chopra, S. Jain, J. M. Sholar, Towards Automatic

Identification of Fake News: Headline-Article Stance

Detection with LSTM Attention Models, The Course of

Stanford CS224d: Deep Learning for Natural Language

Processing, December, 2017.

[17] Q. Y. Sun, Z. Q. Wang, S. S. Li, Q. M. Zhu, G. D. Zhou,

Stance Detection Via Sentiment Information and Neural

Network Model, Frontiers of Computer Science, Vol. 13, No.

1, pp. 127-138, February, 2019.

[18] J. Ebrahimi, D. Dou, D. Lowd, A Joint Sentiment-Target-

Stance Model for Stance Classification in Tweets, The 26th

International Conference on Computational Linguistics,

Osaka, Japan, 2016, pp. 2656-2665.

[19] G. Zarrella, A. Marsh, MITRE at SemEval-2016 Task 6:

Transfer Learning for Stance Detection, The 10th

International Workshop on Semantic Evaluation (SemEval-

2016), San Diego, CA, USA, 2016, pp. 458-463.

[20] L. J. Sun, X. T. Li, B. W. Zhang, Y. M. Ye, B. X. Xu,

Learning Stance Classification with Recurrent Neural

Capsule Network, The 8th CCF International Conference on

Natural Language Processing and Chinese Computing,

Dunhuang, China, 2019, pp. 277-289.

[21] P. Sobhani, D. Inkpen, X. D. Zhu, Exploring Deep Neural

Networks for Multitarget Stance Detection, Computational

Intelligence, Vol. 35, No. 1, pp. 82-97, February, 2019.

[22] P. H. Wei, J. J. Lin, W. J. Mao, Multi-Target Stance

Detection via a Dynamic Memory-Augmented Network, The

41st International ACM SIGIR Conference on Research &

Development in Information Retrieval, Ann Arbor, MI, USA,

2018, pp. 1229-1232.

[23] U. A. Siddiqua, A. N. Chy, M. Aono, Tweet Stance Detection

Using Multi-Kernel Convolution and Attentive LSTM

Variants, IEICE Transactions on Information and Systems,

Vol. E102.D, No. 12, pp. 2493-2503, December, 2019.

[24] H. Liu, S. S. Li, G. D. Zhou, Two-Target Stance Detection

with Target-Related Zone Modeling, The 24th China

Conference on Information Retrieval, Guilin, China, 2018, pp.

170-182.

[25] X. J. Zhou, X. J. Wan, J. G. Xiao, Attention-based LSTM

Network for Cross-Lingual Sentiment Classification, The

2016 Conference on Empirical Methods in Natural Language

Processing, Austin, TX, USA, 2016, pp. 247-256.

[26] A. Graves, J. Schmidhuber, Framewise Phoneme

Classification with Bidirectional LSTM and Other Neural

Network Architectures, Neural Networks, Vol. 18, No. 5-6,

Multi-Target Stance Detection Based on GRU-PWV-CNN Network Model 603

pp. 602-610, July–August, 2005.

[27] W. P. Yin, K. Kann, M. Yu, H. Schütze, Comparative Study

of CNN and RNN for Natural Language Processing,

arXiv:1702.01923, February, 2017.

[28] Y. Jiang, Using Machine Learning for Stance Detection,

Master’s Thesis, The University of Texas at Austin, Austin,

USA, 2019.

[29] M. Patel, A. Patel, R. Ghosh, Precipitation Nowcasting:

Leveraging bidirectional LSTM and 1D CNN,

arXiv:1810.10485, October, 2018.

[30] P. Chen, Z. Q. Sun, L. D. Bing, W. Yang, Recurrent Attention

Network on Memory for Aspect Sentiment Analysis, The

2017 Conference on Empirical Methods in Natural Language

Processing, Copenhagen, Denmark, 2017, pp. 452-461.

[31] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, Enriching

Word Vectors with Subword Information, Transactions of the

Association for Computational Linguistics, Vol. 5, pp. 135-

146, June, 2017.

[32] X. Glorot, Y. Bengio, Understanding the Difficulty of

Training Deep Feedforward Neural Networks, Journal of

Machine Learning Research, Vol. 9, pp. 249-256, January,

2010.

Biographies

Wenfa Li was born in the Henan

Province, China, in 1974. He received

a Ph.D. degree in computer software

and theory from the Institute of

Computing Technology, Chinese

Academy of Sciences, China, in 2009.

He is currently a Professor in the

Software Engineering Department, College of Robotics,

Beijing Union University, China. His research interests

include big data, information security, and machine

learning.

Yilong Xu was born in Beijing, China,

in 1993. He received a B.S. degree in

computer science and technology

from Beijing Union University. He is

currently a master’s student at Beijing

Union University. His research

interests include natural language

processing and machine learning.

Gongming Wang was born in Henan

Province, China, in 1981. He received

a Ph.D. degree in computer system

architecture from the Chinese

Academy of Sciences and worked in a

postdoctoral position at Tsinghua

University. He is currently a

researcher at Beijing Tianyuan

Network Co., Ltd. (the subsidiary corporation of the

Inspur Software Group Co., Ltd.). His research

interests include big data and machine learning.

604 Journal of Internet Technology Volume 22 (2021) No.3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

