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Abstract 

With the advancement of digital recording and storing 

technology, plus the huge growth of world wide web, 

people nowadays use digital texts instead of paper to 

write and record. In order to realize more text 

applications, the technology of text classification is 

gradually gaining attention recently. To achieve 

automatic text classification through machine learning, 

the related five technologies, including pre-processing, 

feature extraction, feature selection, term weighting and 

classification algorithm, are often discussed as well by 

many researches. In this paper, we are going to explore 

the impact of term weighting on text classification. 

Term weighting is definitely a very important part of 

text classification. The calculated weight should directly 

reflect the importance of the term in entire text to allow 

machine learning to achieve the best classified result. We 

applied some common term weighting methods to several 

pre-defined datasets and conducted the experiments. 

Instead of intuitively considering that the value of weight 

represents how important it is, it turned out that the result 

shows the term actually may not as important as the high 

scored weight represents. 

Keywords: Text classification, Term weighting, Supervised 

term weighting 

1 Introduction 

With the rapid development of internet, there are 

huge and still increasing amount of web content in 

texts which are exchanged between people. These 

unstructured web texts are everywhere: emails, instant 

messages, social media, web pages, and more. Web 

texts can be an extremely rich source of information, 

but due to its unstructured characteristic, it is difficult 

to extract useful key parts systematically from it. If we 

manage these textual data in a manual way, it will cost 

us too many materials and manpower to handle. 

Therefore, to manage these complicated web textual 

data in an effective way, is getting important. Here we 

utilize the machine learning text classification 

technology to help people automatically structure and 

analyze the text in a quickly and cost-effectively way 

[1-2]. 

To achieve automatic text classification, we 

introduced several widely used machine learning 

technology to predict the category of the target text. 

The machine learning algorithm, including Naïve-

Bayes [3], Supporting Vector Machine [4], K-nearest 

Neighbors [5], Decision Tree [6], etc., is highly related 

to computational statistics. During the process of 

machine learning, every move we take such as feature 

selection, classification algorithm or weighting, can be 

a huge affection to the result. In order to get the best 

result, we must do some pre-research to optimize the 

learning process. 

Most of the text classification cases are multi-label 

classification, which is an extension of multi-class 

classification [7]. That means one text can be 

categorized into one or several pre-defined classes. 

In this paper, we focus on the categorization of text, 

not only automatically and efficiently but also higher 

precision. Term weighting plays the most important 

role of the classification process, we also want to learn 

about the effect of term weights to the classification 

process. Moreover, we want to figure out whether the 

high weight terms are significant or not for 

classification. 

2 Related Work 

2.1 Datasets and Framework 

There are 7 datasets which are used in this paper for 

training and testing. They are Reuter 21578, Re0, Re1, 

Re52, k1a, k1b and RCV1. Table 1 shows the basic 

information about all datasets. 

Reuter 21578 is a document collection appeared on 

Reuters news in 1987 [8], and is often used in text 

categorization. It contains multi-class and multi-label 

datasets with 90 categories and 10788 documents. We 

split them into two set for training and testing, which 

have 7769 documents and 3019 documents respectively. 
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Table 1. Base Information of Datasets 

Dataset Documents Effective Words Classes 

Reuters-21578 10788 9280 90 

Re0 1504 2886 13 

Re1 1657 3758 25 

Re52 9130 7977 52 

K1a 2340 21839 20 

K1b 2340 21839 6 

RCV1 804414 47236 103 

 

Re0, Re1, K1a and K1b, are provided by Karypis 

Lab University of Minnesota. 1 1 The Re0 and Re1 

dataset are subsets that derived from Reuter 21578. We 

also select some certain documents to create Re52 

dataset. Re0 contains 13 categories with 1504 

documents. Re1 has 25 categories with 1657 

documents. Re52 is a single label subset of Reuter 

21587. It contains 52 categories and 9130 documents. 

The k1a and k1b dataset are subsets of WebACE. They 

have up to a total 2340 documents and 21839 effective 

words. 

Datasets mentioned above are small-scale datasets, 

that means the quantities of documents are in the range 

of thousands to ten thousand, and each dataset has 

around thousands of effective words. The number of 

documents and the number of effective words are not 

much difference hence the weight of word may be 

distorted due to the small term frequency. So, we 

introduced the Reuters Corpus Volume I (RCV1) [9], 

an archive of over 800000 manually categorized 

newswire stories made by Reuters, Ltd. RCV1 is a 

large-scale dataset which contains 103 categories and 

804414 documents. 

All these datasets are imbalanced. The skewed 

distribution makes many conventional machine 

learning algorithms less effective. Imbalanced data 

typically refers to the classification problem that the 

classes are not distributed equally. From the figures 

below, we can easily understand that there is no dataset 

with normal distribution. 

Figure 1 shows that 76.2% documents of Re0 are in 

only three categories. Figure 2 shows that 42.3% 

documents of Re1 are in only two categories. Figure 3 

shows that 43.6% documents of K1a are in only three 

categories and there are five categories which contain 

less than 1% documents of K1a. Figure 4 shows that 

59.4% documents of K1b are in a single category. 

Figure 5 shows that 68.1% documents of Re52 are in 

only two categories. Figure 6 shows that 58.7% 

documents of Reuters-21578 are in only two categories. 

Figure 7 shows the category distribution of RCV, the 

CCAT category has over 380000 documents but the 

GMIL category only contains five documents. 

                                                           
1 http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download 

 

Figure 1. Category distribution of dataset Re0 

 

Figure 2. Category distribution of dataset Re1 

 

Figure 3. Category distribution of dataset K1a 

 

Figure 4. Category distribution of dataset K1b 
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Figure 5. Category distribution of dataset Re52 

 

Figure 6. Category distribution of dataset Reuters-

21578 

 

Figure 7. Category distribution of dataset RCV1 

Figure 8 presents the framework of supervised text 

classification. At very first, we need to do pre-

processing includes stop words removal, stemming [10] 

and lemmatization [11]. Then we use bag-of word 

model to transform words to vectors and give every 

term a weight. Feature reduction, including feature 

extraction and feature selection, is the next step. 

Feature extraction reduces the amount of resource 

which is required to describe a large set of data. 

Feature selection is the process of selecting a subset of 

relevant features that are used in model construction. 

After these procedures, we use training set to train the 

classifier models with machine learning algorithms. 

 

Figure 8. Framework for supervised text classification 

For new test set, we have to do the feature 

identification, including picking up the features which 

are in the training set, and give these terms an adjusted 

weight. After that, we may predict the result of this 

new set through the classification model. 

In this paper we will also introduce RFE method to 

figure out the relation between classification and term 

weights. 

2.2 Pre-processing 

Here we use Reuters 21578 as an example to do pre-

processing. We remove the stop words as well as stem 

words, then keep the meaningful words like nouns, 

verbs, adjectives, and adverbs. This can be easily done 

by NLTK package. There is a stop word table inside 

NLTK, it collects meaningless words including be 

(verb), etc. Not only the tense words, there are also 

many other words that carry the same meaning. To 

eliminate these words, we use stemming to shorten the 

lookup time and normalize the sentences. For example, 

‘is’, ‘am’ and ‘are’ are three different be verbs. By 

stemming, they can be treated as one word ‘be’. Re0, 

Re1, k1a, k1b already been done this preprocessing, so 

we can skip this step on them. 

2.3 Bag-of-words Model 

The bag-of-words model is a way of representing 

words in a vector of occurrence counts of a vocabulary. 

It is widely used in natural language processing and 

information retrieval. In this model, a text is 

represented as a bag of its words only but disregards 

the grammar and the word order to keep the 

multiplicity. In our training set, we put all effective 

words into a bag which is used by the bag-of-model. 

Figure 9 shows the result after the bag-of-words model. 

2.4 Term Weighting 

After these previous steps, every word which is 

retrieved from the text will be given a weight through 

the weighting algorithm [12]. In this paper, we use 

eight different kinds of weighting algorithm to do the 

experiments and compare the results. Except TF,  
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Figure 9. An example of bag-of-words model 

TFIDF and TFICF, we also introduce four additional 

supervised term weighting methods. Then we propose 

our new supervised term weighting method. 

2.4.1 One-hot Encoding 

A one-hot encoding is a representation of categorical 

variables as binary vectors. In natural language 

processing, a one-hot vector represents that a word is 

in the document or not. The vector consists of zero bits 

in all cells originally, then when the corresponding 

words are found in the text, these bits will mark 1 in 

the cells. Figure 10 shows the example of 

representation using one-hot encoding. 

 

Figure 10. Example of representation using one-hot 

encoding 

2.4.2 TFIDF (Term Frequency, Inverse Document 

Frequency) 

TFIDF [13-14] is often used as a weighting 

algorithm in information retrieval, text mining and user 

modeling. It reflects how important a word to a 

document in a collection or corpus is. This algorithm is 

combined with TF part and IDF part. 

TF (Term Frequency) means that the number of 

occurrences of a term in a document, and is simply 

proportional to the term frequency. In TF formula, ni,j 

is the number of the specify words that occurred in 

document dj, and the denominator denotes the number 

of all words that occurred in the document dj. 

IDF (Inverse Document Frequency) represents a 

specified term factor that is quantified by the inverse 

function and the number of occurrences in documents. 

In the formula, |D| is the total number of documents in 

the corpus, the denominator is the number of 

documents that contains this specified term. To avoid a 

division-by-zero error, it’s common to adjust the 

denominator to 1+|{j:ti ∈ dj}|. Figure 11 shows an 

example of representation using TFIDF. 

 

Figure 11. Example of representation using TFIDF 
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2.4.3 TFICF (Term Frequency, Inverse Category 

Frequency) 

TFICF [15-17] is often used as a weighting 

algorithm factor too in information retrieval, text 

mining. In general speaking of text categorization, the 

fewer a term appears in one category, the more 

discriminative power this term has. This algorithm is 

combined by TF part and ICF part. The definition of 

TF here is the same as described previously.  

ICF (Inverse Category Frequency) represents a 

specified term factor that can be quantified by the 

inverse function and the number of occurrences in 

categories. In the ICF formula, |C| is the total number 

of categories in the corpus, the denominator is the 

number of categories that contains this specified term. 

Figure 12 shows the example of representation using 

TFICF. 
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Figure 12. Example of representation using TFICF 

2.4.4 Supervised Term Weighting 

Supervised term weighting (STW) has been used in 

text classification for several years. Before the STW, 

we usually use binary classification for text 

classification. The STW becomes popular these years 

because it considers the characteristics of dataset and 

uses the prior information on training documents in 

predefined categories [18].  

A traditional weight algorithm consists of a local 

weight and a global weight like previously mentioned 

TFIDF, which is the most commonly used one in text 

classification. STW uses the weight after feature-

selected process to replace the global weight. Table 2 

lists the fundamental information elements which are 

used for feature selection in text classification. 

Table 2. Fundamental information elements 

 C1 
1

C  

k
t  A B 

k
t  C D 

‧ A denotes the number of documents in the positive class 

that not contain term 
k
t . 

‧ B denotes the number of documents in the positive class 

that not contain term 
k
t . 

‧ C denotes the number of documents in the positive class 

that not contain term 
k
t . 

‧ D denotes the number of documents in the negative class 

that do not contain 
k
t . 

‧ The sum of A, B, C and D is the number of documents in 

the whole collection. 

 

In text classification, there are several supervised 

term weighting algorithms except the traditional TF-

like method. Table 3 lists four supervised term 

weighting methods we used in this paper including 

TFOdd [19], TFProb [20] and TFRF [21-22]. Figure 13 

shows an example of representation using TFRF. 

Table 3. STWs using fundamental infotmation element 

Methods 
Mathematical form represented by 

information elements 

ntf * Chi-square 

(ChiS) 

2* ( )

/( )( )( )( )

ntf N AD BC

A C A B B D C D

−

+ + + +

 

ntf * Odd ratio 

(OddsR) [19] 
*log( / )ntf AD BC  

Probability based term 

weight (Prob.) [20] 
*log(1 * )

A A
ntf

B C
+  

Relevance frequency 

(rf) [21-22] 
*log(2 )

A
ntf

B
+  

 

Figure 13. Example of representing in TFRF 

2.5 Our Proposed Term Weighting Method 

We newly propose a supervised term weighting 

scheme, Term Frequency-Category Relevance 

Frequency (TFCRF), which uses the odds of positive 

and negative class probabilities to improve results. 

Table 4 lists the Mathematical formula of TFCRF. This 

formula is used to improve probability-based term 

weight [20]. 

Table 4. The formula of proposed STW: TFCRF 

Methods 
Mathematical form represented by 

information elements 

TFCRF *log(1 )
A B

ntf
A B

−
+

+

 

 

Probability based term weight considers 

fundamental information elements B and C. Element B 

is the number of documents which contain term tk but 

in the negative Ci classes. Element C is the number of 

documents which don’t have the term tk but in the 

positive Ci class.  

Considering that element C should not have a 

negative impact to the discriminatory power of term tk 

to class Ci, it can even be said to be irrelevant, we 

decide to treat element C as an insignificant factor, so 

we don’t put C in our formula. 

We take element B as the real matter to affect the 
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term weighting result. Since A + B is the total 

appearance number of term tk, we can say that A and B 

are mutually exclusive. That means when A gains more, 

the less B will have. In our proposed novel supervised 

term weighting method, we will treat B as a negative 

factor to the discriminating power of term tk. Figure 14 

shows the example of representation using TFCRF. 

 

Figure 14. Example of representing in TFCRF 

2.6 Test Documents Representation Method 

How to represent our test documents with 

supervised term weighting is our next issue. Since 

there is no class information of test documents, we 

have to develop one to represent the test document in 

vector which is required by the team weighting scheme. 

We introduced four methods [23] here and described 

them in Table 5. Each method will be given an 

example. Figure 15 shows the example of W-Max 

method. Figure 16 shows the example of D-Max 

method. Figure 17 shows the example of D-TMax 

method. And the last Figure 18 shows the example of 

Hypo method. 

Table 5. Four representation methods for test 

document 

W-Max 

(Word Max) 

The term weight of each word is chosen 

based on the maximum value among |C| 

estimated term weights. 

D-Max 

(Document 

Max) 

The sum of all term weights in each vector is 

first calculated, and one vector with the 

maximum sum value is then selected as a 

representative vector. 

D-TMax 

(Documents 

Two Max) 

The sum of all term weights in each vector is 

calculated, and two vectors with the highest 

and second highest sum values are then 

selected. A vector is then created by choosing 

the term weight with the higher score 

between the two term weights of the selected 

vectors for each term. 

 

 

 

 

Table 5. Four representation methods for test 

document (continue) 

Hypo 

(Hypothesis) 

First we generated the |C| vectors according 

to the information of each class. Then we 

treat each category of the test document as a 

hypothesis label, that means all the test 

documents can be categorized to one or many 

of these labels. A text classifier is introduced 

here to calculate the prediction scores of all 

categories. Finally, we select the label with 

the highest prediction score as the predicted 

category label. 

 

Figure 15. Example of W-Max method 

 

Figure 16. Example of D-Max method 

 

Figure 17. Example of D-TMax method 
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Figure 18. Example of Hypo method 

2.7 Feature Reduction 

Feature reduction, also known as dimensionality 

reduction, is the process to reduce the feature size 

without losing important information. Feature 

reduction can be divided into two processes: feature 

selection and feature extraction. Feature selection 

returns a subset of relevant features from a large 

dataset, whereas feature extraction creates a new 

feature set which is reduced to a more manageable size 

for processing. 

2.7.1 Feature Selection 

Feature selection is the process of selecting relevant 

features from raw dataset. This technique is useful 

because it simplifies the learning models and results, 

and make them easier to interpret by researchers. It 

also has shortened training time and enhanced 

generalization by reducing overfitting. There are three 

different kinds of method: wrapper method, filter 

method and embedded method, for the implementation 

of feature selection [24].  

Wrapper methods use predictive models to score the 

features in subsets. These subsets will be used to train a 

model, and be tested on another hold-out set. By 

repeating this process, we can find best score one 

among the subsets. The wrapper methods are 

computationally intensive and may cost a lot of 

computational resource, but also give us the best 

performance dataset.  

Filter methods use proxy measures instead of the 

error rate to score the features in subsets. These 

measures are chosen according to their simplicity of 

computing, and the usefulness to the feature sets. There 

are several common measures such as the chi-squared 

stats and the mutual information. The filter method is 

often less computationally intensive than the wrapper 

one, but provides the feature set which may not tuned 

to a specific type compare to predictive model. It often 

gives a lower prediction performance than wrapper. 

Embedded methods perform feature selection as a 

part of the machine learning model construction 

process. Therefore, we call them embedded methods. 

Common embedded methods include LASSO method 

and RFE method. In terms of computational 

complexity, the embedded methods are between 

wrappers and filters. 

Reuters-21578 has 9280 features and 10788 

documents. We can easily aware that there are too 

many features and documents which is not efficient to 

classify. In order to reduce the computational power, 

we introduced the simple feature selection to reduce 

the number of features. By that we choose 4000 

features which have higher term frequency value for 

experiment. Figure 19 shows the example of feature 

selection using TF. 

 

Figure 19. Example of feature selection with TF 

2.7.2 Feature Extraction 

If the input data is too large to be used in machine 

learning, then we transform it into a reduced set of 

features. Here we introduced the feature extraction to 

reduce the amount of required resources for describing 

a large dataset. 

A large size of variables may cause classification 

algorithm overfits on training samples and is generalize 

poorly to new samples. Feature extraction can be 

implemented by many methods such as LSA (Latent 

Semantic Analysis) and PCA (Principal Content 

Analysis). We use PCA plus logistic regression to do 

the experiment in this paper. There are two advantages 

using PCA as our major feature extraction method. 

First, it reduces the processing dimension and because 

of this, it saves the model training time. The second is 

solving the collinearity problem and pick up the 

features which are independent. The collinearity 

problem happens when independent variables in a 

regression model are too much correlated. Independent 

variables should be just as the name itself says, if the 

level of correlation between variables is too high, it 

will be a problem when user is trying to fit the model 
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or interpreting the result. 

Principal components analysis (PCA) [25] is a 

statistical process. It uses the orthogonal transformation 

to convert a set of observation value from possibly 

correlated variables into a set of linearly uncorrelated 

variables which are called principal components. The 

transformation is defined in such way that the first 

principal component has the largest possible variance, 

and then following by each succeeding component in 

turn. These succeeding components have the highest 

variance possible under the constraint that they are 

orthogonal to their preceding components. The 

resulting vectors are an uncorrelated orthogonal basis 

set.  

In this paper, by the tremendous help of PCA, we 

reduced the dimensions to the level that the percentage 

of variance explained is over 90%. Table 6 shows the 

number of reduced dimensions with PCA. After 

extracting features, we use logistic regression to 

classify. 

Table 6. Reduced dimension by PCA 

Dataset Re0 Re1 K1a K1b Re52 Reuters-21578 

Dimension 2886 3758 21839 21839 7977 4000 

TF 233 400 864 864 750 711 

TFIDG 493 723 1284 1284 1765 1420 

TFICF 342 461 955 955 1229 1038 

TFChi 4 6 1 1 10 11 

TFOdd 177 256 786 786 498 421 

TFRF 294 424 883 883 368 339 

Reduced 

Dimension

TFProb 13 14 20 20 17 20 

 

2.8 Recursive Feature Elimination (RFE) 

In this paper, we analysis the relation between term 

weighting and classifying. Recursive feature 

elimination (RFE) [26] is involved here. RFE picks 

feature up in classification step which is different from 

other feature selection methods. 

Recursive feature elimination (RFE) is a feature 

selection algorithm. It takes the advantage of reducing 

the redundant and recursive features and can be used in 

many different machine learning classification 

algorithms. The Major concept of RFE is sorting out 

the influence of features by excluding the features that 

have the least influence on the target. The estimator is 

first trained by the initial dataset, then the feature who 

has the smallest weight are removed from the set. By 

repeating this procedure, the desired size of feature will 

be reached. Figure 20 depicts the framework of RFE. 

 

Figure 20. RFE Framework 

2.9 F1-measure 

There are many ways to evaluate a model such as 

accuracy, error rate, precision, recall and F1-measure. 

They are widely used in the machine learning 

evaluation but sometimes we may not easy to 

distinguish good model from other models by them. 

Here is an example. If we have a model to predict 

earthquake, and it has 99% accuracy (TP/TP+TN) 

score but due to the near zero frequency of earthquake, 

it is very easy to design the model which predicts no 

earthquake at all. In this case, although the accuracy is 

very high, we can’t say that it is a good model.  

Then the precision and recall are developed for 

another aspect of evaluation. Precision focuses on true 

positive of predicted positive. Recall focuses on true 

positive of actual positive. But still, in extreme 

situations, they are both insufficient to determine 

whether the model is good or not. How do we explain 

the significance of a model with high precision and low 

recall and a model with high recall and low precision, 

respectively? The former one can be regarded as a 

more cautious model. Although it is not often to 

predict positive entities, but as long as there is a 

predicted positive, it is almost correct (Precision high), 

while the latter one is a loose model, although 

sometimes it predicts the wrong result, but almost 

everything that should be predicted positive are 

actually predicted positive (Recall high). 

Now, the F1-measure are designed to consider both. 

F1-measure [27] is a measure of statistical analysis of 

binary classification. It considers both the precision 

and the recall. Table 7 lists four results of classification 

in Confusion Matrix. Precision is the rate that the 

number of true positive divides by the total number of 

predicted positive. Recall is the rate that the number of 

true positive divides by the total number of actual 

positive. We can use precision and recall to calculate 

F1-measure. The macro-average gives weight equally 

to all the classes, that means it is an arithmetic mean of 

the F1-scores of all classes. The micro-average gives 

weight equally to all the texts, it simply looks at all the 
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classes together. In this paper, we use micro F1 and 

macro F1 to evaluate the results. 

Table 7. Confusion Matrix 

 Condition Positive Condition Negative

Predicted Condition 

Positive 

TP  

(True Positives) 

FP  

(False Positives) 

Predicted Condition 

Negative 

FN  

(False Negatives) 

TN  

(True Negatives) 

 Precision: 
TP

TP FP+

 (6) 

 Recall: 
TP

TP FN+

 (7) 

 F1- measure: 
2PR

P R+

  (8) 

 Macro Precision: 
1

1
n

i

i

R
n

=

∑   (9) 

 Macro Recall: 
1

1
n

i

i

R
n

=

∑   (10) 

 Macro F1- measure: 
1

1
n

i

i

F
n

=

∑  (11) 

 Micro Precision:  1

1 1

n

i

i

n n

i i

i i

TP

TP FP

=

= =

+

∑

∑ ∑

  (12) 

 Micro Recall:  1

1 1

n

i

i

n n

i i

i i

TP

TP FN

=

= =

+

∑

∑ ∑

  (13) 

Micro F1- measure: 
2* *MicroPrecision Micro Recall

Micro Precision Micro Recall+

(14) 

3 Results and Discussion 

In this section, we implemented eight term 

weighting methods to the predefined six datasets as 

previously mentioned. The results are shown in section 

3.1 and followed by the analysis and discussion part in 

section 3.2. 

3.1 Results 

All the datasets have already been dealt with pre-

processing and feature extraction so we can just apply 

the term weighting methods and give each feature a 

weight.  

Following tables are the results of all datasets under 

SVM and logistic regression with one-hot encoding, 

the traditional and the supervised term weighting 

methods.  

3.1.1 Re0 

We found that in Re0, TFRF gets a better macro-F1 

score and TFIDF gets a better micro-F1 score under 

SVM classification as Table 8 Shows. When using 

PCA and logistic regression, TFRF gets better macro-

F1 score and TFProb gets a better micro-F1 score. The 

result tells TFRF and TFProb get better performance. 

Its fundamental information elements, A, B, C, provide 

much more useful information for classifying. TFIDF 

gets a not bad result, which shows factor term 

frequency and document frequency are helpful in Re0. 

Although there are also many other algorithms that 

may provide us more information, but through the 

experiment we find that these formulas don’t bring us 

better results in this dataset. 

Table 8. Result of Re0 

PCA+logistic regression SVM 
Method 

macro-F1 micro-F1 macro-F1 micro-F1 

One-hot encoding (Base) 76.93% 85.24% 76.26% 83.31% 

TF 73.88% (-3.05%) 84.11% (-1.13%) 75.06% (+1.2%) 83.25% (-0.06%) 

TFIDF 61.64% (-15.29%) 81.85% (-3.39%) 83.00% (+6.74%) 87.76% (+4.45%) 

TFICF 66.60% (-10.33%) 78.66% (-6.58%) 73.83% (-2.43%) 78.92% (-4.39%) 

TFChi 75.51% (-1.42%) 82.51% (-2.73%) 69.82% (-6.44%) 74.20% (-9.11%) 

TFOdd 77.80% (+0.87%) 81.58% (-3.66%) 73.30% (-2.96%) 72.54% (-10.77%) 

TFProb 39.95% (-40.98%) 92.80% (+7.56%) 49.51% (-26.75%) 74.93% (-8.38%) 

TFRF 75.92% (-1.01%) 86.30% (+1.06%) 83.15% (+6.89%) 86.17% (+2.86%) 

TFCRF 61.99% (-14.94%) 82.58% (-2.66%) 71.92% (-4.34%) 81.98% (-1.33%) 

 

3.1.2 Re1 

Table 9 shows the Re1 results of using TFRF under 

SVM gets the best macro-F1 score, and micro-F1 score 

as well. After applying PCA and logistic regression, 

we found that TFRF gets a better macro-F1 score and 
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TFRF again gets a better micro-F1 score. According to 

the foregoing results, TFRF gets best performance. It 

tells fundamental information elements A and B are 

much more useful for classifying in k1a. Although they 

are helpful by TFRF here, their importance is reduced 

in other methods. 

Table 9. Result of Re1 

PCA+logistic regression SVM 
Method 

macro-F1 micro-F1 macro-F1 micro-F1 

One-hot encoding (Base) 69.72% 84.67% 70.43% 83.77% 

TF 75.04% (+5.32%) 84.54% (+1.87%) 71.61% (+1.18%) 83.04% (-0.73%) 

TFIDF 50.98% (-18.74%) 77.43% (-2.76%) 72.23% (+1.80%) 86.06% (+2.29%) 

TFICF 78.01% (+8.29%) 86.96% (+2.29%) 75.18% (+4.75%) 83.16% (-0.61%) 

TFChi 73.01% (+3.29%) 83.83% (-0.84%) 74.38% (+3.95%) 81.11% (-2.66%) 

TFOdd 79.33% (+9.61%) 87.45% (+2.78%) 75.10% (+4.67%) 86.42% (+2.65%) 

TFProb 36.61% (-33.11%) 68.13% (-16.54%) 70.72% (+0.29%) 83.34% (-0.43%) 

TFRF 77.37% (+7.65%) 88.89% (+4.22%) 75.81% (+5.38%) 87.81% (+4.04%) 

TFCRF 72.84% (+3.12%) 87.14% (+2.47%) 76.71% (+6.28%) 87.87% (+4.10%) 

 

3.1.3 K1a 

Table 10 shows the K1a results of using TFRF under 

SVM gets the best macro-F1 score and micro-F1 score 

as well. After applying PCA and logistic regression, 

we found that TFRF gets a better macro-F1 score and 

TFRF again gets a better micro-F1 score. According to 

the foregoing results, TFRF gets best performance. It 

tells fundamental information elements A and B are 

much more useful for classifying in k1a. Although they 

are helpful by TFRF here, their importance is reduced 

in other methods. 

Table 10. Result of K1a 

PCA+logistic regression SVM 
Method 

macro-F1 micro-F1 macro-F1 micro-F1 

One-hot encoding (Base) 76.93% 85.24% 76.2% 83.31% 

TF 71.92% (-5.01%) 86.45% (+1.21%) 72.78% (-3.48%) 87.31% (+4.0%) 

TFIDF 52.29% (-24.64%) 79.36% (-5.55%) 68.41% (-7.85%) 85.81% (+2.50%) 

TFICF 63.43% (-13.50%) 82.35% (-2.89%) 60.55% (-15.71%) 78.16% (-5.15%) 

TFChi 64.42% (-12.51%) 79.91% (-5.33%) 64.13% (-12.13%) 74.86% (-8.48%) 

TFOdd 67.33% (-9.60%) 82.65% (-2.59%) 45.13% (-30.98%) 67.05% (-16.26%) 

TFProb 35.76% (-41.17%) 56.62% (-28.62%) 45.28% (-36.90%) 59.66% (-23.65%) 

TFRF 71.95% (-4.98%) 87.86% (+2.62%) 78.08% (+1.82%) 88.72% (+5.41%) 

TFCRF 65.66% (-11.27%) 85.73% (+0.49%) 72.08% (-4.18%) 86.03% (+2.72%) 

 

3.1.4 K1b 

Table 11 shows the K1b result of using TFICF under 

SVM gets the best macro-F1 score and TFRF gets the 

best micro-F1 score. After applying PCA and logistic 

regression, we found that TFOdd gets the best macro-

F1 score and TFICF again gets the best micro-F1 score. 

According to the foregoing results, TFRF, TFICF and 

TFOdd have better performance to this dataset. We can 

say that fundamental information elements and factor 

category frequency are very useful for classifying in 

K1b. 

Table 11. Result of K1b 

PCA+logistic regression SVM 
Method 

macro-F1 micro-F1 macro-F1 micro-F1 

One-hot encoding (Base) 69.72% 84.67% 70.43% 83.77 

TF 9359% (+23.87%) 97.52% (+12.85%) 95.08% (+24.65%) 97.52% (+13.75%) 

TFIDF 68.39% (-1.33%) 89.96% (+5.29%) 87.27% (+16.84%) 95.94% (+12.170%) 

TFICF 95.75% (+26.03%) 98.25% (+13.58%) 96.98% (+26.55%) 98.08% (+14.31%) 

TFChi 90.69% (+20.97%) 95.04% (+10.37%) 87.55% (+17.12%) 89.23% (+5.46%) 

TFOdd 97.56% (+27.84%) 95.38% (+10.71%) 90.02% (+19.59%) 95.60% (+11.83%) 

TFProb 48.57% (-21.15%) 84.06% (-0.61%) 51.92% (-18.51%) 82.95% (-0.82%) 

TFRF 96.07% (+26.35%) 98.16% (+13.49%) 96.90% (+26.47%) 98.63% (+14.86%) 

TFCRF 87.78% (+18.06%) 94.91% (+10.24%) 67.61% (-2.82%) 88.25% (+4.48%) 
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3.1.5 Re52 

Table 12 shows the Re52 result of using TFRF 

under SVM gets both the best macro-F1 score and 

micro-F1 score. As the result of PCA and logistic 

regression, TFICF gets both the best macro-F1 score 

and micro-F1 score. According to the foregoing results, 

TFRF and TFICF performed well in this dataset. We 

can say that fundamental information elements and 

factor category frequency are very helpful for 

classifying in Re52. 

Table 12. Result of Re52 

PCA+logistic regression SVM 
Method 

macro-F1 micro-F1 macro-F1 micro-F1 

One-hot encoding (Base) 11.07% 18.15% 11.39% 17.83% 

TF 64.83% (+56.76%) 93.15% (+75.0%) 66.59% (+55.20%) 91.25% (+73.42%) 

TFIDF 39.73% (+28.66%) 87.67% (+69.52%) 66.85% (+54.46%) 93.15% (+75.32%) 

TFICF 74.16% (+63.09%) 94.20% (+76.05%) 67.40% (+56.01%) 89.81% (+71.98%) 

TFChi 17.25% (+6.18%) 46.58% (+28.43%) 46.26% (+34.87%) 82.94% (+65.11%) 

TFOdd 68.84% (+57.77%) 89.72% (+71.57%) 66.14% (+54.75%) 85.21% (+67.38%) 

TFProb 14.80% (+3.73%) 76.46% (+58.31%) 49.10% (+37.62%) 83.89% (+66.06%) 

TFRF 54.66% (+43.59%) 92.57% (+74.42%) 68.99% (+57.60%) 93.27% (+75.44%) 

TFCRF 23.12% (+12.05%) 84.16% (+66.01%) 68.82% (+57.43%) 91.87% (+74.04%) 

 

3.1.6 Reuters-21578 

Table 13 shows the Reuters-21578 result of using 

TFRF under SVM gets the best macro-F1 score and 

TFICF gets the best micro-F1 score. After applying 

PCA and logistic regression, TFOdd now gets the best 

macro-F1 score and TFRF gets the best micro-F1 score. 

According to the foregoing results, TFRF, TFOdd and 

TFICF work well in this dataset. We can say that 

fundamental information elements and factor category 

frequency are very helpful for classifying in Reuters-

21758. 

Table 13. Result of Reuters-21578 

PCA+logistic regression SVM 
Method 

macro-F1 micro-F1 macro-F1 micro-F1 

One-hot encoding (Base) 6.39% 16.60% 8.86% 16.79% 

TF 42.74% (+36.35%) 85.41% (+68.81%) 45.83% (+36.97%) 86.16% (+69.37%) 

TFIDF 16.86% (+10.47%) 77.67% (+61.07%) 49.89% (+41.03%) 86.86% (+70.07%) 

TFICF 46.84% (+40.45%) 85.46% (+68.86%) 42.10% (+33.24%) 87.00% (+70.21%) 

TFChi 11.25% (+4.86%) 36.68% (+17.08%) 17.04% (+8.18%) 31.52% (+14.73%) 

TFOdd 56.52% (+50.13%) 80.91% (+64.31%) 48.31% (+39.45%) 81.91% (+65.12%) 

TFProb 10.11% (+3.72%) 62.21% (+45.61%) 50.71% (+41.85%) 74.86% (+58.07%) 

TFRF 37.75% (+29.36%) 85.59% (+67.99%) 54.52% (+45.66%) 86.63% (+69.84%) 

TFCRF 17.82% (+11.43%) 75.84% (+59.24%) 52.98% (+44.12%) 82.29% (+65.50%) 

 

3.2 Discussion 

As the predicted results of all data sets under 

different term weighting methods shown in Section 3.1, 

we found that there are at least two suitable term 

weighting methods can be adopted in each case, 

depending on macro F1 or micro F1 respectively. In 

Reuters 21578, we think that the traditional term 

weighting method still works fine with the multi-label 

text classification. In the case of Re1, our newly 

proposed term weighting method TFCRF gave us a 

better result. 

Although introducing term weighting method may 

have some improvements to certain dataset, but still 

there are some datasets which haven’t shown 

significant effect. Term weighting methods here are 

not so obviously effective. 

We use REF to find important terms for 

classification with SVM and logistic regression in each 

dataset. From Figure 21 to Figure 26, we can find the 

overlap rate in all datasets. The information of the table 

contains 1. the overlap rate between important terms 

for logistic regression and important terms for SVM, 2. 

the overlap rate between high weight terms and 

important terms for logistic regression, and 3. the 

overlap rate between high weight terms and important 

terms for SVM. We also try to use the less importance 

terms to do the same experiment, the range of term 

quantity is from 25% to 5% of total terms. 
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Figure 21. Overlap Rate with TFRF in Re0 

 

Figure 22. Overlap Rate with TFRF in Re1 

 

Figure 23. Overlap Rate with TFRF in K1a 

 

Figure 24. Overlap Rate with TFRF in K1b 

 

Figure 25. Overlap Rate with TFRF in Re52 

 

Figure 26. Overlap Rate with TFRF in Reuters-21678 

From these figures, we find that the overlap rate can 

reach up to 70% between different term weighting 

methods. But the overlap rate between high weight 

terms and important terms for classification are 

significant lower. The lowest overlap rate can down to 

lower than 10%. The result also shows under different 

term quantity, the overlap rate between different term 

weighting methods is slightly decreased, but the 

overlap rate between high weight terms and important 

terms has notable decreasing up to over 30%. 

This tells us that the actual importance of a term in 

document sometimes may not as much as the term`s 

calculated weight shows. 

We use a simple feature selection to reduce the 

number of features for better performance. It selects 

features base on the value of term weight, the higher 

the value is, the easier it will pick. In previous 

paragraph, we concluded that high weight terms may 

not that important to the document. This may cause by 

the features we used for term weighting are 

inappropriate, the features we choose cannot actually 

represent the importance of the term in document. 

The other potential issue exists in the term weighting 

methods is that maybe a term weighting method is 

suitable for a dataset, but doesn’t mean that it is 

suitable for another dataset. And a much more complex 

method may not perform well than a simple one. For 

example, one-hot encoding even works better than 

almost all the other methods in dataset Re0. We also 

find that the importance of probability-based element 
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A and B are reduced in K1a.  

These term weighting methods utilize many features 

but output the result in just a single value. The 

information must have some distortions or losses 

during the processing. So we think term weighting 

method should play an assist role instead of 

representing the importance of a term. 

4 Conclusion 

4.1 Information Missing 

Bag-of-words model is a simplifying representation 

which is widely used in NLP. But it disregards 

grammar and word order in order to keep the multicity. 

It is the first reason that causes information missing.  

Term weighting method combines several useful 

information elements to a single value. This process 

may eliminate lots of the individual information from 

these elements. It is the second reason that causes 

information missing. On the other hands, the word2vec 

model uses a vector instead of a single value to 

represent a word. The formula of term weighting 

method which used in word2vec is similar to a cost 

function. The larger value the cost function has, the 

more important the corresponding word is. However, 

we observed that the importance of a word in a 

document is equal to the importance of the same word 

in classification. Maybe it is a big mistake using Term 

Frequency and disregarding the grammar and order or 

something else in previous research. From our 

experiments, the results do strongly support our 

viewpoint. In our future work, we will drop out the 

formula and try to keep all information elements within 

a vector to represent a word. 

4.2 Conclusion 

There are two main contributions in this research. 

First, we propose a new weighting algorithm, TFCRF, 

which considers the term that equally separated in all 

classes as a negative effect to the discriminating power. 

The TFCRF successfully brings us a better result in 

Re1. Second, we have shown that the discriminating 

power of a term may not be as strong as we thought, 

especially for those who have a higher weight in 

classification.  

The result tells that term weighting methods can be 

adopted to improve the results of text classification in 

some case. Different datasets may suit different term 

weighting methods. It regards how the model should be 

evaluated and what the type of the text and category 

should be considered. 

Although we get a better result from TFCRF, we 

still think that the term weighting methods are not as 

useful as we thought. In some cases, most of term 

weighting methods cannot get a satisfied or even worse 

result. Sometimes it costs a lot of resources to find a 

suitable weight, but the result may not show us an 

obvious improvement. 

Term weighting is designed to express the 

importance of a word in a text and it is often used in 

text classification. We can easily say that high weight 

words may not reflect on the importance in 

classification. A high weight word may play a 

significant role to a text, but it may not be same 

important in classification. 

The research of term weighting method recently 

may have encountered a bottleneck due to the 

information missing problem. Our future work will 

focus on how to design representation vectors of words 

to keep more information. Word2vec uses vectors to 

represent a word and it becomes a popular method in 

NLP. Referring to word2vec, designing a new method 

to keep the factors’ information and make good use 

could be a topic. Also, how to deal with an imbalanced 

dataset is another issue. Imbalanced dataset problem 

may cause classification having bad results in certain 

condition. Finally, the multi-label texts nowadays 

appear more and more frequently in our life. It is 

necessary to improve the accuracy of this kind of 

classification for future application. 

References 

[1] C. Xing, D. Wang, X. Zhang, C. Liu, Document Classification 

with Distributions of Word Vectors, Signal and Information 

Processing Association Annual Summit and Conference 

(APSIPA), Siem Reap, Cambodia, 2014, pp. 1-5. 

[2] A. D. Patel, V. N. Pandya, Web page classification based on 

context to the content extraction of articles, 2nd International 

Conference for Convergence in Technology (I2CT), Mumbai, 

India, 2017, pp. 539-541. 

[3] I. Rish, An empirical study of the naive Bayes classifier, 

International Joint Conferences on Artificial Intelligence 

(IJCAI) 2001 workshop on empirical methods in artificial 

intelligence, Seattle, Washington, USA, 2001, Vol. 3, No. 22, 

pp. 41-46. 

[4] C.-W. Hsu, C.-J. Lin, A Comparison of Methods for 

Multiclass Support Vector Machines, IEEE Transactions on 

Neural Networks, Vol. 13, No. 2, pp. 415-425, March, 2002. 

[5] G. Guo, H. Wang, D. Bell, Y. Bi, K. Greer, KNN Model-

Based Approach in Classification, in: R. Meersman, Z. Tari, 

D. C. Schmidt (Eds.), On The Move to Meaningful Internet 

Systems 2003: CoopIS, DOA, and ODBASE, Springer, Berlin, 

Heidelberg, 2003, pp. 986-996. 

[6] J. R. Quinlan, Simplifying decision trees, International 

Journal of Man-Machine Studies, Vol. 27, No. 3, pp. 221-234, 

September, 1987. 

[7] E. Gibaja, S. Ventura, A Tutorial on Multilabel Learning, 

ACM Computing Surveys, Vol. 47, No. 3, pp. 1-38, April, 

2015. 

[8] D. Lewis, Reuters-21578 text categorization test collection, 

AT&T Labs-Res., Florham Park, NJ, USA, distribution 1.0, 



324 Journal of Internet Technology Volume 22 (2021) No.2 

 

1997. 

[9] D. D. Lewis, Y. Yang, T. G. Rose, F. Li, RCV1: A new 

benchmark collection for text categorization research, Journal 

of Machine Learning Research, Vol. 5, pp. 361-397, December, 

2004. 

[10] V. Korde, Text Classification and Classifiers: A Survey, 

International Journal of Artificial Intelligence & Applications, 

Vol. 3, No. 2, pp. 85-99, March, 2012. 

[11] E. Leopold, J. Kindermann, Text Categorization with Support 

Vector Machines-How to Represent Texts in Input Space?, 

Machine Learning, Vol. 46, No. 1-3, pp. 423-444, January, 

2002. 

[12] S. S. Samant, N. L. B. Murthy, A. Malapati, Improving Term 

Weighting Schemes for Short Text Classification in Vector 

Space Model, IEEE Access, Vol. 7, pp. 166578-166592, 

November, 2019. 

[13] K. Chen, Z. Zhang, J. Long, H. Zhang, Turning from TF-IDF 

to TF-IGM for term weighting in text classification, Expert 

Systems with Applications, Vol. 66, pp. 245-260, December, 

2016. 

[14] G. Salton, M. J. McGill, Introduction to Modern Information 

Retrieval, McGraw-Hill, Inc., 1986. 

[15] V. Lertnattee, T. Theeramunkong, Analysis of inverse class 

frequency in centroid-based text classification, IEEE International 

Symposium on Communications and Information Technology 

(ISCIT) 2004, Sapporo, Japan, 2004, pp. 1171-1176. 

[16] J. W. Reed, Y. Jiao, T. E. Potok, B. A. Klump, M. T. Elmore, 

A. R. Hurson, TF-ICF: A New Term Weighting Scheme for 

Clustering Dynamic Data Streams, 2006 5th International 

Conference on Machine Learning and Applications (ICMLA’06), 

Orlando, FL, USA, 2006, pp. 258-263. 

[17] D. Wang, H. Zhang, Inverse-Category-Frequency Based 

Supervised Term Weighting Schemes for Text Categorization, 

Journal of Information Science and Engineering, Vol. 29, No. 

2, pp. 209-225, March, 2013. 

[18] F. Carvalho, G. P. Guedes, TF-IDFC-RF: A Novel Supervised 

Term Weighting Scheme, https://arxiv.org/abs/ 2003.07193, 

2020.  

[19] D. Mladenic, M. Grobelnik, Feature Selection for Unbalanced 

Class Distribution and Naive Bayes, Proceedings of the 

Sixteenth International Conference on Machine Learning, Bled, 

Slovenia, 1999, pp. 258-267. 

[20] Y. Liu, H. Loh, A. Sun, Imbalanced text classification: A 

term weighting approach, Expert Systems with Applications, 

Vol. 36, No. 1, pp. 690-701, January, 2009. 

[21] M. Lan, C.-L. Tan, H.-B. Low, Proposing a new term 

weighting scheme for text categorization, Proceedings of the 

National Conference on Artificial Intelligence, Boston, 

Massachusetts, USA, 2006, pp. 763-768. 

[22] M. Lan, C. L. Tan, J. Su, Y. Lu, Supervised and traditional 

term weighting methods for automatic text categorization, 

IEEE Transactions on Pattern Analysis and Machine 

Intelligence, Vol. 31, No. 4, pp. 721-735, April, 2009. 

[23] H. Zhou, Y. Zhang, H. Liu, Y. Zhang, Feature Selection 

Based on Term Frequency Reordering of Document Level, 

IEEE Access, Vol. 6, pp. 51655-51668, September, 2018. 

[24] Y. Ko, A New Term Weighting Scheme for Text 

Classification using the Odds of Positive and Negative Class 

Probabilities, Journal of the Association for Information 

Science and Technology (ASIS&T), Vol. 66, No. 12, pp. 

2553-2565, December, 2015. 

[25] K. Pearson, On lines and planes of closest fit to systems of 

points in space, Philosophical Magazine, Vol. 2, No. 11, pp. 

559-572, 1901. 

[26] X. Lin, F. Yang, L. Zhou, P. Yin, H. Kong, W. Xing, X. Lu, L. 

Jia, Q. Wang, G. Xu, A support vector machine-recursive 

feature elimination feature selection method based on 

artificial contrast variables and mutual information, Journal 

of chromatography B, Analytical technologies in the biomedical 

and life sciences, Vol. 910, pp. 149-155, December, 2012. 

[27] D. M. Powers, Evaluation: from precision, recall and F-

measure to ROC, informedness, markedness and correlation, 

Journal of Machine Learning Technologies, Vol. 2, No. 1, pp. 

37-63, 2011. 

Biographies 

Kuan-Hua Tseng received the M.S. 

degree from the Department of 

Computer Science and Information 

Engineering, Da-Yeh University, 

Taiwan. He is now pursuing his Ph.D. 

in National Sun Yat-sen University, 

Taiwan. His research interests include AI, Machine 

Learning, mobile communication networks, Internet of 

things and embedded system. 

 

Chun-Hung Richard Lin received 

Ph.D. degree from Computer Science 

Department, University of California, 

Los Angeles (UCLA). He is currently 

a Professor of the Department of 

Computer Science and Engineering, 

National Sun Yat-sen University, Taiwan. His research 

interests include the design and control of mobile 

communication networks, Internet of things, edge 

computing and device AI, and embedded operating 

system design and implementation. 

 

Jain-Shing Liu received the Ph.D. 

degree from the Department of 

Computer and Information Science, 

National Chiao Tung University, 

Taiwan. He currently is a professor 

with the Department of Computer 

Science and Information Engineering, Providence 

University, Taiwan. His research interests include 

design and performance analysis of wireless 

communication protocols, wireless local area networks, 

wireless sensor networks, and wireless rechargeable 

networks. 

 

 



A Study on Text Classification: Term Weighting Algorithm Analysis 325 

 

Chih-Ming Andrew Huang received 

the M.S. degree from the Department 

of Science of Statistics, National 

Chiao Tung University, Hsinchu, 

Taiwan. Currently, he is a Ph.D. 

student of Department of Computer 

Science and Engineering, National Sun Yat-sen 

University, Taiwan. His research interests include 

computer communication technologies, Internet of 

things, biometrics technologies and embedded system. 

 

Yue-Han Wang received the B.S. 

degree from the Department of 

Computer Science and Information 

Engineering, Tunghai University, 

Taiwan in 2015 and the M.S. degree 

from the Department of Computer 

Science and Engineering, National Sun Yat-sen 

University, Taiwan in 2019. His research interests 

include Machine Learning, NLP, data engineering. 



326 Journal of Internet Technology Volume 22 (2021) No.2 

 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9.354330
      /MarksWeight 0.141730
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


