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Abstract 

To uncover opinions on different people and events 

from text on the internet, stance detection must be 

performed, which requires an algorithm to mine stance 

tags for different targets (people or events). Some text 

contain multiple targets, and the content describing 

different targets is related, which results in poor stance 

detection performances. Therefore, stance detection for 

such data is defined as multi-target stance detection. To 

address this issues, a network model composed of a gated 

recurrent unit, a position weight vector, and a 

convolutional neural network (GRU-PWV-CNN) is 

proposed. First, the bidirectional GRU (Bi-GRU) is 

employed to extract the unstructured features, and a 

position-weight vector is designed to represent the 

correlation between every word and the given target. 

Next, these two forms of information are fused and 

transmitted to a CNN to complete the secondary 

extraction of features. Finally, a softmax function is used 

to carry out the final classification. A multi-target stance 

detection corpus for the 2016 US election was used to 

compare the performances of our method and other 

methods, including the Seq2Seq and AH-LSTM. The 

experimental results showed that the proposed method 

achieved well and had a 2.82% improvement in the 

macro-averaged F1-score. 

Keywords: CNN, GRU, Position-weight vector, Multi-

target, Stance detection 

1 Introduction 

In recent years, with the rise of the mobile Internet, 

many online social applications have developed rapidly. 

Social media services such as Twitter have become the 

main source of public opinion analysis on the Internet, 

due to its high degree of openness, high levels of 

interaction, and rapid information dissemination. In 

particular, public opinion about subjects such as 

products and events is an important source of feedback 

that can help decision makers understand public 

opinions in real time [1]. 

To analyze text containing public comments 

automatically, a stance detection task for social text 

was proposed in 2016 [2-3]. This is defined as 

automatically analyzing text and determining whether 

the text expresses a “favor,” “against,” or “neither” 

attitude for given target [4]. Unlike sentiment analysis, 

which has been widely used for public opinion analysis, 

stance detection only mines the target-related stance 

from the text. Therefore, it is possible to obtain more 

valuable tags when analyzing opinions. Thus, many 

researchers have used stance detection to analyze 

political topics [5] and fake news [6]. 

Some text contains multiple targets, which often 

appears when discussing candidates for elections or 

different brands of the same product. In addition, the 

targets in this type of data are related, which leads to 

similar text content describing different targets. 

Consequently, it is more difficult for the algorithm to 

mine the target-related stance. As a result, traditional 

stance detection algorithms achieve lower accuracy 

when processing such text. Therefore, researchers 

began to discuss stance detection for these types of 

data separately, which is defined as a multi-target 

stance detection task [7]. 

Traditional and multi-target stance detection 

examples are shown in Figure 1. In the traditional 

stance detection task, the text only mentions one target 

(e.g., Hillary Clinton), and the algorithm also only 

detects the stance category of this target. However, in 

multi-target stance detection, the text mentions two or 

more targets (e.g., Hillary Clinton and Donald Trump), 

which requires the algorithm to find the stance 

categories of multiple targets from one text passage. 

Therefore, for multi-target stance detection, the 

algorithm must complete two tasks: (1) detect the 
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stance label of each target in the same way as the 

traditional stance detection task, and (2) find the 

content describing the different targets. Because the 

targets in such tasks are related, the contents describing 

different targets are similar, which increases the 

difficulty of the stance detection process. 

 

Figure 1. Examples of traditional stance detection and 

mul-ti-target stance detection 

In this paper, a network model composed of a gated 

recurrent unit, position weight vector, and 

convolutional neural network (GRU-PWV-CNN) is 

proposed for multi-target stance detection. The model 

contains three main parts: a gated recursive unit (GRU), 

a position-weight vector (PWV), and a convolutional 

neural network (CNN). The GRU is used to obtain 

features from the text data, the PWV is used to 

represent the position relationship between each word 

in the text and each target to help the algorithm 

distinguish the content describing the different targets, 

and the CNN is used to re-extract the information 

obtained from the other two parts. The multi-target 

stance detection corpus of the 2016 US election was 

used to validate our method. The experimental results 

showed that this method has advantages over other 

algorithms. 

2 Related Work 

The related research is introduced from two aspects: 

A. traditional stance detection, and B. mul-ti-target 

stance detection. 

2.1 Traditional Stance Detection 

The task of stance detection for social media 

(traditional stance detection) was proposed because the 

overall emotion of a text passage does not fully express 

its attitude toward the particular subject when using 

sentiment analysis to analyze public opinion. The 

stance detection task requires mining the stance tags 

for a specific target in the text, rather than the attitude 

of the entire text, which makes it possible to obtain 

more valuable results, especially in the field of public 

opinion analysis [8]. 

At a technical level, the difficulty of stance detection 

is determining how to allow the algorithm to 

selectively extract features from text based on the 

target information. Early researchers used 

machine/deep learning methods (such as a support 

vector machine (SVM) [9], a convolutional neural 

network (CNN) [10], and long short-term memory 

(LSTM)) to find the relationships between text and 

labels through training data. 

Augenstein et al. [11] proposed a bidirectional 

conditional encoding LSTM model. This method used 

the last hidden state of the LSTM of the processed 

target as the initial state of the LSTM of the processed 

text. These researchers hoped to combine the LSTM’s 

ability for processing time series data to transmit the 

target information to the network that processes the 

text, so that the algorithm could detect the stance label. 

Dey et al. [12] proposed a two-stage LSTM model 

from the perspective of a classifier. This model 

decomposed the three-category stance detection task 

into two subtasks: (1) distinguishing whether there was 

a stance label, and (2) judging whether it was “favor” 

or “against”. This model subdivided the processing 

tasks of a single network model, thereby reducing the 

difficulty of stance detection. 

Researchers subsequently began to introduce the 

fusion network model [13] and the attention 

mechanism [14] into the stance detection task. The 

former combined the characteristics of multiple 

network models to increase the algorithm’s ability to 

mine features. The latter could selectively retain the 

features mined from the text, which is in line with the 

requirement of the stance detection task to shield 

information that is not related to the target. 

Li et al. [15] designed a fusion network by 

combining a CNN model and a GRU model. Although 

the CNN had excellent down-sampling capabilities, it 

could not analyze time series data. Therefore, GRU 

was combined with the CNN to supplement the ability 

of the CNN to extract time series features. Chopra et al. 

[16] used an attention mechanism to increase the 

connection between the network that processed the 

target and the network that processed the text, thereby 

enhancing the algorithm’s ability to mine target-related 

features. 

Some researchers hoped to improve the 

effectiveness of stance detection through external 

information or data [17]. One of the most used types of 

data is the emotion tag, because the stance detection 

task is derived from the sentiment analysis task, and 

the labels of the two tasks have a certain similarity [4]. 

Ebrahimi et al. [18] proposed a stance classification 

model based on the correlation between stance tags and 

emotion tags. This method added an emotional 

dimension into the relationship between the target, text, 

and stance label, thereby improving the effect of stance 

detection. Zarrella et al. [19] obtained additional data 

from the Twitter platform and used the transfer 

learning method to learn from these external data to 

improve the detection effect. 
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2.2 Multi-target Stance Detection 

With the application of stance detection technology, 

researchers have found a type of text that contains 

multiple targets. This text appears commonly when 

discussing different candidates in an election or 

different brands of a product. In addition, the corpora 

structures and stance labels are more complicated, 

which causes traditional stance detection methods to 

perform poorly for such data. Therefore, this type of 

data greatly affects opinion mining based on traditional 

stance detection technology in various fields, such as 

election predictions and product feedback. Therefore, 

the multi-target stance detection problem is defined as 

a sub-task of stance detection [7]. 

Some researchers believed that multi-target stance 

tags are relevant (e.g., in election-related corpora, few 

people support multiple candidates simultaneously, and 

most support only one or none). Therefore, to consider 

the mutual influence of the stance labels of the 

different targets, the algorithm they designed 

considered the stances of other targets when detecting 

the stance of one target. Therefore, this algorithm 

typically predicted the stances of multiple targets 

simultaneously [20]. 

Sobhani et al. [21] supposed that there was a certain 

relationship between the stances of multiple targets. 

Therefore, the Seq2Seq model, which is widely used in 

text translation and other fields, was used to detect 

multi-target stances. When predicting a stance, this 

method considered the previous predictions to detect 

the stance of the current target. Thus, this method 

could not only consider the relationship between many 

labels simultaneously, it also produced multiple 

outputs for multi-target stance detection. Wei et al. [22] 

designed an extended network. This network was 

shared when predicting labels for different targets. 

Therefore, this method could combine the contents of 

multiple tags to detect the stances of multiple goals. 

Other researchers viewed multi-target stance 

detection as complex stance detection task. Therefore, 

the input and output of such algorithms are in the form 

of single target stance detection (the target and text are 

input, and the target’s stance is predicted). Among 

these methods, expanding the fusion network and 

region segmentation are commonly used methods. The 

former can enhance the ability of the model to adapt to 

different goals, and the latter can segment the input text 

containing multiple goals to help the algorithm divide 

the content describing different targets. 

Siddiqua et al. [23] used a network model containing 

multiple CNN models, attention mechanisms, and 

LSTMs to complete multi-target stance detection. This 

model had a larger size and more diverse structures, 

which made it more adaptable when dealing with 

complex problems. Liu et al. [24] designed an 

unsupervised range extraction method to divide text 

containing two targets into four parts. In this way, 

content describing different goals was separated to 

reduce the impact between them. 

However, expanding a fusion network not only 

increases the time complexity, it also enlarges the risk 

of algorithm overfitting while increasing the 

adaptability. Although the region segmentation method 

of Liu et al. [24] reduces the risk of interactions 

between different targets, it was designed to only 

segment text with two targets, and the given four parts 

cannot adapt to other types of text passages. Thus, this 

method has low robustness. 

Aiming at the shortcomings of this region 

segmentation method, a position-weight vector was 

designed. Text describing different targets is divided 

into multiple sub-text passages, which is a different 

approach from that of the segmentation method. The 

position-weight vector represents the positional 

relationship between the each target and each word in 

the text, and it is embedded into the deep learning 

model, which makes it possible to highlight text that 

describes different goals while maintaining the 

integrity of the text. This method is introduced in the 

next section. 

3 Method 

The architecture of our model is shown in Figure 2. 

It consists of the following five modules: an embedded 

layer, a Bi-GRU layer, a position-weight fusion layer, a 

CNN, and a softmax classifier and model training 

module. The input of the model is the text of the target 

and the subject (target + text). 

 

Figure 2. Model architecture 

3.1 Embedding Layer 

The purpose of this layer is to convert words in the 

text into corresponding word embeddings. It converts a 

word of natural language into a vector with a specific 

meaning so that the algorithm can better analyze the 

potential semantics. In this process, each word will be 
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sequentially converted into a 1 × d vector. Thus, the 

entire text is converted into a l × d tensor, where l is 

the text size, and d is the dimension of the word vector. 

3.2 Bi-GRU Layer 

To extract valid features from the unstructured text, 

a GRU is used to encode the text. The GRU can 

describe the long-distance lexical dependency in the 

text and is suitable for text data modeling [25]. The 

input of the GRU is a tensor formed by arranging the 

embedded vectors of the words to be processed in 

order from front to back. The corresponding output is a 

tensor composed of implicit states of the GRU units in 

order from front to back. 

However, the traditional one-way GRU cannot 

describe the dependence between words in the 

direction from back to front. Therefore, a bidirectional 

GRU (Bi-GRU) composed of a forward GRU and a 

backward GRU is used. It has been proven that using 

bidirectional encoding technology to process time-

series data is very effective [26].The input of the 

forward GRU network is composed of the embedded 

vectors of words arranged in order from front to back, 

and the input of the backward GRU network is a series 

of the embedded vectors of words arranged in the 

opposite order. They are designed to mine the textual 

features based on the past and future contexts, 

respectively. After this, the outputs of the forward and 

backward GRUs at each unit are spliced. Thus, the Bi-

GRU can describe the dependence relationship 

between words in the directions from front to back and 

back to front. Therefore, each input word of Bi-GRU 

will be first transmitted to the forward GRU and then 

to the backward GRU, and the output of the Bi-GRU is 

the spliced result of the hidden states of the above two 

GRUs. 

In the GRU model [27], a unit t is calculated as 

follows: 

 
1

( )z z

t t t
z xU h Wσ
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where d

t
x R∈  represents the word embedding vector 

entered at position t, and n

t
h R∈  is the hidden state at 

position t, n

t
s R∈  is the output at position t. Moreover, 

t
z  and 

t
r  are two gates (update gate and reset gate, 

respectively) at position t, σ  and tan h  represent 

sigmoid and tanh activation functions, and d n
U R

×

∈  

and n n

W R
×

∈  are weight matrices. For d
R , n

R , and 
d n

R
× , d is the dimension of the word vector, and n is 

the size of the output of the GRU network. 

In the Bi-GRU, the hidden states of the forward and 

backward GRUs at each moment t are concatenated 

and sent to the output. This process is shown in Figure 

3. 

 

Figure 3. Model architecture of the bidirectional GRU, 

where the solid line represents the forward GRU, the 

dashed line represents the reverse GRU, and + 

represents the cascade 

3.3 Position-weight Fusion Layer 

When using the Bi-GRU to extract unstructured 

features, it is difficult to distinguish the contexts that 

describe different targets. Thus, in this section, a 

position-weight vector is proposed to represent the 

positional relationship between each word and the 

different targets. This vector is then fused into the 

feature tensors extracted by the GRU, which enlarges 

the differences of the text describing different targets, 

thereby helping this algorithm to distinguish the 

contexts describing different targets. 

3.3.1 Position-weight Vector 

The position-weight vector is designed to extract the 

positional relationship between each word in the text 

and the different targets. In this process, it is assumed 

that in the text, words that are closer to the target word 

have a greater influence on the target, and conversely, 

words that are farther away have a smaller influence. 

This distance is defined as the number of words in 

between words. The specific calculation method is as 

follows. 
m

k
w  represents the impact weight of the k-th word on 

the m-th target, which is expressed as follows: 

 max
| |

1 m

k

MAX

k
w

k

τ−

= −  (5) 

where 
m

τ  is the serial number of the m-th target word 

(1 ,
MAX MAX

m m m≤ ≤ is the number of times that the 

target appears in the text), which represents the 

position of the m-th target word in the text, and 
MAX
k  is 

the number of words included in the entire text. To 

deal with the case where one target appears multiple 

times in the text, the maximum of m

k
w  among all the 

targets is taken as the maximal weight of the k-th word, 

which is expressed as max

k
w : 
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 max 1 2max{ , , ..., , }MAX
mm

k k k k k
w w w w w=  (6) 

All the maximum weights max

k
w  are then filled into 

the position vector E, which is shown as follows: 

 max max max

1 2
{ , ..., }

MAX
k

E w w w=  (7) 

At this point, each component of vector E (where 

each element ranges from 0 to 1) represents the impact 

of each word on the target, as shown in Figure 4. 

 

Figure 4. Position-weight vector of two targets in the same text 

In the model, the two main parts are the Bi-GRU for 

mining unstructured features and the PWV for mining 

linguistic features. Before fusing their outputs, their 

working processes are independent. Thus, it is 

necessary to discuss the effects of the two types of 

characteristics on predicting the stance. To control the 

effect of the two types of features on the entire system, 

each component of vector E is expanded by 

multiplying by a factor of µ. This factor can adjust the 

ratio of the output tensors of the Bi-GRU and PWV. 

Therefore, the effect of the position weight on the 

entire system can be changed by adjusting µ. When the 

value of µ increases, it indicates that the influence of 

the position vector on the entire model increases, and 

the influence of the Bi-GRU decreases, as follows: 

 E E
µ

µ= ×  (8) 

where E
µ

 is the position-weight vector (where each 

element ranges from 0 to µ). Each component of E
µ

 is 

composed of two parts: one is the position-weight 
max

k
w  in E, indicating the impact of the each word on 

the target, and the other is the coefficient µ, expressing 

the impact of the position-weight max

k
w  on the entire 

system. 

The coefficient µ is defined as a trainable variable in 

the process of building model, which is suitable for 

finding the global optimum value of the model. The 

coefficient µ is regarded as a parameter rather than a 

hyper-parameter. The training process of µ is the same 

as other parameters (weights and biases) in the model. 

The value one is recommended to initialize this 

coefficient and a learning rate of 0.05 is used to train 

this coefficient. In addition, in order to make this 

coefficient have a better effect, the L2 regularizer [28] 

is added to prevent it from overfitting. 

3.3.2 Concatenating Position-weight Vector and 

Output of Bi-GRU 

After the position-weight vector is calculated, it 

should be fused with the feature tensor extracted by the 

Bi-GRU. In this process, the feature tensor extracted 

by the Bi-GRU is concatenated with the corresponding 

element in the position-weight vector. This 

concatenated tensor is (2 1)l n
Y R

× × +

∈ , where n is the size 

of the output of a unidirectional GRU, 2 1n× +  

represents the dimension of the output of the Bi-GRU 

plus the corresponding position weight, and l is the size 

of the text passage to be sent to the CNN, which is no 

less than 
MAX
k  in Equation (5). This tensor can not 

only describe the dependence between words in the 

different directions, but it can also describe the impact 

of a word on the different targets. 

3.4 CNN 

CNN networks are less used than RNNs when 

processing time series data. Although a CNN can 

extract local one-dimensional plaques (subsequences) 

from a sequence and recognize the local patterns 

within a convolution window, it cannot mine the logic 

relationship between words in a context like RNNs can 

[29]. However, the context logic relationship has been 

extracted through the Bi-GRU and position-weight 

vector, and the subsequent operation is to re-extract 

these extracted features. Thus, a CNN was chosen to 

complete the re-extraction process. The CNN model is 

shown in Figure 5. 

There are two components of the CNN: the 

convolution layer and the pooling layer 
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Figure 5. Model architecture of CNN 

3.4.1 Convolution Layer 

In the convolution layer, the input is the feature 

memory stitched together from the previous layer 

arranged in time. This feature memory is (2 1)l n
Y R

× × +

∈ , 

where n is the size of the output of the GRU network, 1 

represents the dimension of the corresponding position 

weight, and l represents the size of the text. 

The CNN network will then use J × K filters 

(convolution kernels) to convolve the input, where J is 

time domain length of the convolution kernel, and K is 

input dimension (K = 2 1n× + ) and the number of 

filters [10]. After this, activation functions are used to 

process these features, and the result is sent to the 

pooling layer. 

3.4.2 Pooling Layer 

A pooling layer is commonly used to reduce the 

features mined by the network model and is often 

placed behind the convolutional layer. Therefore, after 

the feature is extracted by the convolutional layer, the 

pooling layer is used to extract features again to obtain 

more critical elements. Global max-pooling is used in 

this layer. 

3.5 Softmax Classifier and Model Training 

The output of the CNN layer is taken as the input of 

this layer, and the softmax classifier [30] is used to 

predict the stance labels of the different targets. It 

consists of multilayer perceptron and softmax 

activation function. In addition, loss function is the 

minimum cross entropy, which is shown as follows: 

 
0

ˆ ˆ( , ) log
K

i l

i

H y y y y
=

= −∑  (9) 

where y is the true result, ŷ  is the output of the 

softmax classifier (the dimensions of y and ŷ  are K), 

and 
i
y  and ˆ

l
y  are the i-th elements of y and ˆ,y  

respectively. 

During the training process, we save the model after 

each epoch. And then, the model that has the best 

effect in the development set among these models is 

chosen as the output model. 

4 Experiments 

4.1 Experimental Setting 

4.1.1 Data, Data Preprocessing, and Hyper-

parameter Settings 

Dataset: The multi-target stance detection corpus 

provided by Sobhani et al. was used to verify the 

effectiveness of our model [7]; it contained text from 

Twitter discussing candidates in the 2016 US election. 

This corpus contained three sub-datasets corresponding 

to three groups of targets (Clinton–Sanders, Clinton–

Trump, and Cruz–Trump). Table 1 shows the 

distribution of the training set, development set and test 

set in each sub-dataset. 

Table 1. Details of the experimental datasets 

Target Train Dev Test Total 

Clinton–Sanders 957 137 272 1366 

Clinton–Trump 1240 177 355 1722 

Cruz–Trump 922 132 263 1317 

Total 3199 446 890 4455 

 

Data preprocessing: There were many misspellings 

(e.g., “Hilary”) and word concatenations (e.g., 

“Trumpforpresident”) in this dataset, because the 

language of social media is not usually standardized, 

and the corpus producer is not concerned with 

processing noisy text. Therefore, we simply 

normalized all the target words in the text. For example, 

“Hilary” was modified to “Hillary” and 

“Trumpforpresident” was modified to “Trump for 

president”. 

Text size: The structure of the model was fixed, but 

the number of words in each text passage was different. 

Thus, a fixed size should be set to define our model. 

We choose the length of the text containing the most 

words in the data set as the text size. 

Word embedding: A 300-dimensional pre-trained 

word embedding from fastText [31] was used to 

complete the feature representation. 

Hyper-parameters: The optimization method is 

Adagrad, the learning rate is 1e-3, the minimum batch 

is 16, loss function is the minimum cross entropy，and 

the epoch is 20. The GRU output is 256, the kernel size 

is 5, the number of filters is 513, the pooling method is 

max-pooling, and all the parameter matrices values are 

initialized by Xavier [32]. In addition, the model that 

achieved the best results in the development set is 

selected to validate in the test set. 

4.1.2 Evaluation Method 

The stance detection task was more inclined to 

achieve a better prediction for “Favor” and “Against” 

labels. Therefore, the average of F1-score was chosen 

to evaluate the effect of the stance detection task, 



Multi-Target Stance Detection Based on GRU-PWV-CNN Network Model 599 

 

which is defined as follows: 

 
2

FAVOR AGAINST

avg

F F
F

+

=  (10) 

where 
FAVOR

F  and 
AGAINST

F  are the F1-score that 

support and do not support the target, respectively.  

In addition, in order to evaluate the prediction effect 

of multiple targets in a sub dataset, the average of 
avg

F  

of all targets in one dataset is used to evaluate the 

effectiveness in the corresponding dataset, which is 

called “Avg” for short. To evaluate the effectiveness of 

the model on different sub-datasets, the macro-

averaged F1-score [21] that is the average of “Avg” in 

all sub-dataset is selected to evaluate the performance 

of the model, which is called “F-Macro” for short. In 

the following section of this paper, the sign “Avg” and 

“F-Macro” are used to represent the above two 

evaluation indicators. 

4.1.3 Other Methods 

To demonstrate the performance of our algorithm, 

some methods of multi-target stance detection were 

compared, which is described as follows. 

Sequence-to-sequence (Seq2Seq) [21]: Recently, the 

Seq2seq model has achieved good performance when 

dealing with timing problems. Therefore, Sobhani et al. 

applied this model to the multi-target stance detection 

problem. In this method, text is used as the input of the 

model, and the stance labels representing different 

targets are the output. The advantage of this algorithm 

is that it not only mine the stance related to the target 

from the text, but also consider to the relationship 

between multiple targets. 

Attention-Based Hierarchical LSTM (AH-LSTM) 

[24]: In 2018, this method was proposed by Liu et al. 

for multi-target stance detection. First, based on the 

position of the target in the text, the text containing 

multiple targets is split into four parts. The 

corresponding target and text word embeddings are 

then spliced based on these parts, and they are 

processed with four separate LSTMs. After this, the 

outputs of the four LSTMs are input into a Bi-LSTM 

network with an attention mechanism. Finally, the 

stance of the tweet is detected by a softmax classifier 

that accepts the output of the Bi-LSTM. 

4.2 Results and Discussion 

To evaluate the effectiveness of the proposed 

method, it was compared with the methods introduced 

in Section 4.1.3 first. After this, the effects of using a 

Bi-LSTM and GRU to mine the unstructured features 

were compared. The impact of the position-weight 

vector on the system was then discussed. Finally, the 

effects of using different methods to complete feature 

re-extraction were analyzed. 

4.2.1 Comparison Between Our Method and 

Related Methods 

The comparison with other methods (as described in 

Section 4.1.3) are shown in Table 2. 

Table 2. Performances of our approach and other methods (Unit: %) 

Clinton-Sanders Clinton-Trump Cruz-Trump 
Methods 

Clinton Sanders Avg Clinton Trump Avg Cruz Trump Avg 
F-Macro 

Seq2Seq 55.59 53.86 54.72 54.46 58.74 55.60 47.02 59.21 53.12 54.81 

AH-LSTM 52.26 58.38 55.32  60.63 61.98 61.31 52.88 50.30 51.59 56.07 

GRU-PWV-CNN 55.45 58.65 57.13 60.03 66.17 63.10 52.88 60.02 56.45 58.89 

Improvement with 

our method (%) 
- - 1.81 - - 1.89 - - 3.33 2.82 

Note. The items in columns “Clinton”, “Sanders”, and “Trump” are all the 
avg

F  and directly cited from the experimental results 

in the corresponding references. 

 

By comparing the Avg and the F-Macro of the 

different methods, the performances is ranked as 

follows: Seq2Seq < AH-LSTM < GRU-PWV-CNN. 

From this result, we found the following results. 

1. Seq2Seq method placed third in terms of 

performance. Although this method has the ability to 

detect positions with reference to different targets, it 

does not take into account the effect of the positional 

relationship between the text and the target. This may 

be the reason why its effect is lower than AH-LSTM 

and our method. 

2. The performance of the AH-LSTM placed second 

in terms of performance. Although it uses position 

information to reduce the influence between different 

text passages describing different targets, this method 

has some problems. This method attempts to segment 

the text describing different targets into multiple sub-

texts describing one target by the positions of the 

words. However, the inherent logic of natural language 

is flexible, and the method cannot flexibly segment text 

describing different targets, which leads to a poor 

stance detection effect. In addition, segmenting one 

text passage into four parts would cause the structure 

of the text segmentation to be destroyed. This may be 

the main reason for its poor performance. 

In the GRU-PWV-CNN model, the position 
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information is fused into the model in the form of a 

vector, which ensures the integrity of the text while 

providing the model with position information. This 

may have been the reason for the superior performance 

of our method. 

3. Our method achieved the best results, with a 

2.82% increase in the Macro 
avg

F , which proved its 

advantages over the other methods. There are three 

main components of this method as follows: 1. the Bi-

GRU layer for mining text features, 2. the position-

weight fusion layer for mining position information 

and fusing it into the model, and 3. the CNN layer for 

secondary extraction of information from the fused 

information. The impact of the three parts will be 

discussed separately below. 

4.2.2 Comparing Effects of Bi-LSTM and GRU 

The unstructured features are extracted by the Bi-

GRU, as described in Section 3.2. However, the LSTM 

can also achieve the same effect. Thus, two alternative 

networks were designed, and their effects were 

compared using the same encoding method, model 

structure, and three datasets. The model with the Bi-

GRU is denoted as GRU-PWV-CNN, and the model 

with the Bi-LSTM is denoted as LSTM-PWV-CNN. 

The experimental results on the development set and 

test set are shown in Figure 6, where the y-axis refers 

to the Avg. 

 

Figure 6. Avg of GRU-PWV-CNN and LSTM-PWV-

CNN 

By comparing the Avg of the two methods for the 

three datasets, the feature extraction performance of the 

GRU was better than that of the LSTM. In addition, 

because the GRU simplified the number of gates while 

ensuring the implementation of the LSTM function, the 

GRU-based model also had a slightly smaller time 

complexity than the LSTM. Thus, the GRU was used 

to complete the feature extraction of unstructured text. 

4.2.3 Comparison of Different Coefficients in Posi-

tion-weight Fusion Layer 

In this paper, the position-weight vector is used to 

map the positional relationship between each word and 

the target into a vector. This vector is then embedded 

into the model to reduce the impact between different 

targets. To compare the effect of this vector on the 

model, the coefficient µ is used to scale each element 

in the vector proportionally. In addition, since the 

memory of the GRU fused with this vector passes 

through the tanh function, the memory tensor fused 

with this vector is between -1 and 1. Therefore, 

expanding the position-weight vector can expand the 

impact on the entire system. Although the optimal 

coefficient µ can be achieved through training, we still 

want to show the influences of the different fixed 

coefficients on the prediction results. So the effect of 

models with different µ values on the development set 

and test set, as shown in Figure 7. 

 

Figure 7. Avg for different fixed µ and automatically µ 

in the proposed method 

In this picture, the x-axis denotes the µ size, and the 

y-axis refers to the Avg. Where automatic at the line 

with dots is the Avg obtained by the algorithm of using 

the µ as a trainable variable and initialized by 0, 1, 2, 3, 

4, and 5. Fixation at the line with squares is the average 

of 
avg

F  obtained by the algorithm when µ is 0, 1, 2, 3, 

4, and 5. 
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The description in Figure 7 shows three important 

points: (1) it is found that the results of the model have 

obvious changes with the adjustment of the coefficient 

µ, and usually the performance when µ ≠ 0 is better 

than the effect when μ = 0. This proves that PWV can 

help the algorithm to obtain better results in the stance 

detection task. (2) In most cases, the effect of 

automatically adjusting the coefficient µ is better than 

the fixed coefficient µ, because the coefficient obtained 

by training is easy to reach to the global optimal value 

compared to the one by adjusting manually. Therefore, 

this proves that the automatic acquisition of the 

coefficient µ not only omits the process of adjusting 

the hyper-parameters, but also has a better effect. (3) 

The effect of the algorithm in the development set is 

better than the one in the test set. Because the 

development set is used to adjust the parameters of our 

model to get the best effect, but the test set is not. 

4.2.4 Comparing Effects of Different Feature Re-

extraction Methods 

After completing the final fusion of the position-

weight vector with the extraction results from the 

unstructured text, the re-extraction should be processed, 

as mentioned in Section III.D. To find a suitable model 

to re-extract the fused features, three models were 

compared—a CNN, LSTM, and GRU. The results on 

the development set and test set are shown in Figure 8. 

 

Figure 8. Average of 
avg

F  of GRU-PWV-GRU, GRU-

PWV-LSTM and GRU-PWV-CNN. The y-axis refers 

to the average of 
avg

F  

From this picture, it is found that the overall 

performance of the CNN model is always better than 

the GRU and LSTM models in the development set 

and test set. Therefore, it is used to complete the re-

extraction process. This may also prove that the fusion 

of RNN and CNN models can achieve better results. 

Because different network structures have their own 

advantages, the combination of them can solve the 

more complex problems. 

5 Conclusion 

People publish text containing various attitudes 

about other people, events, and other goals on social 

media. Mining this information has become an 

important channel for decision makers to obtain 

feedback of the public opinion. The purpose of stance 

detection technology is to automatically analyze the 

text in social media to obtain an attitude toward a 

specific target, which has played an important role in 

public opinion analysis. Because input text containing 

multiple targets has a complex structure and large 

amount of information, the multi-target stance 

detection task is separately defined as a sub-task of 

stance detection. 

In this study, a GRU-PWV-CNN network for multi-

target stance detection is proposed. First, a Bi-GRU is 

used to extract the original features from the 

unstructured input text. The corresponding position of 

the target in the input text is then calculated using the 

final position-weight vector. After this, the above two 

features are merged into the position weighted fusion 

layer. Subsequently, a CNN is used to re-extract 

features from the merged information. Finally, the 

softmax classification is used to determine the stances 

of different targets. The stance detection corpus for the 

US 2016 general election was used to validate our 

method. The experimental results showed that this 

method achieved and a 2.82% improvement in F-

Macro. 

To use deep learning to extract data features, adding 

multi-target position information to expand the 

tolerance of the input differences is a good method for 

improving the effectiveness of multi-target stance 

detection. In the future, more non-English multi-target 

stance detection data will be used, such as the Chinese 

corpus for the Taiwan 2020 election, for further 

experiments. This will expand the research scope on 

stance detection and allow stance detection technology 

to serve the Chinese corpus. 
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