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Abstract 

Recently, mobile crowd sensing (MCS) has been 

widely used in smart cities with the help of unmanned 

aerial vehicles (UAVs) and autonomous cars. To ensure 

long-term, long-distance sensing tasks of UAVs, mobile 

unmanned charging stations, called “Carriers”, are 

scheduled to reach preset charging locations in a city to 

provide charging services. However, existing methods 

not only have difficulty in serving a large number of 

UAVs, but also face a big challenge of potential security 

vulnerabilities in the charging transactions. To address 

the above issues, this paper explores the blockchain 

technology to design an auction-based framework for 

scheduling charging services for UAVs while improving 

the security of charging transactions. In particular, 

considering the revenues of Carriers and the utilities of 

UAVs, we develop a new auction mechanism based on 

the emerging deep reinforcement learning technique to 

improve the auction performance. Experimental results 

demonstrate that our method can enhance charging 

transactions’ security and optimize the system performance. 

Keywords: Smart cities, Blockchain, Vehicles, Security, 

Auction 

1 Introduction 

Mobile crowd sensing (MCS), is an emerging 

paradigm for enabling smart cities, which avails 

assistance from unmanned vehicles, such as UAVs and 

unmanned cars. They are equipped with different types 

of high-precision sensors (e.g., GPS, gyroscope, and 

camera), and utilized for long-distance surveillance, 

delivery service, and data collection [1-3]. However, 

UAVs are constrained by their sensing range and 

lifetime because of the limited battery capacity, and it 

is also inadvisable to increase the battery size in each 

UAV as its weight will become another drawback. In 

order to perform a long-term, long-distance task, 

charging stations have been introduced to extend the 

working hours of UAVs in an MCS system [4-5]. Yet, 

cities are usually too crowded to set stationary stations 

on the road. Thus, unmanned cars can be used as 

mobile unmanned charging stations, namely, Carriers. 

After embarking from the master station, a Carrier 

heads toward preset charging location, waiting for 

UAVs to charge and continue working, as indicated in 

Figure 1.  

 

Figure 1. Charging scheduling with unmanned 

vehicles in an MCS system 

The application of mobile unmanned charging 

stations faces a critical challenge. Since the Carrier is 

mobile, its size is comparably smaller than that of a 

fixed charging station. Therefore, the amount of energy 

resources available is limited, and hence, a relatively 

smaller number of UAVs can be charged simultaneously 

[5]. Recently, an economical method has been 

introduced to require mobile charging stations to 

schedule the charging time slot for UAVs, which is 

interpreted as an auction problem [6]. In an auction, 

buyers (or bidders, i.e., UAVs in the system) estimate 

their private and individual bids based on the 

emergency of their charging demand, and submit their 

bids to access services that are periodically auctioned 

by a seller (or auctioneer, i.e., Carrier in the considered 

setting). The UAV with the highest value of the bid 

wins the charging priority, and should pay an amount 

of cryptocurrency to the Carrier. The auction approach 

is remarkably feasible when each buyer is not assumed 

to know private vaues (or charging demands) of other 

buyers; and the seller is not aware of the actual values 
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related to buyers before auctioning. This is the reason 

why the auction approach we take is especially suitable 

to solve the problem of time scheduling to UAVs in 

this non-cooperative, information-limited and distributed 

charging system. 

However, in order to distribute the MCS system 

throughout cities, it is problematic to manage the 

currency in charging auctions composed of a large 

number of unmanned vehicles. Equally important, the 

currency transactions between Carriers and UAVs can 

be threatened by malicious behaviors such as data 

leakage and tampering due to being exposed to a 

trustless environment [7]. Recently, blockchain has 

emerged as a viable approach to record transactions in 

a distributed and verifiable manner by utilizing many 

technologies such as a distributed ledger, consensus 

mechanism, and smart contracts [8-11]. Inspired by 

blockchain technologies with advantages of security, 

transparency, and decentralization, we leverage it and 

build a trust, decentralized and automatic framework 

for Carriers to address the UAV charging problem. 

The revenue-optimal auction mechanism is also 

considered. UAVs in a single-item auction tend to 

increase their bids to win the charging opportunity, but 

it is impermissible for them to pay more than its 

charging demand. Considering that neither Carriers 

nor blockchain developers operate blockchain 

sacrificially, we note that the utilities of UAVs (i.e., the 

difference between actual payment and bid in the 

auction) and the revenue of Carriers (i.e., payment 

received by the UAVs) should both be optimized. Here, 

the Myerson auction [12-13] is one of the most 

efficient revenue-optimal single-item auctions. This 

auction approach transforms the bid value 

monotonically, followed by the determination of the 

winner UAV and its payment. However, the main 

challenge of applying this approach is that it lacks any 

distributed prior knowledge or assumptions (i.e., 

distribution of UAVs). In the current environment of 

uncharged UAVs, primary factors affecting the 

charging demands, such as residual energy distribution, 

position distribution, and residual operation 

distribution, are desirable to be extracted in a system. 

Recently, deep learning has widely demonstrated that 

neural network structures can automatically learn 

important features from data and estimate complex 

nonlinear functions [14-16]. We utilize feature data 

with the help of neural networks under this 

circumstance. 

Towards this end, based on the concept of the 

Myerson auction, we present a method that leverages 

deep reinforcement learning (DRL) [17] for auctioning 

between one Carrier and several UAVs, which we term 

as auctioning mechanism based on DRL (AM-DRL). 

Due to DRL’s state-of-the-art performance while 

learning tasks with specific constraints, we believe it 

can approximate the monotonic distribution function 

without a prior knowledge. Then, we implement the 

overall framework by smart contracts to test 

cryptocurrency management and trading process. 

Finally, security analysis proves the security of the 

designed framework. Simulation results indicate 

Carriers obtain optimal revenues by using powerful 

deep neural networks (DNNs), while irrational bidders 

are punished for paying more than their charging 

demands. 

The contributions of this paper are summarized as 

follows: 

(1) To the best of our knowledge, this is the first 

work that leverages the blockchain technology to 

address the UAV charging problem in an MCS system. 

(2) We design a secure, decentralized, and automatic 

auction-based framework for UAVs and mobile 

charging stations on the blockchain. 

(3) A novel, truthful, and highly effective auction 

mechanism based on DRL, named AM-DRL, is 

proposed to optimize the revenues of mobile charging 

stations while improving the utilities of UAVs. 

2 Designed Framework 

In this section, we introduce the auction process of 

charging trading between one mobile charging station 

and a certain number of UAVs at first. Then, we 

describe the entire system, i.e., the system with the 

support of blockchain technologies. Table 1 illustrates 

the list of important notations used in this paper. 

Table 1. Notations 

Notation Explanation 

,m M  
The index of a Carrier, the total number of 

Carriers in the networks  

,u U  The index of a UAV, the total number of UAVs

m

i  
The index of a UAV that requests charging to 

the Carrier m 

N  
The total number of UAVs that request 

charging to a Carrier 

, ,E t T  

The amount of charge required, flight time 

with current battery residue, and remaining 

flight time that the total sensing tasks required 

, ,
i i i
u d b The utility, charging demand, bid of UAV i

m 

,
i i
x p  

The allocation rules and payment rules of UAV 

i
m 

, ,
t t t
s a r  State, action and reward at period t 

( ), ( ),Qπ ⋅ ⋅

( ), ( )r L⋅ ⋅

Policy function, Q function, reward function, 

loss function 

,
s

B B  The input bid smaples, s-th bid sample 

, ,Tε δ  The number of episodes, bid samples, periods

 

2.1 Auction-based Framework 

The framework for charging scheduling based on 

auction (see Figure 2) mainly includes two entities: 

Carrier and UAVs. 
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Figure 2. Auction-based scheduling process with one 

Carrier and several UAVs 

Mobile charging stations—Carrier. The Carrier is 

instructed to arrive at a preset charging point in 

advance and wait, while charging all UAVs within a 

limited area in real time. This paper assumes that only 

one UAV can be charged by the Carrier in each time 

slot. For this reason, the Carrier uses an auction 

approach, allowing UAVs to compete for the energy 

resource. During an auction, a Carrier, as an auctioneer 

and a resource owner, receives all bids from UAVs, 

calculates allocation probabilities and payments, 

assigns a charging time slot for the winner who bids the 

largest amount corresponding to the highest allocation 

probability, informs the winner UAV regarding the 

actual amount of transaction coins it must pay, and then 

receives the payment. As the auction proceeds, the 

Carrier schedules UAVs continuously while 

accumulating the revenue. Finally, the revenue of the 

charging service is stored and used to pay the 

Carriers’ operators and Blockchain developers in the 

master station. 

Unmanned aerial vehicles. UAVs are the bidders in 

the considered setting. Each UAV searches for the 

nearest Carrier and requests scheduling for a charging 

slot once it detects a low battery level, and 

subsequently submits its bid privately according to the 

value of its charging demand. Note that a UAV with 

higher charging demand submits a higher amount of 

bid to the Carrier, and has higher probability to win the 

charging auction. The winner UAV selected by the 

Carrier can access the resource preferentially; it can be 

scheduled in the granularity of charging time slot till 

the next bidding. A UAV that fails the bidding game 

can choose to continue bidding for the same Carrier, or 

seek a charging opportunity from another carrier 

nearby till its battery charge is above its private 

threshold. Subsequently, it continues sensing tasks and 

operates the next charging iteration. 

We assume that there are M Carriers, indexed by 

1, 2, ..., , , .m M= …M  There are U UAVs, denoted by 

1, 2, ..., , , .u U= …U . If a UAV requests charging to the 

Carrier m, it is grouped into 1 , 2 , ..., ,
m m m m

i=N  

, ,

m

N…  where i denotes the index of the UAV 

requests charging to the Carrier m, N symbolizes the 

largest number of UAVs request charging to the Carrier 

m, N U≤ . In this paper, we consider a short-sized 

charging scheduling with short-distance communications 

based on WLAN; and thus we neglect potential 

problems induced by the time delay between the UAVs’ 

current locations and the preset charging position. 

Therefore, key properties that determine the charging 

demand of UAVs are categorized as the amount of 

charge required E, flight time with current battery 

residue t, and remaining flight time that the total 

sensing tasks required T, wherein T can represent the 

emergency of a UAV that has to finish the total sensing 

tasks in an MCS system, which plays a decisive role in 

the priority of charging scheduling. 

2.2 Operation Details With Blockchain 

As shown in Figure 3, the entire framework, which 

is supported by blockchain technologies, consists of a 

large number of unmanned vehicles. There are three 

types of nodes in the blockchain, namely, candidate, 

follower, and proposer. 

 

Figure 3. Charging scheduling framework supported 

by blockchain 

Each Carrier behaves as a candidate, and a Carrier 

contains an account pool, a memory pool, and a 

charging service controller. It acts as a transaction 

server, by considering an auction process between a 

Carrier and a UAV as a transaction. Each candidate 

generates a transaction, including transaction records 

and a timestamp, among other features; encrypts the 

information; and subsequently constructs it into a block 

by solving hash problems. Authorized candidates work 

as validators to audit and verify the transaction records. 

Each UAV acts as follower, whose private account 

stores all transaction records and a corresponding 

wallet that manages transaction coins in the account. 

All followers can access, transmit, and receive the 

account data, but they are not permitted to manage 

transaction records. Herein, we use random pseudonyms 
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as public keys of a node’s wallet, named wallet 

addresses, to replace the true address of the wallet for 

security protection. The mapping relationships 

regarding wallets, the corresponding wallet addresses, 

and transaction coin accounts are stored in candidate’s 

account pools. The memory pool stores all transaction 

records of candidate and follower nodes. 

There is only one proposer selected from candidates 

based on a consensus mechanism, named as proof-of-

work (PoW), which is similar to the conventional 

consensus in Bitcoins, which requires the calculation 

of a difficult hash value. The candidate with higher 

computing power has a greater opportunity of 

becoming the proposer, who has the bidding right of 

the blockchain, i.e., the proposer is permitted to 

transmit a block proposal to the network and receive 

extra mining revenue. Therefore, there are two 

competitions in the entire system. Competition for 

billing is booked among Carriers. UAVs, however, 

compete for the priority of energy charging. The total 

operation details of the system are listed as follows. 

Registration and Smart Contracts Deployment. In 

the designed framework, all unmanned vehicles register 

on a trusted authority, such as Certificate Authority 

(CA), and become legitimate entities before setting off 

from the master station. Each Carrier and UAV with 

true identity gains public and private keys (PK
m, SKm), 

1, , ,m M∀ = …  and (PKu, SKu), 1, ,u U∀ = …  from the 

authority respectively. During the initialization, both 

the blockchain rules and the trained auction algorithm 

network are written as smart contracts and deployed on 

the blockchain network for the automatic execution of 

the total circulation. More details about the auction 

algorithm are given in Section 3. 

Auction of Energy. Each UAV detects the nearest 

Carrier m, and then binds to it by denoting m

i  

( 1, , )i N∀ = …  before it is validated by the Carrier m. 

Next, all UAVs download the latest data about the 

wallet from the memory pool, and upload bids to the 

Carrier m. After a bidding competition, the winner 

UAV m

i transfers transaction coins from its wallet to the 

obtained wallet address. The Carrier m validates the 

payment by acquiring the last blockchain from the 

memory pool before allocating the charging time for 

the UAV m

i . Transaction records are generated by 

UAV m

i , and validated by the Carrier m. 

Building Blocks and PoW Consensus. Carriers in 

the network collect local transaction records and store 

them in the memory pool within a certain period. They 

encrypt and sign these records for the purpose of 

guaranteeing authenticity and accuracy, after which 

they construct them into blocks that have a similar 

Merkle-tree structure to Bitcoin. Each candidate 

calculates the hash value of its block based on a 

random nonce value, timestamp, previous block hash 

value, and so on, trying to find a correct nonce to solve 

the PoW problem. This problem is considered as solved 

when a calculated answer value is smaller than 

Difficulty, which can govern the speed of finding 

solutions in the system. The fastest node in the 

candidate group, which solves the cryptographic puzzle 

first, becomes the proposer of the current consensus 

process. The proposer broadcasts block data to other 

authorized candidates for validation and audit. After 

auditing them with a signature, comparing them, and 

sending feedback, the proposer analyzes the acquired 

replies from authorized candidates. Consensus is 

considered to be reached once the result is successfully 

validated; the newly generated block is appended to 

candidates’ local copy of the blockchain in a linear and 

chronological order. Finally, the system calculates the 

corresponding rewards to the proposer. 

3 Proposed Method 

In this section, we introduce the proposed method, 

including auction mechanism, DRL networks, AM-

DRL, and the overall framework. 

3.1 Auction Mechanism 

A single-item auction mechanism, based on DRL, is 

proposed to maximize the Carrier’s revenue while 

improving optimal utilities for UAVs. We use the 

second-price auction (SPA) as a baseline to design the 

auction mechanism. In SPA, the auctioneer receives an 

amount of bids from all bidders, and determines that 

the highest bidder is the winner; and the winner only 

pays the amount that is equal to the second highest bid. 

We consider the situation where UAVs m

N
 compete 

for one Carrier m. It is guaranteed that the winner UAV 

must have the highest charging demand 
i

d  based on 

SPA, 1, , .i N∀ = …  Additionally, each UAV m

i  has the 

charge required 
i

E , the current flight time remained 
i
t , 

and the total flight time remained 
i
T . If 

i
E  is larger, or 

i
t  is smaller, UAV m

i  is willing to pay a larger amount 

for the charging service, evolving into a larger charging 

demand. The higher 
i
T  also enables UAV m

i  to give a 

higher 
i

d , so as to complete the whole sensing tasks. 

Therefore, 
i

d  can be expressed as * / .
i i i i

d E T t=  

Each UAV m

i  reports its demand 
i

d  by bidding an 

amount 
i
b  to the Carrier m; an auction determines the 

allocation rules of items to UAVs and charges a 

payment to them. We denote an auction as the 

allocation rules 
i
x  and the payment rules 

i
p , 

1, , .i N∀ = …  The allocation rule x is used to determine 

which UAV should be scheduled, and the payment rules 

p decide the actual payment of the winner UAV. Thus, the 

auction revenue of a Carrier with N UAVs can be 

expressed as follows: 
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 Auction Revenue
1

* ( )
N

i i i

i

p x b
=

=∑  (1) 

However, an adverse case may exist wherein a UAV 

participating in an auction reports a bid untruthfully, to 

maximize its utility and equip it with more competitive 

auctioning power, which destabilizes the system [12-

15], [18]. Given bids 
1

( , , ),
N

b b= …b  the auction 

computes ( )x b  and ( )p b . As a result, the utility of the 

UAV m

i , regarded as the private profile for a bidder, 

can be calculated as ,
i i i i
u d x p= −  1, , .i N∀ = …  Thus, 

bidders are strategic and seek to maximize their 

utilities by reporting bids that are different from their 

demands. To ensure truthful action of bidders, two 

characteristics of auction, i.e., the dominant strategy 

incentive compatibility (DSIC) and individual 

rationality (IR), are considered in this paper, and they 

are guaranteed by the Myerson auction. DSIC is 

defined such that each bidder’s utility is maximized by 

reporting truthfully regardless of what other bidders 

report. Specifically, for each bidder m

i , every demand 

i
d , every bid 

i
b , and every possible report of the other 

bidders bid 
i

b
−

, ( , ) ( , ).
i i i i i i
u d b u b b

− −

≥  An auction is 

IR if each bidder achieves a non-zero utility: for all m

i , 

i
d  and 

i
b , we have 

i i
d b≥ ,  i.e., no bidder pays more 

than its charging demand. 

The Myerson auction satisfies DSIC and IR, 

encouraging each UAV to bid truthfully to maximize its 

own utility in an energy auction [12]. In addition, the 

Myerson auction guarantees auctioneer’s revenue 

optimality. Thus, to maximize the Auction Revenue 

shown in (1), we leverage the monotonically non-

decreasing transform functions, denoted as 
i

ϕ , 

1, , ,i N∀ = …  from Myerson auction. As presented in 

[12], input bids 
i
b , 1, ,i N∀ = …  is converted into 

( ),
l i i
b bϕ=  1, , .i N∀ = …  Then, SPA with zero reserve 

price (SPA-0) is used to calculate allocation rules x and 

payment rules p as per the following theorem [12]. 

Theorem 1: For any set of strictly monotonically 

increasing functions 
1 0 0
, , :

N
φ φ

≥ ≥
→… � � , an auction 

which is defined by allocation rule xi and payment rule 
1(max ( )).

i i j i i
p bφ −

≠
=   

With this theorem, the proposed Myerson auction-

based algorithm can not only maximize the Carriers 

revenue while improving expected utility of each UAV, 

but also satisfy sufficient conditions for DSIC and IR. 

Nevertheless, it is hard to obtain φ  to convert b into b ; 

and thus we propose to leverage a recent DRL method 

to approximate the transform function ( )φ b  Previous 

research results [6, 14] have shown that deep learning 

with neural networks can estimate the function and get 

the optimal revenue. Our method with DRL leverages 

the action to the state and reward feedback, being 

updated as bids sets input and episode iterates. Note 

that the proposed method is only in consideration of 

one Carrier and several UAVs, but it is applicable to 

the entire system, which can be proved by the 

numerical results in Section 4.  

3.2 DRL Networks 

The proposed DRL-based method for auction 

mechanism was used to calculate the Auction Revenue. 

Given a state and a set of possible actions to choose 

from, the goal is to find a control policy π(s) that 

maximizes the accumulated reward. First, based on the 

virtual valuation function ( )φ b  we define the state, 

action, and reward at current period t ( 1, , )t T∀ = … as 

follows: 

(1) State: 
1, ,

( , , )
t t N T
s s s= …  at period t is the current 

result of ( )φ b , which means that the function is 

calculated once it enters the state in the next timeslot 

1t + . Thus, the initial state 
1
s  is equal to the input bids 

1
( , , )

N
b b= …b , and the final state 

T
s  refers to 

1
, , .

N
b b= …b  

(2) Action: 
1, ,

( , , )
t t N t
a a a= …  is equivalent to 

function ( )φ b . After the execution of the action, the 

old state 
t
s  would change to the new state 

1t
s

+
. 

Suppose that each action represents a component of the 

transform function denoted as 
t
φ ; then, we express the 

formula 
1 1 1

( ) ( (... ( ))),
T i T T i

b b bφ φ φ φ
−

= =  1, , .i N∀ = …  

Since action is undertaken continuously, the method is 

a continuous control task. 

(3) Reward: The reward 
t
r  is defined as 

 
, , 1

1

* ( ),
N

t i t i i t

i

r p x s
+

=

=∑  (2) 

where 
,i t

p  is the actual payment of winner bidder 
m
i  at 

period t, and 
, 1

( )
i i t
x s

+
 is the allocation determined by 

the next state. Since the reward is equivalent to the 

revenue of the Carrier, maximizing the cumulative 

reward is equivalent to maximizing the Auction 

revenue. 

Note that we can decide the expression of 
,i t

p  and 

, 1
( )

i i t
x s

+
 based on Theorem 1. We convert the input 

vector of the allocation rules (xi) into a probability 

vector; the result of xi is output in a probabilistic manner. 

At each period, the allocation rules assign the highest 

wining probability to the highest bidder, whose state is 

in the next timeslot. The allocation of the winner m

i  

can be calculated as follows: 

 
, 1

, 1

, 1

1

( ) ,
i t

j t

rs

i i t N
rs

j

e

x s

e

+

+

+

=

=

∑

 (3) 
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where constant parameter r determines the quality of 

approximation, deeply relevant to the Auction 

Revenue. For the payment rules 
i
p  for the winner m

i , 

we refer to the formula in Theorem 1 and a ReLU 

activation unit to express the function of payment with 

the new state 
, 1i t

s
+

: 

 1

,, , 1
1

( (max )),
i t t i t

j
p ReLU sφ −

+
≠

=  (4) 

where ( ) max( , 0)ReLU b b= ensures that the payment 

is non-negative; the inverse transform function is 

expressed as 1 1 1

1
(...( ( ))),

t t
φ φ φ− − −

= ⋅  2,t ≥  or 
1 1

1
( ),

t
φ φ− −

= ⋅  

1t = . Note that the transform 
t
φ  and the inverse 

transform 1

t
φ −  at period t are defined as ( )

t t t
y yφ ψ σ= +  

and 1 1( ) ( ) ( )
t t t

z zφ ψ σ− −

= − , whose parameters 
t

ψ  and 

t
σ  are calculated by the action 

t
a . 

Since we are dealing with a continuous control task, 

a state-of-the-art actor-critic method, called DDPG, 

was selected for the operation [19-20]. The detailed 

training process of the network is presented as 

Algorithm 1. The input contains a group of bids sets. 

Following the calculation of allocation rules and 

payment rules, the algorithm minimizes loss function to 

update weights Q
θ

′

 and π

θ
′

 

in target networks. 

 

Algorithm 1. Deep Reinforcement Learning Training 

Input: 
1

, , ( , ..., )
N

N k B B=
s

B  in the entire input samples 
1

[ , ..., ]
δ

=B B B   

Output: Optimized weights Q
θ , π

θ , Q
θ

′

 and π

θ
′  

1. Initialize actor network ( | )s
π

π θ , critic network ( , | )Q
Q s a θ with weights Q

θ , π

θ , and their two target 

networks ( )Q′ ⋅ , ( )π ′ ⋅  with parameters : , :
Q Qπ π

θ θ θ θ
′ ′

= = ; 

2. Initialize replay buffer and exploration noise N; 

3.  for episode:= 1, ..., ε  do 

4.        Reset the environment and obtain the initial state 
1
s ; 

5.        for Period t:= 1, ..., T  do 

6.             ( ) 1(1 )
t t
a s Nπ=∈ + −∈ , ∈  decays over time; 

7.             Execute 
t
a  to acquire 

1t
s

+
 by calculating: 

8.             
, 1 ,

( )
i t t i t
s sφ

+
=

; 

9.            Calculate 
t
r , 

i
x  and 

,i t
p  according to equations (2), (3), and (4); 

10.       end 

11.       Store transition sample 
1

( , , , )
t t t t
s a r s

+
 into buffer; 

12.       Sample a random minibatch of H samples 
1

( , , , )
j j j j
s a r s

+
 from buffer; 

13.       
1 1

( , ( ) | );Q

j j j j
y r rQ s s

π

π θ θ
′ ′

+ +
′ ′= + +  

14.       Update Q
θ  by minimizing the loss function: 

15.       
1

1
( ) [ ( , )];

H
Q

j j j

j

L y Q s a
H

θ

=

= −∑  

16.       Update π

θ  by using the gradient: 

17.       , ( )

1

1
( , | ) |

j j

H
Q

a s s a s

j

J Q s a
H

π πθ
θ

= =

=

∇ ≈ ∇∑ ( | ) | ;
js s

J s
π

π

θ
θ

=

⋅∇  

18.       Update Q
θ

′ and π

θ
′ : 

19.       (1 ) ;π π πθ ξθ ξ θ
′ ′

= + −  

20.       (1 ) ;Q Q Qθ ξθ ξ θ
′ ′

= + −  

21.  end 

 

First, the algorithm initializes 4 DNNs, which serve 

as an actor network ( | )s
π

π θ , a critic network 

( , | )Q
Q s a θ , and two target networks with parameters 

: , :
Q Qπ π

θ θ θ θ
′ ′

 (Lines 1). The fundamental idea is to 

maintain an actor function to derive the best action 

from an initial state and a critic network to train and 

evaluate the network based on realistic and estimated 

Q value. 

After initializing the environment and obtaining the 

initial state (Line 4), the exploration process is 

implemented (Lines 5-10). Actions are derived from 

both the output of current actor network and 

adjustable parameter ∈  (Line 6). ∈  can tradeoff 

exploration and exploitation by determining the 

probability of adding a random noise Nto the actor 

network. In this paper, exploitation is implemented 

over the first 200 episodes. ∈  is initialized to 1 and 

decays with a rate of 0.9995 over episodes; N follows a 

function by adding a random distribution between -0.2 
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and 0.2. Then, the next state 
, 1i t

s
+

, allocation rule 
i
x , 

and payment rule 
,i t

p  of the winner im are calculated; 

then, the reward is obtained through (2). 

Following the exploration, the algorithm focuses on 

how to update the neural networks (Lines 12-20). In 

DDPG, experience-driven replay and target network 

are used to ad- dress the issue of system instability. 

DDPG uses a mini-batch from a buffer, which contains 

abundant state transmission samples. Besides, it uses an 

additional target network to estimate the target value yt. 

The critic network is subsequently updated through 

minimizing a loss function L(θQ), as [21-22]: 

 ( ) [ ]( , | )],Q Q

t t tL y Q s aθ θ= −E  (5)  

 
1 1

( , ) ( , ( | ) | ]Q

t t t t ty r s a rQ s s
π

π θ θ
+ +

= +  (6)  

whereas the actor network can then be updated by 

using the gradient as: 

, ( )[ ( , | ) | ( | ) | ]
t t t

Q

a s s a s s sJ Q s a s
π π

π

πθ θ
θ π θ

= = =

∇ ≈ ∇ ⋅∇E  (7)  

In our design, we sample H = 64 groups of 

transitions as mini-batches in a replay buffer with z 

size of 106 and set the discount factor 0.99r = . After 

updating the actor and critic networks, the weights of 

target networks, π

θ
′

 and Q
θ

′

, are then slowly updated 

with controlled updating rate ξ  and the original 

networks weights. Specifically, we utilize a 2-layer 

fully-connected feedforward neural network to serve as 

the actor network, including 400 and 300 neurons in 

the first and second layers, respectively. For the critic 

network, on the other hand, we use a 3-layer neural 

network with 400, 100, and 300 neurons in the first, 

second, and third layers. respectively. Additionally, 

both networks had the ReLU  function and tan ( )h ⋅  for 

activation in addition to the L2 weight decay to prevent 

overfitting. In addition, we set the initial ξ  as 0.001, 

and the learning rate of actor network and critic 

network as 0.0001 and 0.001 respectively. 

3.3 AM-DRL 

The overall auction mechanism of charging 

scheduling in DRL computation is summarized in 

Algorithm 2, namely, AM-DRL. When a Carrier m has 

a charging vacancy, the auction is initiated. Each UAV 

computes its private charging demand 
i

d  and submits 

its bid 
i
b  to the Carrier by determining the value of 

i
a . 

i
a  can be a higher number when the UAV im intends to 

request a larger amount of energy. If each UAV reports 

low charging demand to the Carrier and the payment 

output is decreased to 0, the Carrier assigns no time slot 

to UAVs. Otherwise, the corresponding payment 

probabilities are calculated through a period T  of 

exploration and exploitation in the pre-trained network. 

(Lines 3-8) Finally, the Carrier assigns the payment to 

the winner UAV im with the highest 
i
x , and allocates it 

charging time. (Lines 9-13) The UAV accepts the 

admission, reaches the Carrier, and occupies it for the 

duration of the slot. After the winner UAV leaves, the 

next iteration of auction begins if the Carrier is 

unoccupied. 

 

Algorithm 2. AM-DRL 

Input: , ,N k  
1

( ,..., )
i N

b b=b  

Output: allocation x = (x1, ..., xN ), payment p = (p1, ..., pN ) 

1. while The Carrier m has a charging vacancy do 

2.      Resert the environment and obtain the initial state s1; 

3.      for Period t:= 1, ..., T do 

4.            
t
a = π(

t
s ); 

5.            Execute at to acquire 
1t

s
+

 by calculating: 

6.            
, 1 ,

( );
i t t i t
s sφ

+
=  

7.            Calculate 
t
r , 

i
x  and 

,i t
p  according to equations (2), (3), and (4); 

8.      end 

9.      
, 1

, 1

, 1

1

( ) ;
i T

i T

ks

i i T n
ks

J

e

x s

e

+

+

+

=

=

∑

 

10.     1

, 1
1

( (max ));
i T i T

j
p ReLU sφ −

+
≠

= ; 

11.     if 0
i
p ≠  then; 

12.         Determine the winner and calculate payment; 

13.          Allocate charging service to the winner; 

14.     end; 

15. end 
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3.4 The Overall Framework 

In this part, based on the smart contracts of 

Ethereum, we implement the overall framework 

integrating AM-DRL and aforementioned desinged 

system. Figure 4 indicates the state transition of 

Carriers defined in the CPoC (Charging Process of the 

Carrier) smart contract. It includes three states: “Init”, 

“Mining” and “Charging”. Each state transition 

requires the role R to invoke the interface T  (expressed 

as R T→ ), where the representation of the R are C for 

Carrier and V for UAVs. The details of state transition 

is as follows. 

 

Figure 4. State Transition Diagram of the Carrier in 

the CPoC smart contract 

After registration in the master station, the Carrier 

turns its state into “Init” and enters the operation. Once 

it is charged and activated through performing active 

interface, its state changes as “Mining”, where it can 

calculate the hash value, build blocks, receive mining 

revenues, and validate other transactions. During the 

mining process, the Carrier monitors whether it is 

received charging requests from UAVs. If it is 

requested by at least one UAV, all UAVs have to invoke 

the “reportBids” interface and send the bids to the 

Carrier. Following the winner selection and payment 

calculation in the auction, the winner UAV invokes 

“getPayment” and transfer the amount to the address of 

the Carrier. Afterwards, the Carrier’s state turns into 

“Charging” where it has to charge the winner UAV 

while performing the mining. After charging, the 

supervision of residual energy E of the Carrier 

determines whether it can continue working, or reset 

to “Init” state. 

Note that “auction” interface includes complicated 

actor network with trained parameters. We use 

“getInitialState” and “getFinalState” interfaces to pass 

parameters outside the contract, simulating the state 

changes in AM-DRL. More details about performance 

evaluation of the contract will be given in the next 

section. 

4 Performance Evaluation 

In this section, we first analyze the security about 

our blockchain-enabled system, and then present the 

numerical results of auction mechanism with DRL. 

4.1 Security Analysis 

Through blockchain technology, the proposed 

system framework can protect against many traditional 

attacks and malicious behaviors that may threaten the 

networks security. 

Impersonators Prevention. A malicious participant 

may substitute an unmanned vehicle and act as a node 

in the net- works. With the Certificate Authority, all 

unmanned vehicles are registered with keys before 

setting off to from the master station. It is difficult for 

an impersonator to forge a private key and be involved 

in transactions that are profitable to them multiple 

times. 

Auction Authenticity. A malicious UAV cannot refuse 

to pay the Carrier and steal the power after being 

selected as the winner. It is impossible to compromise 

auction rules, given that the whole auction process is 

written on smart contracts and deployed on the 

blockchain at the beginning of tasks. Besides, the 

proposed auction mechanism is proved to be truthful 

and rational in the following subsection, which 

prevents the malicious UAV from misrepresenting its 

bid. 

Transaction Unforgeability. All transactions are 

recorded in the blockchain, and are validated fairly by 

the authorized candidates in the networks with digital 

signature. Since the transaction data is blocked through 

a highly difficult hash computation with the help of 

PoW consensus, the attackers would face a huge 

challenge to tamper the transaction and corrupt the 

designed system. 

4.2 Numerical Results 

We evaluate the proposed method by simulations 

implemented in Python 3.6 and TensorFlow 1.10 with 

2 NVIDA TITAN XP GPUs. As shown in Table 2, we 

train the method for 1000 episodes and 10 periods, 

which is conducted with 100,000 generated data sets. 

In this experiment, 70% of data sets are used for 

training, and the rest are used for testing the networks. 

Suppose that the value of time consumed and energy 

consumption among UAVs are uniformly distributed. 

Each UAV calculates the bid based on its private 

charging demand; and thus we generat the bids set in 

the range of 0 10−  as the input of network training. We 

also set 5 or 10 UAVs and the parameter 3r =  for 

approximation quality in the consideration of 

smoothness in the allocation network and the 

maximum number of UAVs that can be charged without 

being discharged. SPA-0 is used as a baseline method 

to compare with our valuation results. 
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Table 2. System Parameterws 

Parameter Value Parameter Value 

N 5, 10 r 3 
ε  1000 S 100,000 

T 10 M 16 

 

Figure 5 shows the optimal effect and high 

adaptability of our algorithm; the numerical results are 

presented in Table 3 and Figure 5(a) illustrates the 

comparison of the Auction Revenue results generated 

by DRL training and SPA-0 auctions. The revenues 

shown in both graphs are enhanced over the first 

200 episodes because of the exploration and 

exploitation, before achieving stability till the end. The 

revenue gap between the proposed auction and SPA-0 

is around 15.85% when the number of UAVs is 5, 

whereas the disparity is 11.09% with 10 UAVs. Note 

that the allocation probability of the high bid can 

increase as the number of UAVs participating in the 

auction becomes larger; and thus the second highest 

bid value in the auction can also be increased. 

Considering the fact that the Auction Revenue is 

equivalent to the payment, the value increases along 

with the payment of the winner UAV. Consequently, 

when UAVs are set from 5 to 10, the results of SPA-0 

increase from 6.5460 to 7.7813, while an upward from 

7.5836 to 8.6445 belongs to that of proposed auction. 

From Figure 5(b), we show the comparison between 

the testing results among 16 auctions (16 Carriers in 

the total networks) and the network results using SPA-0 

when UAV is 10. We run AM-DRL by inputting 16 

times and receive revenues of different Carriers, as 

shown in Table 4. For each Carrier, it can be witnessed 

that the revenue disparity between AM-DRL and SPA-

0 is disproportionally high. The increasing percentage 

from SPA to proposed method, for example, is 1.47% 

in the Carrier 13 albeit 33.77% in the Carrier 16. This 

happens because the actual charging demand of each 

UAV restricts the maximum payment to the Carrier. 

Generally, the experimental result not only verifies that 

AM-DRL has a larger value than SPA-0, but also 

proves that AM-DRL is applicable to the entire system 

in charging scheduling. 

AM-DRL is proposed in the condition of satisfying 

DSIC and IR; UAVs in each auction act truthfully, or 

they will be given penalty. In Figure 6, the results show 

a UAV fail to win the auction when it bids up to 0.6-2.0 

times larger than its charging demand 9.3763. Through 

the graph, both bid and payment values are monotonic 

increasing. Suppose that the fake bid is reported when 

untruthful bidding coefficient is larger 1, it can be seen 

that the higher fake bid leads to the larger advantage to 

win the auction, escalating into the higher charging 

payment for the winner UAV. For instance, Table 5 

illustrates that, if coefficient is 2.0 and the reporting 

bid is as twice as the bidder’s true charging demand, the 

actual payment clearly outnumbers the demand with a 

significant surplus of 5.8654. On the other hand, if the  

 

(a) Auction revenue statistics comparison 

 

(b) Auction revenues of Carriers 

Figure 5. Auction revenues of AM-DRL 

Table 3. Revenue Optimization 

Number of UAVs 5 10 

SPA 6.5460 7.7813 

DRL training 7.5836 8.6445 

Table 4. AM-DRL versus SPA in Revenue of Carriers 

Index of Carrier 1 4 8 13 16 

SPA 8.3767 5.7268 8.9221 8.8946 6.7592 

AM-DRL 9.0527 7.8510 9.0546 9.0252 9.0417 

 

bidder intends to reduce the payment burden by 

bidding low price (e.g., coefficient is less than 1), it 

will lose the opportunity to win the auction when the 

fake bid is smaller than the second highest bid when 

coefficient is 0.8, i.e., the payment is smaller than 

second highest bid. This proves that UAVs avoid 

getiing a payment loss or losing the game when they 

compete for charging eligibility in our proposed 

auction mechanism. Moreover, the figure shows the 

amount of paymnet cannot be larger than that of bid 

when coefficient is set to 0.6-2.0. As a consequence, no  
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Figure 6. Bid and payment changes by untruthful 

bidding coefficient 

Table 5. Comparison with Untrustful Bidding 

Coefficient 

Coefficient 1.2 1.4 1.6 1.8 2.0 

SPA 7.631 7.631 7.631 7.631 7.631

Payment 11.0504 12.7266 13.9325 14.6262 15.2417 

Max bid 11.2516 13.1268 15.0020 16.8773 18.7526 

 

bidder is asked to pay more than its charging demand 

in the condition that the auction mechanism is truthful, 

which guarantees the individual rationality. This 

experiment shows that the proposed method can ensure 

each UAV bids truthfully when it achieves the 

optimization of its own utility. 

Finally, in order to test all functionality in the 

framework, we leverage the programming, Solidity, to 

program the CPoC smart contract, and deploy it on the 

test net of Ethereum blockchain, “Rinkeby”. We 

generate several accounts on “Rinkeby” to simulate 

different roles, i.e, the Carrier and UAVs. As the 

cryptocurrency of Ethereum without real value, “Ether” 

is leveraged to invoke the interfaces and serve as the 

transaction coins stored in all accounts. Apart from this, 

we test and validate all functionality of interfaces, and 

the result demonstrate our framework accomplish the 

total operation. As for the performance analysis of our 

experiment study, we refer to the complexity of each 

interface in the CPoC smart contract, since the larger 

complex one force the role to execute program defined 

in the interface by consuming higher electricity power, 

which requires more transaction fee. Hence, the gas 

consumption, a typical representative of transaction fee 

cost in Ethereum, is considered to evaluate the 

experimental performance as shown in Figure 7. The 

results illustrate each UAV tends to require less amount 

of gas in the entire operation than the Carrier. Because 

in most cases, the Carrier is the greatest beneficiary to 

gain the payment of charging service. Nevertheless, 

our implementation for the Carrier still exists space to 

develop, considering the operation of UAVs requesting 

multiple Carriers. 

 

Figure 7. The gas consumption of interfaces in CPoC 

smart contract 

5 Conclusion 

In this paper, we report the design of a blockchain-

supported charging scheduling framework using the 

proposed AM-DRL (auction mechanism based on 

DRL). In this framework, an unmanned charging 

station that schedule the charging of UAVs was 

transformed into auction problem in the entire system, 

wherein each UAV bids its private charging demand; 

the Carrier provides charging service for UAVs by 

scheduling them according to their demands. 

Blockchain technology is introduced, whereby Carriers 

and UAVs can automatically trade based on smart 

contracts. Besides, we prove that this technology 

improves the system security and provides a platform 

to manage cryptocurrency. The proposed AM- DRL, 

based on a state-of-the-art actor-critic method, DDPG, 

optimizes the Carriers’ revenues in terms of dominant 

strategy incentive compatibility and individual 

rationality, enabling each UAV to bid individually-

rationally and maximize its utility. For the further work, 

we plan to develop the CPoC smart contract and 

enhance the coordination of the bidding process for 

unmanned vehicles. 
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