
A Study on Text Classification: Term Weighting Algorithm Analysis 311

A Study on Text Classification:

Term Weighting Algorithm Analysis

Kuan-Hua Tseng1, Chun-Hung Richard Lin1, Jain-Shing Liu2, Chih-Ming Andrew Huang1, Yue-Han Wang1
1 Department of Computer Science and Engineering, National Sun Yat-sen University, Taiwan

2 Department of Computer Science and Information Engineering, Providence University, Taiwan

ethan@mail.cse.nsysu.edu.tw, lin@cse.nsysu.edu.tw, chlliu@pu.edu.tw, andrewh232@gmail.com,

wang15951@gmail.com*

*Corresponding Author: Kuan-Hua Tseng; E-mail: ethan@mail.cse.nsysu.edu.tw

DOI: 10.3966/160792642021032202007

Abstract

With the advancement of digital recording and storing

technology, plus the huge growth of world wide web,

people nowadays use digital texts instead of paper to

write and record. In order to realize more text

applications, the technology of text classification is

gradually gaining attention recently. To achieve

automatic text classification through machine learning,

the related five technologies, including pre-processing,

feature extraction, feature selection, term weighting and

classification algorithm, are often discussed as well by

many researches. In this paper, we are going to explore

the impact of term weighting on text classification.

Term weighting is definitely a very important part of

text classification. The calculated weight should directly

reflect the importance of the term in entire text to allow

machine learning to achieve the best classified result. We

applied some common term weighting methods to several

pre-defined datasets and conducted the experiments.

Instead of intuitively considering that the value of weight

represents how important it is, it turned out that the result

shows the term actually may not as important as the high

scored weight represents.

Keywords: Text classification, Term weighting, Supervised

term weighting

1 Introduction

With the rapid development of internet, there are

huge and still increasing amount of web content in

texts which are exchanged between people. These

unstructured web texts are everywhere: emails, instant

messages, social media, web pages, and more. Web

texts can be an extremely rich source of information,

but due to its unstructured characteristic, it is difficult

to extract useful key parts systematically from it. If we

manage these textual data in a manual way, it will cost

us too many materials and manpower to handle.

Therefore, to manage these complicated web textual

data in an effective way, is getting important. Here we

utilize the machine learning text classification

technology to help people automatically structure and

analyze the text in a quickly and cost-effectively way

[1-2].

To achieve automatic text classification, we

introduced several widely used machine learning

technology to predict the category of the target text.

The machine learning algorithm, including Naïve-

Bayes [3], Supporting Vector Machine [4], K-nearest

Neighbors [5], Decision Tree [6], etc., is highly related

to computational statistics. During the process of

machine learning, every move we take such as feature

selection, classification algorithm or weighting, can be

a huge affection to the result. In order to get the best

result, we must do some pre-research to optimize the

learning process.

Most of the text classification cases are multi-label

classification, which is an extension of multi-class

classification [7]. That means one text can be

categorized into one or several pre-defined classes.

In this paper, we focus on the categorization of text,

not only automatically and efficiently but also higher

precision. Term weighting plays the most important

role of the classification process, we also want to learn

about the effect of term weights to the classification

process. Moreover, we want to figure out whether the

high weight terms are significant or not for

classification.

2 Related Work

2.1 Datasets and Framework

There are 7 datasets which are used in this paper for

training and testing. They are Reuter 21578, Re0, Re1,

Re52, k1a, k1b and RCV1. Table 1 shows the basic

information about all datasets.

Reuter 21578 is a document collection appeared on

Reuters news in 1987 [8], and is often used in text

categorization. It contains multi-class and multi-label

datasets with 90 categories and 10788 documents. We

split them into two set for training and testing, which

have 7769 documents and 3019 documents respectively.

312 Journal of Internet Technology Volume 22 (2021) No.2

Table 1. Base Information of Datasets

Dataset Documents Effective Words Classes

Reuters-21578 10788 9280 90

Re0 1504 2886 13

Re1 1657 3758 25

Re52 9130 7977 52

K1a 2340 21839 20

K1b 2340 21839 6

RCV1 804414 47236 103

Re0, Re1, K1a and K1b, are provided by Karypis

Lab University of Minnesota. 1 1 The Re0 and Re1

dataset are subsets that derived from Reuter 21578. We

also select some certain documents to create Re52

dataset. Re0 contains 13 categories with 1504

documents. Re1 has 25 categories with 1657

documents. Re52 is a single label subset of Reuter

21587. It contains 52 categories and 9130 documents.

The k1a and k1b dataset are subsets of WebACE. They

have up to a total 2340 documents and 21839 effective

words.

Datasets mentioned above are small-scale datasets,

that means the quantities of documents are in the range

of thousands to ten thousand, and each dataset has

around thousands of effective words. The number of

documents and the number of effective words are not

much difference hence the weight of word may be

distorted due to the small term frequency. So, we

introduced the Reuters Corpus Volume I (RCV1) [9],

an archive of over 800000 manually categorized

newswire stories made by Reuters, Ltd. RCV1 is a

large-scale dataset which contains 103 categories and

804414 documents.

All these datasets are imbalanced. The skewed

distribution makes many conventional machine

learning algorithms less effective. Imbalanced data

typically refers to the classification problem that the

classes are not distributed equally. From the figures

below, we can easily understand that there is no dataset

with normal distribution.

Figure 1 shows that 76.2% documents of Re0 are in

only three categories. Figure 2 shows that 42.3%

documents of Re1 are in only two categories. Figure 3

shows that 43.6% documents of K1a are in only three

categories and there are five categories which contain

less than 1% documents of K1a. Figure 4 shows that

59.4% documents of K1b are in a single category.

Figure 5 shows that 68.1% documents of Re52 are in

only two categories. Figure 6 shows that 58.7%

documents of Reuters-21578 are in only two categories.

Figure 7 shows the category distribution of RCV, the

CCAT category has over 380000 documents but the

GMIL category only contains five documents.

1 http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download

Figure 1. Category distribution of dataset Re0

Figure 2. Category distribution of dataset Re1

Figure 3. Category distribution of dataset K1a

Figure 4. Category distribution of dataset K1b

A Study on Text Classification: Term Weighting Algorithm Analysis 313

Figure 5. Category distribution of dataset Re52

Figure 6. Category distribution of dataset Reuters-

21578

Figure 7. Category distribution of dataset RCV1

Figure 8 presents the framework of supervised text

classification. At very first, we need to do pre-

processing includes stop words removal, stemming [10]

and lemmatization [11]. Then we use bag-of word

model to transform words to vectors and give every

term a weight. Feature reduction, including feature

extraction and feature selection, is the next step.

Feature extraction reduces the amount of resource

which is required to describe a large set of data.

Feature selection is the process of selecting a subset of

relevant features that are used in model construction.

After these procedures, we use training set to train the

classifier models with machine learning algorithms.

Figure 8. Framework for supervised text classification

For new test set, we have to do the feature

identification, including picking up the features which

are in the training set, and give these terms an adjusted

weight. After that, we may predict the result of this

new set through the classification model.

In this paper we will also introduce RFE method to

figure out the relation between classification and term

weights.

2.2 Pre-processing

Here we use Reuters 21578 as an example to do pre-

processing. We remove the stop words as well as stem

words, then keep the meaningful words like nouns,

verbs, adjectives, and adverbs. This can be easily done

by NLTK package. There is a stop word table inside

NLTK, it collects meaningless words including be

(verb), etc. Not only the tense words, there are also

many other words that carry the same meaning. To

eliminate these words, we use stemming to shorten the

lookup time and normalize the sentences. For example,

‘is’, ‘am’ and ‘are’ are three different be verbs. By

stemming, they can be treated as one word ‘be’. Re0,

Re1, k1a, k1b already been done this preprocessing, so

we can skip this step on them.

2.3 Bag-of-words Model

The bag-of-words model is a way of representing

words in a vector of occurrence counts of a vocabulary.

It is widely used in natural language processing and

information retrieval. In this model, a text is

represented as a bag of its words only but disregards

the grammar and the word order to keep the

multiplicity. In our training set, we put all effective

words into a bag which is used by the bag-of-model.

Figure 9 shows the result after the bag-of-words model.

2.4 Term Weighting

After these previous steps, every word which is

retrieved from the text will be given a weight through

the weighting algorithm [12]. In this paper, we use

eight different kinds of weighting algorithm to do the

experiments and compare the results. Except TF,

314 Journal of Internet Technology Volume 22 (2021) No.2

Figure 9. An example of bag-of-words model

TFIDF and TFICF, we also introduce four additional

supervised term weighting methods. Then we propose

our new supervised term weighting method.

2.4.1 One-hot Encoding

A one-hot encoding is a representation of categorical

variables as binary vectors. In natural language

processing, a one-hot vector represents that a word is

in the document or not. The vector consists of zero bits

in all cells originally, then when the corresponding

words are found in the text, these bits will mark 1 in

the cells. Figure 10 shows the example of

representation using one-hot encoding.

Figure 10. Example of representation using one-hot

encoding

2.4.2 TFIDF (Term Frequency, Inverse Document

Frequency)

TFIDF [13-14] is often used as a weighting

algorithm in information retrieval, text mining and user

modeling. It reflects how important a word to a

document in a collection or corpus is. This algorithm is

combined with TF part and IDF part.

TF (Term Frequency) means that the number of

occurrences of a term in a document, and is simply

proportional to the term frequency. In TF formula, ni,j

is the number of the specify words that occurred in

document dj, and the denominator denotes the number

of all words that occurred in the document dj.

IDF (Inverse Document Frequency) represents a

specified term factor that is quantified by the inverse

function and the number of occurrences in documents.

In the formula, |D| is the total number of documents in

the corpus, the denominator is the number of

documents that contains this specified term. To avoid a

division-by-zero error, it’s common to adjust the

denominator to 1+|{j:ti ∈ dj}|. Figure 11 shows an

example of representation using TFIDF.

Figure 11. Example of representation using TFIDF

,

,

,

i j

i j

k k j

n
tf

n
=
Σ

 (1)

| |

log
|{ : }|

i

i j

D
idf

j t d
=

∈

 (2)

, ,

*
i j i j i

tfidf tf idf= (3)

2.4.3 TFICF (Term Frequency, Inverse Category

Frequency)

TFICF [15-17] is often used as a weighting

algorithm factor too in information retrieval, text

mining. In general speaking of text categorization, the

fewer a term appears in one category, the more

discriminative power this term has. This algorithm is

combined by TF part and ICF part. The definition of

TF here is the same as described previously.

ICF (Inverse Category Frequency) represents a

specified term factor that can be quantified by the

inverse function and the number of occurrences in

categories. In the ICF formula, |C| is the total number

of categories in the corpus, the denominator is the

number of categories that contains this specified term.

Figure 12 shows the example of representation using

TFICF.

| |

() log()
()

C
icf ti

cf ti
= (4)

, ,

*
i j i j i

tficf tf icf= (5)

A Study on Text Classification: Term Weighting Algorithm Analysis 315

Figure 12. Example of representation using TFICF

2.4.4 Supervised Term Weighting

Supervised term weighting (STW) has been used in

text classification for several years. Before the STW,

we usually use binary classification for text

classification. The STW becomes popular these years

because it considers the characteristics of dataset and

uses the prior information on training documents in

predefined categories [18].

A traditional weight algorithm consists of a local

weight and a global weight like previously mentioned

TFIDF, which is the most commonly used one in text

classification. STW uses the weight after feature-

selected process to replace the global weight. Table 2

lists the fundamental information elements which are

used for feature selection in text classification.

Table 2. Fundamental information elements

 C1
1

C

k
t A B

k
t C D

‧ A denotes the number of documents in the positive class

that not contain term
k
t .

‧ B denotes the number of documents in the positive class

that not contain term
k
t .

‧ C denotes the number of documents in the positive class

that not contain term
k
t .

‧ D denotes the number of documents in the negative class

that do not contain
k
t .

‧ The sum of A, B, C and D is the number of documents in

the whole collection.

In text classification, there are several supervised

term weighting algorithms except the traditional TF-

like method. Table 3 lists four supervised term

weighting methods we used in this paper including

TFOdd [19], TFProb [20] and TFRF [21-22]. Figure 13

shows an example of representation using TFRF.

Table 3. STWs using fundamental infotmation element

Methods
Mathematical form represented by

information elements

ntf * Chi-square

(ChiS)

2* ()

/()()()()

ntf N AD BC

A C A B B D C D

−

+ + + +

ntf * Odd ratio

(OddsR) [19]
*log(/)ntf AD BC

Probability based term

weight (Prob.) [20]
*log(1 *)

A A
ntf

B C
+

Relevance frequency

(rf) [21-22]
*log(2)

A
ntf

B
+

Figure 13. Example of representing in TFRF

2.5 Our Proposed Term Weighting Method

We newly propose a supervised term weighting

scheme, Term Frequency-Category Relevance

Frequency (TFCRF), which uses the odds of positive

and negative class probabilities to improve results.

Table 4 lists the Mathematical formula of TFCRF. This

formula is used to improve probability-based term

weight [20].

Table 4. The formula of proposed STW: TFCRF

Methods
Mathematical form represented by

information elements

TFCRF *log(1)
A B

ntf
A B

−
+

+

Probability based term weight considers

fundamental information elements B and C. Element B

is the number of documents which contain term tk but

in the negative Ci classes. Element C is the number of

documents which don’t have the term tk but in the

positive Ci class.

Considering that element C should not have a

negative impact to the discriminatory power of term tk

to class Ci, it can even be said to be irrelevant, we

decide to treat element C as an insignificant factor, so

we don’t put C in our formula.

We take element B as the real matter to affect the

316 Journal of Internet Technology Volume 22 (2021) No.2

term weighting result. Since A + B is the total

appearance number of term tk, we can say that A and B

are mutually exclusive. That means when A gains more,

the less B will have. In our proposed novel supervised

term weighting method, we will treat B as a negative

factor to the discriminating power of term tk. Figure 14

shows the example of representation using TFCRF.

Figure 14. Example of representing in TFCRF

2.6 Test Documents Representation Method

How to represent our test documents with

supervised term weighting is our next issue. Since

there is no class information of test documents, we

have to develop one to represent the test document in

vector which is required by the team weighting scheme.

We introduced four methods [23] here and described

them in Table 5. Each method will be given an

example. Figure 15 shows the example of W-Max

method. Figure 16 shows the example of D-Max

method. Figure 17 shows the example of D-TMax

method. And the last Figure 18 shows the example of

Hypo method.

Table 5. Four representation methods for test

document

W-Max

(Word Max)

The term weight of each word is chosen

based on the maximum value among |C|

estimated term weights.

D-Max

(Document

Max)

The sum of all term weights in each vector is

first calculated, and one vector with the

maximum sum value is then selected as a

representative vector.

D-TMax

(Documents

Two Max)

The sum of all term weights in each vector is

calculated, and two vectors with the highest

and second highest sum values are then

selected. A vector is then created by choosing

the term weight with the higher score

between the two term weights of the selected

vectors for each term.

Table 5. Four representation methods for test

document (continue)

Hypo

(Hypothesis)

First we generated the |C| vectors according

to the information of each class. Then we

treat each category of the test document as a

hypothesis label, that means all the test

documents can be categorized to one or many

of these labels. A text classifier is introduced

here to calculate the prediction scores of all

categories. Finally, we select the label with

the highest prediction score as the predicted

category label.

Figure 15. Example of W-Max method

Figure 16. Example of D-Max method

Figure 17. Example of D-TMax method

A Study on Text Classification: Term Weighting Algorithm Analysis 317

Figure 18. Example of Hypo method

2.7 Feature Reduction

Feature reduction, also known as dimensionality

reduction, is the process to reduce the feature size

without losing important information. Feature

reduction can be divided into two processes: feature

selection and feature extraction. Feature selection

returns a subset of relevant features from a large

dataset, whereas feature extraction creates a new

feature set which is reduced to a more manageable size

for processing.

2.7.1 Feature Selection

Feature selection is the process of selecting relevant

features from raw dataset. This technique is useful

because it simplifies the learning models and results,

and make them easier to interpret by researchers. It

also has shortened training time and enhanced

generalization by reducing overfitting. There are three

different kinds of method: wrapper method, filter

method and embedded method, for the implementation

of feature selection [24].

Wrapper methods use predictive models to score the

features in subsets. These subsets will be used to train a

model, and be tested on another hold-out set. By

repeating this process, we can find best score one

among the subsets. The wrapper methods are

computationally intensive and may cost a lot of

computational resource, but also give us the best

performance dataset.

Filter methods use proxy measures instead of the

error rate to score the features in subsets. These

measures are chosen according to their simplicity of

computing, and the usefulness to the feature sets. There

are several common measures such as the chi-squared

stats and the mutual information. The filter method is

often less computationally intensive than the wrapper

one, but provides the feature set which may not tuned

to a specific type compare to predictive model. It often

gives a lower prediction performance than wrapper.

Embedded methods perform feature selection as a

part of the machine learning model construction

process. Therefore, we call them embedded methods.

Common embedded methods include LASSO method

and RFE method. In terms of computational

complexity, the embedded methods are between

wrappers and filters.

Reuters-21578 has 9280 features and 10788

documents. We can easily aware that there are too

many features and documents which is not efficient to

classify. In order to reduce the computational power,

we introduced the simple feature selection to reduce

the number of features. By that we choose 4000

features which have higher term frequency value for

experiment. Figure 19 shows the example of feature

selection using TF.

Figure 19. Example of feature selection with TF

2.7.2 Feature Extraction

If the input data is too large to be used in machine

learning, then we transform it into a reduced set of

features. Here we introduced the feature extraction to

reduce the amount of required resources for describing

a large dataset.

A large size of variables may cause classification

algorithm overfits on training samples and is generalize

poorly to new samples. Feature extraction can be

implemented by many methods such as LSA (Latent

Semantic Analysis) and PCA (Principal Content

Analysis). We use PCA plus logistic regression to do

the experiment in this paper. There are two advantages

using PCA as our major feature extraction method.

First, it reduces the processing dimension and because

of this, it saves the model training time. The second is

solving the collinearity problem and pick up the

features which are independent. The collinearity

problem happens when independent variables in a

regression model are too much correlated. Independent

variables should be just as the name itself says, if the

level of correlation between variables is too high, it

will be a problem when user is trying to fit the model

318 Journal of Internet Technology Volume 22 (2021) No.2

or interpreting the result.

Principal components analysis (PCA) [25] is a

statistical process. It uses the orthogonal transformation

to convert a set of observation value from possibly

correlated variables into a set of linearly uncorrelated

variables which are called principal components. The

transformation is defined in such way that the first

principal component has the largest possible variance,

and then following by each succeeding component in

turn. These succeeding components have the highest

variance possible under the constraint that they are

orthogonal to their preceding components. The

resulting vectors are an uncorrelated orthogonal basis

set.

In this paper, by the tremendous help of PCA, we

reduced the dimensions to the level that the percentage

of variance explained is over 90%. Table 6 shows the

number of reduced dimensions with PCA. After

extracting features, we use logistic regression to

classify.

Table 6. Reduced dimension by PCA

Dataset Re0 Re1 K1a K1b Re52 Reuters-21578

Dimension 2886 3758 21839 21839 7977 4000

TF 233 400 864 864 750 711

TFIDG 493 723 1284 1284 1765 1420

TFICF 342 461 955 955 1229 1038

TFChi 4 6 1 1 10 11

TFOdd 177 256 786 786 498 421

TFRF 294 424 883 883 368 339

Reduced

Dimension

TFProb 13 14 20 20 17 20

2.8 Recursive Feature Elimination (RFE)

In this paper, we analysis the relation between term

weighting and classifying. Recursive feature

elimination (RFE) [26] is involved here. RFE picks

feature up in classification step which is different from

other feature selection methods.

Recursive feature elimination (RFE) is a feature

selection algorithm. It takes the advantage of reducing

the redundant and recursive features and can be used in

many different machine learning classification

algorithms. The Major concept of RFE is sorting out

the influence of features by excluding the features that

have the least influence on the target. The estimator is

first trained by the initial dataset, then the feature who

has the smallest weight are removed from the set. By

repeating this procedure, the desired size of feature will

be reached. Figure 20 depicts the framework of RFE.

Figure 20. RFE Framework

2.9 F1-measure

There are many ways to evaluate a model such as

accuracy, error rate, precision, recall and F1-measure.

They are widely used in the machine learning

evaluation but sometimes we may not easy to

distinguish good model from other models by them.

Here is an example. If we have a model to predict

earthquake, and it has 99% accuracy (TP/TP+TN)

score but due to the near zero frequency of earthquake,

it is very easy to design the model which predicts no

earthquake at all. In this case, although the accuracy is

very high, we can’t say that it is a good model.

Then the precision and recall are developed for

another aspect of evaluation. Precision focuses on true

positive of predicted positive. Recall focuses on true

positive of actual positive. But still, in extreme

situations, they are both insufficient to determine

whether the model is good or not. How do we explain

the significance of a model with high precision and low

recall and a model with high recall and low precision,

respectively? The former one can be regarded as a

more cautious model. Although it is not often to

predict positive entities, but as long as there is a

predicted positive, it is almost correct (Precision high),

while the latter one is a loose model, although

sometimes it predicts the wrong result, but almost

everything that should be predicted positive are

actually predicted positive (Recall high).

Now, the F1-measure are designed to consider both.

F1-measure [27] is a measure of statistical analysis of

binary classification. It considers both the precision

and the recall. Table 7 lists four results of classification

in Confusion Matrix. Precision is the rate that the

number of true positive divides by the total number of

predicted positive. Recall is the rate that the number of

true positive divides by the total number of actual

positive. We can use precision and recall to calculate

F1-measure. The macro-average gives weight equally

to all the classes, that means it is an arithmetic mean of

the F1-scores of all classes. The micro-average gives

weight equally to all the texts, it simply looks at all the

A Study on Text Classification: Term Weighting Algorithm Analysis 319

classes together. In this paper, we use micro F1 and

macro F1 to evaluate the results.

Table 7. Confusion Matrix

 Condition Positive Condition Negative

Predicted Condition

Positive

TP

(True Positives)

FP

(False Positives)

Predicted Condition

Negative

FN

(False Negatives)

TN

(True Negatives)

 Precision:
TP

TP FP+

 (6)

 Recall:
TP

TP FN+

 (7)

 F1- measure:
2PR

P R+

 (8)

 Macro Precision:
1

1
n

i

i

R
n

=

∑ (9)

 Macro Recall:
1

1
n

i

i

R
n

=

∑ (10)

 Macro F1- measure:
1

1
n

i

i

F
n

=

∑ (11)

 Micro Precision: 1

1 1

n

i

i

n n

i i

i i

TP

TP FP

=

= =

+

∑

∑ ∑

 (12)

 Micro Recall: 1

1 1

n

i

i

n n

i i

i i

TP

TP FN

=

= =

+

∑

∑ ∑

 (13)

Micro F1- measure:
2* *MicroPrecision Micro Recall

Micro Precision Micro Recall+

(14)

3 Results and Discussion

In this section, we implemented eight term

weighting methods to the predefined six datasets as

previously mentioned. The results are shown in section

3.1 and followed by the analysis and discussion part in

section 3.2.

3.1 Results

All the datasets have already been dealt with pre-

processing and feature extraction so we can just apply

the term weighting methods and give each feature a

weight.

Following tables are the results of all datasets under

SVM and logistic regression with one-hot encoding,

the traditional and the supervised term weighting

methods.

3.1.1 Re0

We found that in Re0, TFRF gets a better macro-F1

score and TFIDF gets a better micro-F1 score under

SVM classification as Table 8 Shows. When using

PCA and logistic regression, TFRF gets better macro-

F1 score and TFProb gets a better micro-F1 score. The

result tells TFRF and TFProb get better performance.

Its fundamental information elements, A, B, C, provide

much more useful information for classifying. TFIDF

gets a not bad result, which shows factor term

frequency and document frequency are helpful in Re0.

Although there are also many other algorithms that

may provide us more information, but through the

experiment we find that these formulas don’t bring us

better results in this dataset.

Table 8. Result of Re0

PCA+logistic regression SVM
Method

macro-F1 micro-F1 macro-F1 micro-F1

One-hot encoding (Base) 76.93% 85.24% 76.26% 83.31%

TF 73.88% (-3.05%) 84.11% (-1.13%) 75.06% (+1.2%) 83.25% (-0.06%)

TFIDF 61.64% (-15.29%) 81.85% (-3.39%) 83.00% (+6.74%) 87.76% (+4.45%)

TFICF 66.60% (-10.33%) 78.66% (-6.58%) 73.83% (-2.43%) 78.92% (-4.39%)

TFChi 75.51% (-1.42%) 82.51% (-2.73%) 69.82% (-6.44%) 74.20% (-9.11%)

TFOdd 77.80% (+0.87%) 81.58% (-3.66%) 73.30% (-2.96%) 72.54% (-10.77%)

TFProb 39.95% (-40.98%) 92.80% (+7.56%) 49.51% (-26.75%) 74.93% (-8.38%)

TFRF 75.92% (-1.01%) 86.30% (+1.06%) 83.15% (+6.89%) 86.17% (+2.86%)

TFCRF 61.99% (-14.94%) 82.58% (-2.66%) 71.92% (-4.34%) 81.98% (-1.33%)

3.1.2 Re1

Table 9 shows the Re1 results of using TFRF under

SVM gets the best macro-F1 score, and micro-F1 score

as well. After applying PCA and logistic regression,

we found that TFRF gets a better macro-F1 score and

320 Journal of Internet Technology Volume 22 (2021) No.2

TFRF again gets a better micro-F1 score. According to

the foregoing results, TFRF gets best performance. It

tells fundamental information elements A and B are

much more useful for classifying in k1a. Although they

are helpful by TFRF here, their importance is reduced

in other methods.

Table 9. Result of Re1

PCA+logistic regression SVM
Method

macro-F1 micro-F1 macro-F1 micro-F1

One-hot encoding (Base) 69.72% 84.67% 70.43% 83.77%

TF 75.04% (+5.32%) 84.54% (+1.87%) 71.61% (+1.18%) 83.04% (-0.73%)

TFIDF 50.98% (-18.74%) 77.43% (-2.76%) 72.23% (+1.80%) 86.06% (+2.29%)

TFICF 78.01% (+8.29%) 86.96% (+2.29%) 75.18% (+4.75%) 83.16% (-0.61%)

TFChi 73.01% (+3.29%) 83.83% (-0.84%) 74.38% (+3.95%) 81.11% (-2.66%)

TFOdd 79.33% (+9.61%) 87.45% (+2.78%) 75.10% (+4.67%) 86.42% (+2.65%)

TFProb 36.61% (-33.11%) 68.13% (-16.54%) 70.72% (+0.29%) 83.34% (-0.43%)

TFRF 77.37% (+7.65%) 88.89% (+4.22%) 75.81% (+5.38%) 87.81% (+4.04%)

TFCRF 72.84% (+3.12%) 87.14% (+2.47%) 76.71% (+6.28%) 87.87% (+4.10%)

3.1.3 K1a

Table 10 shows the K1a results of using TFRF under

SVM gets the best macro-F1 score and micro-F1 score

as well. After applying PCA and logistic regression,

we found that TFRF gets a better macro-F1 score and

TFRF again gets a better micro-F1 score. According to

the foregoing results, TFRF gets best performance. It

tells fundamental information elements A and B are

much more useful for classifying in k1a. Although they

are helpful by TFRF here, their importance is reduced

in other methods.

Table 10. Result of K1a

PCA+logistic regression SVM
Method

macro-F1 micro-F1 macro-F1 micro-F1

One-hot encoding (Base) 76.93% 85.24% 76.2% 83.31%

TF 71.92% (-5.01%) 86.45% (+1.21%) 72.78% (-3.48%) 87.31% (+4.0%)

TFIDF 52.29% (-24.64%) 79.36% (-5.55%) 68.41% (-7.85%) 85.81% (+2.50%)

TFICF 63.43% (-13.50%) 82.35% (-2.89%) 60.55% (-15.71%) 78.16% (-5.15%)

TFChi 64.42% (-12.51%) 79.91% (-5.33%) 64.13% (-12.13%) 74.86% (-8.48%)

TFOdd 67.33% (-9.60%) 82.65% (-2.59%) 45.13% (-30.98%) 67.05% (-16.26%)

TFProb 35.76% (-41.17%) 56.62% (-28.62%) 45.28% (-36.90%) 59.66% (-23.65%)

TFRF 71.95% (-4.98%) 87.86% (+2.62%) 78.08% (+1.82%) 88.72% (+5.41%)

TFCRF 65.66% (-11.27%) 85.73% (+0.49%) 72.08% (-4.18%) 86.03% (+2.72%)

3.1.4 K1b

Table 11 shows the K1b result of using TFICF under

SVM gets the best macro-F1 score and TFRF gets the

best micro-F1 score. After applying PCA and logistic

regression, we found that TFOdd gets the best macro-

F1 score and TFICF again gets the best micro-F1 score.

According to the foregoing results, TFRF, TFICF and

TFOdd have better performance to this dataset. We can

say that fundamental information elements and factor

category frequency are very useful for classifying in

K1b.

Table 11. Result of K1b

PCA+logistic regression SVM
Method

macro-F1 micro-F1 macro-F1 micro-F1

One-hot encoding (Base) 69.72% 84.67% 70.43% 83.77

TF 9359% (+23.87%) 97.52% (+12.85%) 95.08% (+24.65%) 97.52% (+13.75%)

TFIDF 68.39% (-1.33%) 89.96% (+5.29%) 87.27% (+16.84%) 95.94% (+12.170%)

TFICF 95.75% (+26.03%) 98.25% (+13.58%) 96.98% (+26.55%) 98.08% (+14.31%)

TFChi 90.69% (+20.97%) 95.04% (+10.37%) 87.55% (+17.12%) 89.23% (+5.46%)

TFOdd 97.56% (+27.84%) 95.38% (+10.71%) 90.02% (+19.59%) 95.60% (+11.83%)

TFProb 48.57% (-21.15%) 84.06% (-0.61%) 51.92% (-18.51%) 82.95% (-0.82%)

TFRF 96.07% (+26.35%) 98.16% (+13.49%) 96.90% (+26.47%) 98.63% (+14.86%)

TFCRF 87.78% (+18.06%) 94.91% (+10.24%) 67.61% (-2.82%) 88.25% (+4.48%)

A Study on Text Classification: Term Weighting Algorithm Analysis 321

3.1.5 Re52

Table 12 shows the Re52 result of using TFRF

under SVM gets both the best macro-F1 score and

micro-F1 score. As the result of PCA and logistic

regression, TFICF gets both the best macro-F1 score

and micro-F1 score. According to the foregoing results,

TFRF and TFICF performed well in this dataset. We

can say that fundamental information elements and

factor category frequency are very helpful for

classifying in Re52.

Table 12. Result of Re52

PCA+logistic regression SVM
Method

macro-F1 micro-F1 macro-F1 micro-F1

One-hot encoding (Base) 11.07% 18.15% 11.39% 17.83%

TF 64.83% (+56.76%) 93.15% (+75.0%) 66.59% (+55.20%) 91.25% (+73.42%)

TFIDF 39.73% (+28.66%) 87.67% (+69.52%) 66.85% (+54.46%) 93.15% (+75.32%)

TFICF 74.16% (+63.09%) 94.20% (+76.05%) 67.40% (+56.01%) 89.81% (+71.98%)

TFChi 17.25% (+6.18%) 46.58% (+28.43%) 46.26% (+34.87%) 82.94% (+65.11%)

TFOdd 68.84% (+57.77%) 89.72% (+71.57%) 66.14% (+54.75%) 85.21% (+67.38%)

TFProb 14.80% (+3.73%) 76.46% (+58.31%) 49.10% (+37.62%) 83.89% (+66.06%)

TFRF 54.66% (+43.59%) 92.57% (+74.42%) 68.99% (+57.60%) 93.27% (+75.44%)

TFCRF 23.12% (+12.05%) 84.16% (+66.01%) 68.82% (+57.43%) 91.87% (+74.04%)

3.1.6 Reuters-21578

Table 13 shows the Reuters-21578 result of using

TFRF under SVM gets the best macro-F1 score and

TFICF gets the best micro-F1 score. After applying

PCA and logistic regression, TFOdd now gets the best

macro-F1 score and TFRF gets the best micro-F1 score.

According to the foregoing results, TFRF, TFOdd and

TFICF work well in this dataset. We can say that

fundamental information elements and factor category

frequency are very helpful for classifying in Reuters-

21758.

Table 13. Result of Reuters-21578

PCA+logistic regression SVM
Method

macro-F1 micro-F1 macro-F1 micro-F1

One-hot encoding (Base) 6.39% 16.60% 8.86% 16.79%

TF 42.74% (+36.35%) 85.41% (+68.81%) 45.83% (+36.97%) 86.16% (+69.37%)

TFIDF 16.86% (+10.47%) 77.67% (+61.07%) 49.89% (+41.03%) 86.86% (+70.07%)

TFICF 46.84% (+40.45%) 85.46% (+68.86%) 42.10% (+33.24%) 87.00% (+70.21%)

TFChi 11.25% (+4.86%) 36.68% (+17.08%) 17.04% (+8.18%) 31.52% (+14.73%)

TFOdd 56.52% (+50.13%) 80.91% (+64.31%) 48.31% (+39.45%) 81.91% (+65.12%)

TFProb 10.11% (+3.72%) 62.21% (+45.61%) 50.71% (+41.85%) 74.86% (+58.07%)

TFRF 37.75% (+29.36%) 85.59% (+67.99%) 54.52% (+45.66%) 86.63% (+69.84%)

TFCRF 17.82% (+11.43%) 75.84% (+59.24%) 52.98% (+44.12%) 82.29% (+65.50%)

3.2 Discussion

As the predicted results of all data sets under

different term weighting methods shown in Section 3.1,

we found that there are at least two suitable term

weighting methods can be adopted in each case,

depending on macro F1 or micro F1 respectively. In

Reuters 21578, we think that the traditional term

weighting method still works fine with the multi-label

text classification. In the case of Re1, our newly

proposed term weighting method TFCRF gave us a

better result.

Although introducing term weighting method may

have some improvements to certain dataset, but still

there are some datasets which haven’t shown

significant effect. Term weighting methods here are

not so obviously effective.

We use REF to find important terms for

classification with SVM and logistic regression in each

dataset. From Figure 21 to Figure 26, we can find the

overlap rate in all datasets. The information of the table

contains 1. the overlap rate between important terms

for logistic regression and important terms for SVM, 2.

the overlap rate between high weight terms and

important terms for logistic regression, and 3. the

overlap rate between high weight terms and important

terms for SVM. We also try to use the less importance

terms to do the same experiment, the range of term

quantity is from 25% to 5% of total terms.

322 Journal of Internet Technology Volume 22 (2021) No.2

Figure 21. Overlap Rate with TFRF in Re0

Figure 22. Overlap Rate with TFRF in Re1

Figure 23. Overlap Rate with TFRF in K1a

Figure 24. Overlap Rate with TFRF in K1b

Figure 25. Overlap Rate with TFRF in Re52

Figure 26. Overlap Rate with TFRF in Reuters-21678

From these figures, we find that the overlap rate can

reach up to 70% between different term weighting

methods. But the overlap rate between high weight

terms and important terms for classification are

significant lower. The lowest overlap rate can down to

lower than 10%. The result also shows under different

term quantity, the overlap rate between different term

weighting methods is slightly decreased, but the

overlap rate between high weight terms and important

terms has notable decreasing up to over 30%.

This tells us that the actual importance of a term in

document sometimes may not as much as the term`s

calculated weight shows.

We use a simple feature selection to reduce the

number of features for better performance. It selects

features base on the value of term weight, the higher

the value is, the easier it will pick. In previous

paragraph, we concluded that high weight terms may

not that important to the document. This may cause by

the features we used for term weighting are

inappropriate, the features we choose cannot actually

represent the importance of the term in document.

The other potential issue exists in the term weighting

methods is that maybe a term weighting method is

suitable for a dataset, but doesn’t mean that it is

suitable for another dataset. And a much more complex

method may not perform well than a simple one. For

example, one-hot encoding even works better than

almost all the other methods in dataset Re0. We also

find that the importance of probability-based element

A Study on Text Classification: Term Weighting Algorithm Analysis 323

A and B are reduced in K1a.

These term weighting methods utilize many features

but output the result in just a single value. The

information must have some distortions or losses

during the processing. So we think term weighting

method should play an assist role instead of

representing the importance of a term.

4 Conclusion

4.1 Information Missing

Bag-of-words model is a simplifying representation

which is widely used in NLP. But it disregards

grammar and word order in order to keep the multicity.

It is the first reason that causes information missing.

Term weighting method combines several useful

information elements to a single value. This process

may eliminate lots of the individual information from

these elements. It is the second reason that causes

information missing. On the other hands, the word2vec

model uses a vector instead of a single value to

represent a word. The formula of term weighting

method which used in word2vec is similar to a cost

function. The larger value the cost function has, the

more important the corresponding word is. However,

we observed that the importance of a word in a

document is equal to the importance of the same word

in classification. Maybe it is a big mistake using Term

Frequency and disregarding the grammar and order or

something else in previous research. From our

experiments, the results do strongly support our

viewpoint. In our future work, we will drop out the

formula and try to keep all information elements within

a vector to represent a word.

4.2 Conclusion

There are two main contributions in this research.

First, we propose a new weighting algorithm, TFCRF,

which considers the term that equally separated in all

classes as a negative effect to the discriminating power.

The TFCRF successfully brings us a better result in

Re1. Second, we have shown that the discriminating

power of a term may not be as strong as we thought,

especially for those who have a higher weight in

classification.

The result tells that term weighting methods can be

adopted to improve the results of text classification in

some case. Different datasets may suit different term

weighting methods. It regards how the model should be

evaluated and what the type of the text and category

should be considered.

Although we get a better result from TFCRF, we

still think that the term weighting methods are not as

useful as we thought. In some cases, most of term

weighting methods cannot get a satisfied or even worse

result. Sometimes it costs a lot of resources to find a

suitable weight, but the result may not show us an

obvious improvement.

Term weighting is designed to express the

importance of a word in a text and it is often used in

text classification. We can easily say that high weight

words may not reflect on the importance in

classification. A high weight word may play a

significant role to a text, but it may not be same

important in classification.

The research of term weighting method recently

may have encountered a bottleneck due to the

information missing problem. Our future work will

focus on how to design representation vectors of words

to keep more information. Word2vec uses vectors to

represent a word and it becomes a popular method in

NLP. Referring to word2vec, designing a new method

to keep the factors’ information and make good use

could be a topic. Also, how to deal with an imbalanced

dataset is another issue. Imbalanced dataset problem

may cause classification having bad results in certain

condition. Finally, the multi-label texts nowadays

appear more and more frequently in our life. It is

necessary to improve the accuracy of this kind of

classification for future application.

References

[1] C. Xing, D. Wang, X. Zhang, C. Liu, Document Classification

with Distributions of Word Vectors, Signal and Information

Processing Association Annual Summit and Conference

(APSIPA), Siem Reap, Cambodia, 2014, pp. 1-5.

[2] A. D. Patel, V. N. Pandya, Web page classification based on

context to the content extraction of articles, 2nd International

Conference for Convergence in Technology (I2CT), Mumbai,

India, 2017, pp. 539-541.

[3] I. Rish, An empirical study of the naive Bayes classifier,

International Joint Conferences on Artificial Intelligence

(IJCAI) 2001 workshop on empirical methods in artificial

intelligence, Seattle, Washington, USA, 2001, Vol. 3, No. 22,

pp. 41-46.

[4] C.-W. Hsu, C.-J. Lin, A Comparison of Methods for

Multiclass Support Vector Machines, IEEE Transactions on

Neural Networks, Vol. 13, No. 2, pp. 415-425, March, 2002.

[5] G. Guo, H. Wang, D. Bell, Y. Bi, K. Greer, KNN Model-

Based Approach in Classification, in: R. Meersman, Z. Tari,

D. C. Schmidt (Eds.), On The Move to Meaningful Internet

Systems 2003: CoopIS, DOA, and ODBASE, Springer, Berlin,

Heidelberg, 2003, pp. 986-996.

[6] J. R. Quinlan, Simplifying decision trees, International

Journal of Man-Machine Studies, Vol. 27, No. 3, pp. 221-234,

September, 1987.

[7] E. Gibaja, S. Ventura, A Tutorial on Multilabel Learning,

ACM Computing Surveys, Vol. 47, No. 3, pp. 1-38, April,

2015.

[8] D. Lewis, Reuters-21578 text categorization test collection,

AT&T Labs-Res., Florham Park, NJ, USA, distribution 1.0,

324 Journal of Internet Technology Volume 22 (2021) No.2

1997.

[9] D. D. Lewis, Y. Yang, T. G. Rose, F. Li, RCV1: A new

benchmark collection for text categorization research, Journal

of Machine Learning Research, Vol. 5, pp. 361-397, December,

2004.

[10] V. Korde, Text Classification and Classifiers: A Survey,

International Journal of Artificial Intelligence & Applications,

Vol. 3, No. 2, pp. 85-99, March, 2012.

[11] E. Leopold, J. Kindermann, Text Categorization with Support

Vector Machines-How to Represent Texts in Input Space?,

Machine Learning, Vol. 46, No. 1-3, pp. 423-444, January,

2002.

[12] S. S. Samant, N. L. B. Murthy, A. Malapati, Improving Term

Weighting Schemes for Short Text Classification in Vector

Space Model, IEEE Access, Vol. 7, pp. 166578-166592,

November, 2019.

[13] K. Chen, Z. Zhang, J. Long, H. Zhang, Turning from TF-IDF

to TF-IGM for term weighting in text classification, Expert

Systems with Applications, Vol. 66, pp. 245-260, December,

2016.

[14] G. Salton, M. J. McGill, Introduction to Modern Information

Retrieval, McGraw-Hill, Inc., 1986.

[15] V. Lertnattee, T. Theeramunkong, Analysis of inverse class

frequency in centroid-based text classification, IEEE International

Symposium on Communications and Information Technology

(ISCIT) 2004, Sapporo, Japan, 2004, pp. 1171-1176.

[16] J. W. Reed, Y. Jiao, T. E. Potok, B. A. Klump, M. T. Elmore,

A. R. Hurson, TF-ICF: A New Term Weighting Scheme for

Clustering Dynamic Data Streams, 2006 5th International

Conference on Machine Learning and Applications (ICMLA’06),

Orlando, FL, USA, 2006, pp. 258-263.

[17] D. Wang, H. Zhang, Inverse-Category-Frequency Based

Supervised Term Weighting Schemes for Text Categorization,

Journal of Information Science and Engineering, Vol. 29, No.

2, pp. 209-225, March, 2013.

[18] F. Carvalho, G. P. Guedes, TF-IDFC-RF: A Novel Supervised

Term Weighting Scheme, https://arxiv.org/abs/ 2003.07193,

2020.

[19] D. Mladenic, M. Grobelnik, Feature Selection for Unbalanced

Class Distribution and Naive Bayes, Proceedings of the

Sixteenth International Conference on Machine Learning, Bled,

Slovenia, 1999, pp. 258-267.

[20] Y. Liu, H. Loh, A. Sun, Imbalanced text classification: A

term weighting approach, Expert Systems with Applications,

Vol. 36, No. 1, pp. 690-701, January, 2009.

[21] M. Lan, C.-L. Tan, H.-B. Low, Proposing a new term

weighting scheme for text categorization, Proceedings of the

National Conference on Artificial Intelligence, Boston,

Massachusetts, USA, 2006, pp. 763-768.

[22] M. Lan, C. L. Tan, J. Su, Y. Lu, Supervised and traditional

term weighting methods for automatic text categorization,

IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 31, No. 4, pp. 721-735, April, 2009.

[23] H. Zhou, Y. Zhang, H. Liu, Y. Zhang, Feature Selection

Based on Term Frequency Reordering of Document Level,

IEEE Access, Vol. 6, pp. 51655-51668, September, 2018.

[24] Y. Ko, A New Term Weighting Scheme for Text

Classification using the Odds of Positive and Negative Class

Probabilities, Journal of the Association for Information

Science and Technology (ASIS&T), Vol. 66, No. 12, pp.

2553-2565, December, 2015.

[25] K. Pearson, On lines and planes of closest fit to systems of

points in space, Philosophical Magazine, Vol. 2, No. 11, pp.

559-572, 1901.

[26] X. Lin, F. Yang, L. Zhou, P. Yin, H. Kong, W. Xing, X. Lu, L.

Jia, Q. Wang, G. Xu, A support vector machine-recursive

feature elimination feature selection method based on

artificial contrast variables and mutual information, Journal

of chromatography B, Analytical technologies in the biomedical

and life sciences, Vol. 910, pp. 149-155, December, 2012.

[27] D. M. Powers, Evaluation: from precision, recall and F-

measure to ROC, informedness, markedness and correlation,

Journal of Machine Learning Technologies, Vol. 2, No. 1, pp.

37-63, 2011.

Biographies

Kuan-Hua Tseng received the M.S.

degree from the Department of

Computer Science and Information

Engineering, Da-Yeh University,

Taiwan. He is now pursuing his Ph.D.

in National Sun Yat-sen University,

Taiwan. His research interests include AI, Machine

Learning, mobile communication networks, Internet of

things and embedded system.

Chun-Hung Richard Lin received

Ph.D. degree from Computer Science

Department, University of California,

Los Angeles (UCLA). He is currently

a Professor of the Department of

Computer Science and Engineering,

National Sun Yat-sen University, Taiwan. His research

interests include the design and control of mobile

communication networks, Internet of things, edge

computing and device AI, and embedded operating

system design and implementation.

Jain-Shing Liu received the Ph.D.

degree from the Department of

Computer and Information Science,

National Chiao Tung University,

Taiwan. He currently is a professor

with the Department of Computer

Science and Information Engineering, Providence

University, Taiwan. His research interests include

design and performance analysis of wireless

communication protocols, wireless local area networks,

wireless sensor networks, and wireless rechargeable

networks.

A Study on Text Classification: Term Weighting Algorithm Analysis 325

Chih-Ming Andrew Huang received

the M.S. degree from the Department

of Science of Statistics, National

Chiao Tung University, Hsinchu,

Taiwan. Currently, he is a Ph.D.

student of Department of Computer

Science and Engineering, National Sun Yat-sen

University, Taiwan. His research interests include

computer communication technologies, Internet of

things, biometrics technologies and embedded system.

Yue-Han Wang received the B.S.

degree from the Department of

Computer Science and Information

Engineering, Tunghai University,

Taiwan in 2015 and the M.S. degree

from the Department of Computer

Science and Engineering, National Sun Yat-sen

University, Taiwan in 2019. His research interests

include Machine Learning, NLP, data engineering.

326 Journal of Internet Technology Volume 22 (2021) No.2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

