
Feature Engineering and Evaluation for Android Malware Detection Scheme 423

Feature Engineering and Evaluation for

Android Malware Detection Scheme

Jaemin Jung1, Jihyeon Park2, Seong-je Cho2, Sangchul Han3, Minkyu Park3, Hsin-Hung Cho4

1 Departmetnt of Computer Science and Engineering, Dankook University, Korea
2 Department of Software Science, Dankook University, Korea

3 Department of Software Technology, Konkuk University, Korea
4 Department of Computer Science and Information Engineering, National Ilan University, Taiwan

{snorlax, jihyeon, sjcho}@dankook.ac.kr, {schan, minkyup}@kku.ac.kr, hhcho@niu.edu.tw*

*Corresponding Author: Seong-je Cho; E-mail: sjcho@dankook.ac.kr

DOI: 10.3966/160792642021032202017

Abstract

Android is one of the most popular platforms for the

mobile and Internet of Things (IoT) devices. This

popularity has made Android-based devices a valuable

target of malicious apps. Thus, it is essential to devise

automatic and portable malware detection approaches for

the Android platform. There are many studies on

detecting mobile malware using machine learning

techniques. In these studies, however, the dataset is

imbalanced or is not large enough to generalize the

machine learning model, or the dimensionality of features

is too high to apply nonlinear classifiers. In this article,

we propose a machine learning-based Android malware

detection scheme that uses API calls and permissions as

features. To restrict the dimensionality of features, we

propose minimal domain knowledge-based and Gini

importance-based feature selection. We construct large

and balanced real-world datasets to build a generalized

and non-skewed model and verify our model through

experiments. We achieve 96.51% classification accuracy

using Random Forest classifier with low overhead. In

addition, we also provide an analysis on falsely classified

samples in detail. The analysis results show that API

hiding can degrade the performance of API call

information-based malware detection systems.

Keywords: Android app, Malware detection, Feature

engineering, False alarm

1 Introduction

Android is a platform for smart devices and

lightweight Internet of Things (IoT) devices.

Developers can build apps on top of popular platforms

without previous knowledge of embedded systems [1].

Android has advantages over conventional platforms

that have been employed in developing WSNs [2].

Since it forms a layer supported by well-designed

components interacting with each other, one can build

IoT systems easily on it. It can also be easily scaled by

making a new functionality as a module. We can

provide various services utilizing the connectivity of

mobile and IoT devices on Android [3-6].

As Android-based platforms become more popular,

Android devices including smartphones and IoT are

becoming attractive targets for cyber criminals [6-10].

According to a recent report from cybersecurity

company McAfee [11], more than 30 million malicious

mobile apps were found in the fourth quarter of 2018,

and more than 6 million new mobile malware instances

have been introduced each year since 2016. Hence,

many researchers contribute to mobile malware

detection and prevention including Android malware

[12-24].

There have been several different approaches to

detecting mobile malware. Traditional malware

detection approaches [16-17] compare suspicious apps

with signatures. Signatures are known malware

patterns based on the executable code. The demerit of

these approaches is that they can detect only the

malicious apps that have signatures currently known.

They cannot detect newborn malware [18-20, 24].

Besides, these approaches require continuous updating

of the predefined signature database. Christodorescu

and Jha [16] concluded that “Signature-based

approaches never keep up with the speed at which

malware is created and evolved”.

Instead of using malware signatures, other effective

approaches [18-25] utilize machine learning or data

mining techniques to detect not only known but also

unknown malware instances. Machine learning

classifiers can address some of the problems of

signature-based malware detection by automatically

reasoning about benign and malicious apps to fit

detection model parameters [22-23]. Machine learning

techniques take a labeled dataset and generate a model

that can deal with data not included in the dataset. It is

shown that employing machine learning classifiers can

improve detection performance [20, 25]. When a

machine learning technique is used for malware

424 Journal of Internet Technology Volume 22 (2021) No.2

detection and classification, there are several

challenges: feature extraction and selection [19, 23-24,

26-30], collection of a comprehensive real-world

dataset [13], choosing and optimizing a suitable

learning algorithm [21-23], performance evaluation [20,

31], and identifying false alarm [25].

We propose a new machine learning technique to

detect Android malware utilizing permissions and API

calls. Among the above-mentioned challenges, we

focus on feature extraction and selection, dataset

collection and identifying false alarms. Feature

extraction maps a large collection of input data onto a

small set of features while preserving the relevant

information [29-30]. Feature extraction may transform

original features into an organized and more significant

subset of information. Feature selection reduces the

dimensionality of datasets, which is a general

preprocessing method in high dimensional data

analysis [24, 27, 30]. Through feature selection, we

select the relevant feature that we expect to be useful

for malware detection. The classification results can be

improved by selecting the most relevant features from

the extracted features. Feature extraction and selection

methods can be applied separately or combined in one

step. They significantly affect the performance in terms

of efficiency, robustness, and accuracy.

In our scheme, we first extract the information on all

API invocations and permission requests from sample

apps. Next, we reduce the size of the feature set by

using two feature selection methods: (1) a minimal

domain knowledge-based method and (2) a Gini

importance-based selection method. The minimal

domain knowledge-based method simply chooses the

API calls and permissions used in the existing well-

known studies [19, 32-34] and the Gini importance-

based method decreases the size of the feature set

under consideration. We adopt the feature importance

[35-36] of each feature derived from the Gini impurity

of the resulting Random Forest (RF) trees.

Many existing studies used imbalanced and/or small

datasets. However, imbalanced dataset may result in a

skewed model and too small dataset may lead to poor

generalization. In our study, we construct a large and

balanced dataset to build a generalized and non-skewed

model. We collect 27,041 benign apps and 26,276

malwares from a real-world dataset, AndroZoo.

We have carried out several experiments and

evaluated the proposed Android malware detection

scheme. It achieved up to 96.51% accuracy with

Random Forest algorithm. We have also investigated

the undetected or misclassified apps in detail and

discovered that we might incorrectly classify apps that

are transformed by code obfuscation tools or written

with cross-platform development tools.

The main contribution of this work is summarized as

follows:

• We reduce the dimensionality of datasets and

decrease the curse of dimensionality using the

combined feature selection technique without

degrading the detection performance: the minimal

domain knowledge-based plus the Gini importance-

based. Using minimal domain knowledge is recent

trends in the research on malware detection [38-39].

• We construct the balanced datasets using real-world

datasets, AndroZoo [37] and Drebin [33], in our

experiments. The well-known but older datasets

such as Drebin, AMD [40] and GooglePlay

(during 2014 – 2016) show some different

characteristics compared with the latest AndroZoo

dataset, especially in terms of the number of APIs

invoked by apps (see Section 4).

• We disclose the causes of incorrect classification

where a malicious app is undetected or a benign app

is misclassified as malicious. To the best of our

knowledge, a few studies have been conducted on

identifying incorrect classification issued by a

machine learning technique in malware detection.

This article is organized as follows. Section 2

explains background knowledge about API calls and

permissions on the Android platform. Section 3

presents our machine learning-based malware detection

technique. Section 4 explains our experimental results

and analyzes the misclassified samples. In Section 5,

we compare our work with the related works. Finally,

we give the concluding remarks and present possible

future work in Section 6.

2 Background

2.1 API (Application Programming Interface)

The Android platform provides Application

Programming Interfaces (APIs) that applications can

use to interact with the underlying Android system to

do various things [19]. The framework API refers to

the collection of various software that makes up the

Android SDK such as a core set of packages and

classes, a set of XML elements and attributes for

declaring a manifest file, etc. Android apps contain

many API calls and permissions. Each API call is

composed of four types of information: class name,

method name, argument information, and return data

type.

API calls reflect the functionality and behavior of an

app and have been widely used in studies for malware

detection, especially using machine learning algorithms.

Android apps use the official Android APIs and third-

party APIs [41]. Third-party APIs are often only used

in a few apps and utilizing those APIs as a feature for

machine learning can lead to sparse data problems.

Also, third-party APIs may have different names but

the same functionality, and vice versa. Hence, we use

only the official Android APIs in malware detection.

Salehi et al. [42-43] mentioned that API name alone

might not represent its operations and both API calls

Feature Engineering and Evaluation for Android Malware Detection Scheme 425

and their arguments could be an effective representative

of the executable behavior. They adopted each API call

name, its arguments, and return value to detect

Microsoft Windows malware. In our work, we consider

the following API call information: class name,

method name, method’s argument types, and method’s

return data type. The API calls with the same class and

method name are counted as different API calls if they

have different arguments or return data type. The total

number of API calls belonging to Android 7.1 (API

level 25) is 133,271 [44]. Figure 1 shows a bytecode-

level API call that consists of a class name (including a

package name), a method name, and a method

descriptor. The method descriptor consists of the types

of arguments and return value [45].

Figure 1. An exapmle of bytecode-level API call

representation

2.2 Permissions

Android apps require some permissions to perform

specific functions [19, 46-47]. Android permissions

enable the system or user to protect sensitive data or

system features from apps. Permission requests reflect

the app’s behavior. An app must declare its

permissions in its manifest file to access protected

resources and interact with other apps. For example, if

an app wants to read an address book on the device, it

should declare the READ_CONTACTS permission in

the AndroidManifest.xml. We collected lists of

permissions from an Android application analysis tool

AndroGuard [48]. The total number of Android

permissions collected is 474.

The permissions declared in a manifest file are

useful in catching the potential risks of apps [19, 32,

47]. The system’s behavior depends on how sensitive

the permission is. There are three protection levels in

the Android permission system: normal, signature, and

dangerous. Permissions for resources and data

involving the user’s private information or affecting

the action of other apps fall on dangerous permissions

[19, 32]. For example, ACCESS_FINE_LOCATION

(to read the location of the user) and

READ_CONTACTS (to read the user’s contacts) are

classified as dangerous. For dangerous permissions,

apps should obtain the permission grant from the user

at runtime.

3 The Proposed Method

Our malware detection technique consists of three

steps: feature extraction, feature selection, and machine

learning. Figure 2 shows a schematic diagram of the

proposed technique. We explain each step in detail in

the following subsections.

Figure 2. The schematic diagram of our approach

426 Journal of Internet Technology Volume 22 (2021) No.2

3.1 Android App Dataset

AndroZoo [37, 56] is a representative dataset that

is currently widely used in many studies. The dataset

collected a large number of apps from multiple sources,

including the official Google Play App Market and

continues to grow. Additionally, these apps are

constantly being analyzed and classified by dozens of

different anti-virus software. It was judged and used as

the most appropriate dataset for this study in terms of

quantity and quality.

The dataset for this work consists of the benign

dataset and malicious dataset from the AndroZoo

database [37]. The benign dataset has 27,041 Android

apps published during 2017-2018. The malicious

dataset has 26,276 malware (malicious apps) found

during 2014-2018. To mitigate the imbalance of the

number of benign and malicious apps, we collect

malicious apps over a longer period.

3.2 Feature Extraction

We can statically extract API call information from

each Android application packages (APK) file. First,

we obtain classes.dex and AndroidManifest.

xml files by decompressing an APK file. The manifest

file declares permissions that the app needs. We

decode the AndroidManifest.xml using appt

[49] and extract the declared permissions. The

classes.dex is an executable file format for the

Android platform. We decompile classes.dex

using the existing reverse assembler DexDump

included in the Android studio [50], extract all API

calls from the apps, and remove third-party APIs. Most

of the previous studies [33-34] using API calls as a

feature for machine learning considered only the class

and method name of each API. In our work, the

method descriptor (arguments and return data type) is

also included in the feature set.

After extracting API calls and permissions, we

create a feature vector for each app from the extracted

features according to the procedure shown in Figure 2.

Each app has two sub-vectors: one for API calls and

the other for permissions. If an API call is invoked or

permission is declared in the app, the corresponding

element of the vector is set to 1, otherwise 0. We do

not count how many times an API call is invoked. We

build a list of all official Android APIs from the API

level 25 SDK (android.jar file) of Android Studio

[44]. The total number of different APIs is 133,271 and

the total number of different permissions 474, as

explained in Section 2.2. As a result, each app has a

vast number of features, i.e., the dimensionality of

features becomes very high.

3.3 Feature Selection

To decrease the dimensionality of features, we try to

remove the irrelevant APIs and permissions that rarely

contribute to malware detection. We use minimal

domain knowledge-based and Gini importance-based

techniques.

3.3.1 Minimal Domain Knowledge-based Method

To decrease the dimensionality of features, we first

exclude all unofficial APIs and permissions from the

extracted features since third-party APIs are often used

only in a few apps as mentioned in Section 2.1. We

then remove irrelevant APIs and permissions applying

domain knowledge. Domain knowledge refers to the

valid expertise used in a specific specialty rather than

general knowledge [51]. In the field of malware

detection, domain knowledge includes the knowledge

about the functionality, the behavior, the patterns, or

the intention of malware. We choose relevant API calls

and permissions based on this minimal domain

knowledge through malware analysis and its related

literature.

By adopting the results of [33-34], we select

relevant 1,848 APIs among 133,271 official APIs.

Some of them are listed in Table 1. It includes account-

related APIs, location-related APIs, SMS-related APIs,

etc. On the other hand, Google defines 9 dangerous

permission groups and declares the permissions in

these groups as dangerous [32, 46]. We collect such

permissions in Android API level 4~28 and select 79

permissions as relevant. Table 2 shows some of them.

It includes account-related permissions, Bluetooth-

related permissions, location-related permissions, etc.

3.3.2 Combining the Minimal Domain Knowledge-

based and GINI importance-based Selection

Methods

In this step, we calculate the degree of importance of

features selected in Section 3.3.1. We use the Gini

importance [35-36] to measure the importance of each

feature, which is included in the Random Forest library

of Scikit-learn [52-53]. In Scikit-learn

implementation, the node importance nij is defined as

the decrease in the weighted Gini impurity as Equation

(1)

 ,j j j L L R Rni w C w C w C= − − (1)

where L and R are the child nodes, Ci is the Gini

impurity of node i, and the weight is a ratio of samples

reaching the node. And the importance of feature i in a

tree is defined as Equation (2)

()

,

j NS i j

i

k N k

ni
fi

ni

∈

∈

Σ
=

Σ
 (2)

where NS(i) is the set of nodes that split on feature i

and N is the set of all nodes. Then, the Random Forest-

level feature importance is the average of fii over all

trees. A higher fii value means that the feature is

Feature Engineering and Evaluation for Android Malware Detection Scheme 427

Table 1. A partial list of APIs selected using domain knowledge

Some APIs (of the selected 1,848 APIs)

Landroid/accounts/AccountManager;.getAccounts:()[Landroid/accounts/Account;

Landroid/accounts/AccountManager;.clearPassword:(Landroid/accounts/Account;)V User account API

Landroid/accounts/AccountManager;.getPassword:(Landroid/accounts/Account;)Ljava/lang/String;

Landroid/bluetooth/BluetoothAdapter;.enable:()Z
Bluetooth API

Landroid/bluetooth/BluetoothAdapter;.isEnabled:()Z

Landroid/location/LocationManager;.addGpsStatusListener:(Landroid/location/GpsStatus$Listener;)Z
GPS/Location API Landroid/location/LocationManager;.requestLocationUpdates:(JFLandroid/location/Criteria;Landroid/ap

p/PendingIntent;)V

Audio API Landroid/media/AudioRecord;.startRecording:()V

Landroid/telephony/SmsManager;.sendDataMessage:(Ljava/lang/String;Ljava/lang/String;S[BLandroid/
app/PendingIntent;Landroid/app/PendingIntent;)V

SMS API
Landroid/telephony/SmsManager;.sendTextMessage:(Ljava/lang/String;Ljava/lang/String;Ljava/lang/Str
ing;Landroid/app/PendingIntent;Landroid/app/PendingIntent;)V

Landroid/telephony/TelephonyManager;.getSimSerialNumber:()Ljava/lang/String;
Telephony API

Landroid/telephony/TelephonyManager;.getDeviceId:()Ljava/lang/String;

Process API Ljava/lang/Runtime;.exec:(Ljava/lang/String;)Ljava/lang/Process;

Notification API Landroid/app/NotificationManager;.notify:(Ljava/lang/String;ILandroid/app/Notification;)V

String API Landroid/lang/StringBuilder;.append:(Ljava/lang/CharSequence;)Ljava/lang/StringBuilder;

Table 2. A partial list of permissions selected using domain knowledge

Some Permissions (of the selected 79 permissions)

GET_ACCOUNTS

MANAGE_ACCOUNTS User account Permission

GET_ACCOUNTS_PRIVILEGED

BLUETOOTH

BLUETOOTH_ADMIN Bluetooth Permission

BLUETOOTH_PRIVILEGED

ACCESS_COARSE_LOCATION
Location permission

ACCESS_FINE_LOCATION

Camera permission CAMERA

SEND_SMS

READ_SMS SMS permission

WRITE_SMS

READ_PHONE_STATE

MODIFY_PHONE_STATE Phone info permission

READ_PHONE_NUMBERS

Billing permission Vending.BILLING

Launcher permission com.android.launcher.permission.INSTALL_SHORTCUT

Overlay permission android.permission.SYSTEM_ALERT_WINDOW

more suitable in classifying sample apps as malicious

or benign

Figure 3 lists the top 20 APIs in the order of

decreasing feature importance. The API call for

displaying notifications in the Notification Bar

is the most important. The other important APIs

include the APIs related to the ContentResolver

object that accesses data in the Content Providers or

gets information about system settings, the APIs

related to the Handler class for Android inter-thread

communication, the APIs to perform operations like

locating a device, the APIs for Wi-Fi or Bluetooth

services, and the APIs for file write operation. On the

other hand, SMS and audio-related APIs presented in

Table 1 do not have important effects on Android

malware detection. We found 861 APIs have the

feature importance of 0 (zero).

Figure 4 lists the top 20 permissions selected in the

order of decreasing feature importance. The READ_

PHONE_STATE permission is ranked first. It allows

access to device-specific information such as IMEI and

phone number. The permissions associated with the

file system, Wi-Fi service, and Android launcher have

also high importance scores. On the other hand, SMS

and Bluetooth-related permissions are ranked below

25th among the 79 permissions selected by the

minimal domain knowledge. No permission has the

importance of zero.

428 Journal of Internet Technology Volume 22 (2021) No.2

Figure 3. The top 20 APIs in order of feature importance

Figure 4. The top 20 permissions in order of feature importance

Based on the feature importance, we select the top N

APIs and the top M permissions as a feature for

machine learning. We perform a grid search for the

best combination of N and M. Incrementing N from 5

to 987 and M from 5 to 79 with a step of 5 respectively,

M+N features were tested. Note that the maximum

value of N is 987 (excluding 861 APIs with zero

importance). We found that when N=405 and M=25,

Random Forest shows the highest accuracy for

detecting Android malware with the least

computational overhead.

3.4 Machine Learning Models

We developed the machine learning model for

classifying Android apps into malicious or benign

using the features selected in Section 3.3. We choose

the Random Forest algorithm and use grid search to

determine hyper-parameters. Random Forest has the

Feature Engineering and Evaluation for Android Malware Detection Scheme 429

following advantages [54-55]: (1) it has a relatively

small number of parameters that should be controlled,

and removes the need for pruning the trees, (2) it can

achieve high classification accuracy, (3) it can

overcome the problem of overfitting, and (4) feature

importance is computed automatically. Random Forest

takes several hyper-parameters. In our experiments we

consider two important parameters among them:

max_depth and n_estimators, which control

the maximum depth of each tree and the number of

trees in the forest, respectively. We perform a grid

search to find out the parameter values with which the

Random Forest model achieves the highest detection

accuracy on our datasets.

4 Experiments and Analysis

4.1 Dataset

In our experiments, we leverage the AndroZoo

dataset [37, 56], a well-known large-scale collection of

Android apps. AndroZoo collects Android apps from

several sources including Google Play and

VirusShare, and is currently being updated. Recent

research such as [57-58] used the AndroZoo dataset

in their experiments.

To construct a balanced dataset, we collected a

similar number of benign apps and malicious ones. For

the benign dataset, we downloaded 27,364 benign apps

from the AndroZoo website between 2017 and 2018.

For the malware dataset, we also downloaded 26,438

malicious apps between 2014 and 2018. Then we

removed apps from which we cannot extract any API

calls or permissions. We also removed apps that belong

to both datasets. The resulting dataset consists of

27,041 benign apps and 26,276 malware.

Table 3 compares our dataset with other well-known

datasets in terms of the average number of used APIs.

As mobile users require more useful and convenient

functions, recent apps use more APIs. This fact makes

extracting and selecting significant features more

important for the efficiency and effectiveness of

machine learning. The high dimensionality of features

may lead to computational difficulty, classification

noise, or overfitting.

Table 3. The average number of APIs used

 Dataset Collection period Average # of APIs

Google Play 2014 ~ 2016 2,618
Benign apps

AndroZoo [37, 56] (our dataset) 2017 ~ 2018 3,508

Drebin [33] 2010 ~ 2012 521
AMD [40] 2010 ~ 2016 1,077 Malicious apps

AndroZoo [37, 56] (our dataset) 2014 ~ 2018 1,954

4.2 Metrics

We describe the performance of our machine

learning model based on a confusion matrix (Table 4),

commonly used in machine learning. The performance

metrics we consider are recall (True Positive Rate),

specificity (True Negative Rate), and accuracy, which

can be derived from the confusion matrix. Their

definitions are as follows.

Table 4. Confusion matrix

Prediction

Malicious Benign

Malicious
TP

(True Positive)
FN

(False Negative) Ground
Truth

Benign
FP

(False Positive)
TN

(True Negative)

 Recall
TP

TP FN
=

+

 Specificity
TN

TN FP
=

+

 Accuracy
TP TN

TP FP FN TN

+
=

+ + +

The ground truth indicates that we already know if

the app is malicious or benign. Reliable ground truth is

essential to verify malware detection models. For

building a reliable ground truth dataset, we rely on

AndroZoo’s classification and VirusTotal anti-

virus decisions. The malicious dataset consists of the

apps that three or more anti-virus software of

VirusTotal judged to be malicious. The benign

dataset consists of the apps that all anti-virus software

judged to benign.

4.3 Experiments

First, we measure the performance using features

after applying the domain knowledge-based feature

selection. We construct the feature vector with relevant

1,848 APIs and 79 permissions as explained in Section

3.3.1. We evaluate our scheme using 5-fold cross-

validation. The samples are randomly grouped into 5

disjoint subsets of equal size. The Random Forest is

trained and tested five times using each subset as test

data and the others as training data. The detection

430 Journal of Internet Technology Volume 22 (2021) No.2

accuracy is 96.33 % with the training time 38.89s and

the testing time 1.12s on average. Table 5 shows the

prediction results when the model performs best. The

detection accuracy is 96.72%, the recall is 97.15%, and

the specificity is 96.30%.

Table 5. The best prediction results with the domain

knowledge-based feature selection

Prediction

Malicious Benign

Malicious 5,105 150 Ground
Truth Benign 200 5,208

Then we measure the performance using features

after applying the combined feature selection. The

feature vector is composed of 405 APIs and 25

permissions as explained in Section 3.3.2. We also

employ 5-fold cross-validation. The detection accuracy

is 96.51 % with the training time 12.06s and the testing

time 0.62s on average. Table 6 shows the prediction

results when the model performs best. The detection

accuracy is 96.85%, the recall is 97.09%, and the

specificity is 96.61%.

Table 6. The best prediction results with the combined

feature selection

Prediction

Malicious Benign

Malicious 5,102 153 Ground
Truth Benign 183 5,225

To show the selection method is effective, we also

measure the performance of the model before the

feature selection. Before the feature selection, the total

number of APIs is 133,271 and the total number of

permissions is 474. If we use all the APIs as a feature,

the training could take too long, thus, we applied the

domain knowledge-based selection to APIs only. Table

7 summarizes the number of features, training time,

and accuracy. The combined feature selection approach

reduces the training time by 79.60% compared with the

domain knowledge-based approach (only to APIs) and

69.00% the domain knowledge-based approach. Also,

it achieves almost the same detection accuracy despite

reduced features.

Table 7. Summary of experimental results

Feature selection
of
APIs

of
permissions

Training
time

Detection
accuracy

Domain
knowledge-based

(only to API)
1,848 474 59.11s 96.36%

Domain
knowledge-based

1,848 79 38.89s 96.33%

Combined 405 25 12.06s 96.51%

To check if our model is overfitted we test it with a

new dataset. We collected 200 benign apps from the

AndroZoo (AndroZoo2019) and 200 malware from the

DREBIN [33] (Drebin). AndroZoo2019 is a set of

benign apps collected from AndroZoo during 2019.

Note that we collected our original benign apps during

2017~2018 and malware during 2014~2018; both were

collected from AndroZoo. No new apps are in our

original datasets. We train our model with our original

datasets and test it with the new dataset. The results are

shown in Table 8. The detection accuracy is 96.0%, the

recall is 97.5% and the specificity is 94.5%. This

means that our model is not overfitted.

Table 8. Prediction results with the new test dataset

Prediction

Malicious Benign

Malicious 195 5 Ground
Truth Benign 11 189

Adversarial machine learning is a technique that

tries to deceive machine learning models into

misclassification by modifying input data. One of the

strategies of adversarial machine learning is an evasion

attack. Attackers obfuscate their apps to hide or distort

the features and behaviors and evade detection. We

measure the performance of our model against evasion

attacks. We conducted an experiment corresponding to

DexGuard-based obfuscation attack in the attack

scenarios of [75]. We train the model with our

AndroZoo dataset, then test it with 200 benign apps

collected from the F-Droid project [76] before and

after obfuscation. We obfuscate the apps using

Obfusapk [77] (with reflection). Out of 200 apps, our

model misclassified 6 apps before obfuscation and 14

apps after obfuscation. The accuracy decreases from

97% to 93%.

4.4 Analysis of Misclassified Apps

This section analyzes some of the falsely classified

apps in the worst performance experiment of the

combined feature selection approach. They are 66

malicious apps (false negative) and 142 benign apps

(false positive). We discuss the possible reasons for the

misclassification in terms of code obfuscation,

grayware, and cross-platform development tools.

4.4.1 Code Obfuscation

From a laborious manual analysis, we discover that

all misclassified apps are obfuscated. Most obfuscators

support identifier renaming and/or API hiding [6, 59-

60]. Identifier renaming changes the names of

packages, classes, and methods. If any of them is

changed, the extracted APIs cannot be found in the list

of the official APIs. API hiding hides the names of

invoked APIs using the Java reflection mechanism.

API invocation codes are replaced with the codes for

Feature Engineering and Evaluation for Android Malware Detection Scheme 431

finding and calling APIs via Java reflection-related

APIs. These types of code obfuscation can transform

the functional parts of the apps by altering the API

invocations. Therefore, code obfuscation can

significantly degrade the performance of API call-

based malware detection.

4.4.2 Grayware

Grayware is an unwanted application that is not

classified as malware by most anti-malware products

but behaves in an undesirable manner or causes

security risks. Grayware is neither benign nor

malicious. Grayware includes spyware, adware, remote

access tools, etc. Some grayware tagged as malware

are predicted as benign, and vice versa.

We investigate the 66 undetected malicious apps.

They are divided into 14 malware families as shown in

Figure 5. We found that about 75 % of them (50 out of

66) are adware. Their families are Dowgin, Kuguo,

Jfpush, Feiwo, and unknown adware. A typical

adware program displays advertising sentences in the

notification bar. If a user touches the notification, an

advertisement is displayed in a WebView component.

No permission is required to display a sentence in the

notification bar. And the ranks of WebView-related

APIs in our API ranking are 270 ~ 325 as shown in

Table 9, which means that the importance of

WebView-related APIs is relatively low.

Figure 5. Malware families of undetected malicious apps

Table 9. Example of WebView-related APIs. The column Rank denotes the importance rank in the API list

Rank API

270 Landroid/webkit/WebView;.setWebViewClient:(Landroid/webkit/WebViewClient;)V

271
Landroid/webkit/WebViewClient;.shouldInterceptRequest:(Landroid/webkit/WebView;Ljava/lang/String;)Landro
id/webkit/WebResourceResponse;

279 Landroid/webkit/WebView$HitTestResult;.getType:()I

285 Landroid/webkit/WebView;.setFocusable:(Z)V

... ...

325 Landroid/webkit/WebView;.removeJavascriptInterface:(Ljava/lang/String;)V

We submit the 142 misclassified benign apps to

VirusTotal [61] in June 2019. VirusTotal

judged nine of them as malware (Table 10), but only

one or two of about 70 anti-malware products

classified them as malware. We found that these apps

are grayware. These apps request unnecessary

permissions or use APIs for the subsidiary

functionality such as advertisements or information

sharing. However, the relevant features rank high.

These features may cause our approach to misclassify

apps as malware. Figure 6, for example, shows the

screenshot of ‘com.unicrios.funnyskeleton’

app. This app provides live wallpapers. Users can set

animation speed and send feedback to Google Play

Store. Its functionality is simple, but it requires an

unnecessary permission WRITE_EXTERNAL_STORAGE

and contains WebView-related APIs that are irrelevant

to its functionality.

432 Journal of Internet Technology Volume 22 (2021) No.2

Figure 6. Screen shots of com.unicrios.funnyskeleton

Table 10. Scanning result for 9 misclassfied apps

Applications # of anti-malware products that classify the app as malware

de.resolution.yf_android 1
net.kilho.CandleLight 1

com.virtualanimalsworld.chihuahuahomesimulator 2
com.unicrios.funnyskeleton 2

mfmotasouthwestregion6.org 2
com.saklalabs.vitalsecuritytoolkit 2

com.thunkable.android.devbid9.iKiwi 2
com.webroot.security.sme 1

com.ringer.ui 1

Figure 7 shows the screenshots of another game app.

In Figure 7, the left figure displays a game scene, the

middle one advertisement, and the right one “privacy

policy”. This app collects IMEI information, network

information (IP address and Wi-Fi information), and

location information for advertisements and service

improvement. So this app contains several permissions

and APIs, which rank high, as shown in Table 11.

These permissions and APIs have little to do with the

functionality of the game but may cause our model to

classify the app as malware.

Figure 7. Screenshots of com.virtualanimalsworld.chihuahuahomesimulator

Feature Engineering and Evaluation for Android Malware Detection Scheme 433

Table 11. Several features of com.virtualanimalsworld.chihuahuahomesimulator

Category Rank Feature

Device 1 READ_PHONE_STATE

Display 3 SYSTEM_ALERT_WINDOW

Network 4 ACCESS_WIFI_STATE
Permission

Location 9 ACCESS_COARSE_LOCATION

Device 4 Landroid/telephony/TelephonyManager;.getDeviceId:()Ljava/lang/String;

Location 9
Landroid/location/LocationManager;.getBestProvider:(Landroid/location/Criteria;Z)Ljav
a/lang/String;

Network 11 Ljava/net/HttpURLConnection;.getHeaderField:(Ljava/lang/String;)Ljava/lang/String;

API

Network 15 Landroid/net/wifi/WifiManager;.getConnectionInfo:()Landroid/net/wifi/WifiInfo;

4.4.3 Cross-Platform Development Tools

Cross-platform development tools such as Xamarin

[62], Unity [63], PhoneGap [64], Titanium [65],

and Cocos2D [66] are employed by many mobile app

developers to reduce the development cost and easily

distribute apps across multiple platforms [67-69].

Malware writers also employ those cross-platform

development tools to develop malware at a low cost

and infect as many devices as possible [67-68, 70].

Android apps developed using the cross-platform

development tools usually have additional folders and

files that are not found in native apps as shown in

Figure 8. This means that we need to analyze those

additional folders/files as well as classes.dex for

malware detection. Table 12 lists the additional files

that are contained in apps developed using each cross-

platform development tools. Among them, *.so,

*.dll, and *.js files are program files that cannot

be decompiled using Android reverse engineering tools.

Thus, our Android API and permission-based approach

cannot extract suitable features from these files for

detection. This increases the false negative instances.

Table 12. Additional files in apps developed using

cross-platform development toos

Tools Additional files

Index.html
PhoneGap

Index.js

Titanium Index.js

Assembly-Csharp.dll
System.dll

System.core.dll
libunity.so

libmain.so

Unity

libmono.so

Xamarin App.dll

Cocos2D Libcocos2dcpp.so

We investigate the structure of each undetected

malware and identify its development tool. Figure 9

shows the development tools of the 66 undetected

malware. There are 47 malware instances written in

Java, and 13 malware instances written with

Figure 8. Structure of APK written with Cocos2D and

unity

Figure 9. Development toos of undetected malware.

‘Java’ denotes native apps

Unity/C#. The remaining 6 malware instances are

written with Cocos2D/C++. We check each

lib*.so and *.dll files of Unity apps and

Cocos2D apps using VirusTotal. According to the

results, most malicious codes are found in

classes.dex. For only two malware instances of

Gingermaster family have malicious codes in

434 Journal of Internet Technology Volume 22 (2021) No.2

libieunh.so, a malicious advertisement library (Figure

10). We conclude that the effect of cross-platform

development tools on our malware detection approach

is relatively small.

Figure 10. Malware detection result on libieunh.so

5 Related Work

In this paper, we mainly aim at performing static

analysis for detecting Android malware using machine

learning. Static analysis is an approach that evaluates

Android apps by scanning their executable code

without runtime analysis. The static features are

obtained without executing the sample apps. On the

contrary, dynamic analysis conducts malware detection

by executing sample apps and monitoring their

behavior.

Dynamic analysis need to mimic the actual runtime

environment and simulate effectively human

operations to achieve high code coverage. Static

analysis has several advantages over dynamic analysis.

It does not need any execution scenario as well as the

notions of test case. It can be implemented in a

lightweight manner for deployment on computing

resource-limited devices and operate on a stand-alone

basis on a mobile device. In addition, there is no

possibility for mobile devices to be infected by

malware during its analysis. In this work, therefore, we

focus on static analysis.

Several studies on Android malware detection adopt

machine learning algorithms and use APIs and

permissions as the features. These studies have

considered various criteria in selecting APIs and

permissions for efficient malware detection. Table 13

summarizes those studies.

Table 13. Comparison of our study and existing studies on Android malware detection

 Features
Static/

Dynamic

Feature selection
(Feature

refinement)

Dataset
(Malware/
Benign)

Acc. Classifier

Peiravian
et al. [19]

APIs, Permissions Static analysis None 1,260 / 1,250 96.88% SVM, J48, Bagging

Arp
et al. [33]

APIs, Permissions,
Network addresses,
Filtered intents, etc.

Static analysis feature weight 5,560 / 123,453 94% SVM

Aafer
et al. [34]

APIs
(with arguments)

Static analysis
frequency analysis

+ data flow analysis
3,987 / 16,000 99%

k-NN, ID3 DT, C4.5
DT, SVM

Chan
et al. [72]

APIs,
Permissions,

Static analysis information gain 175 / 621 92.36%
NB, SVM, RBF
Network, MLP,

Liblinear, J48, RF

Qiao
et al. [73]

APIs,
Permissions

Static analysis
ANOVA,
SVM-RFE

1,260 / 5,000 94.41% SVM, RF, NN

Zhu
et al. [74]

Sensitive APIs,
Permission rate

Static analysis
TF-IDF,

cosine similarity
1,065 / 1,065 88.26% Rotation Forest, SVM

Li
et al. [71]

Permissions
Dynamic
analysis

multilevel data
pruning (PRNR,

SPR, PMAR)
5,494 / 310,926 95.63%,

FT, RF, Random
Committee, SVM,

Rotation Forest, PART

Salah et al.
[79]

Symmetric patterns Static analysis
FF_AF based on

TF_IDF
5,560 / 123,453 99%

SVM, Logistic
regression, SGD
AdaBoost, LDA

Our study

APIs
(with arguments,

return type),
Permissions,

Static analysis
Gini impor-
tance based

method
26,276 / 27,041 96.51% RF

Peiravian et al. [19] employed three machine

learning models, Bagging, J48 and Support Vector

Machine (SVM) with API calls and permissions as

features. They performed experiments using a total of

Feature Engineering and Evaluation for Android Malware Detection Scheme 435

2510 samples including 1260 malicious and 1250

benign apps, and the experiments demonstrated that

Bagging achieved the best performance in classifying

the datasets. They used a relatively small dataset

compared to our work. Their scheme differs from ours

in that it does not have feature selection step. The

reduced number of permissions and APIs make our

scheme perform efficiently.

Arp et al. [33] developed the machine learning

technique called DREBIN which resorted to static

analysis for malware detection on Android mobile

device. From Android apps, DREBIN extracted APIs,

permissions, hardware components, filtered intents,

network addresses, etc. The extracted features were

presented as strings and organized as eight different

feature sets. They embedded the features into a high-

dimensional vector space. After representing Android

apps as feature vectors, DREBIN learned a linear SVM

algorithm to classify. A dataset of about 120,000 apps

is used for training and detection. The evaluation

results indicated that DREBIN could achieve a

detection accuracy rate of 94% by incorporating

numerous features. However, utilizing too many

features can increase the computational overhead [71].

Li et al. [71] presented a permission usage-based

malware detection system SigPID. Through three-

levels of permission pruning methods, they identified

22 significant permissions. Then they experimented

SigPID using 67 machine learning models and found

that Functional Tree (FT) yielded the highest recall

with the shortest processing time. They also compared

SigPID with other malware detection approaches

such as DREBIN [33] and showed that SigPID+FT

achieved a high detection rate in spite of a small

number of features (22 permissions).

Aafer et al. [34] proposed DroidAPIMiner that

used API call information including parameter values.

They deployed four classifiers: SVM, k-NN, C4.5, and

ID5. They collected around 20,000 apps (3,987

malware and around 16,000 benign apps) and the

classifiers achieved a high accuracy (up to 99%).

Chan et al. [72] also considered permissions and

APIs. The authors selected permissions and API calls

with a positive information gain. They conducted the

experiments using WEKA using several machine

learning algorithms. On 796 apps (621 benign and 175

malicious), the classifiers achieved the accuracy of

92.36%.

Qiao et al. [73] utilized the patterns of API calls and

permissions. They considered APIs that were

controlled by permissions. They classified benign and

malicious apps using SVM, RBF kernels, Random

Forest, and Artificial Neural Networks. Using 6260

apps (5,000 benign and 1,620 malware), the classifiers

with the feature selection achieved an accuracy of

about 78~94%.

Zhu et al. [74] presented DroidDet. The

information considered in this work is permission

requests, APIs, permission-rate and monitoring system

events. They scored each feature through methods such

as TF-IDF or cosine similarity to select top features. At

classification stage, an ensemble classifier Rotation

Forest is employed. With 2,130 samples (1,065 benign

and 1,065 malware), the classifier achieves an accuracy

of 88.26%, which is higher than SVM by 3.33% under

the same experimental conditions.

Salah et al. [79] found out symmetric features across

malicious Android applications. They took into

account different types of static features and chosen the

most important features to detect Android malware.

They introduced a frequency-based feature selection

method called the feature frequency-application

frequency (FF - AF) to reduce the feature space size,

and merged Android app URLs into a single feature

called the URL_score. The proposed method was

evaluated using five machine learning classifiers with

the DREBIN dataset. They used 349 features from the

six feature categories such as APIs, permissions, app

components, etc. The linear SVM of the five classifiers

showed the highest accuracy up to 99%.

All the aforementioned studies selected features

based on domain knowledge. For example, DREBIN

[33] analyzed malware, selected relevant APIs, and

used them as feature. Other approaches selected

feature(s) based on statistical analysis or data mining

with domain knowledge [34, 71-74]. For example, in

[34], after selecting APIs related to malicious behavior,

the authors analyzed the frequency of APIs in normal

apps and malware and selected APIs with the large

difference in the frequency. In this paper, we select

features using minimal domain knowledge, and then

select relevant features among them using Gini

importance-based method. Specifically, features are

selected based on the algorithm of decision trees in

Random Forest, which is a kind of statistical analysis

method, and the experimental results before and after

the analysis are presented. Most of all, we analyze the

falsely classified apps and suggest future work.

Su et al. [80] constructed the behavioral portrait of

Android malware to depict behaviors of malware

samples and detect them based on both static and

dynamic analysis. They defined several dimensions of

behavioral features to depict malware, and defined

behavioral tags to generalize meta-data of the features.

They then analyzed the correlation of the behavior tags

to construct a behavioral portrait of Android malware.

Finally a random forest algorithm was combined with

the behavior portrait of malware for Android malware

detection.

Alswaina et al. [78] reviewed the literature over the

past 10 years related to Android malware families by

surveying on Android malware family detection,

identification, and categorization techniques. The

survey was conducted using three dimensions: analysis

type (static, dynamic, hybrid), feature (static, dynamic),

436 Journal of Internet Technology Volume 22 (2021) No.2

and techniques (model-based, analysis-based). They

introduced a new taxonomy that could categorize

malware familial classification-related studies in terms

of the three dimensions. The limitations of the related

studies and future trends have been highlighted too.

A meta-classifier or classifier fusion approach

extracts features from Android apps, trains several base

classifiers with the features, and collates their detection

results, and selects a final model [81-82]. The

performance of this approach depends upon the

accuracy of individual base classifiers. If base

classifiers cannot detect malware accurately, the

performance of the final classification is limited. Hence,

studies on effective base classifiers, like our work, are

significant.

6 Conclusions

In this paper, we proposed feature extraction and

selection techniques that use API call and permission

information as features of a machine learning model

for classifying efficiently and effectively Android apps

into malicious or benign. For the API call information,

we used as features class name, method name, and

arguments and return data type of each method. Since

Android apps contains a very large number of features,

it is necessary to reduce the number of features. By

combining a minimal domain knowledge-based and

Gini importance-based methods, we finally selected

405 APIs and 25 permissions out of 133,271 APIs and

474 permissions, respectively. We constructed a

dataset that is balanced and large enough to build a

generalized machine learning model. We downloaded

the latest Android sample apps, 27,041 benign apps

and 26,276 malware, from the AndroZoo dataset. We

then conducted some experiments on the sample apps.

The experiment results showed that our technique had

the classification accuracy of 96.51% using the

features selected by the combined methods. It reduced

the training time by 68.99% without degrading the

classification accuracy.

In addition, we demonstrated the superiority of our

model by performing another experiment with a new

test dataset, where no apps in the new dataset are in the

aforementioned dataset. The experiment results

achieved the accuracy of 96%. This implies that our

model is not overfitted.

We finally investigated the misclassified 66

malicious apps and 142 benign apps in detail and

discovered that the performance of our model can be

degraded by code obfuscation, grayware, and cross-

platform development tools. Specially, API hiding

using Java reflection can be a major obstacle to

Android malware detection based on API calls because

it conceals the functional parts of the sample app by

hiding the API calls in the app. Meanwhile, about 75%

of the undetected malicious apps and 6.3% of

misclassified apps were greyware such as adware,

spyware, etc. Our experiment results showed that many

anti-malware products of VirusTotal could not

detect grayware correctly. In order to correctly detect

Android grayware using machine learning, it is

necessary to build reliable ground truth dataset for

current grayware. Therefore, we plan to construct a

reliable ground truth dataset for grayware in the future.

Acknowledgements

This research was supported by Basic Science

Research Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of

Science and ICT (No. 2018R1A2B2004830).

References

[1] Android Things Home Page, https://developer.android.

com/things/get-started, March, 2020.

[2] M. Chibuye, J. Phiri, A Remote Sensor Network using

Android Things and Cloud Computing for the Food Reserve

Agency in Zambia, International Journal of Advanced

Computer Science and Applications (IJACSA), Vol. 8, No. 11,

pp. 411-418, 2017.

[3] W. Song, H. Lee, S.-H. Lee, M.-H. Choi, M. Hong,

Implementation of Android Application for Indoor

Positioning System with Estimote BLE Beacons, Journal of

Internet Technology (JIT), Vol. 19, No. 3, pp. 871-878, May,

2018.

[4] B. Sharma, M. S. Obaidat, Comparative analysis of IoT based

products, technology and integration of IoT with cloud

computing, IET Networks, Vol. 9, No. 2, pp. 43-47, March,

2020.

[5] J. Qi, P. Yang, M. Hanneghan, D. Fan, Z. Deng, F. Dong,

Ellipse fitting model for improving the effectiveness of life-

logging physical activity measures in an Internet of Things

environment, IET Networks, Vol. 5, No. 5, pp. 107-113,

September, 2016.

[6] T. Cho, H. Kim, J. H. Yi, Security Assessment of Code

Obfuscation based on Dynamic Monitoring in Android

Things, IEEE Access, Vol. 5, pp. 6361-6371, April, 2017.

[7] H. S. Ham, H. H. Kim, M. S. Kim, M. J. Choi, Linear SVM-

based Android Malware Detection for Reliable IoT Services,

Journal of Applied Mathematics, Vol. 2014, Article ID

594501, September, 2014.

[8] A. K. Sikder, H. Aksu, A. S. Uluagac, 6thSense: A context-

aware sensor-based attack detector for smart devices, The

26th USENIX Security Symposium (USENIX Security 17),

Vancouver, Canada, 2017, pp. 397-414.

[9] A. K. Sikder, H. Aksu, A. S. Uluagac, A context-aware

framework for detecting sensor-based threats on smart

devices, IEEE Transactions on Mobile Computing, Vol. 19,

No. 2, pp. 245-261, February, 2020.

[10] E. B. Karbab, M. Debbabi, A. Derhab, D. Mouheb, MalDozer:

Automatic framework for android malware detection using

deep learning, Digital Investigation, Vol. 24, No. Supplement,

Feature Engineering and Evaluation for Android Malware Detection Scheme 437

pp. S48-S59, March, 2018.

[11] McAfee, McAfee Mobile Threat Report, https://www.mcafee.

com/enterprise/en-us/assets/reports/rp-mobile-threat-report-

2019.pdf, March, 2019.

[12] A. P. Felt, M. Finifter, E. Chin, S. Hanna, D. Wagner, A

survey of mobile malware in the wild, Proceedings the 1st

ACM workshop on Security and privacy in smartphones and

mobile devices, Chicago, Illinois, USA, 2011, pp. 3-14.

[13] M. Chandramohan, H. B. K. Tan, Detection of mobile

malware in the wild, IEEE Computer, Vol. 45, No. 9, pp. 65-

71, September, 2012.

[14] K. Shaerpour, A. Dehghantanha, R. Mahmod, Trends in

android malware detection, Journal of Digital Forensics,

Security and Law, Vol. 8, No. 3, pp. 21-40, 2013.

[15] S. H. Seo, A. Gupta, A. M. Sallam, E. Bertino, K. Yim,

Detecting mobile malware threats to homeland security

through static analysis, Journal of Network and Computer

Applications, Vol. 38, pp. 43-53, February, 2014.

[16] M. Christodorescu, S. Jha, Static analysis of executables to

detect malicious patterns, Technical Report at the Computer

Sciences Department of the University of Wisconsin, 2006.

[17] R. W. Lo, K. N. Levitt, R. A. Olsson, MCF: A malicious code

filter, Computers & Security, Vol. 14, No. 6, pp. 541-566,

1995.

[18] J. Sahs, L. Khan, A machine learning approach to android

malware detection, IEEE European Intelligence and Security

Informatics Conference, Odense, Denmark, 2012, pp. 141-

147.

[19] N. Peiravian, X. Zhu, Machine learning for android malware

detection using permission and api calls, IEEE 25th

international conference on tools with artificial intelligence,

Herndon, VA, USA, 2013, pp. 300-305.

[20] F. A. Narudin, A. Feizollah, N. B. Anuar, A. Gani, Evaluation

of machine learning classifiers for mobile malware detection,

Soft Computing, Vol. 20, No. 1, pp. 343-357, January, 2016.

[21] M. G. Schultz, E. Eskin, F. Zadok, S. J. Stolfo, Data mining

methods for detection of new malicious executables, IEEE

Symposium on Security and Privacy (S&P 2001), Oakland,

CA, USA, 2000, pp. 38-49.

[22] Z. Markel, M. Bilzor, Building a machine learning classifier

for malware detection, IEEE Second Workshop on Anti-

malware Testing Research (WATeR), Canterbury, UK, 2014,

pp. 1- 4.

[23] J. Saxe, K. Berlin, Deep neural network based malware

detection using two dimensional binary program features,

IEEE 10th International Conference on Malicious and

Unwanted Software (MALWARE), Fajardo, Puerto Rico, 2015,

pp. 11-20.

[24] A. Feizollah, N. B. Anuar, R. Salleh, A. W. A. Wahab, A

review on feature selection in mobile malware detection,

Digital investigation, Vol. 13, pp. 22-37, June, 2015.

[25] N. B. Anuar, H. Sallehudin, A. Gani, O. Zakari, Identifying

false alarm for network intrusion detection system using

hybrid data mining and decision tree, Malaysian journal of

computer science, Vol. 21, No. 2, pp. 101-115, December,

2008.

[26] M. Hassen, M. Carvalho, P. Chan, Malware classification

using static analysis based features, IEEE Symposium Series

on Computational Intelligence (SSCI), Honolulu, HI, USA,

2017, pp. 1-7.

[27] Z. Zhu, T. Dumitraş, Featuresmith: Automatically

engineering features for malware detection by mining the

security literature, Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security,

Vienna, Austria, 2016, pp. 767-778.

[28] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, G.

Giacinto, Novel feature extraction, selection and fusion for

effective malware family classification, Proceedings of the

sixth ACM conference on data and application security and

privacy, New Orleans, Louisiana, USA, 2016, pp. 183-194.

[29] S. Ranveer, S. Hiray, Comparative analysis of feature

extraction methods of malware detection, International

Journal of Computer Applications, Vol. 120, No. 5, pp. 1-7,

June, 2015.

[30] S. Khalid, T. Khalil, S. Nasreen, A survey of feature selection

and feature extraction techniques in machine learning, IEEE

Science and Information Conference, London, UK, 2014, pp.

372-378.

[31] B. N. Narayanan, O. Djaneye-Boundjou, T. M. Kebede,

Performance analysis of machine learning and pattern

recognition algorithms for malware classification, IEEE

National Aerospace and Electronics Conference (NAECON)

and Ohio Innovation Summit (OIS), Dayton, OH, USA, 2016,

pp. 338-342.

[32] Android developer, Dangerous permission group, https://

developer.android.com/guide/topics/permissions/overview#pe

rmission-groups and https://developer.android.com/training/

permissions/requesting#normal-dangerous, March, 2019.

[33] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, K. Rieck,

DREBIN: Effective and Explainable Detection of Android

Malware in Your Pocket, Network and Distributed System

Security (NDSS), San Diego, California, USA, 2014, pp. 23-

26.

[34] Y. Aafer, W. Du, H. Yin, DroidAPIMiner: Mining API-Level

Features for Robust Malware Detection in Android,

International conference on security and privacy in

communication systems, Sydney, NSW, Australia, 2013, pp.

86-103.

[35] B. H. Menze, B. M. Kelm, R. Masuch, U. Himmelreich, P.

Bachert, W. Petrich, F. A. Hamprecht, A comparison of

random forest and its Gini importance with standard

chemometric methods for the feature selection and

classification of spectral data, BMC bioinformatics, Vol. 10,

No. 1, pp. 1-16, July, 2009.

[36] Y. Qi, Random forest for bioinformatics, in: C. Zhang, Y. Ma

(Eds.), Ensemble machine learning, Springer US, 2012, pp.

307-323.

[37] K. Allix, T. F. Bissyandé, J. Klein, Y. L. Traon, Androzoo:

Collecting millions of android apps for the research

community, IEEE/ACM 13th Working Conference on Mining

Software Repositories (MSR), Austin, Texas, USA, 2016, pp.

468-471.

438 Journal of Internet Technology Volume 22 (2021) No.2

[38] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, C.

K. Nicholas, Malware detection by eating a whole exe,

Workshops at the Thirty-Second AAAI Conference on

Artificial Intelligence, New Orleans, Louisiana, USA, 2018,

pp. 268-276.

[39] E. Raff, J. Sylvester, C. Nicholas, Learning the pe header,

malware detection with minimal domain knowledge,

Proceedings of the 10th ACM Workshop on Artificial

Intelligence and Security, Dallas, Texas, USA, 2017, pp. 121-

132.

[40] F. Wei, Y. Li, S. Roy, X. Ou, W. Zhou, Deep ground truth

analysis of current android malware, International

Conference on Detection of Intrusions and Malware, and

Vulnerability Assessment, Bonn, Germany, 2017, pp. 252-276.

[41] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di

Penta, R. Oliveto, D. Poshyvanyk, API change and fault

proneness: a threat to the success of Android apps,

Proceedings of the 2013 9th joint meeting on foundations of

software engineering, Saint Petersburg, Russia, 2013, pp.

477-487.

[42] Z. Salehi, M. Ghiasi, A. Sami, A miner for malware detection

based on API function calls and their arguments, The 16th

CSI International Symposium on Artificial Intelligence and

Signal Processing (AISP 2012), Shiraz, Fars, Iran, 2012, pp.

563-568.

[43] Z. Salehi, A. Sami, M. Ghiasi, MAAR: Robust features to

detect malicious activity based on API calls, their arguments

and return values, Engineering Applications of Artificial

Intelligence, Vol. 59, pp. 93-102, March, 2017.

[44] Android Studio, SDK Platform release notes: Android 7.1

(API level 25), https://developer.android.com/studio/releases/

platforms, January, 2020.

[45] Java Virtual Machine class file format - Method descriptors,

https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html

#jvms-4.3.3, January, 2020.

[46] Manifest.permission, https://developer.android.com/reference/

android/Manifest.permission, March, 2019.

[47] S. Liang, X. Du, Permission-combination-based scheme for

android mobile malware detection, IEEE international

conference on communications (ICC), Sydney, NSW,

Australia, 2014, pp. 2301-2306.

[48] AndroGuard Home Page, https://github.com/androguard/

androguard, March, 2020.

[49] Android AAPT - Android packaging tool to create. APK file,

https://androidaapt.com/, January, 2020.

[50] Android studio and Android SDK tools, https://developer.

android.com/studio and https://developer.android.com/studio/

command-line#tools-sdk, January, 2020.

[51] Wikipedia, Domain knowledge, https://en.wikipedia.org/wiki/

Domain_knowledge, January, 2020.

[52] S. Ronaghan, The Mathematics of Decision Trees, Random

Forest and Feature Importance in Scikit-learn and Spark,

https://towardsdatascience.com/the-mathematics-of-decision-

trees-random-forest-and-feature-importance-in-scikit-learn-

and-spark-f2861df67e3, May, 2018.

[53] Scikit-learn, https://scikit-learn.org/, January, 2020.

[54] V. F. Rodriguez-Galiano, B. Ghimire, J. Rogan, M. Chica-

Olmo, J. P. Rigol-Sanchez, An assessment of the

effectiveness of a random forest classifier for land-cover

classification, ISPRS Journal of Photogrammetry and Remote

Sensing, Vol. 67, pp. 93-104, January, 2012.

[55] J. Ali, R. Khan, N. Ahmad, I. Maqsood, Random forests and

decision trees, International Journal of Computer Science

Issues (IJCSI), Vol. 9, No. 5, pp. 272-278, September, 2012.

[56] L. Li, J. Gao, M. Hurier, P. Kong, T. F. Bissyandé, A. Bartel,

J. Klein, Y. L. Traon, Androzoo++: Collecting millions of

android apps and their metadata for the research community,

arXiv preprint arXiv:1709.05281, https://arxiv.org/pdf/1709.

05281.pdf, 2017.

[57] H. Cai, N. Meng, B. Ryder, D. Yao, Droidcat: Effective

android malware detection and categorization via app-level

profiling, IEEE Transactions on Information Forensics and

Security, Vol. 14, No. 6, pp. 1455-1470, June, 2019.

[58] A. Hamidreza, N. Mohammed, Permission-based analysis of

Android applications using categorization and deep learning

scheme, MATEC Web of Conferences, Engineering Application

of Artificial Intelligence Conference 2018 (EAAIC 2018),

Sabah, Malaysia, 2018, Vol. 255, Article No. 05005, January,

2019.

[59] J. H. Park, H. J. Kim, Y. S. Jeong, S. J. Cho, S. C. Han, M. K.

Park, Effects of Code Obfuscation on Android App Similarity

Analysis, Journal of Wireless Mobile Networks, Ubiquitous

Computing, and Dependable Applications (JoWUA), Vol. 6,

No. 4, pp. 86-98, December, 2015.

[60] M. Backes, S. Bugiel, E. Derr, Reliable third-party library

detection in android and its security applications, Proceedings

of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, Vienna, Austria, 2016, pp. 356-

367.

[61] VirusTotal – a free virus, malware and URL online scanning

service, https://www.virustotal.com/, January, 2020.

[62] Xamarin homepage, https://dotnet.microsoft.com/apps/xamarin,

January, 2021.

[63] Unity homepage, https://unity.com/, 2020.

[64] PhoneGap homepage, https://phonegap.com/, 2020.

[65] Titanium Mobile Development Environment, https://www.

appcelerator.com/Titanium/, 2020.

[66] Cocos2D, https://cocos2d-x.org/, 2020.

[67] J. W. Shim, K. H. Lim, S. J. Cho, S. C. Han, M. K. Park,

Static and Dynamic Analysis of Android Malware and

Goodware Written with Unity Framework, Security and

Communication Networks, Vol. 2018, Article ID 6280768,

June, 2018.

[68] B. Zahran, S. Nicholson, A. Ali-gombe, Cross-Platform

Malware: Study of the Forthcoming Hazard Adaptation and

Behavior, Proceeding of the International Conference on

Security and Management (SAM), The Steering Committee of

The World Congress in Computer Science, Computer

Engineering and Applied Computing (WorldComp), Las

Vegas, Nevada, USA, 2019, pp. 91-94.

[69] P. Feng, J. Ma, C. Sun, X. Xu, Y. Ma, A novel dynamic

Android malware detection system with ensemble learning,

Feature Engineering and Evaluation for Android Malware Detection Scheme 439

IEEE Access, Vol. 6, pp. 30996-31011, June, 2018.

[70] W. Lee, X. Wu, Cross-platform mobile malware, write once,

run everywhere, Proceedings of the International Virus

Bulletin Conference, Prague, Czech Republic, 2015, pp. 352-

360.

[71] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, H. Ye, Significant

Permission Identification for Machine-Learning-Based

Android Malware Detection, IEEE Transactions on Industrial

Informatics, Vol. 14, No. 7, pp. 3216-3225, July, 2018.

[72] P. P. Chan, W. K. Song, Static detection of Android malware

by using permissions and API calls, International Conference

on Machine Learning and Cybernetics, Lanzhou, China, 2014,

pp. 82-87.

[73] M. Qiao, A. H. Sung, Q. Liu, Merging Permission and API

Features for Android Malware Detection, IEEE 5th IIAI

International Congress on Advanced Applied Informatics

(IIAI-AAI), Kumamoto, Japan, 2016, pp. 566-571.

[74] H. J. Zhu, Z. H. You, Z. X. Zhu, W. L. Shi, X. Chen, L.

Cheng, DroidDet: Effective and robust detection of android

malware using static analysis along with rotation forest model,

Neurocomputing, Vol. 272, pp. 638-646, January, 2018.

[75] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K.

Rieck, I. Corona, G. Giacinto, F. Roli, Yes, Machine

Learning Can Be More Secure! A Case Study on Android

Malware Detection, IEEE Transactions on Dependable and

Secure Computing, Vol. 16, No. 4, pp. 711-724, July-August,

2019.

[76] F-droid - Free and Open Source Android App Repository,

https://f-droid.org/, September, 2020.

[77] S. Aonzo, G. C. Georgiu, L. Verderame, A. Merlo, Obfuscapk:

An open-source black-box obfuscation tool for Android apps,

SoftwareX, Vol. 11, Article 100403, January-June, 2020.

[78] F. Alswaina, K. Elleithy, Android Malware Family

Classification and Analysis: Current Status and Future

Directions, Electronics, Vol. 9, No. 6, Article No. 942, June,

2020.

[79] A. Salah, E. Shalabi, W. Khedr, A Lightweight Android

Malware Classifier Using Novel Feature Selection Methods,

Symmetry, Vol. 12, No. 5, Article No. 858, May, 2020.

[80] X. Su, L. Xiao, W. Li, X. Liu, K. C. Li, W. Liang,

DroidPortrait: Android Malware Portrait Construction Based

on Multidimensional Behavior Analysis, Applied Sciences,

Vol. 10, No. 11, Article No. 3978, June, 2020.

[81] S. Y. Yerima, S. Sezer, DroidFusion: A Novel Multilevel

Classifier Fusion Approach for Android Malware Detection,

IEEE transactions on cybernetics, Vol. 49, No. 2, pp. 453-

466, February, 2019.

[82] W. Wang, Y. Li, X. Wang, J. Liu, X. Zhang, Detecting

Android malicious apps and categorizing benign apps with

ensemble of classifiers, Future Generation Computer Systems,

Vol. 78, pp. 987-994, January, 2018.

Biographies

Jaemin Jung received the B.S.

degree in Software Science from

Dankook University, Korea, in 2018.

He received his M.E. degree in

Computer Science and Engineering

from Dankook University in 2019.

His research interests include mobile

security and machine learning.

Jihyeon Park is currently an

undergraduate student at Dept. of

Software Science in Dankook

University, Korea. Her research

interests include computer system

security, mobile security and machine

learning.

Seong-je Cho received the B.E., M.E.

and Ph.D. degrees in Computer

Engineering from Seoul National

University in 1989, 1991 and 1996,

respectively. In 1997, he joined the

faculty of Dankook University, Korea,

where he is currently a Professor in

Department of Software Science. His current research

interests include computer security, operating systems,

and software intellectual property protection.

Sangchul Han received the B.S.

degree in Computer Science from

Yonsei University in 1998. He

received his M.E. and Ph.D. degrees

in Computer Engineering from Seoul

National University in 2000 and 2007,

respectively. He is now a professor of

Dept. of Software Technology at Konkuk University.

His research interests include real-time scheduling, and

computer security.

Minkyu Park received the B.E., M.E.,

and Ph.D. degree in Computer

Engineering from Seoul National

University in 1991, 1993, and 2005,

respectively. He is now a professor in

Konkuk University, Rep. of Korea.

His research interests include

operating systems, embedded software, computer

system security, and HCI. He has authored and co-

authored several journals and conference papers.

440 Journal of Internet Technology Volume 22 (2021) No.2

Hsin-Hung Cho received the B.S.

degree from the Department of

Applied Mathematics at Hsuan

Chuang University, Taiwan, R.O.C.

in 2010, the M.S. degree from the

Institute of Computer Science and

Information Engineering at National

I-Lan University in 2011, and the Ph.D. degree from

the Department of Computer Science and Information

Engineering at National Central University. He joined

the Department of Computer Science and Information

Engineering at National I-Lan University as an

Assistant Professor since 2017.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

