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Abstract 

Street-level landmarks are the important foundation for 

high-precision IP geolocation, which is of significant 

value in network security. As online map-based landmark 

mining algorithms are constrained by the online map 

service itself, a street-level landmark mining algorithm 

based on radar search is proposed in this study. Initially, 

the region in which landmarks will be mined is divided 

into smaller sub-regions. Then, the radar search service of 

an online map is used to perform a recursive query 

request for each sub-region, and street-level candidate 

landmarks in the sub-region are obtained. Finally, IP 

geolocation databases and the street-level geolocation 

algorithm are used to evaluate the landmarks and retain 

reliable ones. Landmark mining experiments of two 

groups were conducted to verify the algorithm. 

Experimental results show that the number of obtained 

reliable landmarks of the proposed method increases by 

4.1 times, the landmark coverage area increases by 59% 

and the average geolocation error is reduced from 9.94 

km to 4.33 km compared with the existing online maps-

based method, and the proposed algorithm can also obtain 

more candidate landmarks as well as reliable landmarks 

and got lower mean error of geolocation results than the 

state-of-art landmark mining algorithms based on other 

web resources. 

Keywords: Street-level landmarks, Landmark mining, IP 

geolocation, Online map, Radar search 

1 Introduction 

IP geolocation refers to the task of finding the 

geographic location of an Internet host [1-2]. Obtaining 

the geolocation information of Internet hosts is 

valuable for many applications in network security, for 

instance, protecting social network privacy, tracing 

network attack and intrusion detection [3-4]. Hence, 

the technology has a broad range of potential 

applications in the civil, military, and security fields. 

At present, IP geolocation approaches consist of three 

main types: database query-based method, data 

mining-based method and network measurement-based 

method The database query-based geolocation, such as 

NetGe [5] and RIPE IPmap active geolocation [6], 

queries IP location database on the Internet, such as 

Maxmind1, IP2location2, NetAcuity3, GeoIP4, IPIP5, 

OpenIPMap6, Aiwen7, IPcn8, Whois9 and etc, and 

makes comparative analysis to determine the 

geographic location of IP. This type of methods is 

highly efficient and easy to implement, but the 

precision of locations obtained is not high. Locations 

of country level is reliable, while the accuracy of city 

level locations is hard to ensure [7-8]. Gharaibeh et al. 

[9] and Dan et al. [10] respectively tested several of 

these IP databases, the results show that the accuracy 

of city locations in these databases needs to be 

improved. The data mining-based geolocation mines 

and analyzes the associated geographic location for an 

IP address from different kinds of network data with IP 

address and geographic location information, such as 

the social network, mobile phone application, DNS, 

login log, and etc. The representative algorithm is 

Checkin-Geo [11], DRoP (DNS-based Router 

Positioning) [12], R-DNS [13], GQL (Geolocation 

using Query Logs) [10], and so on. In addition, a few 

methods such as HLOC [14] assesses the reliability of 

associated geographic locations by a small number of 

network measurements. For this type of approaches, 

the overhead of measurement is low, but a mass of 

basic data is needed, which can be implemented by 
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collaborating with large Internet companies. The 

network measurement-based method firstly measures 

the delays between the probe sources and the target IP 

to be located, or obtains the network topology 

information. Then The transformation relationship or 

correspondence between the time delay or topological 

structure and geographical distance is analyzed based 

on the geographic location information of the probe 

source or the location reference point, which is IP 

entity with known and stable geographic location, 

named landmark. At last, the location of target IP is 

estimated by multi-point location, structure matching 

or optimization. The representative algorithm is 

GeoTrack [15], CBG (Constrained-Based Geolocation) 

[16], TBG (Topology-Based Geolocation) [4], SLG 

(Street-Level Geolocation) [17], NNBG (Neural 

Networks-Based Geolocation) [18], Geolocation base 

on RIPE altas [19], and Active Geolocation [20]. The 

location result of these methods is relatively accurate 

as it estimates the location of target IP by network 

measurement and combining with reference point 

locations. In addition, some researches have integrated 

multiple methods simultaneously for IP geolocation. 

For example, Fanou et al. [21] successively used IP 

location databases, reverse DNS resolution, network 

delay measurement, landmark reference locating and 

other geolocation techniques to locate infrastructure 

IPs to improve the accuracy of geolocation results. In 

above methods, the network measurement-based 

approach is the current research hotspot in this field, 

among which the landmark-based approaches have the 

highest precision [22-23]. However, the accuracy of 

the results mainly depends on the density and accuracy 

of the landmarks [17]. Hence, the key to high-precision 

Internet entity geolocation is obtaining high-quality 

landmarks. 

A landmark refers to an Internet entity that has a 

stable IP identity and a known geographic location, 

usually represented as a two-tuple <the IP address, the 

geographic location>. According to the precision of the 

geographic location, landmarks can be divided into two 

types, that is city-level landmarks and street-level 

landmarks, for instance <IP1, “Zhengzhou, Henan 

Province, China”> and <IP2, “latitude 34.46, longitude 

113.40”>. Landmark mining is extracting mass 

landmark information from various network resources 

to provide location reference points for IP geolocation. 

City-level landmark mining methods mainly consist 

of IP geolocation database-based methods, webpage-

based methods, and Internet forum-based methods. IP 

geolocation database-based methods [24] select 

landmarks from blocks of IP addresses with the same 

geographic location in several IP geolocation databases. 

These approaches can obtain a large number of 

landmarks. However, there may be many non-active IP 

addresses in an IP address block, which limits the 

effectiveness of IP geolocation based on these 

landmarks. Guo et al. [25] proposed Structon, a 

webpage based landmark mining method, for acquiring 

a large number of city-level landmarks. This method 

extracts geographic locations information from web 

pages and employs majority voting on these locations 

to determine the location of the server for the website. 

Then, they associate the location and IP address of the 

web server to build a seed landmark. Finally, they 

extend the location of the seed landmarks to the /24 IP 

segment where the IP addresses are located and correct 

the location of the landmarks using AS and BGP 

information. Zhu et al. [26] proposed a city-level 

landmark mining method based on Internet forums. 

They mine users’ IP addresses from city-themed 

forums and infer their city by the name of the forum to 

create plenty of city-level landmarks.  

Street-level landmarks are an important basis for 

high-precision geolocation algorithms. The main 

street-level landmark mining methods are those based 

on different web resources, such as online maps, 

yellow pages, service ports, etc. Wang et al. [17] 

proposed the Comprehensive Landmark Mining 

Algorithm (CLMA), which is based on online maps. 

This method extracts the domain names and 

geographic locations of organizations in the given 

region using text search service of an online map, such 

as Google Maps (or local search service in some online 

maps, such as Baidu Maps), and then maps their 

domain names to IP addresses to generate candidate 

landmarks. Finally, the method verifies the candidate 

landmarks to obtain reliable landmarks using webpage 

test requests and multi-branch verification. However, 

as the number of landmarks obtained by the text search 

service is limited, some landmarks may be missed, 

especially in areas with many organizations. Moreover, 

the method verifies the candidate landmarks according 

to whether the IP address and the domain name of the 

candidate landmark link to the same webpage, which 

may cause mis-selected and mis-deleted landmarks. 

Ma et al. [27] proposed an algorithm based on yellow 

pages. This method extracts the locations and Web or 

Email service domains of institutions by using regular 

expression from yellow pages, and the corresponding 

IPs of domains are parsed. Then those IPs with reliable 

locations of both city information and street-level 

information obtained by SLG geolocation algorithm 

are landmarks. The method can effectively correct the 

mis-deletion and mis-evaluation of some landmarks by 

the existing typical landmark obtaining algorithm. 

However, as the yellow pages and their corresponding 

regular expressions of this method are specified 

manually, it is difficult to obtain landmarks quickly in 

different regions of the world. Li et al. [28] proposed 

the landmarks acquisition method based on SVM 

(Support Vector Machine) classifiers of service ports. 

This method obtains the characteristics of open ports 

for known services by using an optimal SVM classifier 

and classifies IPs with some known services in some 

given regions. And then according to the domain 
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names corresponding to the IPs, the relationships 

between the classified server IPs and their reliable 

locations obtained by querying online maps are 

established. The number of obtained street-level 

landmarks with a low geolocation error is increased 

substantially for this method. But the process of 

detecting open ports is time consuming, and some 

landmarks obtained by this method are not reliable as 

the locations returned by online maps are sometimes 

incorrect. In above methods, the online map-based 

method has obvious advantages. Online maps, such as 

Google Maps, Bing Maps and Baidu Maps, contain 

huge amounts of formatted POI data, including the 

exact geographic location of organizations and domain 

names of their web service. Massive landmarks of web 

server type with stable performance and open ports 

(web service ports 80 or 8080) can be mined and it is 

easy to acquire global street-level landmarks in bulk 

from online maps. 

We focus on methods of street-level landmark 

mining. As online map-based methods are limited by 

the map local search service itself, a radar search-based 

street-level landmark mining algorithm (RSLM) is 

proposed in this study. The algorithm takes advantage 

of the radar search service, such as that of Google 

Maps, (or search in bounds service in some online 

maps, such as Baidu Maps), which can specify the 

search center point and size of a circular area to mine 

all available landmarks in an online map. First, RSLM 

divides the given administrative region into square sub-

regions of an appropriate size and then performs a 

recursive radar search on the circumscribed circle of 

each sub-region to obtain a list of all the organization 

identifications (IDs) within it. Second, RSLM searches 

for the domain name and location of each organization 

using its ID and converts the domain names into IP 

addresses using DNS queries to build candidate 

landmarks. Finally, landmarks with large location 

errors are eliminated using IP location databases and 

reliable street-level landmarks are selected using the 

SLG algorithm [17]. 

2 RSLM Algorithm 

2.1 Problem Definition 

Landmark mining is extracting massive and stable 

IP addresses and their probably associated geographic 

location from various network resources with both IP 

addresses and geographic location information usually 

by data mining, and identifying IPs with reliable 

location among them by evaluating the reliability of 

associated geographic location based on correlation 

analysis or network measurement. The obtained 

landmarks are usually represented as <an IP address, 

its geographic location> two-tuples, which will be 

taken as location reference points for IP geolocation. 

Landmark mining is similar to IP geolocation in 

determining the geographic location of IP addresses. 

But they are two different problems. IP geolocation 

usually determines the geographic location for given 

target IP address(es), while landmark mining aims to 

automatically obtain a large number of stable IP 

addresses, as well as the location information of these 

IP addresses, without any given IP addresses. And in 

order to meet the global IP geolocation needs, it is 

expected to acquire landmarks covering all regions of 

the world for landmark mining. In addition, landmark 

mining usually aims to obtain the geographic location 

of the entity with stable IP, such as routers and servers, 

so that the obtained landmarks have a long validity 

period to be taken as the reference points for locating 

IPs whose geographical location are unknown. 

Whereas, IP geolocation aims to determine the current 

geographic location of the target IP (or IPs), whether it 

is a stable IP address or a dynamically allocated 

address. 

2.2 Framework and Steps of RSLM 

The framework of the RSLM algorithm is shown in 

Figure 1. 

 

Figure 1. Framework of RSLM 

RSLM comprises four parts: search region division, 

recursive radar search, candidate landmark construction, 

and landmark reliability evaluation. In the search 

region division, the search region is divided into square 

sub-regions of the same size to define sub-region 

search set �. Then, in the recursive radar search, the 
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radar search service of an online map, such as the 

Google Maps, is used to obtain all the organization IDs 

in every sub-region in � to yield organization ID set �. 

In the candidate landmark construction, the service of 

the online map and a DNS service are used to obtain 

the landmark information according to the organization 

IDs in � to give candidate landmark set ℒ�. In landmark 

reliability evaluation, the IP geolocation database and 

SLG algorithm are used to evaluate the reliability of 

the landmarks in ℒ�, and the reliable landmarks are 

selected to form set ℒ. 

The details of each step in RSLM are given as 

follows: 

Step 1: Search region division 

Step 1.1: Initial search sub-region division. A point 

in the search region (denoted as A) is selected. Then, a 

square S with side length �= 2 �, where � refers to 

the initial radar search radius, is defined using the point 

as its center and added to the ordered set � of search 

sub-regions as the first element. 

Step 1.2: Peripheral sub-region expansion: The four 

neighboring squares that share an edge with � to the 

east, west, south, and north of � are denoted as �1, �2, 

�3, and �4 respectively. Then, �′is added to � if �′∉ 
�∧ �′∩�≠∅, otherwise, �′ is discarded. 

Step 1.3: Step 1.2 is executed on each new element 

in � until there are no new elements that can be added 

to �. 

Figure 2 shows the process of search region division 

in Henan Province. The initial search region �0 is 

constructed from one point in Henan Province, and 

then the peripheral sub-region expansion is started 

from �0. Accordingly, we obtain sub-regions �1, �2, �3, 

and �4. The intersection of the four sub-regions and the 

territory of Henan Province (A) is not empty. Hence, 

the four sub-regions are added to the ordered set of 

search region �, i.e., �={�0, �1, �2, �3, �4}. We then 

obtain four new sub-region �1′, �2′, �3′, and �4′, when 

we expand the peripheral sub-regions of �1. The 

intersection of the four sub-regions and A is not empty; 

�2′, is originally �0, which is already in �. Hence, we 

just add �1′, �3′, and �4′ to �. Then, we have � ={�0, 

�1, �2, �3, �4, �1′, �3′, �4′}. 

Step 2: Recursive radar search  

Step 2.1: For any sub-region ���� (	∈
+, 	≤|�|), the 

radar search service of an online map is called with the 

radar search center �� and radius �� equal to ��  and �, 

respectively, to obtain organization ID set �. If 

|�|=M∧��>100m, the algorithm proceeds to Step 2.2; 

otherwise, the organization ID in � is added to ��, the 

organization ID set of ��. Where M refers to the upper 

bound of the number of organization IDs that can be 

returned by the radar search. 

Step 2.2: As shown in Figure 3, the current region is 

divided into the four equal square sub-regions, denoted 

as �″1, �″2, �″3, and �″4. 

 

Figure 2. Search region division 

 

Figure 3. Sub-region division 

Step 2.3: For ∀�″�{�″1, �″2, �″3, �″4}, the radar search 

service of online map is called with �� as the geometric 

center of �″and ��=��/2 to yield the final organization 

ID set �. 

Step 2.4: The organization IDs in � are added to �� 

and we remove any duplicates, when |�|<M∨��≥ 
100m. Otherwise, Step 2.2 is executed again. 

Step 2.5: After all the sub-regions in � have been 

traversed, the organization IDs of all sub-regions are 

combined and duplicates are removed to obtain 

organization ID set �, i.e., �=∪k∈N  k≤|�|�� . 

Step 3: Candidate landmark construction 

Step 3.1: Landmark information acquisition. For 

∀�′��, the online map service is called to acquire 

the domain name, latitude, and longitude of the 

corresponding organization of �′. These data are added 

to landmark information set ℱ, if they are complete. 

Finally, landmark information set ℱ={<���, 
���>|�∈
+} corresponding to all organization IDs in � 

is obtained, where ��� refers to the domain name of 
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the �-th landmark and ��� indicates the latitude and 

longitude of the �-th landmark. 

Step 3.2: IP address resolution. For ∀<���, ���> 
�ℱ, the IP address list {��1, ��2, …, ���} of ��� is 

acquired through a DNS request. If 	=1, the single IP 

address and ��� are associated to construct a candidate 

landmark that is added to candidate landmark set ℒ�, i.e., 

ℒ�=ℒ�∪{<��1, ���>}. If 	>1, 	 candidate landmarks 

are constructed by associating every IP address and 

���, and then adding them to ℒ�, i.e., ℒ�=ℒ�∪{<��1, 
���>, <��2, ���>, …, <���, ���>}. This yields 

candidate landmark set ℒ� . 

Step 4: Landmark reliability evaluation 

Step 4.1: Preliminary screening. For any candidate 

landmark <���, ���>∈ℒ�, the city in which ��� is 

located is searched using multiple IP geolocation 

databases, and the corresponding city list {����1, 
����2, …, �����} is obtained. Then, the city with the most 

occurrences (say, ����	) in the list is returned using 

majority voting. If ��� is in ����	, Step 4.2 is executed. 

Otherwise, <���, ���> is deleted, i.e., ℒ�=ℒ�\{<���, 
���>}. 

Step 4.2: Reliability evaluation. (1) SLG geolocation. 

For any candidate landmark <���, ���>∈ℒ�, ��� is set 

to be the geolocation target, and IP addresses with 

known locations in the same city are used as the 

reference. The candidate landmark is located by the 

SLG algorithm [16] and the geolocation result is 

denoted as ��
��. (2) Reliable landmark evaluation. 

Threshold � is set according to the IP geolocation 

precision requirement, and then the distance between 

the geolocation result and the declared location is 

calculated, that is, �=���(��
��, ���). The candidate 

landmark is added to reliable landmark set ℒ i.e., ℒ=ℒ
∪ {<���, ���>}, when �<�. Finally, the reliable 

landmark set ℒ is returned. 

3 Analysis of the RSLM Algorithm 

In this section, we analyze the effectiveness and 

advantages of the RSLM algorithm by describing the 

rationale behind dividing the search region to obtain 

candidate landmarks. We also analyze the effectiveness 

of landmark evaluation. 

3.1 Rationale for the Divide-and-search 

Approach 

For convenience, a large number of organizations 

deploy web servers in their own company, so the 

location of the IP address of their web server should 

identify their geographical location. An online map 

records website domain names, the geographical 

locations of organizations, and provides rich resources 

for landmark mining. CLMA uses the text search 

service of an online map to search each administrative 

region of a target region to obtain candidate landmarks. 

A text search service is provided through an 

application programming interface (API) by an online 

map. In this service, the district(county) level 

administrative region is the input and the organization 

IDs in that region are the output. Every search with the 

same input will get the same output, and the upper 

bound of the number of results is N, so we can only 

obtain a very limited number of landmarks (the top N) 

using text search. 

In the search region division step, the RSLM 

algorithm divides the target administrative region into 

square sub-regions of width D and performs a 

recursive radar search in each sub-region to obtain 

candidate landmarks. A radar search service is also an 

API provided by an online map, with the center and 

radius of a circular area as the input and the IDs of 

organizations in the area as the output. We can search 

fora point of interest in a given circular area of an 

online map using radar search and obtain at most M 

organization IDs in the area. For some sub-regions 

with high organization density, the results of radar 

search may exceed the upper bound, so RSLM 

algorithm adopts recursive radar search to recursively 

segment the sub-region into much smaller sub-regions. 

Hence, we can then perform a radar search with a 

smaller radius to ensure that all candidate landmarks in 

areas with high organization density area are obtained. 

Taking Google Maps10 1as an example, the upper 

bound N of the number of organizations returned by 

text search currently is 60, which means the CLMA 

method can only obtain a maximum N=60 candidate 

landmarks for each administrative region (district/ 

county). In contrast, the minimum radius of a radar 

search currently is 0.1 km and the maximum number 

M of organizations that can be returned is 60 at present. 

In fact, the number of organizations obtained within 

the range corresponding to the minimum radar search 

radius (currently 0.01km2) will not exceed the upper 

limit M (currently 60) in most cases in online maps, so 

the RSLM method can obtain the information of 

almost all organizations within each administrative 

region (district/county). 

3.2 Landmark Evaluation Effectiveness 

In landmark reliability evaluation, we perform a 

preliminary screening of landmarks at city level and 

then use the SLG algorithm to locate the candidate 

landmark with IP addresses that have accurate 

geographical locations. Finally, we regard candidate 

landmarks that meet �=���(��
��, ���) <� as reliable 

landmarks. In this section, we analyze the effectiveness 

of the landmark evaluation algorithm. 

Using the SLG algorithm, we can obtain the possible 

location ��
�� of a candidate landmark T and its 

geolocation error e. This determines the location range 

                                                           
10 https://developers.google.com/maps/docuumentation/javascript/ 

places?hl=zh-cn#rada r_search_requests. 
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of candidate landmark T, which is a circle with center 

��
�� and radius e. According to the distance � 

between the locations given by the candidate 

landmarks and the locations acquired by SLG, we can 

determine the location error �� of reliable landmarks, 

that is, ��≤�+�≤�+�, as shown in Figure 4. The 

geolocation errors of the SLG geolocation algorithm on 

a residential network and online map data set are 2.25 

km and 2.11 km, respectively (i.e., the landmark 

location error e is 2.25 km — the bigger value). If the 

threshold of location error � is set to2.5 km, then the 

error of a reliable landmark is upper bounded by 4.75 

km, which can meet the demands of street-level 

landmark geolocation (10 km in most cases). 

 

Figure 4. Geolocation error of landmarks 

In contrast, to evaluate landmark reliability, CLMA 

mainly relies on whether the IP address and the domain 

name of a candidate landmark can be used to open the 

same webpage. Candidate landmarks obtained from 

shared hosting or cloud services as well as landmarks 

with accurate locations that cannot be accessed by IP 

addresses may be mistakenly deleted. Meanwhile, 

candidate landmarks from CDN networks and server 

hosts might be incorrectly selected as reliable 

landmarks. RSLM uses the geolocation algorithm to 

evaluate the reliability of candidate landmarks directly; 

therefore, the resulting landmark location is relatively 

accurate. Hence, RSLM should be able to correct some 

landmarks that are incorrectly evaluated by CLMA. 

4 Experiments and Results 

In the experiments in this study, we used a VPS 

server (CPU: Intel(R) Core(TM) E5 2620, memory: 8G, 

hard disk: 500G) deployed in Los Angeles, USA, to 

implement our algorithm. In order to verify the 

effectiveness of our method RSLM, we conducted two 

groups of comparative experiments. In the first group, 

RSLM is compared with the existing online maps-

based method CLMA to verify which one of radar and 

text search services of the same online map is better. In 

the second group, RSLM is compared with the other 

two existing street-level landmark mining methods 

based on other web resources, the yellow pages-based 

landmark mining method (YPLM) and the services 

ports SVM classifier-based landmark mining method 

(SVMLM), to verify the advantage of mining 

landmarks based on online maps. In both groups of 

experiments, all the online maps-based methods mined 

candidate landmarks by calling the Google Maps API, 

and SLG algorithm is used to conduct IP geolocation to 

verify the effectiveness of reliable landmarks mined by 

all the comparative methods used as the reference 

points. 

4.1 Landmark Mining Experiment Based on 

Online Maps 

We conducted landmark mining and evaluation 

experiments for Taiwan and Hong Kong using CLMA 

and RSLM, then analyzed the number and distribution 

of landmark as well as erroneous landmark correction. 

Then, SLG geolocation experiments were carried out 

with the reliable landmarks used as the reference points. 

4.1.1 Landmark Mining Results23456 

RSLM was performed for Taiwan with an initial 

radar search radius R=5km and for Hong Kong with 

R=2km. All 53 organization types provided by Google 

Maps, including universities, hospitals, hotels, and 

government departments, were retrieved. First, we 

acquired all the organization IDs for both regions using 

the radar search service of Google Maps. Second, we 

built candidate landmarks by acquiring organization 

information and parsing the IP addresses of domains, 

and then excluded landmarks without domain names or 

invalid ones with IP addresses that could not be 

resolved. Third, we performed preliminary screening 

on candidate landmarks using majority voting with 

IP2location11, Maxmind12, DBIP13, Baidu14, IPIP15, and 

only retained candidate landmarks with city information 

that was consistent with the information provided by 

these databases. Finally, we located the candidate 

landmarks using the SLG algorithm, and retained 

reliable landmarks with an upper error threshold 

�=2.5km. The numbers of candidate and reliable 

landmarks obtained are listed according to city in Table 

1. 

We performed CLMA in Taiwan and Hongkong 

with the administrative divisions information collected 

from Baidu Baike, for which the smallest granularity is 

district (county). The number of candidate and reliable 

landmarks obtained by CLMA are listed by city in 

Table 2. 

                                                           
11 https://www.ip2location.com/ 
12 https://www.maxmind.com/ 
13 https://db-ip.com/db/ 
14 http://lbsyun.baidu.com/index.php?title=webapi/ip-api 
15 https://www.ipip.net/ip.html 
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Table 1. Number of landmarks obtained by RSLM for 

each city in the target regions 

City Candidate landmark Reliable landmark 

Hong Kong 19,375 1,891 

Taibei 25,059 1,842 

Jilong 4,098 356 

NewTaibei 21,712 1,105 

Liangjiang 1,192 75 

Yilan 1,560 43 

Xinzhu(D) 4,613 146 

Taoyuan 11,129 927 

Miaoli 5,096 293 

Xinzu 2,824 194 

Taizhong 18,885 1209 

Zhanghua 4,250 662 

Nantou 1,309 32 

Jiayi 2,416 122 

Jiayi (D) 5,399 140 

Yunlin 4,114 434 

Tainan 17,474 354 

Gaoxiong 23,900 652 

Penghu 1,249 242 

Jinmen 834 93 

Pingdong 7,116 251 

Taidong 8,264 260 

Hualian 7,522 133 

 

Table 2. Number of landmarks obtained by CLMA for 

each city in the target regions 

City Candidate landmark Reliable landmark 

Hong Kong 3,362 323 

Taibei 4,127 487 

Jilong 3,160 164 

NewTaibei 3,233 46 

Liangjiang 182 12 

Yilan 678 5 

Xinzhu(D) 3,295 83 

Taoyuan 3,532 437 

Miaoli 4,280 70 

Xinzu 606 84 

Taizhong 4,015 636 

Zhanghua 3,621 413 

Nantou 690 6 

Jiayi 591 53 

Jiayi (D) 4,278 85 

Yunlin 3,433 384 

Tainan 2,383 34 

Gaoxiong 5,897 451 

Penghu 814 120 

Jinmen 143 28 

Pingdong 3,197 85 

Taidong 1,991 51 

Hualian 2,775 46 

 

Table 1 and Table 2 show that RSLM obtains 18,010 

candidate landmarks and 9,565 reliable landmarks for 

the cities in Taiwan as well as 19,375 candidate 

landmarks and 1,891 reliable landmarks in Hong Kong. 

In contrast, CLMA obtained 56,921 candidate 

landmarks and 3,780 reliable landmarks for the cities 

in Taiwan and 3,432 candidate landmarks and 323 

reliable landmarks in Hong Kong. Hence, the number 

of candidate landmarks obtained by RSLM for Taiwan 

and Hong Kong are 3.4 and 5.9 times higher, 

respectively than those obtained by CLMA. Moreover, 

the number of reliable landmarks obtained by RSLM 

for Taiwan and Hong Kong are 2.53 and 5.1 times of 

those obtained by CLMA respectively. These results 

demonstrate that (as described in Section 3.1) RSLM’s 

recursive radar search obtains more candidate 

landmarks. Accordingly, the probability of obtaining 

more reliable landmarks is increased. 

The distribution of landmarks determines the area 

that can support IP geolocation and is simply referred 

to as the landmark coverage area. More widely 

distributed landmarks can support effective IP 

geolocation over a larger area. Using the reliable 

landmarks of Taiwan and Hong Kong listed in Table 1 

and Table 2, we show the overall coverage area with 

respect to the circular coverage area of radius r around 

each landmark in Figure 5.  

 

(a) Taiwan (b) Hongkong 

Figure 5. Overall landmark coverage area of RSLM and CLMA with respect to individual landmark coverage 

Figure 5 shows that the reliable landmark coverage 

area obtained by RSLM is much larger than that 

obtained by CLMA (Taiwan>59%, Hong Kong>36%) 

for different values of r. This indicates that the 

landmark distribution of RSLM is more reasonable, 

and thereby more conducive to IP geolocation. 
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4.1.2 Landmark Correction Results 

We evaluated candidate landmarks obtained by 

CLMA in Taiwan and Hong Kong using the landmark 

reliability evaluation step of RSLM, and then counted 

the number of unreliable landmarks selected by CLMA 

(referred to as mis-selected landmarks) and the 

landmarks deleted by CLMA that were reliable 

(referred to as mis-deleted landmarks). The result is 

shown in Table 3. 

Table 3. Incorrect CLMA landmarks 

City 
Reliable 

landmarks 

Mis-deleted 

landmarks 

Mis-selected 

landmarks 

Taiwan 3780 294 421 

Hong Kong 323 28 36 

 

Figure 6 shows the types of mis-deleted and mis-

selected landmarks obtained by CLMA. 

 

(a) Mis-deleted landmarks in Taiwan (b) Mis-deleted landmarks in Hong Kong 

 

(c) Mis-selected landmarks in Taiwan (d) Mis-selected landmarks in Hong Kong 

Figure 6. Types of incorrect CLMA landmarks 

As Table 3 and Figure 6 show, RSLM corrects many 

mis-deleted landmarks of CLMA, such as those for 

shared host and cloud servers, as well as some mis-

selected landmarks, such as CDN network and server 

hosted landmarks. This demonstrates that the 

conclusion of the analysis in Section 3.2, that RSLM 

selects reliable landmarks with errors within the 

acceptable range from the perspective of SLG 

geolocation algorithm and can effectively correct some 

of the Mis-deleted and Mis-selected landmarks of 

CLMA. 

4.1.3 Landmark Geolocation Results 

We choose 100 IP addresses with known 

geographical locations as geolocation targets in Taiwan 

and Hong Kong and then performed SLG geolocation 

algorithm using the reliable landmarks obtained by 

each of the two algorithms. The cumulative probability 

of geolocation errors is shown in Figure 7. 

We can infer from the results in Figure 7 that the 

average error of landmarks mined by the RSLM 

algorithm (Hong Kong 4.03 km, Taiwan 4.33 km) is 

far below that of CLMA (Hong Kong 8.28 km, Taiwan 

9.94 km). In addition, RSLM yields a much smaller 

maximum error (RSLM: Hong Kong 10.85 km, 

Taiwan 11.94 km; CLMA: Hong Kong 37.42 km, 

Taiwan 52.79 km). Correspondingly, the geolocation 

based on landmarks obtained by RSLM is better than 

that based on CLMA, which indicates that landmarks 

obtained by RSLM are more reliable. This is a result of 

the higher number of landmarks and wider landmark 

distribution of RSLM. 
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(a) Taiwan 

 

(b) Hongkong 

Figure 7. Geolocation error of reliable landmarks 

4.2 Landmark Mining Experiment Based on 

Different Web Resources 

We conducted landmark mining and evaluation 

experiments for six cities in China and America using 

RSLM, YPLM and SVMLM, then analyzed the 

number of landmarks excavated and the geolocation 

effectiveness of reliable landmarks. In order to avoid 

the influence of different landmark assessment 

methods on the quantity and quality of reliable 

landmarks mined, SLG algorithm, which is the same as 

in RSLM and YPLM, is also used to identify reliable 

landmarks in the landmark assessment step for 

SVMLM. 

4.2.1 Landmark Mining Results 

The numbers of candidate and reliable landmarks 

obtained by RSLM, YPLM and SVMLM were listed in 

Table 4. It took 7 days and 8 hours to obtain the 

landmarks in the 6 cities using the proposed algorithm, 

and took 9 days and 1 hours using YPLM algorithm, 

and took 47 days and 17 hours when using SVMLM 

algorithm.  

As we can see in Table 4, the proposed algorithm 

RSLM can obtain more candidate landmarks as well as 

reliable landmarks identified by SLG algorithm. 

 

 

 

 

 

 

Table 4. Number of landmarks obtained by RSLM YPLM and SVMLM from 6 cities in China and America 

City Beijing Zhengzhou Hongkong Taibei SanDigo Honolulu 

RSLM 
Candidate landmarks 230393 38695 19375 25059 36248 10997 

Reliable landmarks 6658 721 1891 2242 631 406 

YPLM 
Candidate landmarks 5699 5385 3258 2802 10758 8592 

Reliable landmarks 1556 342 612 580 407 325 

SVMLM 
Candidate landmarks 102156 7111 17331 114803 3299 1251 

Reliable landmarks 2351 464 907 821 103 82 

 

4.2.2 Landmark Geolocation Results 

For the purpose of verifying the geolocation effect, 

we located the IP addresses with known location by 

SLG algorithm with the landmarks gained by RSLM, 

YPLM and SVMLM. Firstly, we select 100 IP 

addresses with known locations as the geolocation 

target in the 6 cities respectively. Secondly, we use 

these reliable landmarks obtained by three algorithms 

as the reference points of the SLG algorithm, and 

locate the given 100 IP addresses with known locations 

in these cities. Finally, the cumulative probabilities of 

geolocation errors for three methods in different cities 

are shown in Figure 8. The abscissa in the figure is the 

geolocation error, and the ordinate is the cumulative 

probability. 

As can be seem in Figure 8, the mean error of 

geolocation results for the given target 100 IP address 

in Beijing, Zhengzhou, Hongkong, Taibei, SanDigo 

and Honolulu is 3.72 km, 4.39 km, 4.03 km, 3.58 km, 

4.30 km and 3.88 km respectively, which is clearly 

lower than that of YPLM (5.59 km, 6.82 km, 5.30 km, 

5.42 km, 4.68 km and 4.35 km respectively) and 

SVMLM (4.02 km, 6.22 km, 4.63 km, 4.82 km, 5.22 

km and 4.96 km respectively). It verified that the 

street-level landmarks obtained by the proposed  
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(a) Beijing (b) Zhengzhou 

 

(c) Hongkong (d) Taibei 

(e) SanDigo (f) Honolulu 

Figure 8. Geolocation errors of reliable landmarks 

algorithm RSLM are of higher reliability than the state-

of-art algorithms. 

5 Conclusion 

This paper proposed RSLM, a street-level landmark 

mining method based on online map radar search. First, 

RSLM divides the target administrative region into 

square sub-regions of the same size, and then performs 

recursive radar search to obtain all the organization IDs 

using the API of an online map. Second, candidate 

landmarks are constructed using the landmark 

information acquired by the organization ID. Finally, 

unreliable landmarks are filtered out using preliminary 

screening and SLG. Experiments in Taiwan and 

Hongkong demonstrate that the algorithm outperforms 

the existing online map-based approach with respect to 

landmark quantity, distribution, and reliability. 

However, this algorithm is only applicable to mining 

web server-type landmarks. Its effectiveness in the 

underdeveloped areas of the Internet would not be as 

obvious. In the future, we will focus on the mining of 

terminal-type landmarks. 
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Appendix 

The following is the radar search sampling 

experiment based on Google Maps. 

For each kind of organization (hotel, government 

restaurant), we conduct the sampling experiment on six 

cities in China and America, including Beijing, 

Zhengzhou, Taipei, Hong Kong, Honolulu and San 

Diego. The number of organizations of each kind can 

be got by calling the radar search API of Google Maps 

with sampling points as parameters. The details steps 

of the experiment are as follows. 

Step 1: Using Geocoding API, the longitude and 

latitude of the northeast corner and southwest corner of 

the administrative region of a city can be obtained 

according to its name, the rectangle with the line 

segment formed by which as the diagonal contains the 

city. Then the sampling of the city can be carried out in 

the rectangle. 

Step 2: Randomly select the longitude of n (n is set 

as 30 in our experiments) non-repeating points on the 

edge parallel to the latitude line in the rectangle and the 

latitude of n non-repeating points on the edge parallel 

to the longitude line in the rectangle. Thus n*n non-

repeating sampling points in the rectangle can be got 

through combining the longitudes and latitudes 

obtained in the previous step. 

Step 3: The number of organizations of each 

sampling point can be obtained by calling radar search 

API, with search radius set as the minimum value 

(currently is 0.1 km), each kind institution of three 

types and the latitude and longitude of the sampling 

point as parameters. 

The number of organizations returned by radar 

search sampling experiments with different 

organization types in each city was counted, and the 

results are shown in below table. 

Table 1. Statistical results of organization number of sampling point 

Org. Type City Name 
Statistical results of organization number 

Mode Mean Maximum Proportion of M (60) in all numbers 

Hot. 

Honolulu 0 3.86 60 0.010 

San Diego 0 2.81 60 0.004 

Beijing 2 3.75 60 0.016 

Zhengzhou 2 3.20 60 0.006 

Taipei 0 6.60 60 0.052 

Hong Kong 1 6.02 60 0.051 

Gov. 

Honolulu 0 2.78 60 0.009 

San Diego 2 3.17 60 0.007 

Beijing 2 3.64 60 0.018 

Zhengzhou 2 3.04 60 0.003 

Taipei 0 7.94 60 0.062 

Hong Kong 1 3.51 60 0.017 

Res. 

Honolulu 0 0.17 33 0 

San Diego 0 0.08 7 0 

Beijing 0 0.14 27 0 

Zhengzhou 0 0.10 19 0 

Taipei 0 0.62 40 0 

Hong Kong 0 0.23 53 0 

 

It can be seen from Table 1 in the appendix, that the 

number of organizations returned by radar search in all 

samples in the six cities is very small (no more than 2) 

in most cases, and the number in the average case does 

not exceed 8. For two high-density organizations hotel 

and government, in most of six cities only about 1% 

cases hit the upper limit of M (currently 60), while in 

Hong Kong and Taipei with very high-density 

organizations still only about 5% cases hit the upper 

limit M. For restaurant with a small density, all cases 

in all the six cities did not reach the upper limit of M. 

From the above, we can conclude that taking Google 

Maps as an example, the number of organizations 

obtained within the range corresponding to the 

minimum radar search radius (currently 0.01 km2) will 

not exceed the upper limit M (currently 60) of the 

organizations number returned by radar search in most 

cases in online maps. 
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