
Variational Automatic Channel Pruning Algorithm Based on Structure Optimization for Convolutional Neural Networks 339

Variational Automatic Channel Pruning Algorithm Based on

Structure Optimization for Convolutional Neural Networks

Shuo Han1, Yufei Zhan2, Xingang Liu1

1 School of Information and Communication Engineering, University of Electronic Science and Technology of China, China
2 Glasgow College, University of Electronic Science and Technology of China, China

h_shuo0108@163.com, unayufei99@163.com, hanksliu@uestc.edu.cn*

*Corresponding Author: Xingang Liu; E-mail: hanksliu@uestc.edu.cn

DOI: 10.3966/160792642021032202009

Abstract

Channel pruning has achieved remarkable success in

solving the significant computation and memory

consumption in Convolutional Neural Networks (CNN).

Most existing methods measure the importance of

channels with manually designed algorithms and pruning

unimportant channels rely on heuristics or expertise

during the processing, which are labourious and

subjective. In this paper, we proposed a Variational

Automatic Channel Pruning Algorithm based on structure

optimization (VA-CPSO) which can automatically

optimize channel numbers via channel scales in end-to-

end manner through variational inference. Firstly, a

weights generator controlled by channel scales is built to

produce weights for various pruned structure of CNN.

And then, the channel scales with truncated factorized

log-uniform prior and log-normal posterior are optimized

by variational inference for optimal pruning structure.

Meanwhile, parameters of the weights generator are

optimized synchronously. Finally, the acquired optimal

structure and corresponding generated weights are

deployed in the pruned CNN for further training to

achieve high-performance compression. The

experimental results demonstrate that our proposed VA-

CPSO acquires better compression performance

compared to existing pruning algorithms. The VA-CPSO

achieve a compression of 34.60×, 4.28×, 1.96× and a

speedup of 28.20×, 2.03×, 2.02× on LeNet-5, VGGNet,

and ResNet-110 with no more than 0.5% loss of accuracy.

Keywords: Automatic channel pruning, Variational

inference, Structure optimization, CNN

compression, Truncated distributions

1 Introduction

As a flexible family of models, Deep neural

networks [1] have achieved state-of-the-art

performance in many machine learning problems. With

the strong learning ability to image data, Convolutional

neural networks (CNNs) have created impactful

advances in many computer vision tasks including

image classification [2], object detection [3], image

segmentation [4], and human behavior recognition [5].

While the success of CNNs is often supported by

significant computation and memory consumption. The

state-of-the-art models in image classification usually

have tens of millions of parameters and take billions of

floating-point operations to complete the prediction of

one image. “Bigger is better” makes it difficult to

deploy the advanced CNNs on devices that have strong

limitations with respect to memory and energy

consumptions such as mobiles, laptops, and wearable

devices.

Recently, many studies have shown that the deep

neural network is heavily over-parametrized and can be

compressed without significant loss of accuracy.

Researchers are inspired by this and proposed a series

of neural network compression techniques such as

tensor decomposition [6], network quantization [7],

knowledge distillation [8] and network pruning [9, 12],

aiming to reduce the complexity of large models as

much as possible while maintaining high accuracy.

Network pruning is one of the effective methods which

focuses on removing the redundant parameters from

the network. According to the granularity of pruning, it

can be divided into weight pruning and channel

pruning. In weight pruning, the less salient individual

weights are set to zeros with little loss to the final

model quality. Though it is able to prune majority

connections and achieve high compression ratio, it

comes at the cost of the irregularity of the sparse

computation pattern and requires specialized hardware

for further acceleration. In contrast, channel pruning

directly removes entire channels and corresponding

feature maps which is fully supported by off-the-shelf

deep learning library, and is efficient for practical

implementation.

The common idea of channel pruning is to measure

the contribution of channels to the model performance

and remove channels below thresholds. It is effective

but the definition of the filter importance and the

selection of thresholds rely heavily on heuristics or

expertise, which is subjective, laborious and often sub-

340 Journal of Internet Technology Volume 22 (2021) No.2

optimal. A recent study [18] shows that the pruned

architecture itself rather than a set of inherited

“important” weights is more crucial to the final model.

Inspired by it, the AutoML and neural architecture

search are introduced in channel pruning to find the

optimal pruning structure directly. Reinforcement

learning and genetic algorithm are widely used, but the

“hard” searching usually result in significant

computation. To avoid this problem, the Variational

Bayesian is introduced in this paper to translate the

search problem into the optimization problem for

effective pruning.

In this paper, we propose a Variational Automatic

Channel Pruning Algorithm based on structure

optimization (VA-CPSO) to automatically explore the

optimal pruning architecture through variational

Bayesian sparsity learning for channel pruning. It

regards the contraction scales of channel numbers for

each layer i.e. the channel scales as variables with

truncated factorized log-uniform prior and lognormal

posterior, and introduce the variational Bayesian to

optimal the distribution of them. The weights generator

is built following [37] to generate weights for various

pruned structure of CNN under the control of channel

scales. The distributed parameter of the channel scales

and the parameters in weights generator are optimized

synchronously by stochastic gradient variational Bayes

(SGVB). The optimal results are employed in Pruned

CNN for channel pruning and we can get the pruned

network by further tuning the Pruned CNN with cross-

entropy loss. Also, the number of neurons in the fully

connection layers can be learned in our network by

neuron scales which is similar to channel scales. Our

algorithm gives a general structure optimization

technique in end-to-end manner, it can apply for

diverse layers such as convolutional layers, fully

connected layers and depthwise separable convolution

for structured pruning.

Our contributions are summarized as follows:

‧ We propose a Variational Automatic Channel

Pruning Algorithm based on structure optimization

(VA-CPSO) for pruning of CNNs. It is able to

automatically find the optimal channel structure

through variational Bayesian sparsity learning for

pruning, which avoids the tedious hyperparameter

adjustment and the empirical design.

‧ The Bayesian Inference is introduced to optimize the

distributed parameter of the channel scales, which

makes the searching and the optimization of the

channel structure becomes interpretable and stable,

avoiding the arduous and ineffective exploration in

the huge search space. And with a sparse prior, the

structure tend to be light and compact.

‧ Extensive experiments on several datasets show the

effectiveness of our algorithm. 76.7% parameters

and 50.9% floating-point operations on VGGNet are

reduced with only 0.37% loss of accuracy. And on

ResNet-110, 48.8% parameters and 50.5% floating-

point operations can be cut down with 0.39% loss of

accuracy. It outperforms the state-of-the-art methods.

The remainder of the paper is organized as follows.

In Section 2, the related work of network pruning are

described. Section 3 presents our proposed VA-CPSO

for CNN channel pruning. To verify the proposed VA-

CPSO, Section 4 shows our experimental process,

results as well as and the relevant analysis. Finally, we

conclude the paper in Section 5.

2 Related Work

The model compression and acceleration is the

hotspot in the deep neural network community recently.

Extensive studies are emerging in an endless stream,

including tensor decomposition [6], network quantization

[7], knowledge distillation [8] and network pruning [9,

12]. Here, we focus on network pruning and provide a

non-exhaustive review of related methods. The

network pruning reduces the size of the deep neural

network by pruning some parameters and connections.

The thinking about network pruning is deepening, and

different directions have emerged. We classify them

into three categories: importance-based pruning,

sparsity learning, and architecture search.

Importance-based pruning aims to define, find, and

prune the unimportant connections from the deep

neural network. Early work in weight pruning [19] and

[20] determined the saliency by using all second-order

derivatives of the error function to perform network

pruning. More recently, Han et al. [9] used iterative

thresholding to remove unimportant weights with small

magnitudes and proposed the classical training,

pruning and fine-tuning structure for pruning. Later

they combined quantification and Hoffman coding

after pruning to reduce the storage of sparse network

[10]. The refinement for magnitude pruning techniques

in [21] further increased the compression rates. In

channel pruning, the unimportant filters will be

removed. Li et al. [11] proposed a magnitude-based

pruning in which l1-norm is used to measure the

significance of filters. Hu et al. [23] pruned

unimportant filters based on the sparsity of their

outputs. Luo et al. [24] proposed the ThiNet, which

pruned the filters based on statistics information

computed from its next layer, not the current layer.

Recently, some global-based methods for measuring

the significance of channels have been proposed.

Abbasi et al. [12] defined a filter importance index

which equals the classification accuracy reduction

(CAR) of the network after pruning that filter and then

iteratively prunes filters based on the CAR index. Yu

et al. [13] proposed the Neuron Importance Score

Propagation (NISP) algorithm which can propagate the

importance scores of final responses to every neuron in

the network. The importance-based pruning has

deepened the cognition to CNNs and can achieve

significant compression. But the definition of the filter

Variational Automatic Channel Pruning Algorithm Based on Structure Optimization for Convolutional Neural Networks 341

importance is mainly based on empirical assumptions,

which is prone to be comprehensive and subjective.

Meanwhile, the thresholds of pruning for different

layers are usually set manually based on heuristics or

expertise, which is laborious but often sub-optimal.

Sparsity learning methods try to induce sparsity and

prune the network during training. A regularization

term added to the loss function is often used for sparse

induction. Louizos et al. [15] proposed a method for

0
l -norm approximation. By

0
l -norm regularization, the

weights are encouraged to be exactly zero and can be

pruned during training. In channel pruning, Liu et al.

[25] used
1
l -norm regularization to reduce the scale

factors in Batch Normalization (BN), realizing the

slimming of the network. Wen et al. [26] proposed the

Structured Sparsity Learning (SSL) method. The group

Lasso regularization is introduced to directly learn a

compressed structure of deep CNNs during the training.

Many compression techniques based on (variational)

Bayesian inference and the minimum description

principle [27] emerged recently. Molchanov et al. [16]

proposed variational dropout as a reinterpretation for

Gaussian dropout training from the perspective of

variational inference. They learned per-parameter

dropout rates during training and pruned the weights

with high dropout rates to produce high sparsity as well

as strong generalization. Ullrich et al. [28] proposed

a ”soft weight-sharing” method which applies Gaussian

Mixture Distribution as a prior to encourage sparsity

and clustering of weights. Louizos et al. [29] used the

prior for inducing the sparsity of weights and used the

posterior for determining the bit precisions of each

weight, which achieved high compression. Similar

methods are used in channel pruning. Neklyudov et al.

[14] proposed a drop-like layer in a Baysian way to

achieve structured sparsity. The novel Bayesian

method leads to structured sparsity by removing

elements with a low SNR. Zhao et al. [17] introduced

the variational Bayesian to estimate the distribution of

channel saliency induced by a sparse prior and pruned

redundant channels based on the distributions. The

variational Bayesian provides theoretical motivation

for regularization and sparsification techniques and

enriches the study of network compression, but the

excessive variational parameters in models will greatly

increase the complexity of training.

Architecture search methods have been widely

adopted in neural network design and compression,

leading to a compact and advanced network structure.

Reinforcement learning is a common approach. NAS

(Neural Architecture Search) [30] used a recurrent

network to generate the model descriptions and train

this RNN with reinforcement learning, learning novel

architectures with high performance. This work has

been further developed by PNAS [31] and ENAS [32].

Inspired by them, N2N (Network to Network) [33]

established the selection mechanism based on

reinforcement learning, achieving network compression

through channel selection. He et al. [34] proposed

AutoML for Model Compression (AMC) which

automatically searches the design space by reinforcement

learning, greatly improving the compression quality.

Genetic algorithm is also used by researchers. Xie et al.

[35] encoded the network structures and adopted the

genetic algorithm to cross the large search space. They

finally found the most competitive individual through

recognition accuracy. Real et al. [36] took a similar

approach to search for an efficient image recognition

Network. Liu et al. [37] trained a PruningNet and

employed the genetic algorithm to find the optimal

channel pruning structure, actualizing superior

performances on deep CNNs. Architecture search helps

to free human labor and automatically seek for the

optimal compression policy, but inefficient search

algorithms often result in significant computational

overhead.

Inspired by variational Bayesian sparsity learning

and architecture search, the Bayesian Inference is

introduced in our designed architecture search network

for automatically searching and optimizing the sparse

channel structure during training. Our algorithm

absorbs the superiority of them and avoids the

inferiority in a subtle way, achieving efficient channel

selection and pruning.

3 The Proposed VA-CPSO

In this section, we introduced the proposed VA-

CPSO which controls the channel numbers of each

layer via channel scales for channel pruning of CNNs.

The VA-CPSO algorithm is implemented on the

variational structure optimization network as shown in

Figure 1. It includes two parts: (1) Weights generator

for producing weights under the control of channel

scales. (2) Pruned CNN for predicting the input images

with the generated weights to measure the quality of

the corresponding channel scales. In this network, the

mini-batch images and the original channel numbers of

CNN are the input, the distributed parameter of and the

parameters in the weights generator are network

variables to be trained, and the evidence lower bound

(ELBO) is the Loss for training network variables.

The channel scales are limited to 0, 1 for controlling

the proportion of retained channels per layer. During

training, the variational inference and stochastic

gradient variational Bayes are introduced (SGVB) to

train and optimize the distribution of the channel scales

as well as the parameters in the weights generator.

Concretely, the truncated prior and posterior

distribution families are adopted to channel scales and

the corresponding ELBO is minimized to acquire the

probability density of the channel scales. After training,

channel pruning can be implemented based on the

optimal channel scales and the generated weights we

obtained to get compacted CNN.

342 Journal of Internet Technology Volume 22 (2021) No.2

Weights

Generator

Conv

Conv

FC

ELBO

Impacted

Weights

Pruned

CNN

1
v

2
v

C
v

Channel scales

Mini-batch
images

Impacted

Weights

Impacted

Weights

Original channel
numbers

Figure 1. Variational structure optimization network

for VA-CPSO

Note that there is great redundancy for the

parameters of the fully connected layers (FC) in CNN,

so we incorporate the FC into our structure

optimization network. We deal with the neurons in FC

like channels in convolution layers and find the

optimal structure for pruning neurons.

3.1 Weights Genetator

The key issue in channel pruning is how to select the

channels of the convolution layers for pruning, in order

that the structure of the pruned network can achieve

high compression with almost lossless performance.

The common methods try to pruning unimportant

channels or induce sparsity via regularization as

mentioned in Section 2. Recently, the development of

AutoML has brought new ideas to the researchers. The

architecture search for pruning attracts plenty of

attention. The study [18] suggests that the pruned

network structure is decisive instead of the remainder

weights, which support us to find the optimal pruned

network structure directly. Following [37], we design a

weights generator controlled by the channel scales,

which predict weights for the corresponding pruned

structure. Moreover, we take the FC into account.

As shown in Figure 2, the generator consists of a

series of blocks, each corresponding to a convolutional

layer or FC of the CNN. And the block is comprised of

two fully connected layers with 32 neurons in the

middle layer. The inputs of the weights generator

contain two vectors with the same length: channel

scales
1 2

[, , ,]
L

v v v v= … and the numbers of original

channels
1 2

[, , ,].
L

d d d d= … The former is the network

variable composed of the layer-wise channel scales

limited to 0,1 which controls the shape of the generated

weights for Pruned CNN. The latter is the network

input consisting of the number of channels for each

convolutional layer in the original CNN for controlling

the original shape of the output weights i.e. the number

of output nodes for the last FC in each block. By

multiplying the corresponding elements of the two

vectors, the numbers of channels after pruning c =

1 2
[, , ,],

L
c c c… can be determined by (*)

i i i
c round d v=

and the final shape of the generated weights can be

acquired after reshaping and cropping. Meanwhile, we

append the original neuron numbers and neuron scales

for each FC to the input vectors separately and

generate the pruned weights of the fully connection

layer in the same way.

Block

Block

Block

C
v

Channel scales

1
v

2
v

3
v Block

Weights

genetator

Original channel
numbers

Connv

Connv

Connv

FC

Mini-batch
images

Pruned

CNN

Loss

[�1 ,�2, … ,��]

(a) The structure of the weights generator

FC FC

Block

Reshape

Crop

[�� ,��+1]

Channel scales

Original channel

numbers

[�� , ��+1]

[�� , ��+1]

(b) The structure of each block

Figure 2.

In the forward propagation, the channel scales enter

into the relevant blocks separately to produce weights

for different layers of CNN. A Pruned CNN based on

the numbers of pruned channel numbers c are

established, and the weights generated by blocks are

reshaped and cropped to adapt the structure of each

layer in Pruned CNN. These generated weights are put

into Pruned CNN to calculate the loss giving a batch of

input images. In the backpropagation, the parameters in

blocks and the channel scales v are updated with

SGVB which will be described in detail later. Pruned

CNN doesn’t participate in the gradient update.

3.2 Bayesian Inference and Stochastic

Gradient Variational Bayes (SGVB)

Consider a dataset
1 1

{ { } , { } },N N

n n n n
D x x y y

= =

= = = x is

input data, y is corresponding label and N is the

number of images on this dataset. Our goal is to learn

the variables v of the model with conditional

Variational Automatic Channel Pruning Algorithm Based on Structure Optimization for Convolutional Neural Networks 343

probability (| ,).p y x v Where the variables v are

channel scales that control the numbers of channels for

layers. In Bayesian learning, we can adapt the original

prior knowledge after we collect some new information.

In particular, if we know the prior distribution ()p v

and the data D arrives, we can inference that the

posterior distribution is (|) (|) () / ()p v D p D v p v p D=

according to the Bayes rule. However, the inference

usually involves the intractable-computation

multidimensional integrals like () (,) .p D p D v dv= ∫

Hence, the approximation techniques need to be

introduced.

Variational Inference is one of the most common

techniques. In this approach, the posterior distribution

(|)p v D is approximated by a parametric distribution

()q vφ . The degree of approximation is estimated via

the Kullback-Leibler divergence. From this, the

intractable inference problem is converted to a

tractable optimization problem. The optimal value of

variational parameters φ can be got by minimizing the

Kullback-Leibler divergence, i.e. min (() ||
KL

D q vφ φ

(|),p v D which is equivalent to maximize the evidence

lower bound (ELBO):

()

1

() () (() || (|))

where () [log (| ,)]

D KL

N

D q v n n

n

L L D q v p v D

L p y x v
φ

φφ φ

φ
=

= −

=∑E
 (1)

Here, we can see why we use the ELBO in practice.

The bound ()L φ plus (() || (|))
KL

D q v p v Dφ equals to

the marginal log-likelihood (,) log(|).
x y D

y x
∈

Σ This

marginal log-likelihood is a constant, so maximize the

bound ()L φ will minimize (() || (|)).
KL

D q v p v Dφ The

ELBO contains two parts, the expected log-likelihood

()
D

L φ and the KL-divergence (() || ()).
KL

D q v p vφ The

former ()
D

L φ acts as a reconstruction term with the

goal of maximizing the log-likelihood of the model

prediction. The latter acts as a regularization term

which aims to draw the posterior distribution close to a

sparsity prior. The ELBO takes into account the

predictive performance and the sparsity of the model

simultaneously, which leads to a compact and excellent

model.

However, it is impossible to exactly calculate the

gradient in equation (1) to achieve optimization. The

stochastic gradient variational Bayes (SGVB)

introduced in [38] gives a practical estimator of the

lower bound and its derivatives. The basic trick is to

reparameterize the random variable ~ ()v q vφ using a

differentiable function (,)f φ ∈ of a noise variable ∈:

 (,) with ~ ()v f pφ= ∈ ∈ ∈ (2)

where the ∈ is acquired by sampling in practice. From

this, an unbiased differentiable minibatch-based Monte

Carlo estimator can be formed as

 () () () (() || ())SCVB SGVB

D KL
L L L D q v p vφφ φ φ= −� (3)

1

() () log (| , (,))
M

SCVB

D i i

i

N
L L p y x v f

M
φ φ φ

=

= = ∈∑� (4)

1

() log (| , (,))
M

D i i

i

N
L p y x v f

M
φ φφ φ

=

∇ ∇ = ∈∑� (5)

where (,)
i i
x y is an input image and its corresponding

label. M is the size of a mini-batch input data and N is

the total number of images involved in this training.

Meanwhile, we assume that the (() || ())
KL

D q v p vφ can

be either computed deterministically or be estimated

approximately. In this way, we can solve the

optimization problem by initializing φ and executing

optimization methods such as Adam [39], which can be

efficiently applied in deep neural networks. Once we

get the optimal parameters φ , we will know the

approximate distribution ()q vφ .

Notable is, we can update the weights g of the

network as well as the variational parameters φ

synchronously in stochastic gradient ascent. We can

represent the model as (| , ,)p y x vg . The ELBO here

is

 (,) (,) (() || ())SCVB SCVB

D KL
L L D q v p vφφ φ= −g g (6)

1

(,) log (| , (,),)
M

SGVB

D i i

i

N
L p y x v f

M
φ φ

=

= = ∈∑g g (7)

Hence, we can acquire the weights and the channel

scale distribution of the network via optimizing the

ELBO.

3.3 Variational Inference with Truncated

Distributions

As shown in equation (3) and (4) the prior

distributions ()p v and the differentiable function

(,)f φ ∈ of the posterior distribution ()q vφ need to be

decided. As mentioned before, the variational variables

in our model are channel scales, which are limited to

0,1. Therefore, traditional unbounded distributions

need to be truncated here [14]. Furthermore, we

transform the variables v to the log domain ln
in
v v= to

increase the maximum truncation interval from (0,1]

to (, 0].−∞ Following that, we will analyze and infer

the model in the log domain.

We use a and b to represent the left and right

truncation values. And
[,]

()
a b in

p v and
[,]

()
a b in

q vφ

denote the truncated prior and posterior distributions in

the log domain.

344 Journal of Internet Technology Volume 22 (2021) No.2

Before we get some information, the uniform

distribution U (a, b) is an appropriate choice which

assumes the same initial probability for different values.

[,] ln [,] ln

1

[,] ln ln

() ()

where () (| ,)

L

i

a b a b

i

i i

a b

p v p v

p v U v a b

=

=

=

∏
 (8)

When we obtain the related information, the

variables
in
v have their own focus. The unimodal

factorized normal distribution can give a good

description. What we need is an truncated distribution.

So we select the truncated factorized normal

distribution as the posterior.

[,] ln [,] ln

1

[,] ln ln

() ()

where () (| , , ,)

L

i

a b a b

i

i i

a b i i

q v q v

q v tN v a b

φ φ

μ σ

=

=

=

∏
 (9)

Here, L denotes the number of layers with different

channel scales, and

2

2
2

()1
(| , , ,) exp

22

where () ()

i

i
i i

i i

x
tN x a b

Z

Z

μ
μ σ

σπσ

β α

−
= −

= Φ −Φ

 (10)

Here, , ,

i i

i i

i i

a B
a

μ μ
β

σ σ

− −

= = and ()Φ ⋅ is the CDF

of standard normal distribution. Then, we need to

identify the differentiable function (,)f φ ∈ for

sampling and gradient descent according to the

[,]
(ln).

a b
q vφ The CDF of the truncated normal

distribution is

() ()

()

i i

i i

i

x a

F x
Z

μ μ

σ σ

− −
Φ −Φ

= (11)

From equation (11) we have

 1(() ())
i i i i i

x Z F x aμ σ
−

= + Φ + Φ (12)

Hence the differentiable function can be expressed

as

 1

ln
(()), ~ (| 0,1)i

i i i i i i
v Z a Uμ σ

−

= + Φ ∈ +Φ ∈ ∈ (13)

Consequently, the proper probabilistic model with

prior and posterior is determined and the variational

inference can be executed. The KL-divergence in log

domain for a single variable i

ln
v can be calculated as

ln
[,] ln [,] ln

ln

ln ln

ln

ln

(() || ())

(| , , ,)
(| , , ,) ln

(| ,)

((| , , ,)) ln()

() () 1
ln()

22 2 2

i

i i

KL a b a b v

b i

i ii i

i i i

a

i

i i

i i i i

i i i

D q v p v D

tN v a b
tN v a b dv

U v a b

H tN v a b b a

ab a

Z Z

φ

μ σ
μ σ

μ σ

σ φ β φ β

πσ π

=

=

= − + −

+−
= − −

∫
 (14)

Where The entorpy of the truncated normal

distribution is

ln

ln ln

2

ln ln ln2

((| , , ,))

ln(2) (| , , ,)

1
() | (| , , ,)

2

() () 1
ln(2)

22 2

i

i i

b

i i

i i i i

a

b

i i i

i i i

i a

i i i i

i i

i

H tN v a b

Z tN v a b dv

v tN v a b dv

a a
Z

Z

μ σ

πσ μ σ

μ μ σ
σ

φ β φ β
πσ

π

=

+ −

+

= + +

∫

∫
 (15)

Back to the linear domain ln
v

v e= , the truncated

interval will be [,]
a b

v e e∈ . And the truncated prior

and posterior follows truncated factorized log-uniform

and log-normal distributions respectively which are

expressed as follows.

[,] [,]

1

[,] [,]

() ()

1
where () log ()

()

a b a b

a b a b

L

ie e e e

i

i ie e e e

i

p v p v

p v U v
v b a

=

=

= =

−

∏
 (16)

[,] [,]
1

[,] [,]

2

22

() ()

where () log (| ,)

ln()1
exp()

22

a b a b

a b a b

L

ie e e e

i

i i i ie e e e

i i

i
i i i

q v q v

p v N v

v

v Z

φ

μ σ

μ

σπσ

=

=

=

−

=

∏

 (17)

It is noted that the log-uniform is the approximate

distribution of floating-point format storage, so it is

very appropriate as a regularization for the posterior of

the channel scales which store in the floating-point

format. The sparsity of the loguniform which can

encourage small channel scales is also favorable for the

compression and acceleration of the network. The

posterior log-normal can be regarded as a special case

of the log-uniform when the σ tends to infinity, thus

there is no gap between prior and posterior for the

variational model. Moreover, the non-negative

property of the log-normal random variables makes it

credible for the channel scales. Besides, the

corresponding differentiable function (,)f φ ∈ and the

KL-divergence for v is tractable by above analysis. We

have

1exp((()))

where ~ (| 0,1)

i i i i i i

i i

v Z a

U

μ σ
−

= + Φ ∈ +Φ

∈ ∈
 (18)

ln

1

1 1

(() || ()) (() || ())

((ln) || (ln)) i

L

KL KL i i

i

L L

KL i i v

i i

D q v p v D q v p v

D q v p v D

φ φ

φ

=

= =

=

= =

∑

∑ ∑
 (19)

Variational Automatic Channel Pruning Algorithm Based on Structure Optimization for Convolutional Neural Networks 345

where
ln

i
v

D is calculated in equation (14) In this way,

given aand b, we can sampling
i
v for each layer

according to equation (18) and optimize the ELBO in

equation (6) and (7) with KL-divergence in equation

(19) w.r.t. the parameters
i

μ and
i

σ . When we obtain

the optimal variational parameters *

i
μ and *

i
σ , we can

get the approximate posterior distribution of channel

scales from equation (17).

3.4 A Summary of Proposed Algorithm

Based on above section, we can achieve our VA-

CPSO. And by training the weights generator and the

Pruned CNN successively, the optimal channel

structure and the high-performance pruned CNN are

achieved.

To train the weights generator, we sample channel

scales
1 2

[, , ,]
L

v v v v= … according to equation (18)

with constants a, b which are given at first and

variables
i

μ and
i

σ which are initialized in the

beginning and updated during training. Then, we use

the sampled v for forward propagation in the weights

generator and the Pruned CNN. The ELBO can be

calculated according to equation (6) and (7) at the end

of the Pruned CNN with batches of images as inputs.

The parameters in the weights generator, the generated

weights, and the channel scales are updated using

SGVB in backword propagation. From this, the

optimization network achieved end-to-end traning.

After training, we get the approximate posterior

distribution of channel scales as well as the trained

weights generator. Then, a determined value for each

channel scale needs to be selected from its distribution.

The expectation is a common choice. We have

[,]

2

22

2 2

2 2 2

[log (| ,)]

ln()1
exp()

22

(/ 2) ()1
exp()

22

(/ 2)
[() ()]

a b
i

b

a

i

i

i

i

v i i ie e

e

i i

i

ie i i

b

i i i

bi

i i i i i i

i i i

N v

v
dv

Z

e t
dt

Z

e b a

Z

μ

σ

μ

σ

μ σ

μ

σπσ

σ μ σ

π

σ μ μ σ μ σ

σ σ

−

−

−
=

+ −
= −

+ − − − −
= Φ −Φ

∫

∫

E

 (20)

The expectation of channel scales is the optimal

channel structure we learned from the variational

network. And the detailed Variational Automatic

Channel Pruning algorithm is described in Algorithm 1.

Algorithm 1. Variational Automatic Channel Pruning

1. Input: Truncated bound a, b, N pairs data

1

(,)N
i i i

D x y
=

= with batch size M, Original channel numbers
1 2

[, , ,]
L

d d d d= …

 Output: The optimal channel scales *

v , The generated weights w

2. Initialize variational variables [,]φ μ σ= , parameters in weights generator g ;

3. for epoch in 1 to K do

4. Sample ~ (| 0,1)
i

U∈ ∈ for L layers independently

5. compute 1exp((()))
i i i i i i
v Z aμ σ

−

= + Φ ∈ +Φ

6.
ln

1

(() || ()) i

L

KL v

i

D q v p v dφ

=

=∑ in equation (14)

7.
1

(,) log (| , ,)
M

D i i i

i

N
L p y x v

M
φ

=

= ∑g g

8. (,) (,) (() || ())
D KL

L L D q v p vφφ φ= −g g

9. Update g and [,]φ μ σ= via maximizing (,)L φ g

10. Get the * * *

[,]φ μ σ= and *

g

11.

2 * 2 2
* / 2 * * * *

*

* * *

()))
[() ()]

i

i i i i i

i i i

e b a
v

z

µ
σ μ μ μ σ

σ σ

+

− − − −
= Φ −Φ

12. Obtain the corresponding prunded weights w through weights generator with *

v and *

g

13. return * * * *

1 2
[, , ,]

L
v v v v= … , w

Now, the learned channel structure can be applied

for channel pruning. Inputting the expectation of the

channel scales into the trained weights generator, the

initial weights for Pruned CNN can be predicted, and

then the optimal Pruned CNN can be built.

The Pruned CNN continues to be fine-tune with

cross-entropy loss until convergence. Thus, the

compact CNN after channel pruning can be acquired

for resource-constrained scenarios.

346 Journal of Internet Technology Volume 22 (2021) No.2

4 Experimental Results

In this section, we evaluate the proposed algorithm

on image classification tasks to demonstrate the

effectiveness. The experiments are carried out on some

common networks including Lenet-5 [40], VGGNet

[41] and, ResNets [2]. We use Pytorch to carry out our

VA-CPSO for pruning. All experiments are running on

Nvidia 1080Ti GPU. The experiments have achieved

encouraging results.

4.1 Experimental Settings

Implementation procedure: Two stages need to be

performed for channel pruning in our algorithm. In the

first stage, we execute the minibatch-based SGVB for

training the weighs generator and optimizing the

posterior distribution of channel scales i.e. the

variational variables [,]φ μ σ= . Then, the expectation

of the distribution is calculated as the optimal channel

scales and the generated weights of the optimal

channel scales are obtained through the trained weights

generator. In the second stage, we build the Pruned

CNN according to the channel scales and employ the

generated weights on it. The Pruned CNN continues to

be trained until convergence.

Compression Metric: Parameters and Floating-point

operations (FLOPs) are widely-used to measure the

computation and memory consumption of CNNs.

Parameters include the convolutional layer and fully

connected layer parameters. The ratio of the parameters

in the network before and after pruning is called

Compression Ratio (CR), which judges the effect of

the compression algorithm. FLOPs include floating-

point addition and floating-point multiplication.

Because of the regularity of CNN, They can be count

simply. Then the theoretical Speedup (Sp) of the

compression algorithm can be got, which is

proportional to the acceleration of CNN. In this paper,

we only take account of the floating-point

multiplication.

Training details: The truncated bound a and b are the

hyperparameters in our model. As the channel scales v

are limited to 0, 1, the lnv are limited to −∞ , 0. In

practice, the channel scales can not be 0 which will

cause the disappearance of the layer, so we set

[0.05,1]v∈ . In addition, we use a weight coefficient

r
w on the regularization term of the ELBO in order to

observe its effect on pruning. The momentum is set to

0.9 and the weight decay is set to 0.0001 in all

experiments. The other details are discussed in the

following sections.

4.2 LeNet-5 on MNIST

We evaluate our VA-CPSO with LeNet-5 on

MINIST [40]. There are two convolutional layers and

two fully connected layers in LeNet5 with 20-50-500

channels/neutrals structure. When training the VA-

CPSO, we set different learning rates for the

parameters in the weights generator g and the

variational variables [,]φ μ σ= with Adam[39]

optimizer. The former is set to 0.005 and the latter is

set to be 0.0001. When retraining the Pruned CNN, the

learning rate is set to be 0.005 with Adam [39]

optimizer. We explore various weight coefficient
r

w in

VA-CPSO with the batch size 512 for 60 epochs. The

PrunedCNNs are trained with the batch size 512 for 40

epochs in the second step. Larger
r

w results in higher

pruning rates in our algorithm.

Table 1 shows the pruning results with various
r

w .

In the table, the Sp is speedup and the CR is the

Compression ratio as explained above. VA-CPSO(i)

represents the results with
r

w i= . Model LeNet-5 is

the baseline and the other are different pruning

methods on LeNet-5. We can see that when the
r

w is

set to normal 1, the optimal structure is 13-32-325

which realizesbetter accuracy than the original LeNet-5

with 0.02 accuracy advance. The VA-CPSO find the

optimal structure of the LeNet-5 for channel pruning.

As we turn up the weight coefficient
r

w , the more

compact networks can be obtained with negligible loss

of accuracy. When the
r

w is set to 2, 5 and 8, the

LeNet5 yields a compression ratio of 9.50×, 24.19×

and 34.60× respectively and the speedup of 8.71×,

18.61× and 28.20× with no more than 0.21 percent loss

of accuracy compared to the base. The VA-CPSO gets

higher performance compared with other methods. For

example, compared with recent research GAL [48],

VA-CPSO (2) obtains higher speedup and compression

ratio (8.71× vs 5.71×, 9.50× vs 8.17×) with the same

error (0.86%), and VA-CPSO (5) achieves 18.61× and

24.19× speedup and compression ratio, which are

higher 15.04× and 15.63× in GAL with only more than

0.03% accuracy loss.

4.3 VGGNet on CIFAR-10

We then evaluate the VA-CPSO with VGGNet on

CIFAR10 [42] to verify its effectiveness in deep

architectures. Since the data in CIFAR-10 are RGB

images with a size of 32×32 instead of the original

input RGB images of VGGNet with size 224×224,

Zagoruyko applies a slightly modified version of

VGGNet on CIFAR-10 [43] which contain 13

convolutional layers and 2 fully connected layers. We

use this model with Batch Normalization after each

convolutional layer here. The initial learning rates for

the parameters of weights generator g and the

variational variables [,]φ μ σ= are set to be 0.01 and

0.0005 separately. During retraining, the initial

learning rates is set to be 0.05. All the learning rate is

divided by 10 per 50 epochs. We train the VA-CPSO

for 100 epochs with the batch size 256 and retrain the

Pruned CNN 100 epochs with the same batch size.

Variational Automatic Channel Pruning Algorithm Based on Structure Optimization for Convolutional Neural Networks 347

Table 1. Pruning results of LeNet-5 on MNIST

Model Error% Channels #Flops (Sp) #Param. (CR)

LeNet-5 0.80 20-50-500 3.99M (1.00×) 0.65M (1.00×)

SSL [26] 1.00 3-12-500 0.31M (12.7×) 0.16M (4.20×)

SBP [14] 0.86 3-18-283 0.34M (11.6×) 0.13M (4.98×)

NISP [13] 0.82 10-25-250 1.27M (3.15×) 0.17M (3.94×)

GAL-0.01 [48] 0.86 10-15-198 0.70M (5.71×) 0.08M (8.17×)

GAL-0.05 [48] 0.90 4-13-121 0.26M (15.04×) 0.04M (15.63×)

VA-CPSO (1) 0.78 13-32-325 1.74M (2.29×) 0.27M (2.39×)

VA-CPSO (2) 0.86 6-16-162 0.49M (8.71×) 0.07M (9.50×)

VA-CPSO (5) 0.93 4-10-100 0.21M (18.61×) 0.03M (24.19×)

VA-CPSO (8) 1.01 3-8-87 0.14M (28.20×) 0.02M (34.60×)

As shown in Table 2, the error reaches the minimum

when the
r

w is 1 with 1.26× speedup and 1.78×

compression. With setting
r

w to 2 and 4, we achieve

1.67×, 2.03× speedup and 3.38×, 4.28× compression

with minor loss of performance. Our algorithm

achieves the highest speedup and pruning rate with the

lowest error comparing with other methods as we

increase the .

r
w e.g. VA-CPSO obtains 93.05%

accuracy with 4.28× compression and 2.03× speedup,

which is better than 93.05% accuracy with 3.81×

compression and 1.71× speedup in SSS [44]. The

results suggest that our VA-CPSO with suitable
r

w

can greatly compact the large CNN, which improves

the universality of VGG model.

Table 2. Pruning results of VGGNet on CIFAR-10

Model Error% #Flops (Sp) #Param. (CR)

VGGNet 6.04 313.73M (1.00×) 14.98M (1.00×)

L1 [11] 6.6 206.00M (1.52×) 5.40M (2.77×)

SSS [44] 6.37 199.93M (1.57×) 4,99M (3.00×)

SSS [44] 6.98 183.13M (1.71×) 3.93M (3.81×)

Zhao et al. [17] 6.82 190.00M (1.65×) 3.92M (3.81×)

VA-CPSO (1) 6.35 249.97M (1.26×) 8.40M (1.78×)

VA-CPSO (2) 6.41 187.64M (1.67×) 4.43M (3.38×)

VA-CPSO (3) 6.95 154.12M (2.03×) 3.50M (4.28×)

4.4 ResNets on CIFAR-10

ResNets are a series of networks with the shortcut.

They also can be pruned by our algorithm.Here, we

adopt ResNet20, ResNet-32, ResNet-44, ResNet-56,

and ResNet-110 on CIFAR-10 to evaluate our VA-

CPSO. ResNets for CIFAR-10 have three stages of

residual blocks with feature maps of different numbers

(16, 32 and 64) and sizes (32×32, 16×16 and 8×8). The

numbers of residual blocks in each stage are the same.

And the parameter-free, identity shortcut layers with

zero paddings are used for the increasing feature maps

between neighboring stages. The residual block

consists of two convolutional layers. Since the shortcut

layers are parameter-free, the second layers of residual

blocks in one stage must have the same number of

channels, so they share one channel scale when training.

There is no limit for the first layers of residual blocks,

therefore they have their own channel scales for pruning.

In ResNets, we set the initial learning rates for the

parameters of weights generator g and the variational

variables [,]φ μ σ= as 0.1 and 0.0005. And the initial

learning rates is set to be 0.3 for retaining Pruned CNN.

The learning rate is divided by 10 per 50 epochs. We

train the VA-CPSO for 100 epochs with the batch size

128 and retrain the Pruned CNN 150 epochs with the

same batch size.

Table 3 shows our pruning results. The best

accuracy is realized when the
r

w is 1, which suggested

that our algorithm enables ResNets to learn better

structures. As
r

w increases, the networks tend to be

compact. At the
r

w of 4, a balance is achieved between

the accuracy and compression ratio of ResNets. At this

point, the ResNets achieves outstanding compression

and acceleration performance with negligible accuracy

loss of no more than 0.51 percent. For example, 2.02×

speedup and 1.96× compression are achieved in

ResNet-110 with a 0.39 percent accuracy drop.

In a scenario where the equipments are limited and

requirements for accuracy is not so high, setting the
r

w

to 6 will achieve an amazing compression performance

with no more than 1.53 percent accuracy loss. We can

see that the ResNet-56 and the ResNet-110 are

accelerated 2.65×, 2.82× and are compressed 2.57×,

2.59× with 1.34, 0.86 percent accuracy drop. Campared

to other methods, our VA-CPSO outperforms the state-

of-the-art algorithms on ResNet20, 32, 44, 56, 110. For

example, VA-CPSO achieves a higher speedup and

compression ratio than GAL [48] in ResNet-56 and

ResNet-110.

348 Journal of Internet Technology Volume 22 (2021) No.2

Table 3. Pruning results of ResNets on CIFAR-10

Model Error% #Flops (Sp×) #Param. (CR×)

ResNet-20 7.8 40.55M (1.00×) 0.27M (1.00×)

Zhao et al. [17] 8.34 32.27M (1.27×) 0.22M (1.20×)

LCCL [45] 8.32 26.10M (1.55×) –

SFP [46] 9.17 24.30M (1.67×) –

FPGM [47] 8.91 24.30M (1.67×) –

VA-CPSO (1) 7.53 33.91M (1.18×) 0.23M (1.17×)

VA-CPSO (2) 7.94 26.80M (1.51×) 0.18M (1.49×)

VA-CPSO (4) 8.39 20.11M (2.01×) 0.14M (1.92×)

VA-CPSO (6) 9.24 15.3M (2.65×) 0.12M (2.20×)

ResNet-32 7.18 68.86M (1.00×) 0.46M (1.00×)

LCCL [45] 9.26 47.60M (1.47×) –

SFP [46] 7.92 40.30M (1.71×) –

FPGM [47] 7.69 40.30M (1.71×) –

FPGM [47] 8.07 32.30M (2.13×) –

VA-CPSO (1) 7.11 56.37M (1.22×) 0.39M (1.19×)

VA-CPSO (2) 7.31 45.53M (1.51×) 0.31M (1.51×)

VA-CPSO (4) 7.58 34.11M (2.02×) 0.23 M (1.99×)

VA-CPSO (6) 8.7 19.88M (3.46×) 0.14M (3.34×)

ResNet-44 6.97 97.17M (1.00×) 0.66M (1.00×)

MIL [22] 7.49 63.30M (1.53×) –

VA-CPSO (1) 6.86 78.85M (1.23×) 0.55M (1.19×)

VA-CPSO (2) 7.07 64.22M (1.51×) 0.43M (1.51×)

VA-CPSO (4) 7.31 48.11M (2.02×) 0.33M (2.00×)

VA-CPSO (6) 8.18 33.37M (2.91×) 0.23M (2.83×)

ResNet-56 6.17 125.49M (1.00×) 0.85M (1.00×)

L1-A [11] 6.9 11.20M (1.12×) 0.77M (1.10×)

L1-B [11] 6.94 90.90M (1.38×) 0.73M (1.16×)

NISP [13] 6.99 70.76M (1.77×) 0.49M (1.74×)

SFP [46] 7.74 59.40M (2.11×) –

GAL-0.6 [48] 6.62 78.30M (1.60×) 0.75M (1.13×)

GAL-0.8 [48] 8.42 49.99M (2.51×) 0.29M (2.93×)

Hrank [49] 6.83 62.72M (2.00×) 0.49M (1.73×)

VA-CPSO (1) 6.09 103.78M (1.21×) 0.72M (1.17×)

VA-CPSO (2) 6.28 82.90M (1.51×) 0.56M (1.50×)

VA-CPSO (4) 6.68 61.66M (2.04×) 0.42M (2.02×)

VA-CPSO (6) 7.51 47.40M (2.65×) 0.33M (2.57×)

ResNet-110 5.97 252.89M (1.00×) 1.72M (1.00×)

L1-A [11] 6.45 213.00M (1.19×) 1.68M (1.02×)

L1-B [11] 6.7 155.00M (1.16×) 1.16M (1.48×)

NISP [13] 6.99 142.17M (1.78×) 0.98M (1.76×)

SFP [46] 6.62 150.00M (1.68×) –

GAL-0.1 [48] 6.41 205.7M (1.22×) 1.65M (1.04×)

GAL-0.5 [48] 7.26 130.2M (1.94×) 0.95M (1.81×)

Hrank [49] 6.64 105.70M (2.39×) 0.70M (2.45×)

VA-CPSO (1) 5.89 202.8M (1.25×) 1.41M (1.22×)

VA-CPSO (2) 6.09 167.01M (1.51×) 1.14M (1.50×)

VA-CPSO (4) 6.36 125.08M (2.02×) 0.88M (1.96×)

VA-CPSO (6) 6.83 89.56M (2.82×) 0.66M (2.59×)

5 Conclusion

In this paper, we propose a Variational Automatic

Channel Pruning Algorithm based on structure

optimization (VA-CPSO) to compress and accelerate

CNNs by automatically optimizing the channel

numbers in CNNs based on Bayesian inference. We

reformulate the channel numbers and the node numbers

as important parameters called channel scales, and

adopt the truncated factorized log-uniform prior and

log-normal posterior for channel scales to make the

variational model. The weights generator is designed

for producing tensors with corresponding size as

weight parameters of various pruned structure of CNN

under the control of channel scales. During training,

the channel scales as well as the parameters of the

weights generator are optimized synchronously

through variational inference and stochastic gradient

variational Bayes (SGVB). Finally, the optimal

Variational Automatic Channel Pruning Algorithm Based on Structure Optimization for Convolutional Neural Networks 349

channel structure and the corresponding generated

weights are employed in the pruned CNNs for further

training to achieve high-performance compacted CNN.

Our algorithm avoids the tedious hyperparameter

adjustment and empirical design. And the extensive

experiments demonstrate the outstanding performance

of our algorithm.

 Noted that the selections of prior and posterior are

exploratory, therefore other sparse prior and posterior

families on channel scales will be considered in future

work. It is also interesting to explore more advanced

weights generator structure to achieve better

performance. Furthermore, we plan to apply our

method to more applications such as gait recognition

and human behavior recognition.

Acknowledgments

This work is supported by the National Key

Research and Development Project under grant

2018YFB17002402, and also partly supported by the

National Natural Science Foundation of China under

grant 61872404 and the Aplied Basic Research Key

Programs of Science and Technology Department of

Sichuan Province on the grant 2018JY0023.

References

[1] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature, Vol.

521, No. 7553, pp. 436-444, May, 2015.

[2] B. Yao, H. Zhou, J. Yin, G. Li, C. Lv, Small Sample Image

Recognition Based on CNN and RBFNN, Journal of Internet

Technology, Vol. 21, No. 3, pp. 881-889, May, 2020.

[3] C.-H. Yeh, C.-Y. Lin, K. Muchtar, RGB-D Abandoned

Object Detection Based on GrabCut Using Kinect, Journal of

Internet Technology, Vol. 18, No. 4, pp. 927-933, July, 2017.

[4] C. Liu, L. Chen, F. Schroff, H. Adam, W. Hua, A. L. Yuille,

L. Fei- Fei, Auto-deeplab: Hierarchical neural architecture

search for semantic image segmentation, IEEE Conference on

Computer Vision and Pattern Recognition, Long Beach, CA,

USA, June, 2019, pp. 82-92.

[5] C. Dai, X. Liu, J. Lai, P. Li, H. Chao, Human behavior deep

recognition architecture for smart city applications in the 5g

environment, IEEE Network, Vol. 33, No. 5, pp. 206-211,

September-October, 2019.

[6] X. Zhang, J. Zou, X. Ming, K. He, J. Sun, Efficient and

accurate approximations of nonlinear convolutional networks,

IEEE Conference on Computer Vision and Pattern Recognition,

Boston, MA, USA, June, 2015, pp. 1984-1992.

[7] S. Lin, R. Ji, C. Chen, D. Tao, J. Luo, Holistic CNN

Compression via Low-rank Decomposition with Knowledge

Transfer, IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 41, No. 12, pp. 2889-2905,

December, 2019.

[8] J. Bae, D. Yeo, J. Yim, N. Kim, C. Pyo, J. Kim, Densely

distilled flow-based knowledge transfer in teacher-student

framework for image classification, IEEE Transactions on

Image Processing, Vol. 29, pp. 5698-5710, April, 2020.

[9] S. Han, J. Pool, J. Tran, W. Dally, Learning both weights and

connections for efficient neural network, Advances in Neural

Information Processing Systems, Montreal, Quebec, Canada,

December, 2015, pp. 1135-1143.

[10] S. Han, H. Mao, W. J. Dally, Deep compression: Compressing

deep neural networks with pruning, trained quantization and

huffman coding, International Conference on Learning

Representations, San Juan, Puerto Rico, May, 2016, pp. 1-14.

[11] H. Li, A. Kadav, I. Durdanovic, H. Samet, H. P. Graf, Pruning

filters for efficient convnets, International Conference on

Learning Representations, Toulon, France, April, 2017, pp.

1-13.

[12] R. Abbasi-Asl, B. Yu, Structural compression of convolutional

neural networks based on greedy filter pruning, arXiv

preprint arXiv:1705.07356, March, 2017.

[13] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M.

Gao, C.-Y. Lin, L. S. Davis, Nisp: Pruning networks using

neuron importance score propagation, IEEE Conference on

Computer Vision and Pattern Recognition, Salt Lake City,

UT, USA, June, 2018, pp. 9194-9203.

[14] K. Neklyudov, D. Molchanov, A. Ashukha, D. P. Vetrov,

Structured bayesian pruning via log-normal multiplicative

noise, Advances in Neural Information Processing Systems,

Long Beach, CA, USA, December, 2017, pp. 6775-6784.

[15] C. Louizos, M. Welling, D. P. Kingma, Learning sparse

neural networks through
0

L regularization, International

Conference on Learning Representations, Vancouver, BC,

Canada, April, 2018, pp. 1-13.

[16] D. Molchanov, A. Ashukha, D. Vetrov, Variational dropout

sparsifies deep neural networks, International Conference on

Machine Learning, Sydney, Australia, August, 2017, pp.

2498-2507.

[17] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, Q. Tian,

Variational convolutional neural network pruning, IEEE

Conference on Computer Vision and Pattern Recognition,

Long Beach, CA, USA, June, 2019, pp. 2780-2789.

[18] Z. Liu, M. Sun, T. Zhou, G. Huang, T. Darrell, Rethinking the

value of network pruning, International Conference on

Learning Representations, New Orleans, LA, USA, May,

2019, pp. 1-21.

[19] Y. LeCun, J. S. Denker, S. A. Solla, Optimal brain damage,

Advances in Neural Information Processing Systems, Denver,

CO, USA, November, 1989, pp. 598-605.

[20] B. Hassibi, D. G. Stork, Second order derivatives for network

pruning: Optimal brain surgeon, Advances in Neural

Information Processing Systems, Denver, CO, USA, November,

1992, pp. 164-171.

[21] Y. Guo, A. Yao, Y. Chen, Dynamic network surgery for

efficient dnns, Advances in Neural Information Processing

Systems, Barcelona, Spain, December, 2016, pp. 1379-1387.

[22] X. Dong, J. Huang, Y. Yang, S. Yan, More is less: A more

complicated network with less inference complexity, IEEE

Conference on Computer Vision and Pattern Recognition,

Honolulu, HI, USA, July, 2017, pp. 1895-1903.

350 Journal of Internet Technology Volume 22 (2021) No.2

[23] H. Hu, R. Peng, Y. W. Tai, C. K. Tang, Network trimming: A

data-driven neuron pruning approach towards efficient deep

architectures, arXiv preprint arXiv: 1607.03250, July, 2016.

[24] J. Luo, H. Zhang, H. Zhou, C. Xie, J. Wu, W. Lin, Thinet:

Pruning cnn filters for a thinner net, IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 41, No. 10,

pp. 2525-2538, October, 2019.

[25] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, C. Zhang, Learning

efficient convolutional networks through network slimming,

IEEE International Conference on Computer Vision, Venice,

Italy, October, 2017, pp. 2755-2763.

[26] W. Wen, C. Wu, Y. Wang, Y. Chen, H. Li, Learning

structured sparsity in deep neural networks, Advances in

Neural Information Processing Systems, Barcelona, Spain,

December, 2016, pp. 2074-2082.

[27] G. E. Hinton, D. van Camp, Keeping the neural networks

simple by minimizing the description length of the weights,

Sixth Annual Conference on Computational Learning Theory,

Santa Cruz, CA, USA, July, 1993, pp. 5-13.

[28] K. Ullrich, E. Meeds, M. Welling, Soft weight-sharing for

neural network compression, International Conference on

Learning Representations, Toulon, France, April, 2017, pp.

1-16.

[29] C. Louizos, K. Ullrich, M. Welling, Bayesian compression for

deep learning, Advances in Neural Information Processing

Systems, Long Beach, CA, USA, December, 2017, pp. 3288-

3298.

[30] I. Bello, B. Zoph, V. Vasudevan, Q. V. Le, Neural optimizer

search with reinforcement learning, International Conference

on Machine Learning, Sydney, NSW, Australia, August,

2017, pp. 459-468.

[31] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L. J. Li, L.

Fei-Fei, A. Yuille, J. Huang, K. Murphy, Progressive neural

architecture search, arXiv preprint arXiv: 1712.00559, July,

2018.

[32] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, J. Dean, Efficient

neural architecture search via parameters sharing, arXiv

preprint arXiv: 1802.03268, February, 2018.

[33] A. Ashok, N. Rhinehart, F. Beainy, K. M. Kitani, A. Ashok,

N. Rhinehart, F. Beainy, K. M. Kitani, N2n learning:

Network to network compression via policy gradient

reinforcement learning, arXiv preprint arXiv: 1709.06030,

December, 2017.

[34] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, S. Han, Amc:

Automl for model compression and acceleration on mobile

devices, European Conference on Computer Vision, Munich,

Germany, September, 2018, pp. 815-832.

[35] L. Xie, A. Yuille, Genetic CNN, IEEE International Conference

on Computer Vision, Venice, Italy, October, 2017, pp. 1388-

1397.

[36] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J.

Tan, Q. V. Le, A. Kurakin, Large-scale evolution of image

classifiers, International Conference on Machine Learning,

Sydney, NSW, Australia, August, 2017, pp. 2902-2911.

[37] Z. Liu, H. Mu, X. Zhang, Z. Guo, X. Yang, K. T. Cheng, J.

Sun, Metapruning: Meta learning for automatic neural

network channel pruning, IEEE International Conference on

Computer Vision, Seoul, South Korea, November, 2019, pp.

3295-3304.

[38] D. P. Kingma, T. Salimans, M. Welling, Variational dropout

and the local reparameterization trick, Advances in Neural

Information Processing Systems, Montreal, Quebec, Canada,

December, 2015, pp. 2575-2583.

[39] D. Kingma, J. Ba, Adam: A method for stochastic optimization,

International Conference on Learning Representations,

San Diego, CA, USA, May, 2015, pp. 1-15.

[40] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based

learning applied to document recognition, Proceedings of the

IEEE, Vol. 86, No. 11, pp. 2278-2324, November, 1998.

[41] K. Simonyan, A. Zisserman, Very deep convolutional networks

for large-scale image recognition, International Conference

on Learning Representations, San Diego, CA, USA, May,

2015, pp. 1-14.

[42] K. Filonenko, R. Wisnovsky, M. Cheriet, Learning multiple

layers of features from tiny images, Ph. D Thesis, University

of Toronto, Toronto, Canada, 2012.

[43] S. Zagoruyko, 92.45% on cifar-10 in torch. http://torch.ch/

blog/2015/07/30/cifar.html, 2015.

[44] Z. Huang, N. Wang, Data-driven sparse structure selection for

deep neural networks, European Conference on Computer

Vision, Munich, Germany, September, 2018, pp. 317-334.

[45] X. Dong, J. Huang, Y. Yang, S. Yan, More is less: A more

complicated network with less inference complexity, IEEE

Conference on Computer Vision and Pattern Recognition,

Honolulu, HI, USA, July, 2017, pp. 1895-1903.

[46] Y. He, G. Kang, X. Dong, Y. Fu, Y. Yang, Soft filter pruning

for accelerating deep convolutional neural networks,

International Joint Conference on Artificial Intelligence,

Stockholm, Sweden, July, 2018, pp. 2234-2240.

[47] Y. He, P. Liu, Z. Wang, Z. Hu, Y. Yang, Filter pruning via

geometric median for deep convolutional neural networks

acceleration, IEEE Conference on Computer Vision and

Pattern Recognition, Long Beach, CA, USA, June, 2019, pp.

4335-4344.

[48] S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, D.

Doermann, Towards optimal structured cnn pruning via

generative adversarial learning, IEEE Conference on

Computer Vision and Pattern Recognition, Long Beach, CA,

USA, June, 2019, pp. 2785-2794.

[49] M. Lin, R. Ji, Y. Wang, Y. Zhang, B. Zhang, Y. Tian, L. Shao,

Hrank: Filter pruning using high-rank feature map, IEEE

Conference on Computer Vision and Pattern Recognition,

Seattle, WA, USA, June, 2020, pp. 1526-1535.

Variational Automatic Channel Pruning Algorithm Based on Structure Optimization for Convolutional Neural Networks 351

Biographies

Shuo Han is currently working

toward the M.S. degree in School of

Information and Communication

Engineering, University of Electronic

Science and Technology of China,

Chengdu, China. Her research

interests include deep learning, model

compression and so on.

Yufei Zhan is a senior student at

Glasgow College, UESTC. She is

extremely intrested in the area of

human behaviour recognition (HBR),

machine learning, etc.

Xingang Liu is a professor with the

school of ICE, UESTC. His research

interests include HBR, deep learning,

video codec, and so on. He has

published more than 90 academic

papers in related magazines, journals,

and conferences. Dr. Liu is an IEEE Senior Member,

and a Fellow of IET. He won the IEEE TCSC Award

for Excellence for Early Career Researchers in 2016

because of his achievement on scalable coding for

multimedia signals.

352 Journal of Internet Technology Volume 22 (2021) No.2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

