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Abstract 

Channel pruning has achieved remarkable success in 

solving the significant computation and memory 

consumption in Convolutional Neural Networks (CNN). 

Most existing methods measure the importance of 

channels with manually designed algorithms and pruning 

unimportant channels rely on heuristics or expertise 

during the processing, which are labourious and 

subjective. In this paper, we proposed a Variational 

Automatic Channel Pruning Algorithm based on structure 

optimization (VA-CPSO) which can automatically 

optimize channel numbers via channel scales in end-to-

end manner through variational inference. Firstly, a 

weights generator controlled by channel scales is built to 

produce weights for various pruned structure of CNN. 

And then, the channel scales with truncated factorized 

log-uniform prior and log-normal posterior are optimized 

by variational inference for optimal pruning structure. 

Meanwhile, parameters of the weights generator are 

optimized synchronously. Finally, the acquired optimal 

structure and corresponding generated weights are 

deployed in the pruned CNN for further training to 

achieve high-performance compression. The 

experimental results demonstrate that our proposed VA-

CPSO acquires better compression performance 

compared to existing pruning algorithms. The VA-CPSO 

achieve a compression of 34.60×, 4.28×, 1.96× and a 

speedup of 28.20×, 2.03×, 2.02× on LeNet-5, VGGNet, 

and ResNet-110 with no more than 0.5% loss of accuracy. 

Keywords: Automatic channel pruning, Variational 

inference, Structure optimization, CNN 

compression, Truncated distributions 

1 Introduction 

As a flexible family of models, Deep neural 

networks [1] have achieved state-of-the-art 

performance in many machine learning problems. With 

the strong learning ability to image data, Convolutional 

neural networks (CNNs) have created impactful 

advances in many computer vision tasks including 

image classification [2], object detection [3], image 

segmentation [4], and human behavior recognition [5]. 

While the success of CNNs is often supported by 

significant computation and memory consumption. The 

state-of-the-art models in image classification usually 

have tens of millions of parameters and take billions of 

floating-point operations to complete the prediction of 

one image. “Bigger is better” makes it difficult to 

deploy the advanced CNNs on devices that have strong 

limitations with respect to memory and energy 

consumptions such as mobiles, laptops, and wearable 

devices. 

Recently, many studies have shown that the deep 

neural network is heavily over-parametrized and can be 

compressed without significant loss of accuracy. 

Researchers are inspired by this and proposed a series 

of neural network compression techniques such as 

tensor decomposition [6], network quantization [7], 

knowledge distillation [8] and network pruning [9, 12], 

aiming to reduce the complexity of large models as 

much as possible while maintaining high accuracy. 

Network pruning is one of the effective methods which 

focuses on removing the redundant parameters from 

the network. According to the granularity of pruning, it 

can be divided into weight pruning and channel 

pruning. In weight pruning, the less salient individual 

weights are set to zeros with little loss to the final 

model quality. Though it is able to prune majority 

connections and achieve high compression ratio, it 

comes at the cost of the irregularity of the sparse 

computation pattern and requires specialized hardware 

for further acceleration. In contrast, channel pruning 

directly removes entire channels and corresponding 

feature maps which is fully supported by off-the-shelf 

deep learning library, and is efficient for practical 

implementation.  

The common idea of channel pruning is to measure 

the contribution of channels to the model performance 

and remove channels below thresholds. It is effective 

but the definition of the filter importance and the 

selection of thresholds rely heavily on heuristics or 

expertise, which is subjective, laborious and often sub-
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optimal. A recent study [18] shows that the pruned 

architecture itself rather than a set of inherited 

“important” weights is more crucial to the final model. 

Inspired by it, the AutoML and neural architecture 

search are introduced in channel pruning to find the 

optimal pruning structure directly. Reinforcement 

learning and genetic algorithm are widely used, but the 

“hard” searching usually result in significant 

computation. To avoid this problem, the Variational 

Bayesian is introduced in this paper to translate the 

search problem into the optimization problem for 

effective pruning. 

In this paper, we propose a Variational Automatic 

Channel Pruning Algorithm based on structure 

optimization (VA-CPSO) to automatically explore the 

optimal pruning architecture through variational 

Bayesian sparsity learning for channel pruning. It 

regards the contraction scales of channel numbers for 

each layer i.e. the channel scales as variables with 

truncated factorized log-uniform prior and lognormal 

posterior, and introduce the variational Bayesian to 

optimal the distribution of them. The weights generator 

is built following [37] to generate weights for various 

pruned structure of CNN under the control of channel 

scales. The distributed parameter of the channel scales 

and the parameters in weights generator are optimized 

synchronously by stochastic gradient variational Bayes 

(SGVB). The optimal results are employed in Pruned 

CNN for channel pruning and we can get the pruned 

network by further tuning the Pruned CNN with cross-

entropy loss. Also, the number of neurons in the fully 

connection layers can be learned in our network by 

neuron scales which is similar to channel scales. Our 

algorithm gives a general structure optimization 

technique in end-to-end manner, it can apply for 

diverse layers such as convolutional layers, fully 

connected layers and depthwise separable convolution 

for structured pruning. 

Our contributions are summarized as follows: 

‧ We propose a Variational Automatic Channel 

Pruning Algorithm based on structure optimization 

(VA-CPSO) for pruning of CNNs. It is able to 

automatically find the optimal channel structure 

through variational Bayesian sparsity learning for 

pruning, which avoids the tedious hyperparameter 

adjustment and the empirical design. 

‧ The Bayesian Inference is introduced to optimize the 

distributed parameter of the channel scales, which 

makes the searching and the optimization of the 

channel structure becomes interpretable and stable, 

avoiding the arduous and ineffective exploration in 

the huge search space. And with a sparse prior, the 

structure tend to be light and compact. 

‧ Extensive experiments on several datasets show the 

effectiveness of our algorithm. 76.7% parameters 

and 50.9% floating-point operations on VGGNet are 

reduced with only 0.37% loss of accuracy. And on 

ResNet-110, 48.8% parameters and 50.5% floating-

point operations can be cut down with 0.39% loss of 

accuracy. It outperforms the state-of-the-art methods. 

The remainder of the paper is organized as follows. 

In Section 2, the related work of network pruning are 

described. Section 3 presents our proposed VA-CPSO 

for CNN channel pruning. To verify the proposed VA-

CPSO, Section 4 shows our experimental process, 

results as well as and the relevant analysis. Finally, we 

conclude the paper in Section 5. 

2 Related Work 

The model compression and acceleration is the 

hotspot in the deep neural network community recently. 

Extensive studies are emerging in an endless stream, 

including tensor decomposition [6], network quantization 

[7], knowledge distillation [8] and network pruning [9, 

12]. Here, we focus on network pruning and provide a 

non-exhaustive review of related methods. The 

network pruning reduces the size of the deep neural 

network by pruning some parameters and connections. 

The thinking about network pruning is deepening, and 

different directions have emerged. We classify them 

into three categories: importance-based pruning, 

sparsity learning, and architecture search. 

Importance-based pruning aims to define, find, and 

prune the unimportant connections from the deep 

neural network. Early work in weight pruning [19] and 

[20] determined the saliency by using all second-order 

derivatives of the error function to perform network 

pruning. More recently, Han et al. [9] used iterative 

thresholding to remove unimportant weights with small 

magnitudes and proposed the classical training, 

pruning and fine-tuning structure for pruning. Later 

they combined quantification and Hoffman coding 

after pruning to reduce the storage of sparse network 

[10]. The refinement for magnitude pruning techniques 

in [21] further increased the compression rates. In 

channel pruning, the unimportant filters will be 

removed. Li et al. [11] proposed a magnitude-based 

pruning in which l1-norm is used to measure the 

significance of filters. Hu et al. [23] pruned 

unimportant filters based on the sparsity of their 

outputs. Luo et al. [24] proposed the ThiNet, which 

pruned the filters based on statistics information 

computed from its next layer, not the current layer. 

Recently, some global-based methods for measuring 

the significance of channels have been proposed. 

Abbasi et al. [12] defined a filter importance index 

which equals the classification accuracy reduction 

(CAR) of the network after pruning that filter and then 

iteratively prunes filters based on the CAR index. Yu 

et al. [13] proposed the Neuron Importance Score 

Propagation (NISP) algorithm which can propagate the 

importance scores of final responses to every neuron in 

the network. The importance-based pruning has 

deepened the cognition to CNNs and can achieve 

significant compression. But the definition of the filter 
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importance is mainly based on empirical assumptions, 

which is prone to be comprehensive and subjective. 

Meanwhile, the thresholds of pruning for different 

layers are usually set manually based on heuristics or 

expertise, which is laborious but often sub-optimal. 

Sparsity learning methods try to induce sparsity and 

prune the network during training. A regularization 

term added to the loss function is often used for sparse 

induction. Louizos et al. [15] proposed a method for 

0
l -norm approximation. By 

0
l -norm regularization, the 

weights are encouraged to be exactly zero and can be 

pruned during training. In channel pruning, Liu et al. 

[25] used 
1
l -norm regularization to reduce the scale 

factors in Batch Normalization (BN), realizing the 

slimming of the network. Wen et al. [26] proposed the 

Structured Sparsity Learning (SSL) method. The group 

Lasso regularization is introduced to directly learn a 

compressed structure of deep CNNs during the training. 

Many compression techniques based on (variational) 

Bayesian inference and the minimum description 

principle [27] emerged recently. Molchanov et al. [16] 

proposed variational dropout as a reinterpretation for 

Gaussian dropout training from the perspective of 

variational inference. They learned per-parameter 

dropout rates during training and pruned the weights 

with high dropout rates to produce high sparsity as well 

as strong generalization. Ullrich et al. [28] proposed 

a ”soft weight-sharing” method which applies Gaussian 

Mixture Distribution as a prior to encourage sparsity 

and clustering of weights. Louizos et al. [29] used the 

prior for inducing the sparsity of weights and used the 

posterior for determining the bit precisions of each 

weight, which achieved high compression. Similar 

methods are used in channel pruning. Neklyudov et al. 

[14] proposed a drop-like layer in a Baysian way to 

achieve structured sparsity. The novel Bayesian 

method leads to structured sparsity by removing 

elements with a low SNR. Zhao et al. [17] introduced 

the variational Bayesian to estimate the distribution of 

channel saliency induced by a sparse prior and pruned 

redundant channels based on the distributions. The 

variational Bayesian provides theoretical motivation 

for regularization and sparsification techniques and 

enriches the study of network compression, but the 

excessive variational parameters in models will greatly 

increase the complexity of training. 

Architecture search methods have been widely 

adopted in neural network design and compression, 

leading to a compact and advanced network structure. 

Reinforcement learning is a common approach. NAS 

(Neural Architecture Search) [30] used a recurrent 

network to generate the model descriptions and train 

this RNN with reinforcement learning, learning novel 

architectures with high performance. This work has 

been further developed by PNAS [31] and ENAS [32]. 

Inspired by them, N2N (Network to Network) [33] 

established the selection mechanism based on 

reinforcement learning, achieving network compression 

through channel selection. He et al. [34] proposed 

AutoML for Model Compression (AMC) which 

automatically searches the design space by reinforcement 

learning, greatly improving the compression quality. 

Genetic algorithm is also used by researchers. Xie et al. 

[35] encoded the network structures and adopted the 

genetic algorithm to cross the large search space. They 

finally found the most competitive individual through 

recognition accuracy. Real et al. [36] took a similar 

approach to search for an efficient image recognition 

Network. Liu et al. [37] trained a PruningNet and 

employed the genetic algorithm to find the optimal 

channel pruning structure, actualizing superior 

performances on deep CNNs. Architecture search helps 

to free human labor and automatically seek for the 

optimal compression policy, but inefficient search 

algorithms often result in significant computational 

overhead.  

Inspired by variational Bayesian sparsity learning 

and architecture search, the Bayesian Inference is 

introduced in our designed architecture search network 

for automatically searching and optimizing the sparse 

channel structure during training. Our algorithm 

absorbs the superiority of them and avoids the 

inferiority in a subtle way, achieving efficient channel 

selection and pruning. 

3 The Proposed VA-CPSO  

In this section, we introduced the proposed VA-

CPSO which controls the channel numbers of each 

layer via channel scales for channel pruning of CNNs. 

The VA-CPSO algorithm is implemented on the 

variational structure optimization network as shown in 

Figure 1. It includes two parts: (1) Weights generator 

for producing weights under the control of channel 

scales. (2) Pruned CNN for predicting the input images 

with the generated weights to measure the quality of 

the corresponding channel scales. In this network, the 

mini-batch images and the original channel numbers of 

CNN are the input, the distributed parameter of and the 

parameters in the weights generator are network 

variables to be trained, and the evidence lower bound 

(ELBO) is the Loss for training network variables.  

The channel scales are limited to 0, 1 for controlling 

the proportion of retained channels per layer. During 

training, the variational inference and stochastic 

gradient variational Bayes are introduced (SGVB) to 

train and optimize the distribution of the channel scales 

as well as the parameters in the weights generator. 

Concretely, the truncated prior and posterior 

distribution families are adopted to channel scales and 

the corresponding ELBO is minimized to acquire the 

probability density of the channel scales. After training, 

channel pruning can be implemented based on the 

optimal channel scales and the generated weights we 

obtained to get compacted CNN. 
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Figure 1. Variational structure optimization network 

for VA-CPSO 

Note that there is great redundancy for the 

parameters of the fully connected layers (FC) in CNN, 

so we incorporate the FC into our structure 

optimization network. We deal with the neurons in FC 

like channels in convolution layers and find the 

optimal structure for pruning neurons. 

3.1 Weights Genetator 

The key issue in channel pruning is how to select the 

channels of the convolution layers for pruning, in order 

that the structure of the pruned network can achieve 

high compression with almost lossless performance. 

The common methods try to pruning unimportant 

channels or induce sparsity via regularization as 

mentioned in Section 2. Recently, the development of 

AutoML has brought new ideas to the researchers. The 

architecture search for pruning attracts plenty of 

attention. The study [18] suggests that the pruned 

network structure is decisive instead of the remainder 

weights, which support us to find the optimal pruned 

network structure directly. Following [37], we design a 

weights generator controlled by the channel scales, 

which predict weights for the corresponding pruned 

structure. Moreover, we take the FC into account. 

As shown in Figure 2, the generator consists of a 

series of blocks, each corresponding to a convolutional 

layer or FC of the CNN. And the block is comprised of 

two fully connected layers with 32 neurons in the 

middle layer. The inputs of the weights generator 

contain two vectors with the same length: channel 

scales 
1 2

[ , , , ]
L

v v v v= …  and the numbers of original 

channels 
1 2

[ , , , ].
L

d d d d= …  The former is the network 

variable composed of the layer-wise channel scales 

limited to 0,1 which controls the shape of the generated 

weights for Pruned CNN. The latter is the network 

input consisting of the number of channels for each 

convolutional layer in the original CNN for controlling 

the original shape of the output weights i.e. the number 

of output nodes for the last FC in each block. By 

multiplying the corresponding elements of the two 

vectors, the numbers of channels after pruning c =  

1 2
[ , , , ],

L
c c c…  can be determined by ( * )

i i i
c round d v=  

and the final shape of the generated weights can be 

acquired after reshaping and cropping. Meanwhile, we 

append the original neuron numbers and neuron scales 

for each FC to the input vectors separately and 

generate the pruned weights of the fully connection 

layer in the same way.  

Block

Block

Block

C
v

Channel scales

1
v

2
v

3
v Block

Weights 

genetator

Original channel 
numbers

Connv

Connv

Connv

FC

Mini-batch 
images

Pruned 

CNN

Loss

[�1 ,�2, … ,��] 
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(b) The structure of each block 

Figure 2.  

In the forward propagation, the channel scales enter 

into the relevant blocks separately to produce weights 

for different layers of CNN. A Pruned CNN based on 

the numbers of pruned channel numbers c are 

established, and the weights generated by blocks are 

reshaped and cropped to adapt the structure of each 

layer in Pruned CNN. These generated weights are put 

into Pruned CNN to calculate the loss giving a batch of 

input images. In the backpropagation, the parameters in 

blocks and the channel scales v are updated with 

SGVB which will be described in detail later. Pruned 

CNN doesn’t participate in the gradient update. 

3.2 Bayesian Inference and Stochastic 

Gradient Variational Bayes (SGVB) 

Consider a dataset 
1 1

{ { } , { } },N N

n n n n
D x x y y

= =

= = =  x is 

input data, y is corresponding label and N is the 

number of images on this dataset. Our goal is to learn 

the variables v of the model with conditional 
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probability ( | , ).p y x v  Where the variables v are 

channel scales that control the numbers of channels for 

layers. In Bayesian learning, we can adapt the original 

prior knowledge after we collect some new information. 

In particular, if we know the prior distribution ( )p v  

and the data D arrives, we can inference that the 

posterior distribution is ( | ) ( | ) ( ) / ( )p v D p D v p v p D=  

according to the Bayes rule. However, the inference 

usually involves the intractable-computation 

multidimensional integrals like ( ) ( , ) .p D p D v dv= ∫  

Hence, the approximation techniques need to be 

introduced. 

Variational Inference is one of the most common 

techniques. In this approach, the posterior distribution 

( | )p v D  is approximated by a parametric distribution 

( )q vφ . The degree of approximation is estimated via 

the Kullback-Leibler divergence. From this, the 

intractable inference problem is converted to a 

tractable optimization problem. The optimal value of 

variational parameters φ  can be got by minimizing the 

Kullback-Leibler divergence, i.e. min ( ( ) ||
KL

D q vφ φ  

( | ),p v D  which is equivalent to maximize the evidence 

lower bound (ELBO): 

 
( )

1

( ) ( ) ( ( ) || ( | ))

where ( ) [log ( | , )]

D KL

N

D q v n n

n

L L D q v p v D

L p y x v
φ

φφ φ

φ
=

= −

=∑E
 (1) 

Here, we can see why we use the ELBO in practice. 

The bound ( )L φ  plus ( ( ) || ( | ))
KL

D q v p v Dφ  equals to 

the marginal log-likelihood ( , ) log( | ).
x y D

y x
∈

Σ  This 

marginal log-likelihood is a constant, so maximize the 

bound ( )L φ  will minimize ( ( ) || ( | )).
KL

D q v p v Dφ  The 

ELBO contains two parts, the expected log-likelihood 

( )
D

L φ  and the KL-divergence ( ( ) || ( )).
KL

D q v p vφ  The 

former ( )
D

L φ  acts as a reconstruction term with the 

goal of maximizing the log-likelihood of the model 

prediction. The latter acts as a regularization term 

which aims to draw the posterior distribution close to a 

sparsity prior. The ELBO takes into account the 

predictive performance and the sparsity of the model 

simultaneously, which leads to a compact and excellent 

model. 

However, it is impossible to exactly calculate the 

gradient in equation (1) to achieve optimization. The 

stochastic gradient variational Bayes (SGVB) 

introduced in [38] gives a practical estimator of the 

lower bound and its derivatives. The basic trick is to 

reparameterize the random variable ~ ( )v q vφ  using a 

differentiable function ( , )f φ ∈  of a noise variable ∈: 

 ( , ) with ~ ( )v f pφ= ∈ ∈ ∈  (2) 

where the ∈ is acquired by sampling in practice. From 

this, an unbiased differentiable minibatch-based Monte 

Carlo estimator can be formed as 

 ( ) ( ) ( ) ( ( ) || ( ))SCVB SGVB

D KL
L L L D q v p vφφ φ φ= −�  (3) 

 
1

( ) ( ) log ( | , ( , ))
M

SCVB

D i i

i

N
L L p y x v f

M
φ φ φ

=

= = ∈∑�  (4) 

 
1

( ) log ( | , ( , ))
M

D i i

i

N
L p y x v f

M
φ φφ φ

=

∇ ∇ = ∈∑�  (5) 

where ( , )
i i
x y  is an input image and its corresponding 

label. M is the size of a mini-batch input data and N is 

the total number of images involved in this training. 

Meanwhile, we assume that the ( ( ) || ( ))
KL

D q v p vφ  can 

be either computed deterministically or be estimated 

approximately. In this way, we can solve the 

optimization problem by initializing φ  and executing 

optimization methods such as Adam [39], which can be 

efficiently applied in deep neural networks. Once we 

get the optimal parameters φ , we will know the 

approximate distribution ( )q vφ . 

Notable is, we can update the weights g  of the 

network as well as the variational parameters φ  

synchronously in stochastic gradient ascent. We can 

represent the model as ( | , , )p y x vg . The ELBO here 

is 

 ( , ) ( , ) ( ( ) || ( ))SCVB SCVB

D KL
L L D q v p vφφ φ= −g g  (6) 

 
1

( , ) log ( | , ( , ), )
M

SGVB

D i i

i

N
L p y x v f

M
φ φ

=

= = ∈∑g g  (7) 

Hence, we can acquire the weights and the channel 

scale distribution of the network via optimizing the 

ELBO.  

3.3 Variational Inference with Truncated 

Distributions 

As shown in equation (3) and (4) the prior 

distributions ( )p v and the differentiable function 

( , )f φ ∈  of the posterior distribution ( )q vφ  need to be 

decided. As mentioned before, the variational variables 

in our model are channel scales, which are limited to 

0,1. Therefore, traditional unbounded distributions 

need to be truncated here [14]. Furthermore, we 

transform the variables v to the log domain ln
in
v v=  to 

increase the maximum truncation interval from (0,1]  

to ( , 0].−∞  Following that, we will analyze and infer 

the model in the log domain. 

We use a and b to represent the left and right 

truncation values. And 
[ , ]

( )
a b in

p v  and 
[ , ]

( )
a b in

q vφ  

denote the truncated prior and posterior distributions in 

the log domain. 
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Before we get some information, the uniform 

distribution U (a, b) is an appropriate choice which 

assumes the same initial probability for different values. 

 
[ , ] ln [ , ] ln

1

[ , ] ln ln

( ) ( )

where ( ) ( | , )

L

i

a b a b

i

i i

a b

p v p v

p v U v a b

=

=

=

∏
 (8) 

When we obtain the related information, the 

variables 
in
v  have their own focus. The unimodal 

factorized normal distribution can give a good 

description. What we need is an truncated distribution. 

So we select the truncated factorized normal 

distribution as the posterior. 

 
[ , ] ln [ , ] ln

1

[ , ] ln ln

( ) ( )

where ( ) ( | , , , )

L

i

a b a b

i

i i

a b i i

q v q v

q v tN v a b

φ φ

μ σ

=

=

=

∏
 (9) 

Here, L denotes the number of layers with different 

channel scales, and  

 

2

2
2

( )1
( | , , , ) exp

22

where ( ) ( )

i

i
i i

i i

x
tN x a b

Z

Z

μ
μ σ

σπσ

β α

−
= −

= Φ −Φ

 (10) 

Here, , ,

i i

i i

i i

a B
a

μ μ
β

σ σ

− −

= =  and ( )Φ ⋅  is the CDF 

of standard normal distribution. Then, we need to 

identify the differentiable function ( , )f φ ∈  for 

sampling and gradient descent according to the 

[ , ]
(ln ).

a b
q vφ  The CDF of the truncated normal 

distribution is 

 

( ) ( )

( )

i i

i i

i

x a

F x
Z

μ μ

σ σ

− −
Φ −Φ

=  (11) 

From equation (11) we have 

 1( ( ) ( ))
i i i i i

x Z F x aμ σ
−

= + Φ + Φ  (12) 

Hence the differentiable function can be expressed 

as  

 1

ln
( ( )), ~ ( | 0,1)i

i i i i i i
v Z a Uμ σ

−

= + Φ ∈ +Φ ∈ ∈  (13) 

Consequently, the proper probabilistic model with 

prior and posterior is determined and the variational 

inference can be executed. The KL-divergence in log 

domain for a single variable i

ln
v  can be calculated as 

ln
[ , ] ln [ , ] ln

ln

ln ln

ln

ln

( ( ) || ( ))

( | , , , )
( | , , , ) ln

( | , )

( ( | , , , )) ln( )

( ) ( ) 1
ln( )

22 2 2

i

i i

KL a b a b v

b i

i ii i

i i i

a

i

i i

i i i i

i i i

D q v p v D

tN v a b
tN v a b dv

U v a b

H tN v a b b a

ab a

Z Z

φ

μ σ
μ σ

μ σ

σ φ β φ β

πσ π

=

=

= − + −

+−
= − −

∫
 (14) 

Where The entorpy of the truncated normal 

distribution is 

 

ln

ln ln

2

ln ln ln2

( ( | , , , ))

ln( 2 ) ( | , , , )

1
( ) | ( | , , , )

2

( ) ( ) 1
ln( 2 )

22 2

i

i i

b

i i

i i i i

a

b

i i i

i i i

i a

i i i i

i i

i

H tN v a b

Z tN v a b dv

v tN v a b dv

a a
Z

Z

μ σ

πσ μ σ

μ μ σ
σ

φ β φ β
πσ

π

=

+ −

+

= + +

∫

∫
 (15) 

Back to the linear domain ln
v

v e= , the truncated 

interval will be [ , ]
a b

v e e∈ . And the truncated prior 

and posterior follows truncated factorized log-uniform 

and log-normal distributions respectively which are 

expressed as follows. 
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It is noted that the log-uniform is the approximate 

distribution of floating-point format storage, so it is 

very appropriate as a regularization for the posterior of 

the channel scales which store in the floating-point 

format. The sparsity of the loguniform which can 

encourage small channel scales is also favorable for the 

compression and acceleration of the network. The 

posterior log-normal can be regarded as a special case 

of the log-uniform when the σ  tends to infinity, thus 

there is no gap between prior and posterior for the 

variational model. Moreover, the non-negative 

property of the log-normal random variables makes it 

credible for the channel scales. Besides, the 

corresponding differentiable function ( , )f φ ∈  and the 

KL-divergence for v is tractable by above analysis. We 

have 

 

1exp( ( ( )))

where ~ ( | 0,1)

i i i i i i

i i

v Z a

U

μ σ
−
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where 
ln

i
v

D is calculated in equation (14) In this way, 

given aand b, we can sampling 
i
v for each layer 

according to equation (18) and optimize the ELBO in 

equation (6) and (7) with KL-divergence in equation 

(19) w.r.t. the parameters 
i

μ  and 
i

σ . When we obtain 

the optimal variational parameters *

i
μ  and *

i
σ , we can 

get the approximate posterior distribution of channel 

scales from equation (17). 

3.4 A Summary of Proposed Algorithm 

Based on above section, we can achieve our VA-

CPSO. And by training the weights generator and the 

Pruned CNN successively, the optimal channel 

structure and the high-performance pruned CNN are 

achieved. 

To train the weights generator, we sample channel 

scales 
1 2

[ , , , ]
L

v v v v= … according to equation (18) 

with constants a, b which are given at first and 

variables 
i

μ  and 
i

σ  which are initialized in the 

beginning and updated during training. Then, we use 

the sampled v for forward propagation in the weights 

generator and the Pruned CNN. The ELBO can be 

calculated according to equation (6) and (7) at the end 

of the Pruned CNN with batches of images as inputs. 

The parameters in the weights generator, the generated 

weights, and the channel scales are updated using 

SGVB in backword propagation. From this, the 

optimization network achieved end-to-end traning. 

After training, we get the approximate posterior 

distribution of channel scales as well as the trained 

weights generator. Then, a determined value for each 

channel scale needs to be selected from its distribution. 

The expectation is a common choice. We have 
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 (20) 

The expectation of channel scales is the optimal 

channel structure we learned from the variational 

network. And the detailed Variational Automatic 

Channel Pruning algorithm is described in Algorithm 1. 

 

Algorithm 1. Variational Automatic Channel Pruning 

1. Input: Truncated bound a, b, N pairs data 

             
1

( , )N
i i i

D x y
=

=  with batch size M, Original channel numbers 
1 2

[ , , , ]
L

d d d d= …  

 Output: The optimal channel scales *

v , The generated weights w 

2. Initialize variational variables [ , ]φ μ σ= , parameters in weights generator g ; 

3. for epoch in 1 to K do 

4.      Sample ~ ( | 0,1)
i

U∈ ∈  for L layers independently 

5.      compute 1exp( ( ( )))
i i i i i i
v Z aμ σ

−

= + Φ ∈ +Φ  
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ln
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L
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=∑  in  equation (14) 
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9.      Update g  and [ , ]φ μ σ=  via maximizing ( , )L φ g  

10. Get the * * *

[ , ]φ μ σ=  and *

g  

11. 

2 * 2 2
* / 2 * * * *

*
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i
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e b a
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+
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12. Obtain the corresponding prunded weights w  through weights generator with *

v and *

g  

13. return * * * *

1 2
[ , , , ]

L
v v v v= … , w  

 

Now, the learned channel structure can be applied 

for channel pruning. Inputting the expectation of the 

channel scales into the trained weights generator, the 

initial weights for Pruned CNN can be predicted, and 

then the optimal Pruned CNN can be built. 

The Pruned CNN continues to be fine-tune with 

cross-entropy loss until convergence. Thus, the 

compact CNN after channel pruning can be acquired 

for resource-constrained scenarios. 
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4 Experimental Results 

In this section, we evaluate the proposed algorithm 

on image classification tasks to demonstrate the 

effectiveness. The experiments are carried out on some 

common networks including Lenet-5 [40], VGGNet 

[41] and, ResNets [2]. We use Pytorch to carry out our 

VA-CPSO for pruning. All experiments are running on 

Nvidia 1080Ti GPU. The experiments have achieved 

encouraging results. 

4.1 Experimental Settings 

Implementation procedure: Two stages need to be 

performed for channel pruning in our algorithm. In the 

first stage, we execute the minibatch-based SGVB for 

training the weighs generator and optimizing the 

posterior distribution of channel scales i.e. the 

variational variables [ , ]φ μ σ= . Then, the expectation 

of the distribution is calculated as the optimal channel 

scales and the generated weights of the optimal 

channel scales are obtained through the trained weights 

generator. In the second stage, we build the Pruned 

CNN according to the channel scales and employ the 

generated weights on it. The Pruned CNN continues to 

be trained until convergence. 

Compression Metric: Parameters and Floating-point 

operations (FLOPs) are widely-used to measure the 

computation and memory consumption of CNNs. 

Parameters include the convolutional layer and fully 

connected layer parameters. The ratio of the parameters 

in the network before and after pruning is called 

Compression Ratio (CR), which judges the effect of 

the compression algorithm. FLOPs include floating-

point addition and floating-point multiplication. 

Because of the regularity of CNN, They can be count 

simply. Then the theoretical Speedup (Sp) of the 

compression algorithm can be got, which is 

proportional to the acceleration of CNN. In this paper, 

we only take account of the floating-point 

multiplication. 

Training details: The truncated bound a and b are the 

hyperparameters in our model. As the channel scales v 

are limited to 0, 1, the lnv are limited to −∞ , 0. In 

practice, the channel scales can not be 0 which will 

cause the disappearance of the layer, so we set 

[0.05,1]v∈ . In addition, we use a weight coefficient 

r
w  on the regularization term of the ELBO in order to 

observe its effect on pruning. The momentum is set to 

0.9 and the weight decay is set to 0.0001 in all 

experiments. The other details are discussed in the 

following sections. 

4.2 LeNet-5 on MNIST 

We evaluate our VA-CPSO with LeNet-5 on 

MINIST [40]. There are two convolutional layers and 

two fully connected layers in LeNet5 with 20-50-500 

channels/neutrals structure. When training the VA-

CPSO, we set different learning rates for the 

parameters in the weights generator g  and the 

variational variables [ , ]φ μ σ=  with Adam[39] 

optimizer. The former is set to 0.005 and the latter is 

set to be 0.0001. When retraining the Pruned CNN, the 

learning rate is set to be 0.005 with Adam [39] 

optimizer. We explore various weight coefficient 
r

w  in 

VA-CPSO with the batch size 512 for 60 epochs. The 

PrunedCNNs are trained with the batch size 512 for 40 

epochs in the second step. Larger 
r

w  results in higher 

pruning rates in our algorithm. 

Table 1 shows the pruning results with various 
r

w . 

In the table, the Sp is speedup and the CR is the 

Compression ratio as explained above. VA-CPSO(i) 

represents the results with 
r

w i= . Model LeNet-5 is 

the baseline and the other are different pruning 

methods on LeNet-5. We can see that when the 
r

w  is 

set to normal 1, the optimal structure is 13-32-325 

which realizesbetter accuracy than the original LeNet-5 

with 0.02 accuracy advance. The VA-CPSO find the 

optimal structure of the LeNet-5 for channel pruning. 

As we turn up the weight coefficient 
r

w , the more 

compact networks can be obtained with negligible loss 

of accuracy. When the 
r

w  is set to 2, 5 and 8, the 

LeNet5 yields a compression ratio of 9.50×, 24.19× 

and 34.60× respectively and the speedup of 8.71×, 

18.61× and 28.20× with no more than 0.21 percent loss 

of accuracy compared to the base. The VA-CPSO gets 

higher performance compared with other methods. For 

example, compared with recent research GAL [48], 

VA-CPSO (2) obtains higher speedup and compression 

ratio (8.71× vs 5.71×, 9.50× vs 8.17×) with the same 

error (0.86%), and VA-CPSO (5) achieves 18.61× and 

24.19× speedup and compression ratio, which are 

higher 15.04× and 15.63× in GAL with only more than 

0.03% accuracy loss. 

4.3 VGGNet on CIFAR-10 

We then evaluate the VA-CPSO with VGGNet on 

CIFAR10 [42] to verify its effectiveness in deep 

architectures. Since the data in CIFAR-10 are RGB 

images with a size of 32×32 instead of the original 

input RGB images of VGGNet with size 224×224, 

Zagoruyko applies a slightly modified version of 

VGGNet on CIFAR-10 [43] which contain 13 

convolutional layers and 2 fully connected layers. We 

use this model with Batch Normalization after each 

convolutional layer here. The initial learning rates for 

the parameters of weights generator g and the 

variational variables [ , ]φ μ σ=  are set to be 0.01 and 

0.0005 separately. During retraining, the initial 

learning rates is set to be 0.05. All the learning rate is 

divided by 10 per 50 epochs. We train the VA-CPSO 

for 100 epochs with the batch size 256 and retrain the 

Pruned CNN 100 epochs with the same batch size. 
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Table 1. Pruning results of LeNet-5 on MNIST 

Model Error% Channels #Flops (Sp) #Param. (CR) 

LeNet-5 0.80 20-50-500 3.99M (1.00×) 0.65M (1.00×) 

SSL [26] 1.00 3-12-500 0.31M (12.7×) 0.16M (4.20×) 

SBP [14] 0.86 3-18-283 0.34M (11.6×) 0.13M (4.98×) 

NISP [13] 0.82 10-25-250 1.27M (3.15×) 0.17M (3.94×) 

GAL-0.01 [48] 0.86 10-15-198 0.70M (5.71×) 0.08M (8.17×) 

GAL-0.05 [48] 0.90 4-13-121 0.26M (15.04×) 0.04M (15.63×) 

VA-CPSO (1) 0.78 13-32-325 1.74M (2.29×) 0.27M (2.39×) 

VA-CPSO (2) 0.86 6-16-162 0.49M (8.71×) 0.07M (9.50×) 

VA-CPSO (5) 0.93 4-10-100 0.21M (18.61×) 0.03M (24.19×) 

VA-CPSO (8) 1.01 3-8-87 0.14M (28.20×) 0.02M (34.60×) 

 

As shown in Table 2, the error reaches the minimum 

when the 
r

w  is 1 with 1.26× speedup and 1.78× 

compression. With setting 
r

w  to 2 and 4, we achieve 

1.67×, 2.03× speedup and 3.38×, 4.28× compression 

with minor loss of performance. Our algorithm 

achieves the highest speedup and pruning rate with the 

lowest error comparing with other methods as we 

increase the .

r
w  e.g. VA-CPSO obtains 93.05% 

accuracy with 4.28× compression and 2.03× speedup, 

which is better than 93.05% accuracy with 3.81× 

compression and 1.71× speedup in SSS [44]. The 

results suggest that our VA-CPSO with suitable 
r

w  

can greatly compact the large CNN, which improves 

the universality of VGG model. 

Table 2. Pruning results of VGGNet on CIFAR-10 

Model Error% #Flops (Sp) #Param. (CR) 

VGGNet 6.04 313.73M (1.00×) 14.98M (1.00×) 

L1 [11] 6.6 206.00M (1.52×) 5.40M (2.77×) 

SSS [44] 6.37 199.93M (1.57×) 4,99M (3.00×) 

SSS [44] 6.98 183.13M (1.71×) 3.93M (3.81×) 

Zhao et al. [17] 6.82 190.00M (1.65×) 3.92M (3.81×) 

VA-CPSO (1) 6.35 249.97M (1.26×) 8.40M (1.78×) 

VA-CPSO (2) 6.41 187.64M (1.67×) 4.43M (3.38×) 

VA-CPSO (3) 6.95 154.12M (2.03×) 3.50M (4.28×) 

 

4.4 ResNets on CIFAR-10 

ResNets are a series of networks with the shortcut. 

They also can be pruned by our algorithm.Here, we 

adopt ResNet20, ResNet-32, ResNet-44, ResNet-56, 

and ResNet-110 on CIFAR-10 to evaluate our VA-

CPSO. ResNets for CIFAR-10 have three stages of 

residual blocks with feature maps of different numbers 

(16, 32 and 64) and sizes (32×32, 16×16 and 8×8). The 

numbers of residual blocks in each stage are the same. 

And the parameter-free, identity shortcut layers with 

zero paddings are used for the increasing feature maps 

between neighboring stages. The residual block 

consists of two convolutional layers. Since the shortcut 

layers are parameter-free, the second layers of residual 

blocks in one stage must have the same number of 

channels, so they share one channel scale when training. 

There is no limit for the first layers of residual blocks, 

therefore they have their own channel scales for pruning. 

In ResNets, we set the initial learning rates for the 

parameters of weights generator g  and the variational 

variables [ , ]φ μ σ=  as 0.1 and 0.0005. And the initial 

learning rates is set to be 0.3 for retaining Pruned CNN. 

The learning rate is divided by 10 per 50 epochs. We 

train the VA-CPSO for 100 epochs with the batch size 

128 and retrain the Pruned CNN 150 epochs with the 

same batch size. 

Table 3 shows our pruning results. The best 

accuracy is realized when the 
r

w  is 1, which suggested 

that our algorithm enables ResNets to learn better 

structures. As 
r

w  increases, the networks tend to be 

compact. At the 
r

w  of 4, a balance is achieved between 

the accuracy and compression ratio of ResNets. At this 

point, the ResNets achieves outstanding compression 

and acceleration performance with negligible accuracy 

loss of no more than 0.51 percent. For example, 2.02× 

speedup and 1.96× compression are achieved in 

ResNet-110 with a 0.39 percent accuracy drop. 

In a scenario where the equipments are limited and 

requirements for accuracy is not so high, setting the 
r

w  

to 6 will achieve an amazing compression performance 

with no more than 1.53 percent accuracy loss. We can 

see that the ResNet-56 and the ResNet-110 are 

accelerated 2.65×, 2.82× and are compressed 2.57×, 

2.59× with 1.34, 0.86 percent accuracy drop. Campared 

to other methods, our VA-CPSO outperforms the state-

of-the-art algorithms on ResNet20, 32, 44, 56, 110. For 

example, VA-CPSO achieves a higher speedup and 

compression ratio than GAL [48] in ResNet-56 and 

ResNet-110. 
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Table 3. Pruning results of ResNets on CIFAR-10 

Model Error% #Flops (Sp×) #Param. (CR×) 

ResNet-20 7.8 40.55M (1.00×) 0.27M (1.00×) 

Zhao et al. [17] 8.34 32.27M (1.27×) 0.22M (1.20×) 

LCCL [45] 8.32 26.10M (1.55×) – 

SFP [46] 9.17 24.30M (1.67×) – 

FPGM [47] 8.91 24.30M (1.67×) – 

VA-CPSO (1) 7.53 33.91M (1.18×) 0.23M (1.17×) 

VA-CPSO (2) 7.94 26.80M (1.51×) 0.18M (1.49×) 

VA-CPSO (4) 8.39 20.11M (2.01×) 0.14M (1.92×) 

VA-CPSO (6) 9.24 15.3M (2.65×) 0.12M (2.20×) 

ResNet-32 7.18 68.86M (1.00×) 0.46M (1.00×) 

LCCL [45] 9.26 47.60M (1.47×) – 

SFP [46] 7.92 40.30M (1.71×) – 

FPGM [47] 7.69 40.30M (1.71×) – 

FPGM [47] 8.07 32.30M (2.13×) – 

VA-CPSO (1) 7.11 56.37M (1.22×) 0.39M (1.19×) 

VA-CPSO (2) 7.31 45.53M (1.51×) 0.31M (1.51×) 

VA-CPSO (4) 7.58 34.11M (2.02×) 0.23 M (1.99×) 

VA-CPSO (6) 8.7 19.88M (3.46×) 0.14M (3.34×) 

ResNet-44 6.97 97.17M (1.00×) 0.66M (1.00×) 

MIL [22] 7.49 63.30M (1.53×) – 

VA-CPSO (1) 6.86 78.85M (1.23×) 0.55M (1.19×) 

VA-CPSO (2) 7.07 64.22M (1.51×) 0.43M (1.51×) 

VA-CPSO (4) 7.31 48.11M (2.02×) 0.33M (2.00×) 

VA-CPSO (6) 8.18 33.37M (2.91×) 0.23M (2.83×) 

ResNet-56 6.17 125.49M (1.00×) 0.85M (1.00×) 

L1-A [11] 6.9 11.20M (1.12×) 0.77M (1.10×) 

L1-B [11] 6.94 90.90M (1.38×) 0.73M (1.16×) 

NISP [13] 6.99 70.76M (1.77×) 0.49M (1.74×) 

SFP [46] 7.74 59.40M (2.11×) – 

GAL-0.6 [48] 6.62 78.30M (1.60×) 0.75M (1.13×) 

GAL-0.8 [48] 8.42 49.99M (2.51×) 0.29M (2.93×) 

Hrank [49] 6.83 62.72M (2.00×) 0.49M (1.73×) 

VA-CPSO (1) 6.09 103.78M (1.21×) 0.72M (1.17×) 

VA-CPSO (2) 6.28 82.90M (1.51×) 0.56M (1.50×) 

VA-CPSO (4) 6.68 61.66M (2.04×) 0.42M (2.02×) 

VA-CPSO (6) 7.51 47.40M (2.65×) 0.33M (2.57×) 

ResNet-110 5.97 252.89M (1.00×) 1.72M (1.00×) 

L1-A [11] 6.45 213.00M (1.19×) 1.68M (1.02×) 

L1-B [11] 6.7 155.00M (1.16×) 1.16M (1.48×) 

NISP [13] 6.99 142.17M (1.78×) 0.98M (1.76×) 

SFP [46] 6.62 150.00M (1.68×) – 

GAL-0.1 [48] 6.41 205.7M (1.22×) 1.65M (1.04×) 

GAL-0.5 [48] 7.26 130.2M (1.94×) 0.95M (1.81×) 

Hrank [49] 6.64 105.70M (2.39×) 0.70M (2.45×) 

VA-CPSO (1) 5.89 202.8M (1.25×) 1.41M (1.22×) 

VA-CPSO (2) 6.09 167.01M (1.51×) 1.14M (1.50×) 

VA-CPSO (4) 6.36 125.08M (2.02×) 0.88M (1.96×) 

VA-CPSO (6) 6.83 89.56M (2.82×) 0.66M (2.59×) 

 

5 Conclusion 

In this paper, we propose a Variational Automatic 

Channel Pruning Algorithm based on structure 

optimization (VA-CPSO) to compress and accelerate 

CNNs by automatically optimizing the channel 

numbers in CNNs based on Bayesian inference. We 

reformulate the channel numbers and the node numbers 

as important parameters called channel scales, and 

adopt the truncated factorized log-uniform prior and 

log-normal posterior for channel scales to make the 

variational model. The weights generator is designed 

for producing tensors with corresponding size as 

weight parameters of various pruned structure of CNN 

under the control of channel scales. During training, 

the channel scales as well as the parameters of the 

weights generator are optimized synchronously 

through variational inference and stochastic gradient 

variational Bayes (SGVB). Finally, the optimal 
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channel structure and the corresponding generated 

weights are employed in the pruned CNNs for further 

training to achieve high-performance compacted CNN. 

Our algorithm avoids the tedious hyperparameter 

adjustment and empirical design. And the extensive 

experiments demonstrate the outstanding performance 

of our algorithm. 

 Noted that the selections of prior and posterior are 

exploratory, therefore other sparse prior and posterior 

families on channel scales will be considered in future 

work. It is also interesting to explore more advanced 

weights generator structure to achieve better 

performance. Furthermore, we plan to apply our 

method to more applications such as gait recognition 

and human behavior recognition. 
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