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Abstract 

Android is one of the most popular platforms for the 

mobile and Internet of Things (IoT) devices. This 

popularity has made Android-based devices a valuable 

target of malicious apps. Thus, it is essential to devise 

automatic and portable malware detection approaches for 

the Android platform. There are many studies on 

detecting mobile malware using machine learning 

techniques. In these studies, however, the dataset is 

imbalanced or is not large enough to generalize the 

machine learning model, or the dimensionality of features 

is too high to apply nonlinear classifiers. In this article, 

we propose a machine learning-based Android malware 

detection scheme that uses API calls and permissions as 

features. To restrict the dimensionality of features, we 

propose minimal domain knowledge-based and Gini 

importance-based feature selection. We construct large 

and balanced real-world datasets to build a generalized 

and non-skewed model and verify our model through 

experiments. We achieve 96.51% classification accuracy 

using Random Forest classifier with low overhead. In 

addition, we also provide an analysis on falsely classified 

samples in detail. The analysis results show that API 

hiding can degrade the performance of API call 

information-based malware detection systems. 

Keywords: Android app, Malware detection, Feature 

engineering, False alarm 

1 Introduction 

Android is a platform for smart devices and 

lightweight Internet of Things (IoT) devices. 

Developers can build apps on top of popular platforms 

without previous knowledge of embedded systems [1]. 

Android has advantages over conventional platforms 

that have been employed in developing WSNs [2]. 

Since it forms a layer supported by well-designed 

components interacting with each other, one can build 

IoT systems easily on it. It can also be easily scaled by 

making a new functionality as a module. We can 

provide various services utilizing the connectivity of 

mobile and IoT devices on Android [3-6]. 

As Android-based platforms become more popular, 

Android devices including smartphones and IoT are 

becoming attractive targets for cyber criminals [6-10]. 

According to a recent report from cybersecurity 

company McAfee [11], more than 30 million malicious 

mobile apps were found in the fourth quarter of 2018, 

and more than 6 million new mobile malware instances 

have been introduced each year since 2016. Hence, 

many researchers contribute to mobile malware 

detection and prevention including Android malware 

[12-24]. 

There have been several different approaches to 

detecting mobile malware. Traditional malware 

detection approaches [16-17] compare suspicious apps 

with signatures. Signatures are known malware 

patterns based on the executable code. The demerit of 

these approaches is that they can detect only the 

malicious apps that have signatures currently known. 

They cannot detect newborn malware [18-20, 24]. 

Besides, these approaches require continuous updating 

of the predefined signature database. Christodorescu 

and Jha [16] concluded that “Signature-based 

approaches never keep up with the speed at which 

malware is created and evolved”. 

Instead of using malware signatures, other effective 

approaches [18-25] utilize machine learning or data 

mining techniques to detect not only known but also 

unknown malware instances. Machine learning 

classifiers can address some of the problems of 

signature-based malware detection by automatically 

reasoning about benign and malicious apps to fit 

detection model parameters [22-23]. Machine learning 

techniques take a labeled dataset and generate a model 

that can deal with data not included in the dataset. It is 

shown that employing machine learning classifiers can 

improve detection performance [20, 25]. When a 

machine learning technique is used for malware 
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detection and classification, there are several 

challenges: feature extraction and selection [19, 23-24, 

26-30], collection of a comprehensive real-world 

dataset [13], choosing and optimizing a suitable 

learning algorithm [21-23], performance evaluation [20, 

31], and identifying false alarm [25]. 

We propose a new machine learning technique to 

detect Android malware utilizing permissions and API 

calls. Among the above-mentioned challenges, we 

focus on feature extraction and selection, dataset 

collection and identifying false alarms. Feature 

extraction maps a large collection of input data onto a 

small set of features while preserving the relevant 

information [29-30]. Feature extraction may transform 

original features into an organized and more significant 

subset of information. Feature selection reduces the 

dimensionality of datasets, which is a general 

preprocessing method in high dimensional data 

analysis [24, 27, 30]. Through feature selection, we 

select the relevant feature that we expect to be useful 

for malware detection. The classification results can be 

improved by selecting the most relevant features from 

the extracted features. Feature extraction and selection 

methods can be applied separately or combined in one 

step. They significantly affect the performance in terms 

of efficiency, robustness, and accuracy.  

In our scheme, we first extract the information on all 

API invocations and permission requests from sample 

apps. Next, we reduce the size of the feature set by 

using two feature selection methods: (1) a minimal 

domain knowledge-based method and (2) a Gini 

importance-based selection method. The minimal 

domain knowledge-based method simply chooses the 

API calls and permissions used in the existing well-

known studies [19, 32-34] and the Gini importance-

based method decreases the size of the feature set 

under consideration. We adopt the feature importance 

[35-36] of each feature derived from the Gini impurity 

of the resulting Random Forest (RF) trees.  

Many existing studies used imbalanced and/or small 

datasets. However, imbalanced dataset may result in a 

skewed model and too small dataset may lead to poor 

generalization. In our study, we construct a large and 

balanced dataset to build a generalized and non-skewed 

model. We collect 27,041 benign apps and 26,276 

malwares from a real-world dataset, AndroZoo. 

We have carried out several experiments and 

evaluated the proposed Android malware detection 

scheme. It achieved up to 96.51% accuracy with 

Random Forest algorithm. We have also investigated 

the undetected or misclassified apps in detail and 

discovered that we might incorrectly classify apps that 

are transformed by code obfuscation tools or written 

with cross-platform development tools. 

The main contribution of this work is summarized as 

follows: 

• We reduce the dimensionality of datasets and 

decrease the curse of dimensionality using the 

combined feature selection technique without 

degrading the detection performance: the minimal 

domain knowledge-based plus the Gini importance-

based. Using minimal domain knowledge is recent 

trends in the research on malware detection [38-39]. 

• We construct the balanced datasets using real-world 

datasets, AndroZoo [37] and Drebin [33], in our 

experiments. The well-known but older datasets 

such as Drebin, AMD [40] and GooglePlay 

(during 2014 – 2016) show some different 

characteristics compared with the latest AndroZoo 

dataset, especially in terms of the number of APIs 

invoked by apps (see Section 4). 

• We disclose the causes of incorrect classification 

where a malicious app is undetected or a benign app 

is misclassified as malicious. To the best of our 

knowledge, a few studies have been conducted on 

identifying incorrect classification issued by a 

machine learning technique in malware detection. 

This article is organized as follows. Section 2 

explains background knowledge about API calls and 

permissions on the Android platform. Section 3 

presents our machine learning-based malware detection 

technique. Section 4 explains our experimental results 

and analyzes the misclassified samples. In Section 5, 

we compare our work with the related works. Finally, 

we give the concluding remarks and present possible 

future work in Section 6. 

2 Background 

2.1 API (Application Programming Interface) 

The Android platform provides Application 

Programming Interfaces (APIs) that applications can 

use to interact with the underlying Android system to 

do various things [19]. The framework API refers to 

the collection of various software that makes up the 

Android SDK such as a core set of packages and 

classes, a set of XML elements and attributes for 

declaring a manifest file, etc. Android apps contain 

many API calls and permissions. Each API call is 

composed of four types of information: class name, 

method name, argument information, and return data 

type. 

API calls reflect the functionality and behavior of an 

app and have been widely used in studies for malware 

detection, especially using machine learning algorithms. 

Android apps use the official Android APIs and third-

party APIs [41]. Third-party APIs are often only used 

in a few apps and utilizing those APIs as a feature for 

machine learning can lead to sparse data problems. 

Also, third-party APIs may have different names but 

the same functionality, and vice versa. Hence, we use 

only the official Android APIs in malware detection. 

Salehi et al. [42-43] mentioned that API name alone 

might not represent its operations and both API calls 
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and their arguments could be an effective representative 

of the executable behavior. They adopted each API call 

name, its arguments, and return value to detect 

Microsoft Windows malware. In our work, we consider 

the following API call information: class name, 

method name, method’s argument types, and method’s 

return data type. The API calls with the same class and 

method name are counted as different API calls if they 

have different arguments or return data type. The total 

number of API calls belonging to Android 7.1 (API 

level 25) is 133,271 [44]. Figure 1 shows a bytecode-

level API call that consists of a class name (including a 

package name), a method name, and a method 

descriptor. The method descriptor consists of the types 

of arguments and return value [45]. 

 

Figure 1. An exapmle of bytecode-level API call 

representation 

2.2 Permissions 

Android apps require some permissions to perform 

specific functions [19, 46-47]. Android permissions 

enable the system or user to protect sensitive data or 

system features from apps. Permission requests reflect 

the app’s behavior. An app must declare its 

permissions in its manifest file to access protected 

resources and interact with other apps. For example, if 

an app wants to read an address book on the device, it 

should declare the READ_CONTACTS permission in 

the AndroidManifest.xml. We collected lists of 

permissions from an Android application analysis tool 

AndroGuard [48]. The total number of Android 

permissions collected is 474. 

The permissions declared in a manifest file are 

useful in catching the potential risks of apps [19, 32, 

47]. The system’s behavior depends on how sensitive 

the permission is. There are three protection levels in 

the Android permission system: normal, signature, and 

dangerous. Permissions for resources and data 

involving the user’s private information or affecting 

the action of other apps fall on dangerous permissions 

[19, 32]. For example, ACCESS_FINE_LOCATION 

(to read the location of the user) and 

READ_CONTACTS (to read the user’s contacts) are 

classified as dangerous. For dangerous permissions, 

apps should obtain the permission grant from the user 

at runtime. 

3 The Proposed Method 

Our malware detection technique consists of three 

steps: feature extraction, feature selection, and machine 

learning. Figure 2 shows a schematic diagram of the 

proposed technique. We explain each step in detail in 

the following subsections. 

 

Figure 2. The schematic diagram of our approach 
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3.1 Android App Dataset 

AndroZoo [37, 56] is a representative dataset that 

is currently widely used in many studies. The dataset 

collected a large number of apps from multiple sources, 

including the official Google Play App Market and 

continues to grow. Additionally, these apps are 

constantly being analyzed and classified by dozens of 

different anti-virus software. It was judged and used as 

the most appropriate dataset for this study in terms of 

quantity and quality. 

The dataset for this work consists of the benign 

dataset and malicious dataset from the AndroZoo 

database [37]. The benign dataset has 27,041 Android 

apps published during 2017-2018. The malicious 

dataset has 26,276 malware (malicious apps) found 

during 2014-2018. To mitigate the imbalance of the 

number of benign and malicious apps, we collect 

malicious apps over a longer period. 

3.2 Feature Extraction 

We can statically extract API call information from 

each Android application packages (APK) file. First, 

we obtain classes.dex and AndroidManifest. 

xml files by decompressing an APK file. The manifest 

file declares permissions that the app needs. We 

decode the AndroidManifest.xml using appt 

[49] and extract the declared permissions. The 

classes.dex is an executable file format for the 

Android platform. We decompile classes.dex 

using the existing reverse assembler DexDump 

included in the Android studio [50], extract all API 

calls from the apps, and remove third-party APIs. Most 

of the previous studies [33-34] using API calls as a 

feature for machine learning considered only the class 

and method name of each API. In our work, the 

method descriptor (arguments and return data type) is 

also included in the feature set. 

After extracting API calls and permissions, we 

create a feature vector for each app from the extracted 

features according to the procedure shown in Figure 2. 

Each app has two sub-vectors: one for API calls and 

the other for permissions. If an API call is invoked or 

permission is declared in the app, the corresponding 

element of the vector is set to 1, otherwise 0. We do 

not count how many times an API call is invoked. We 

build a list of all official Android APIs from the API 

level 25 SDK (android.jar file) of Android Studio 

[44]. The total number of different APIs is 133,271 and 

the total number of different permissions 474, as 

explained in Section 2.2. As a result, each app has a 

vast number of features, i.e., the dimensionality of 

features becomes very high. 

3.3 Feature Selection 

To decrease the dimensionality of features, we try to 

remove the irrelevant APIs and permissions that rarely 

contribute to malware detection. We use minimal 

domain knowledge-based and Gini importance-based 

techniques. 

3.3.1 Minimal Domain Knowledge-based Method 

To decrease the dimensionality of features, we first 

exclude all unofficial APIs and permissions from the 

extracted features since third-party APIs are often used 

only in a few apps as mentioned in Section 2.1. We 

then remove irrelevant APIs and permissions applying 

domain knowledge. Domain knowledge refers to the 

valid expertise used in a specific specialty rather than 

general knowledge [51]. In the field of malware 

detection, domain knowledge includes the knowledge 

about the functionality, the behavior, the patterns, or 

the intention of malware. We choose relevant API calls 

and permissions based on this minimal domain 

knowledge through malware analysis and its related 

literature. 

By adopting the results of [33-34], we select 

relevant 1,848 APIs among 133,271 official APIs. 

Some of them are listed in Table 1. It includes account-

related APIs, location-related APIs, SMS-related APIs, 

etc. On the other hand, Google defines 9 dangerous 

permission groups and declares the permissions in 

these groups as dangerous [32, 46]. We collect such 

permissions in Android API level 4~28 and select 79 

permissions as relevant. Table 2 shows some of them. 

It includes account-related permissions, Bluetooth-

related permissions, location-related permissions, etc. 

3.3.2 Combining the Minimal Domain Knowledge- 

based and GINI importance-based Selection 

Methods 

In this step, we calculate the degree of importance of 

features selected in Section 3.3.1. We use the Gini 

importance [35-36] to measure the importance of each 

feature, which is included in the Random Forest library 

of Scikit-learn [52-53]. In Scikit-learn 

implementation, the node importance nij is defined as 

the decrease in the weighted Gini impurity as Equation 

(1) 

 ,j j j L L R Rni w C w C w C= − −  (1) 

where L and R are the child nodes, Ci is the Gini 

impurity of node i, and the weight is a ratio of samples 

reaching the node. And the importance of feature i in a 

tree is defined as Equation (2) 

 
( )

,
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Σ
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where NS(i) is the set of nodes that split on feature i 

and N is the set of all nodes. Then, the Random Forest-

level feature importance is the average of fii over all 

trees. A higher fii value means that the feature is  
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Table 1. A partial list of APIs selected using domain knowledge 

Some APIs (of the selected 1,848 APIs) 

Landroid/accounts/AccountManager;.getAccounts:()[Landroid/accounts/Account; 

Landroid/accounts/AccountManager;.clearPassword:(Landroid/accounts/Account;)V User account API 

Landroid/accounts/AccountManager;.getPassword:(Landroid/accounts/Account;)Ljava/lang/String; 

Landroid/bluetooth/BluetoothAdapter;.enable:()Z 
Bluetooth API 

Landroid/bluetooth/BluetoothAdapter;.isEnabled:()Z 

Landroid/location/LocationManager;.addGpsStatusListener:(Landroid/location/GpsStatus$Listener;)Z 
GPS/Location API Landroid/location/LocationManager;.requestLocationUpdates:(JFLandroid/location/Criteria;Landroid/ap

p/PendingIntent;)V 

Audio API Landroid/media/AudioRecord;.startRecording:()V 

Landroid/telephony/SmsManager;.sendDataMessage:(Ljava/lang/String;Ljava/lang/String;S[BLandroid/
app/PendingIntent;Landroid/app/PendingIntent;)V 

SMS API 
Landroid/telephony/SmsManager;.sendTextMessage:(Ljava/lang/String;Ljava/lang/String;Ljava/lang/Str
ing;Landroid/app/PendingIntent;Landroid/app/PendingIntent;)V 

Landroid/telephony/TelephonyManager;.getSimSerialNumber:()Ljava/lang/String; 
Telephony API 

Landroid/telephony/TelephonyManager;.getDeviceId:()Ljava/lang/String; 

Process API Ljava/lang/Runtime;.exec:(Ljava/lang/String;)Ljava/lang/Process; 

Notification API Landroid/app/NotificationManager;.notify:(Ljava/lang/String;ILandroid/app/Notification;)V 

String API Landroid/lang/StringBuilder;.append:(Ljava/lang/CharSequence;)Ljava/lang/StringBuilder; 

Table 2. A partial list of permissions selected using domain knowledge 

Some Permissions (of the selected 79 permissions) 

GET_ACCOUNTS 

MANAGE_ACCOUNTS User account Permission 

GET_ACCOUNTS_PRIVILEGED 

BLUETOOTH 

BLUETOOTH_ADMIN Bluetooth Permission 

BLUETOOTH_PRIVILEGED 

ACCESS_COARSE_LOCATION 
Location permission 

ACCESS_FINE_LOCATION 

Camera permission CAMERA 

SEND_SMS 

READ_SMS SMS permission 

WRITE_SMS 

READ_PHONE_STATE 

MODIFY_PHONE_STATE Phone info permission 

READ_PHONE_NUMBERS 

Billing permission Vending.BILLING 

Launcher permission com.android.launcher.permission.INSTALL_SHORTCUT 

Overlay permission android.permission.SYSTEM_ALERT_WINDOW 

 

more suitable in classifying sample apps as malicious 

or benign 

Figure 3 lists the top 20 APIs in the order of 

decreasing feature importance. The API call for 

displaying notifications in the Notification Bar 

is the most important. The other important APIs 

include the APIs related to the ContentResolver 

object that accesses data in the Content Providers or 

gets information about system settings, the APIs 

related to the Handler class for Android inter-thread 

communication, the APIs to perform operations like 

locating a device, the APIs for Wi-Fi or Bluetooth 

services, and the APIs for file write operation. On the 

other hand, SMS and audio-related APIs presented in 

Table 1 do not have important effects on Android 

malware detection. We found 861 APIs have the 

feature importance of 0 (zero). 

Figure 4 lists the top 20 permissions selected in the 

order of decreasing feature importance. The READ_ 

PHONE_STATE permission is ranked first. It allows 

access to device-specific information such as IMEI and 

phone number. The permissions associated with the 

file system, Wi-Fi service, and Android launcher have 

also high importance scores. On the other hand, SMS 

and Bluetooth-related permissions are ranked below 

25th among the 79 permissions selected by the 

minimal domain knowledge. No permission has the 

importance of zero. 
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Figure 3. The top 20 APIs in order of feature importance 

 

Figure 4. The top 20 permissions in order of feature importance 

Based on the feature importance, we select the top N 

APIs and the top M permissions as a feature for 

machine learning. We perform a grid search for the 

best combination of N and M. Incrementing N from 5 

to 987 and M from 5 to 79 with a step of 5 respectively, 

M+N features were tested. Note that the maximum 

value of N is 987 (excluding 861 APIs with zero 

importance). We found that when N=405 and M=25, 

Random Forest shows the highest accuracy for 

detecting Android malware with the least 

computational overhead. 

3.4 Machine Learning Models 

We developed the machine learning model for 

classifying Android apps into malicious or benign 

using the features selected in Section 3.3. We choose 

the Random Forest algorithm and use grid search to 

determine hyper-parameters. Random Forest has the 



Feature Engineering and Evaluation for Android Malware Detection Scheme 429 

 

following advantages [54-55]: (1) it has a relatively 

small number of parameters that should be controlled, 

and removes the need for pruning the trees, (2) it can 

achieve high classification accuracy, (3) it can 

overcome the problem of overfitting, and (4) feature 

importance is computed automatically. Random Forest 

takes several hyper-parameters. In our experiments we 

consider two important parameters among them: 

max_depth and n_estimators, which control 

the maximum depth of each tree and the number of 

trees in the forest, respectively. We perform a grid 

search to find out the parameter values with which the 

Random Forest model achieves the highest detection 

accuracy on our datasets. 

4 Experiments and Analysis 

4.1 Dataset 

In our experiments, we leverage the AndroZoo 

dataset [37, 56], a well-known large-scale collection of 

Android apps. AndroZoo collects Android apps from 

several sources including Google Play and 

VirusShare, and is currently being updated. Recent 

research such as [57-58] used the AndroZoo dataset 

in their experiments. 

To construct a balanced dataset, we collected a 

similar number of benign apps and malicious ones. For 

the benign dataset, we downloaded 27,364 benign apps 

from the AndroZoo website between 2017 and 2018. 

For the malware dataset, we also downloaded 26,438 

malicious apps between 2014 and 2018. Then we 

removed apps from which we cannot extract any API 

calls or permissions. We also removed apps that belong 

to both datasets. The resulting dataset consists of 

27,041 benign apps and 26,276 malware. 

Table 3 compares our dataset with other well-known 

datasets in terms of the average number of used APIs. 

As mobile users require more useful and convenient 

functions, recent apps use more APIs. This fact makes 

extracting and selecting significant features more 

important for the efficiency and effectiveness of 

machine learning. The high dimensionality of features 

may lead to computational difficulty, classification 

noise, or overfitting. 

Table 3. The average number of APIs used 

 Dataset Collection period Average # of APIs 

Google Play 2014 ~ 2016 2,618 
Benign apps 

AndroZoo [37, 56] (our dataset) 2017 ~ 2018 3,508 

Drebin [33] 2010 ~ 2012 521 
AMD [40] 2010 ~ 2016 1,077 Malicious apps 

AndroZoo [37, 56] (our dataset) 2014 ~ 2018 1,954 

 

4.2 Metrics 

We describe the performance of our machine 

learning model based on a confusion matrix (Table 4), 

commonly used in machine learning. The performance 

metrics we consider are recall (True Positive Rate), 

specificity (True Negative Rate), and accuracy, which 

can be derived from the confusion matrix. Their 

definitions are as follows. 

Table 4. Confusion matrix 

Prediction 
 

Malicious Benign 

Malicious 
TP 

(True Positive) 
FN 

(False Negative) Ground
Truth 

Benign 
FP 

(False Positive) 
TN 

(True Negative) 

 

 Recall
TP

TP FN
=

+

 

 Specificity
TN

TN FP
=

+

 

 Accuracy
TP TN

TP FP FN TN

+
=

+ + +

 

The ground truth indicates that we already know if 

the app is malicious or benign. Reliable ground truth is 

essential to verify malware detection models. For 

building a reliable ground truth dataset, we rely on 

AndroZoo’s classification and VirusTotal anti-

virus decisions. The malicious dataset consists of the 

apps that three or more anti-virus software of 

VirusTotal judged to be malicious. The benign 

dataset consists of the apps that all anti-virus software 

judged to benign. 

4.3 Experiments 

First, we measure the performance using features 

after applying the domain knowledge-based feature 

selection. We construct the feature vector with relevant 

1,848 APIs and 79 permissions as explained in Section 

3.3.1. We evaluate our scheme using 5-fold cross-

validation. The samples are randomly grouped into 5 

disjoint subsets of equal size. The Random Forest is 

trained and tested five times using each subset as test 

data and the others as training data. The detection 
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accuracy is 96.33 % with the training time 38.89s and 

the testing time 1.12s on average. Table 5 shows the 

prediction results when the model performs best. The 

detection accuracy is 96.72%, the recall is 97.15%, and 

the specificity is 96.30%. 

Table 5. The best prediction results with the domain 

knowledge-based feature selection 

Prediction 
 

Malicious Benign 

Malicious 5,105 150 Ground 
Truth Benign 200 5,208 

 

Then we measure the performance using features 

after applying the combined feature selection. The 

feature vector is composed of 405 APIs and 25 

permissions as explained in Section 3.3.2. We also 

employ 5-fold cross-validation. The detection accuracy 

is 96.51 % with the training time 12.06s and the testing 

time 0.62s on average. Table 6 shows the prediction 

results when the model performs best. The detection 

accuracy is 96.85%, the recall is 97.09%, and the 

specificity is 96.61%. 

Table 6. The best prediction results with the combined 

feature selection 

Prediction 
 

Malicious Benign 

Malicious 5,102 153 Ground 
Truth Benign 183 5,225 

 

To show the selection method is effective, we also 

measure the performance of the model before the 

feature selection. Before the feature selection, the total 

number of APIs is 133,271 and the total number of 

permissions is 474. If we use all the APIs as a feature, 

the training could take too long, thus, we applied the 

domain knowledge-based selection to APIs only. Table 

7 summarizes the number of features, training time, 

and accuracy. The combined feature selection approach 

reduces the training time by 79.60% compared with the 

domain knowledge-based approach (only to APIs) and 

69.00% the domain knowledge-based approach. Also, 

it achieves almost the same detection accuracy despite 

reduced features. 

Table 7. Summary of experimental results 

Feature selection 
# of 
APIs 

# of 
permissions 

Training
time 

Detection 
accuracy

Domain 
knowledge-based

(only to API) 
1,848 474 59.11s 96.36%

Domain 
knowledge-based

1,848 79 38.89s 96.33%

Combined 405 25 12.06s 96.51%

 

To check if our model is overfitted we test it with a 

new dataset. We collected 200 benign apps from the 

AndroZoo (AndroZoo2019) and 200 malware from the 

DREBIN [33] (Drebin). AndroZoo2019 is a set of 

benign apps collected from AndroZoo during 2019. 

Note that we collected our original benign apps during 

2017~2018 and malware during 2014~2018; both were 

collected from AndroZoo. No new apps are in our 

original datasets. We train our model with our original 

datasets and test it with the new dataset. The results are 

shown in Table 8. The detection accuracy is 96.0%, the 

recall is 97.5% and the specificity is 94.5%. This 

means that our model is not overfitted. 

Table 8. Prediction results with the new test dataset 

Prediction 
 

Malicious Benign 

Malicious 195 5 Ground
Truth Benign 11 189 

 

Adversarial machine learning is a technique that 

tries to deceive machine learning models into 

misclassification by modifying input data. One of the 

strategies of adversarial machine learning is an evasion 

attack. Attackers obfuscate their apps to hide or distort 

the features and behaviors and evade detection. We 

measure the performance of our model against evasion 

attacks. We conducted an experiment corresponding to 

DexGuard-based obfuscation attack in the attack 

scenarios of [75]. We train the model with our 

AndroZoo dataset, then test it with 200 benign apps 

collected from the F-Droid project [76] before and 

after obfuscation. We obfuscate the apps using 

Obfusapk [77] (with reflection). Out of 200 apps, our 

model misclassified 6 apps before obfuscation and 14 

apps after obfuscation. The accuracy decreases from 

97% to 93%. 

4.4 Analysis of Misclassified Apps 

This section analyzes some of the falsely classified 

apps in the worst performance experiment of the 

combined feature selection approach. They are 66 

malicious apps (false negative) and 142 benign apps 

(false positive). We discuss the possible reasons for the 

misclassification in terms of code obfuscation, 

grayware, and cross-platform development tools. 

4.4.1 Code Obfuscation 

From a laborious manual analysis, we discover that 

all misclassified apps are obfuscated. Most obfuscators 

support identifier renaming and/or API hiding [6, 59-

60]. Identifier renaming changes the names of 

packages, classes, and methods. If any of them is 

changed, the extracted APIs cannot be found in the list 

of the official APIs. API hiding hides the names of 

invoked APIs using the Java reflection mechanism. 

API invocation codes are replaced with the codes for 
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finding and calling APIs via Java reflection-related 

APIs. These types of code obfuscation can transform 

the functional parts of the apps by altering the API 

invocations. Therefore, code obfuscation can 

significantly degrade the performance of API call-

based malware detection. 

4.4.2 Grayware 

Grayware is an unwanted application that is not 

classified as malware by most anti-malware products 

but behaves in an undesirable manner or causes 

security risks. Grayware is neither benign nor 

malicious. Grayware includes spyware, adware, remote 

access tools, etc. Some grayware tagged as malware 

are predicted as benign, and vice versa. 

We investigate the 66 undetected malicious apps. 

They are divided into 14 malware families as shown in 

Figure 5. We found that about 75 % of them (50 out of 

66) are adware. Their families are Dowgin, Kuguo, 

Jfpush, Feiwo, and unknown adware. A typical 

adware program displays advertising sentences in the 

notification bar. If a user touches the notification, an 

advertisement is displayed in a WebView component. 

No permission is required to display a sentence in the 

notification bar. And the ranks of WebView-related 

APIs in our API ranking are 270 ~ 325 as shown in 

Table 9, which means that the importance of 

WebView-related APIs is relatively low. 

 

Figure 5. Malware families of undetected malicious apps 

Table 9. Example of WebView-related APIs. The column Rank denotes the importance rank in the API list 

Rank API 

270 Landroid/webkit/WebView;.setWebViewClient:(Landroid/webkit/WebViewClient;)V 

271 
Landroid/webkit/WebViewClient;.shouldInterceptRequest:(Landroid/webkit/WebView;Ljava/lang/String;)Landro
id/webkit/WebResourceResponse; 

279 Landroid/webkit/WebView$HitTestResult;.getType:()I 

285 Landroid/webkit/WebView;.setFocusable:(Z)V 

... ... 

325 Landroid/webkit/WebView;.removeJavascriptInterface:(Ljava/lang/String;)V 

 

We submit the 142 misclassified benign apps to 

VirusTotal [61] in June 2019. VirusTotal 

judged nine of them as malware (Table 10), but only 

one or two of about 70 anti-malware products 

classified them as malware. We found that these apps 

are grayware. These apps request unnecessary 

permissions or use APIs for the subsidiary 

functionality such as advertisements or information 

sharing. However, the relevant features rank high. 

These features may cause our approach to misclassify 

apps as malware. Figure 6, for example, shows the 

screenshot of ‘com.unicrios.funnyskeleton’ 

app. This app provides live wallpapers. Users can set 

animation speed and send feedback to Google Play 

Store. Its functionality is simple, but it requires an 

unnecessary permission WRITE_EXTERNAL_STORAGE 

and contains WebView-related APIs that are irrelevant 

to its functionality. 
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Figure 6. Screen shots of com.unicrios.funnyskeleton 

Table 10. Scanning result for 9 misclassfied apps 

Applications # of anti-malware products that classify the app as malware 

de.resolution.yf_android 1 
net.kilho.CandleLight 1 

com.virtualanimalsworld.chihuahuahomesimulator 2 
com.unicrios.funnyskeleton 2 

mfmotasouthwestregion6.org 2 
com.saklalabs.vitalsecuritytoolkit 2 

com.thunkable.android.devbid9.iKiwi 2 
com.webroot.security.sme 1 

com.ringer.ui 1 

 

Figure 7 shows the screenshots of another game app. 

In Figure 7, the left figure displays a game scene, the 

middle one advertisement, and the right one “privacy 

policy”. This app collects IMEI information, network 

information (IP address and Wi-Fi information), and 

location information for advertisements and service 

improvement. So this app contains several permissions 

and APIs, which rank high, as shown in Table 11. 

These permissions and APIs have little to do with the 

functionality of the game but may cause our model to 

classify the app as malware. 

 

Figure 7. Screenshots of com.virtualanimalsworld.chihuahuahomesimulator 
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Table 11. Several features of com.virtualanimalsworld.chihuahuahomesimulator 

Category Rank Feature 

Device 1 READ_PHONE_STATE 

Display 3 SYSTEM_ALERT_WINDOW 

Network 4 ACCESS_WIFI_STATE 
Permission 

Location 9 ACCESS_COARSE_LOCATION 

Device 4 Landroid/telephony/TelephonyManager;.getDeviceId:()Ljava/lang/String; 

Location 9 
Landroid/location/LocationManager;.getBestProvider:(Landroid/location/Criteria;Z)Ljav
a/lang/String; 

Network 11 Ljava/net/HttpURLConnection;.getHeaderField:(Ljava/lang/String;)Ljava/lang/String; 

API 

Network 15 Landroid/net/wifi/WifiManager;.getConnectionInfo:()Landroid/net/wifi/WifiInfo; 

 

4.4.3 Cross-Platform Development Tools 

Cross-platform development tools such as Xamarin 

[62], Unity [63], PhoneGap [64], Titanium [65], 

and Cocos2D [66] are employed by many mobile app 

developers to reduce the development cost and easily 

distribute apps across multiple platforms [67-69]. 

Malware writers also employ those cross-platform 

development tools to develop malware at a low cost 

and infect as many devices as possible [67-68, 70]. 

Android apps developed using the cross-platform 

development tools usually have additional folders and 

files that are not found in native apps as shown in 

Figure 8. This means that we need to analyze those 

additional folders/files as well as classes.dex for 

malware detection. Table 12 lists the additional files 

that are contained in apps developed using each cross-

platform development tools. Among them, *.so, 

*.dll, and *.js files are program files that cannot 

be decompiled using Android reverse engineering tools. 

Thus, our Android API and permission-based approach 

cannot extract suitable features from these files for 

detection. This increases the false negative instances.  

Table 12. Additional files in apps developed using 

cross-platform development toos 

Tools Additional files 

Index.html 
PhoneGap 

Index.js 

Titanium Index.js 

Assembly-Csharp.dll 
System.dll 

System.core.dll 
libunity.so 

libmain.so 

Unity 

libmono.so 

Xamarin App.dll 

Cocos2D Libcocos2dcpp.so 

 
 

We investigate the structure of each undetected 

malware and identify its development tool. Figure 9 

shows the development tools of the 66 undetected 

malware. There are 47 malware instances written in 

Java, and 13 malware instances written with  

 

Figure 8. Structure of APK written with Cocos2D and 

unity 

 

Figure 9. Development toos of undetected malware. 

‘Java’ denotes native apps 

Unity/C#. The remaining 6 malware instances are 

written with Cocos2D/C++. We check each 

lib*.so and *.dll files of Unity apps and 

Cocos2D apps using VirusTotal. According to the 

results, most malicious codes are found in 

classes.dex. For only two malware instances of 

Gingermaster family have malicious codes in 
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libieunh.so, a malicious advertisement library (Figure 

10). We conclude that the effect of cross-platform 

development tools on our malware detection approach 

is relatively small. 

 

Figure 10. Malware detection result on libieunh.so 

5 Related Work 

In this paper, we mainly aim at performing static 

analysis for detecting Android malware using machine 

learning. Static analysis is an approach that evaluates 

Android apps by scanning their executable code 

without runtime analysis. The static features are 

obtained without executing the sample apps. On the 

contrary, dynamic analysis conducts malware detection 

by executing sample apps and monitoring their 

behavior.  

Dynamic analysis need to mimic the actual runtime 

environment and simulate effectively human 

operations to achieve high code coverage. Static 

analysis has several advantages over dynamic analysis. 

It does not need any execution scenario as well as the 

notions of test case. It can be implemented in a 

lightweight manner for deployment on computing 

resource-limited devices and operate on a stand-alone 

basis on a mobile device. In addition, there is no 

possibility for mobile devices to be infected by 

malware during its analysis. In this work, therefore, we 

focus on static analysis. 

Several studies on Android malware detection adopt 

machine learning algorithms and use APIs and 

permissions as the features. These studies have 

considered various criteria in selecting APIs and 

permissions for efficient malware detection. Table 13 

summarizes those studies. 

Table 13. Comparison of our study and existing studies on Android malware detection 

 Features 
Static/ 

Dynamic 

Feature selection
(Feature 

refinement) 

Dataset 
(Malware/ 
Benign) 

Acc. Classifier 

Peiravian 
et al. [19] 

APIs, Permissions Static analysis None 1,260 / 1,250 96.88% SVM, J48, Bagging 

Arp 
et al. [33] 

APIs, Permissions,
Network addresses, 
Filtered intents, etc. 

Static analysis feature weight 5,560 / 123,453 94% SVM 

Aafer 
et al. [34] 

APIs 
(with arguments) 

Static analysis 
frequency analysis 

+ data flow analysis 
3,987 / 16,000 99% 

k-NN, ID3 DT, C4.5 
DT, SVM 

Chan 
et al. [72] 

APIs, 
Permissions, 

Static analysis information gain 175 / 621 92.36% 
NB, SVM, RBF 
Network, MLP, 

Liblinear, J48, RF 

Qiao 
et al. [73] 

APIs, 
Permissions 

Static analysis 
ANOVA, 
SVM-RFE 

1,260 / 5,000 94.41% SVM, RF, NN 

Zhu 
et al. [74] 

Sensitive APIs, 
Permission rate 

Static analysis 
TF-IDF, 

cosine similarity 
1,065 / 1,065 88.26% Rotation Forest, SVM 

Li 
et al. [71] 

Permissions 
Dynamic 
analysis 

multilevel data 
pruning (PRNR, 

SPR, PMAR) 
5,494 / 310,926 95.63%,

FT, RF, Random 
Committee, SVM, 

Rotation Forest, PART 

Salah et al. 
[79] 

Symmetric patterns Static analysis 
FF_AF based on 

TF_IDF 
5,560 / 123,453 99% 

SVM, Logistic 
regression, SGD 
AdaBoost, LDA 

Our study 

APIs 
(with arguments, 

return type), 
Permissions, 

Static analysis 
Gini impor- 
tance based 

method 
26,276 / 27,041 96.51% RF 

 

Peiravian et al. [19] employed three machine 

learning models, Bagging, J48 and Support Vector 

Machine (SVM) with API calls and permissions as 

features. They performed experiments using a total of 
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2510 samples including 1260 malicious and 1250 

benign apps, and the experiments demonstrated that 

Bagging achieved the best performance in classifying 

the datasets. They used a relatively small dataset 

compared to our work. Their scheme differs from ours 

in that it does not have feature selection step. The 

reduced number of permissions and APIs make our 

scheme perform efficiently.  

Arp et al. [33] developed the machine learning 

technique called DREBIN which resorted to static 

analysis for malware detection on Android mobile 

device. From Android apps, DREBIN extracted APIs, 

permissions, hardware components, filtered intents, 

network addresses, etc. The extracted features were 

presented as strings and organized as eight different 

feature sets. They embedded the features into a high-

dimensional vector space. After representing Android 

apps as feature vectors, DREBIN learned a linear SVM 

algorithm to classify. A dataset of about 120,000 apps 

is used for training and detection. The evaluation 

results indicated that DREBIN could achieve a 

detection accuracy rate of 94% by incorporating 

numerous features. However, utilizing too many 

features can increase the computational overhead [71]. 

Li et al. [71] presented a permission usage-based 

malware detection system SigPID. Through three-

levels of permission pruning methods, they identified 

22 significant permissions. Then they experimented 

SigPID using 67 machine learning models and found 

that Functional Tree (FT) yielded the highest recall 

with the shortest processing time. They also compared 

SigPID with other malware detection approaches 

such as DREBIN [33] and showed that SigPID+FT 

achieved a high detection rate in spite of a small 

number of features (22 permissions). 

Aafer et al. [34] proposed DroidAPIMiner that 

used API call information including parameter values. 

They deployed four classifiers: SVM, k-NN, C4.5, and 

ID5. They collected around 20,000 apps (3,987 

malware and around 16,000 benign apps) and the 

classifiers achieved a high accuracy (up to 99%). 

Chan et al. [72] also considered permissions and 

APIs. The authors selected permissions and API calls 

with a positive information gain. They conducted the 

experiments using WEKA using several machine 

learning algorithms. On 796 apps (621 benign and 175 

malicious), the classifiers achieved the accuracy of 

92.36%. 

Qiao et al. [73] utilized the patterns of API calls and 

permissions. They considered APIs that were 

controlled by permissions. They classified benign and 

malicious apps using SVM, RBF kernels, Random 

Forest, and Artificial Neural Networks. Using 6260 

apps (5,000 benign and 1,620 malware), the classifiers 

with the feature selection achieved an accuracy of 

about 78~94%. 

Zhu et al. [74] presented DroidDet. The 

information considered in this work is permission 

requests, APIs, permission-rate and monitoring system 

events. They scored each feature through methods such 

as TF-IDF or cosine similarity to select top features. At 

classification stage, an ensemble classifier Rotation 

Forest is employed. With 2,130 samples (1,065 benign 

and 1,065 malware), the classifier achieves an accuracy 

of 88.26%, which is higher than SVM by 3.33% under 

the same experimental conditions. 

Salah et al. [79] found out symmetric features across 

malicious Android applications. They took into 

account different types of static features and chosen the 

most important features to detect Android malware. 

They introduced a frequency-based feature selection 

method called the feature frequency-application 

frequency (FF - AF) to reduce the feature space size, 

and merged Android app URLs into a single feature 

called the URL_score. The proposed method was 

evaluated using five machine learning classifiers with 

the DREBIN dataset. They used 349 features from the 

six feature categories such as APIs, permissions, app 

components, etc. The linear SVM of the five classifiers 

showed the highest accuracy up to 99%. 

All the aforementioned studies selected features 

based on domain knowledge. For example, DREBIN 

[33] analyzed malware, selected relevant APIs, and 

used them as feature. Other approaches selected 

feature(s) based on statistical analysis or data mining 

with domain knowledge [34, 71-74]. For example, in 

[34], after selecting APIs related to malicious behavior, 

the authors analyzed the frequency of APIs in normal 

apps and malware and selected APIs with the large 

difference in the frequency. In this paper, we select 

features using minimal domain knowledge, and then 

select relevant features among them using Gini 

importance-based method. Specifically, features are 

selected based on the algorithm of decision trees in 

Random Forest, which is a kind of statistical analysis 

method, and the experimental results before and after 

the analysis are presented. Most of all, we analyze the 

falsely classified apps and suggest future work. 

Su et al. [80] constructed the behavioral portrait of 

Android malware to depict behaviors of malware 

samples and detect them based on both static and 

dynamic analysis. They defined several dimensions of 

behavioral features to depict malware, and defined 

behavioral tags to generalize meta-data of the features. 

They then analyzed the correlation of the behavior tags 

to construct a behavioral portrait of Android malware. 

Finally a random forest algorithm was combined with 

the behavior portrait of malware for Android malware 

detection.  

Alswaina et al. [78] reviewed the literature over the 

past 10 years related to Android malware families by 

surveying on Android malware family detection, 

identification, and categorization techniques. The 

survey was conducted using three dimensions: analysis 

type (static, dynamic, hybrid), feature (static, dynamic), 
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and techniques (model-based, analysis-based). They 

introduced a new taxonomy that could categorize 

malware familial classification-related studies in terms 

of the three dimensions. The limitations of the related 

studies and future trends have been highlighted too. 

A meta-classifier or classifier fusion approach 

extracts features from Android apps, trains several base 

classifiers with the features, and collates their detection 

results, and selects a final model [81-82]. The 

performance of this approach depends upon the 

accuracy of individual base classifiers. If base 

classifiers cannot detect malware accurately, the 

performance of the final classification is limited. Hence, 

studies on effective base classifiers, like our work, are 

significant. 

6 Conclusions 

In this paper, we proposed feature extraction and 

selection techniques that use API call and permission 

information as features of a machine learning model 

for classifying efficiently and effectively Android apps 

into malicious or benign. For the API call information, 

we used as features class name, method name, and 

arguments and return data type of each method. Since 

Android apps contains a very large number of features, 

it is necessary to reduce the number of features. By 

combining a minimal domain knowledge-based and 

Gini importance-based methods, we finally selected 

405 APIs and 25 permissions out of 133,271 APIs and 

474 permissions, respectively. We constructed a 

dataset that is balanced and large enough to build a 

generalized machine learning model. We downloaded 

the latest Android sample apps, 27,041 benign apps 

and 26,276 malware, from the AndroZoo dataset. We 

then conducted some experiments on the sample apps. 

The experiment results showed that our technique had 

the classification accuracy of 96.51% using the 

features selected by the combined methods. It reduced 

the training time by 68.99% without degrading the 

classification accuracy. 

In addition, we demonstrated the superiority of our 

model by performing another experiment with a new 

test dataset, where no apps in the new dataset are in the 

aforementioned dataset. The experiment results 

achieved the accuracy of 96%. This implies that our 

model is not overfitted. 

We finally investigated the misclassified 66 

malicious apps and 142 benign apps in detail and 

discovered that the performance of our model can be 

degraded by code obfuscation, grayware, and cross-

platform development tools. Specially, API hiding 

using Java reflection can be a major obstacle to 

Android malware detection based on API calls because 

it conceals the functional parts of the sample app by 

hiding the API calls in the app. Meanwhile, about 75% 

of the undetected malicious apps and 6.3% of 

misclassified apps were greyware such as adware, 

spyware, etc. Our experiment results showed that many 

anti-malware products of VirusTotal could not 

detect grayware correctly. In order to correctly detect 

Android grayware using machine learning, it is 

necessary to build reliable ground truth dataset for 

current grayware. Therefore, we plan to construct a 

reliable ground truth dataset for grayware in the future. 
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