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Abstract 

WVSN is severely constricted to energy, as it deals 

with video data. The major activities that consume more 

energy in WVSN are the local data processing and 

transmission. Among these two, data transmission 

consumes more energy. Hence, a mechanism to reduce 

the energy consumption during data transfer is required 

and this issue is addressed by compressive sensing. This 

paper presents an energy conserving scheme that extracts 

the forepart from the background scene. The compressive 

measurements are dynamically computed by this work, 

which reduces the overhead and energy consumption. 

This work selects minimal yet, optimal compressive 

measurements and forwards it to the destination side. The 

destination side rebuilds it with the help of CoSaMP 

algorithm. The performance of the proposed approach is 

tested in terms of forepart detection accuracy and energy 

consumption analysis. The proposed approach shows 

better results and outperforms the existing approaches. 

Keywords: WVSN, Energy consumption, Compressive 

measurement  

1 Introduction 

Due to the advancement of technology, several real-

time applications are presented to the society for 

improvising the quality of life. The real-time 

applications are claimed to be successful only when 

better accuracy rates with reasonable speed is proven. 

In order to improve the quality of service and the 

standard of the application, several changes are 

incorporated to the existing technologies. On that front, 

the Wireless Sensor Networks (WSN) are tailored with 

respect to the requirements of the application. Wireless 

Visual Sensor Networks (WVSN) is one among many 

kinds of network and it has gained substantial research 

interest due to its wider applicability. Usually, the 

WVSN is employed for real-time intelligent systems. 

A WVSN is composed of numerous wireless nodes, 

which are packed with a processor, power back-up, 

image sensor and transceiver [1-2]. The nodes of this 

network sense and share the data with the Base Station 

(BS) or the powerful sink node, which is meant for 

processing the data locally. As WVSN is based on 

WSN, the basic characteristics such as distributed 

environment, wireless communication and energy 

restriction are inherited to it. The major functionality 

deviation of WVSN from WSN is the capability of 

environment sensing. The sensor nodes of WVSN 

capture the environment in three different dimensions 

in the place of normal one. Hence, WVSN is usually 

employed in environment monitoring and surveillance 

based applications. 

The sensor nodes of WVSN take the video of the 

specific area and forward the captured video to the 

processing unit by means of relay nodes. The 

underlying point here is that it is unnecessary to 

transmit the video to the processing unit, unless some 

variation or change is involved in the video. This idea 

conserves energy, which in turn helps in maximizing 

the lifetime of the network. At this juncture, the 

concept of Compressive Sensing (CS) comes into 

picture. The CS technique accumulates and forwards 

the mandatory components (X) instead of the entire Y 

samples [3]. Though the complete samples are not 

forwarded, the CS ensures the better data recovery. 

This is achieved by computing the sparsity degree of 

the signal. 

The sensor node of WVSN takes the video of a 

scene and performs CS for computing the sampling 

measurements. The so computed sampling measurements 

are forwarded to the destination and the video is rebuilt 

by the recovery algorithm. This work is based on the 

utilization of immobile cameras, such that the 

background is the same at all times. Hence, in order to 

conserve energy the background part of the video can 

be subtracted. In other words, the foreground of the 

video can easily be processed, which is the target of 
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any application. This work employs flexible background 

subtraction technique for extracting the foreground 

objects.  

Additionally, the foreground objects are detected by 

considering the CS sampling measurements and a 

threshold based mechanism is proposed. This threshold 

helps in extracting the foreground sampling measurements, 

which are then treated by the Compressive Sampling 

Matching Pursuit (CoSAMP) algorithm for rebuilding 

the targeted objects. Some of the contributions of the 

proposed approach are as follows.  

‧ This work conserves energy, as the background of 

the video is subtracted. 

‧ The proposed approach can make the data rate of the 

video flexible with respect to the scene. 

‧ The count of sample measurements are fixed 

dynamically based on the theory of cross validation. 

‧ This work is evaluated in terms of object detection 

accuracy, energy required to forward videos and so 

on. The proposed approach shows better results. 

The rest of this article is systematized as follows. 

The recent review of literature with respect to 

compressive sensing is discussed in section 2. The 

proposed methodology is elaborated in section 3 and 

the performance of the proposed approach is evaluated 

in section 4. The conclusions of the proposed approach 

are finally presented in section 5. 

2 Review of Literature  

This section reviews the related literature with 

respect to compressive sensing in WVSN. 

In [4], a parking lot occupancy detection system is 

proposed by utilizing WVSN. This system analyses the 

video and performs compression. This system is 

claimed to be flexible and can be utilized in the 

environment with multiple camera nodes. However, 

this work suffers from computational complexity. A 

relevance based approach for multi-sink mobility is 

presented for smart city application by WVSN in [5]. 

This work presents an algorithm for effective 

localization of several mobile sinks over the roads and 

streets. This approach increases the data transmission 

rate by placing the mobile sink node closer to the 

source nodes with better sensing relevance. Yet, this 

work consumes more energy to attain the task. 

In [6], an energy efficient low bit rate image 

compression is presented in wavelet domain for image 

sensor networks. This work proposes a new 

approximation band transform algorithm and it works 

by extracting and encoding the image approximations 

by means of fixed-point arithmetic. This idea 

conserves the energy of resource constrained sensor 

networks, but the work is complex. The sensing, 

coding and transmission functionalities of visual sensor 

networks for smart city applications are modeled by 

means of fuzzy based approach in [7]. This work 

configures the activities of the sensors such as sensing, 

coding and transmission in a dynamic way by utilizing 

different parameters. This work suffers from computational 

and storage overhead. 

An energy efficient image compressive transmission 

scheme is proposed for wireless camera networks in 

[8]. This work states that this work can extract the 

regions of interest, controls the quality of image and 

carries out better image communication. The 

performance of this approach is tested in terms of 

image quality, execution time and energy consumption 

and observed to be satisfactory. In [9], an energy 

efficient image transmission scheme for wireless 

multimedia sensor networks is presented on the basis 

of block based compressive sensing. The encoding 

algorithm of CS measurements is proposed by 

considering Bernoulli measurement matrix. The 

performance of the proposed approach is tested in 

terms of energy consumption and image quality. This 

work involves computational overhead and consumes 

more time. 

In [10], an image coding scheme based on compressive 

sampling is presented for visual communication. This 

work encodes the image by performing polyphase 

down-sampling. Additionally, the local random 

convolutional kernel is utilized before the process of 

down-sampling. These measurements are utilized for 

preserving the features with greater frequency and to 

remove redundancy. This work suffers from time 

complexity. An efficient image coding and transmission 

system based on scrambled block compressive sensing 

is presented in [11]. This work employs scrambled 

block compressive sampling for performing image 

measurement by means of a sensing operator. This is 

followed by the execution of progressive non-uniform 

quantization and the progressive non-local low-rank 

reconstruction is utilized at the decoder side. This work 

is computationally complex and suffers from memory 

overhead also. 

In [12], a Discrete Cosine Transform (DCT) based 

multi-focus image fusion scheme is presented for VSN. 

The fusion system mainly focuses on the Alternating 

Current (AC) coefficients computed in the DCT 

domain. This method is claimed to prove better image 

quality and minimal energy consumption. A clustering 

based data compression scheme based on k-means 

algorithm is proposed for wireless imaging sensor 

networks in [13]. This work compresses the images by 

means of k-means algorithm by considering the colour 

of image pixels and the image is compressed. However 

on the negative side, this work consumes more time to 

get processed. A survey on sensor coverage, visual 

data acquisition, processing and transmission is 

presented in [14]. 

An adaptive compressed sensing rate assigning 

algorithm based on standard deviation of the image 

blocks for wireless image sensor network is presented 

in [15]. In this work, all the image blocks are fixed 
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with a static sampling rate. Additionally, an adaptive 

sampling rate is passed into all the blocks, such that 

greater sampling rates are allotted to blocks that are 

minimal compressible. Finally, the fixed and the 

adaptive measurements are considered together to form 

the final measurements. The performance of this work 

can be enhanced further with dynamic measurements. 

In [16], an adaptive compressive sensing for 

tracking the targets in WVSN based surveillance is 

presented. The adaptive compressive sensing can 

achieve greater compression rates with respect to the 

sparsity nature of different datasets. This work is 

difficult to process and involves computational 

complexity. In addition to this, it is unnecessary to 

compress the whole image; instead the relative blocks 

that contain the target can alone be compressed. The 

image compression algorithms for wireless multimedia 

sensor networks are reviewed in [17]. 

In [18], a video compressed sensing framework is 

presented for wireless multimedia sensor networks by 

utilizing a combination of several matrices. This work 

utilizes the combination of Discrete Wavelet 

Transform (DWT) and Discrete Cosine Transform 

(DCT) for performing compression. This work is 

proven to be better than Gaussian matrix. 

Inspired by these works, this article intends to 

present an energy efficient compressive sensing 

algorithm for WVSN. This work concentrates on 

energy efficiency, better compression rates with high 

image quality. The working principle of the proposed 

approach is presented in the following section.  

3 Proposed Compressive Sensing Algorithm 

for WVSN  

This section elaborates the working principle of the 

proposed compressive sensing algorithm along with 

the overall flow of the approach. 

3.1 Overall Flow of the Proposed Approach 

The main focus of this work is to enhance the energy 

efficiency of the energy stringent WVSN, which in 

turn improves the lifetime of the network. Additionally, 

the proposed approach focuses on better compression 

rate, yet quality of the compressed image is 

concentrated. The first and foremost goal of this work 

is to reduce the energy consumption of the sensors. 

The overview of the work is depicted in Figure 1. 

Usually, the sensors involved in WVSN consume 

more energy during the local data manipulation and 

transmission, yet these operations are inevitable. The 

energy consumption of these activities can be reduced 

by eliminating the static background, which makes 

sense that the background does not need to be 

processed. This idea conserves energy both in data 

processing and transmission activities.  

 

Figure 1. Overall flow of the work 

The objectives are attained by decomposing the 

work into three phases such as background subtraction, 

forepart detection and rebuilding. The initial phase 

attempts to eliminate the background of the video, as 

this work is based on immobile cameras. The forepart 

detection phase attempts to detect the real objects being 

present in the video. As the forepart of the video 

frames is extracted, it is easy to process further and is 

transmitted. The destination side utilizes CoSaMP for 

rebuilding the frames. The following sections present 

all the above stated phases in detail. 

3.2 Forepart Detection under the Scenario of 

Dynamic Compressive Measurements  

In this work, the term adaptability represents varying 

compressive measurements. The main reason for 

considering variable compressive measurements is that 

it is complex to estimate the sparsity of videos. When 

the cameras are immobile, the background is the same 

for all video frames. Hence, it is unnecessary to 

process or transmit the background unnecessarily, as it 

consumes more energy and time as well. The increased 

time consumption leads to performance degradation 

and on the other hand, excessive energy consumption 

results in shorter lifetime of the network. In order to 

deal with both these issues, it is better to eliminate the 

background being present in the video frames, which 

leads to both energy and time conservation. 

Consider an image 
tp
i  that is made up of both 

background ( )
tp

bg  and forepart ( )
tp

fg  as represented 

in eqn.1. 

 
tp tp tp
i fg bg= +  (1)  

However, this work considers the same background 

for all the video frames. This work permits different 

compressive measurements for varying time periods 
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.tp  The changing measurement rates are obtained by 

measurement matrices for every ,tp  which is 

represented as follows. 

 tpR c

tpδ
×

∈M  (2)  

Where c c

δ
×

∈M  is formed by choosing the entities 

from partial Fourier matrices. Hence, 
tp

δ  is formed by 

considering the initial 
tp

R  rows of δ  and column. The 

compressive measurement of the forepart is assessed as 

shown below. 

 fg

tp tp tpk fgδ=  (3)  

Consider bgk bgδ=  is multivariate Gaussian 

variable that is random and is denoted by 

 ~ ( , )bg bg
k N µ Σ  (4)  

 
1

1
ob

bg

x

x

k
ob

µ

=

= ∑  (5) 

From the equations (1) and (4), the following 

equation is obtained. 

 ~ ( , )bg bg

tp tp tpk N k µ− Σ  (6) 

Where tpRbg

tpµ ∈M  is constructed by utilizing the 

initial 
tp

R  rows of bg
µ  and fg

tpk  is represented as 

 
fg bg

tp tp tpk k µ= −  (7) 

Let 
0

{ }
tp tp
i

∞

=
 represent the intensities of the gray-scale 

video frames that are the part of video and tp denotes 

the time period that is discrete by nature. The 

compressive measurements are then assessed by means 

of 

 
tp tp tp
k iσ=  (8) 

The cross validation of the image’s forepart is also 

estimated as follows.  

 bg

tp tpfg i
γ

γ γ μ= −  (9) 

fg

tpµ  is the equivalent background assessment. As the 

count of measurements of this work is dynamic, the 

time period is taken into account. Hence, the 
tp

R  is 

chosen such that tpRfg

tpk ∈M  ensures perfect dimension 

that can guarantee 

 ( , )fg

tp tp tpfg k δ= Δ  (10) 

The value of 
tp

fg  strictly depends on the sparsity 

and the .

tp
R  Yet, the sparsity cannot be finalized 

before the process of sensing and hence, it cannot be 

utilized while choosing .

tp
R  This problem is addressed 

by setting the upper value to the sparsity ( )
tp

st , such 

that 
tp

s st≥  for all time periods and 
tp

R R=  at all tp . 

Δ  attains a stable compression ratio.  

Conversely in certain cases, the value of s is greater 

than 
tp

st , by showing vast difference. The greater 

estimation of 
tp

st  results in the accumulation of more 

measurements, which do not minimize the 

reconstruction faults. Hence, the value of 
tp

R  can be as 

smaller than R, such that the compression rate can be 

maximized, without affecting the quality of the forepart 

of the video frame. The proposed algorithm is 

presented as follows. 

The estimation of 
tp

st  is rough and this estimate is 

referred as 
t
p , which is known by the system before 

the process of sensing. With the value of 
t
p , this phase 

can select better 
tp

R . Before the initiation of sensing, it 

is taken that 
tp t

st p=  and the 
t
p  is altered in the 

subsequent time periods. When the value of 
t
p  is 

greater than 
tp

st , then it is these are meant for 

rebuilding process on the destination side. 

 

Proposed Algorithm 

Input : Videos 

Output : Forepart detection 

Begin 

Assess fg

tpk from the compressive measurements by 

(7); 

Assess cross validation measurements by (9); 

Detect forepart by (10); 

If ( )
t tp
p st≥  

   Transmit to the destination; 

Else 

    Discard the measurements; 

End if; 

// Destination 

Rebuild by CoSaMP; 

End; 

 

On the contrary, when the value of 
t
p  is lesser than 

tp
st  then the measurements are not transmitted to the 

destination. This idea reduces the requirement of 

measurements to detect the entity being present in the 

video frame, which in turn reduces the energy 

consumption and improves the lifetime of the network. 

3.2 Rebuilding by CoSaMP  

At the destination, the CoSaMP algorithm is 

executed for rebuilding. This algorithm is a popular 

iterative algorithm and recovers the signal based on the 

Restricted Isometry Property (RIP). Though the 

working principle of CoSaMP is the same as OMP 
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algorithm, the CoSaMP algorithm controls the process 

of search in all the iterations and includes a coordinate, 

while removing the useless coordinates.  

In order to rebuild the signal, the measurement 

vector mv is solved by considering the measurement 

matrix and the sparse signal with k non-zeroes. The 

approximation of the signal is found out with the 

greater coordinates in every iterative step. The 

measurements are upgraded until the signal is built 

completely. As the measurement matrix is crisp, the 

time consumption for rebuilding is minimal and 

reasonable [19]. 

4 Results and Discussion  

The proposed approach is simulated in Matlab 

environment on a stand alone computer with 8 GB 

RAM. The proposed approach is analysed by utilizing 

different video streams downloaded randomly. The 

size of the video frame is 288 352× , the sparsity and 

the compressive measurements are dynamic. The value 

of δ  is permuted row-wise by discrete Fourier 

transform matrix in a random fashion. The γ  entities 

are presented by discrete Bernoulli distribution 

between 0 and 1. The performance of the proposed 

work is evaluated in terms of forepart detection 

accuracy, precision, recall, F-measure and energy 

consumption. Besides this, the potential of dynamism 

in terms of compressive measurements is justified. The 

performance of the proposed work is compared against 

[20-21] and [22]. Some of the sample input frames are 

depicted in Figure 2. Figure 3 to Figure 6 present the 

results attained by [20-22] and the proposed approach. 

From the attained results, it is evident that the proposed 

work shows better results than the existing approaches. 

   

(a) (b) (c) 

   

(d) (e)  (f) 

Figure 2. (a) to (f) Sample input frames 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 3. Results attained by [20] w.r.t input frames in Figure 2 
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(a) (b) (c) 

   

(d) (e)  (f) 

Figure 4. (a) to (f) Results attained by [21] w.r.t the input frames in Figure 2 

   

(a) (b) (c)  

   

(d) (e)  (f)  

Figure 5. (a) to (f) Results attained by [22] w.r.t the input frames in Figure 2

4.1 Effectiveness of Forepart Detection 

This section attempts to evaluate the forepart 

detection accuracy rate of the proposed approach in 

terms of precision, recall and F-measure. The ground 

truths of the input videos are manually computed. The 

above stated performance measures are standard 

measures, which can effectively determine the 

efficiency of the approach. The precision is the ratio of 

the total number of correctly classified foreground 

pixels to the total number of classified pixels.  

On the other hand, recall rate is the total number of 

correctly classified pixels by the total actual pixels of 

the forepart. While the precision measure checks the 

correctness, the recall measure checks the reliability of 

the approach. Both these performance measures 

together are utilized for computing the F-measure and 

the average results are tabulated in Table 1. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 6. (a) to (f) Results attained by proposed approach w.r.t the input frames in Figure 2 

Table 1. Forepart Detection Accuracy Analysis 

Techniques 
Precision 

(%) 

Recall 

(%) 

F-measure 

(%) 
Time(s) 

Compressive 

Sensing-Background 

Subtraction [20] 

37.8 38.2 37.99 167 

CS-BS [21] 77.2 75.8 76.49 74 

Hybrid matrix based 

BS [22] 
87.9 84.4 86.11 58 

Proposed Forepart 

detection 
89.6 86.7 88.12 53 

 

The total number of frames being considered for 

carrying out the analysis is 35. The formulae for 

computing the performance measures are presented 

below. 

 
Total correctly classified pixels

P
Number of classified pixels

=  (11) 

 
Total correctly classified pixels

Total actual forepart pixels
=�  (12) 

 
2PR

F
P R

=

+

 (13) 

Based on the aforementioned formulae, the 

effectiveness of the proposed approach is tested with 

the analogous approaches. The performance of the 

proposed approach is satisfactory in terms of precision 

and recall, which improve the F-measure rate.  

The least F-measure is shown by the compressive-

sensing-background subtraction [20] with 37.99 

percent. The hybrid matrix based BS closely follows 

the F-measure rate of the proposed work with 86.11 

percent. The proposed work shows 88.12 percent as the 

F-measure rate, which is better than the compared 

works. 

The main reason for the betterment of the proposed 

approach is that the dynamic choice of measurements. 

All the compared techniques choose the measurements 

in a non-adaptive way and the proposed approach 

selects the measurements with dynamic sparsity, which 

results in better compression rates. The following 

section analyses the proposed work with respect to the 

measurements. 

4.2 Measurement Collection Analysis 

The total measurements of the video frames and the 

forepart measurements being extracted are shown in 

Table 2. Measurements play an important role in 

determining the forepart of the frame and the energy 

consumption of the system is decided by the choice of 

measurements. Hence, this section analyses the 

measurements collection, as presented below.  

Table 2. Measurement collection analysis 

Techniques/ No. of frames 20 30 40 

Compressive Sensing-Background 

Subtraction [20] 
28962 38062 51807 

CS-BS [21] 23749 34658 49872 

Hybrid matrix based BS [22] 3897 4769 5397 

Proposed Forepart detection 3449 4572 5138 
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The above presented table shows the number of 

measurements being selected for transmission to the 

destination. The lesser the number of measurements, 

the greater is the energy conservation. Better energy 

conservation leads to better lifetime of the network. As 

shown in the table, the measurements being extracted 

by the proposed approach is minimal, when compared 

to the existing approaches. Additionally, minimal 

measurement extraction leads to reduced computational 

overhead. The following section presents the energy 

consumption of the proposed approach. 

4.3 Energy Consumption Analysis 

Energy consumption is the most important factor for 

any energy stringent application. The main advantage 

of sensor networks is that the sensor nodes can be 

deployed even in human unfriendly environments, 

without any hassles.  

Though it brings in numerous advantages, the sensor 

nodes cannot be maintained properly. This makes 

sense that it is highly complex to recharge or replace 

the battery backup. Hence, it is an absolute necessary 

to arrive at better energy conservation, which can be 

achieved by proper planning of energy consumption. 

The better way of energy consumption results in 

energy conservation, which leads to enhanced lifetime 

of the network. The energy consumption analysis of 

the proposed approach is shown in Figure 7. 

 

Figure 7. Energy consumption analysis 

On observation, it is clear that the energy 

consumption of the proposed approach is very minimal. 

The main reason for minimal energy consumption is 

the extraction of feasible measurements. This leads to 

the improved lifetime of the WVSN. The energy 

consumption is measured in mJ. The following section 

presents the sparsity estimation of the adaptive and 

non-adaptive approaches. 

4.4 Sparsity Estimation Analysis 

The sparsity estimation is considered to perform this 

analysis and the approaches being taken into account 

are adaptive and non-adaptive. The non-adaptive 

approaches fix everything in advance. However, the 

adaptive approach chooses the parameters on the go. 

Though this idea is beneficial, it may introduce several 

issues such as infeasibility, error rates and so on. 

Figure 8 presents the sparsity approximation analysis. 

 

Figure 8. Sparsity estimation analysis 

The above presented graph presents the sparsity 

estimation analysis, of both the adaptive and non-

adaptive approaches. As shown above, the sparsity 

range is dynamic in the adaptive approach and is tuned 

with respect to the frame rate. The sparsity estimation 

of the adaptive approach goes up and down, whereas 

the sparsity estimate of the non-adaptive approach is 

static for all the frames. Hence, the objective of the 

proposed approach is attained with minimal energy 

consumption. The following section presents the 

conclusive remarks of the proposed work. 

5 Conclusions 

This article presents dynamic forepart detection with 

varying compressive measurements. It is well-known 

that WVSN is severely energy constrained, due to the 

transmission of live video streams that consumes more 

energy. Increased energy consumption leads to poor 

network lifetime and the major energy consuming 

activity is the data transmission.  

This issue is addressed by detecting the forepart of 

the video frames, as the background of all the video 

frames is the same. The forepart is detected and the 

dynamic compressive measurements are computed. 

The selected compressive measurements alone are 

transmitted to the destination. This work computes the 

compressive measurements in a dynamic fashion.  

The performance of the proposed work is evaluated 

in terms of detection accuracy rates, energy consumption, 

sparsity estimation and measurement analysis. The 
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proposed approach proves better results, when 

compared to the existing approaches. In future, this 

work is planned to consider dynamic background 

scenes and to present different local processing 

schemes for WVSN. 
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