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Abstract 

The automatic recognition of human activities in the 

house using Channel State Information (CSI) has 

received wide attention due to the potential use of wide 

range of intelligent services. Two-dimensional 

Convolutional Neural Network (2D-CNN) is one of the 

most popular approaches for human activity recognition 

(HAR). This method first applies signal transform to 

convert a time-series CSI signal into a 2D image, and 

then uses the image to train a complex 2D-CNN model. 

In this paper we will present simple deep neural networks 

including multi-layer perceptron (MLP) and one-

dimensional Convolutional Neural Network (1D-CNN) 

for HAR. Our proposed networks are fully end-to-end 

automatic learning from feature extraction/selection and 

classification, and do not require extra signal transform 

and denoising. Experimental results indicate that the 

proposed networks not only achieve much better 

recognition performance but reduces the network 

complexity significantly, as compared to the existing 

methods. 

Keywords: Human activity recognition, Deep learning, 

Multi-Layer Perceptron (MLP), Convolutional 
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1 Introduction 

With the rapid development of the Internet of Things 

and Artificial Intelligence technology, smart home and 

smart elderly care center have been gradually developing. 

The automatic identification of the activities of people 

in the house are very helpful for the caring purposes. 

There are many daily activities at home, such as 

eating, taking medicine, sleeping, making phone calls, 

using computers, walking, cooking and cleaning. If the 

activities can be automatically recorded, identified and 

indexed, it will produce many important applications. 

For instance, establishment of a security monitoring 

system that can monitor the behaviors of elderly or 

children to deal with accidents such as falls (or 

fainting). It is also possible to build a smart search 

system that help users with poor memory to recall 

something. The system may provide answers of users 

to the questions such as “Where is my glasses (mobile 

phones, watches, etc.)?”, “Is this medicine I have 

eaten?” This is especially important for people with 

poor memory. In addition, activity recognition is also 

important in Human-Computer Interface (HCI), such 

as gesture recognition for remote control of home 

smart products. Therefore, in recent years, the 

automatic analysis and identification of human activity 

behavior have received wide attention [1].  

The methods for activity recognition in the literature 

can be roughly divided into two categories: device-

based and device-free. In the former approach, human 

needs to wear devices such as accelerators or RFID. In 

the latter approach, it is only to build a transmitter and 

a receiver in the environment, and the subject does not 

need to wear any device at all. The device-free 

approach is cheaper than the device-based method. In 

addition, wearing a device is troublesome for most 

people, especially for the elderly or children. Therefore, 

the device-free method has received wide attention in 

recent years [2]. 

In device-free approach, the most widely studied is 

the visual method, which uses cameras to capture 

image and applies computer vision technique to 

identify activity types. However, the image quality is 

affected by many environmental factors. For example, 

the coverage area for detection must be within line-of-

sight (LOS). Moreover, despite of improvements in 

image processing algorithms, the performance can 

degrade under low lightning conditions. In addition, 

from a user perspective the presence of cameras can 

affect privacy. 

The research in HAR using WiFi signals has become 

active recently [3] due to its advantages in the 

following. WiFi signals can propagate through 

furniture, door and walls, and do not require line of 

sight (LOS), thus enabling a larger detection area. 
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Secondly, WiFi devices are now widely available in 

the house, hence no additional equipment is required to 

build WiFi-based HAR system, which reduces the cost 

of system deployment significantly. Finally, since no 

camera exists, there is no privacy concern. 

Using wireless signals to HAR is much later than the 

use of video, and it can be said that it is still in its 

infancy. Earlier researches focus on the detection of 

human fall. The earliest study using CSI to detect fall 

activity is Wi-Fall [4], which applies CSI amplitude to 

distinguish it from the other three activities (sit down, 

stand up and walk). However, the algorithm does not 

take into account the various fall-like activities that 

occur in everyday life. To solve this problem, Anti-Fall 

[5] includes various fall-like activities in the dataset 

and uses phase of CSI signal as a feature to improve 

classification. In [6], an improved model named Rt-fall 

is proposed, which uses the phase difference of two 

receiving antennas to distinguish between fall events 

(including falls and similar falls) and general activities. 

Compared to Wi-Fall, Rt-fall achieves higher 

sensitivity and specificity. 

Regarding activity recognition, Y. Wang et al. [7] 

propose the system E-eyes, which can identify 8 

activities in the in-place activity, and 4 activities in the 

walking activity. It uses the CSI histogram as the 

fingerprint in the database. Preprocessing is also 

utilized, including low pass filtering and modulation 

and coding scheme (MCS) index filtering. Although 

the system performs well and the computational cost is 

low, the histogram technique is sensitive to 

environmental changes and may not be suitable for 

different environments. 

W. Wang et al. [8] propose the CARM system, 

which establishes the correlation between the dynamic 

values of CSI and human activities to identify eight 

human activities of a single subject. The CARM 

performs PCA (Principal Component Analysis) 

according to the correlation between the CSI data of 

different sub-carriers to remove the associated noise 

components. It uses 12 levels of DWT (Discrete 

Wavelet Transform) to extract five main components 

as features, and then applies HMM (Hidden Markov 

Model) for classification. 

[9] proposes the system HuAc, which combines 

WiFi features and Kinect skeleton joints to recognize 

human activity in an indoor environment with 

occlusion, weak light, and different perspectives. They 

apply the hand-crafted features into various 

classification models such as KNN, decision tree, 

random forest and SVM. HuAc achieves an average 

accuracy of greater than 93% using WiAR dataset that 

the authors created. 

Yan et al. propose WiAct system [10], which can 

identify ten actions. In the system, a novel activity 

cutting algorithm is developed to detect the start and 

end of an activity. The Doppler shift correlation 

extracted from the correlation of the WiFi device’s 

antennas is used as features to train the Extreme 

Learning Machine (ELM) for activity classification. 

Gao et al. [11] propose an image processing 

framework based on deep learning for extracting 

discriminative deep image features from radio images. 

Specifically, the amplitude and phase information of 

CSI signals are converted into radio images, and the 

texture features, called raw image features, are 

extracted from the radio image using conventional 

image processing techniques. Then, an autoencoder 

network is designed to learn optimized deep features 

from the raw image features. Finally, the deep features 

are applied to a softmax regression model to estimate 

the state of the person. 

The works stated above can be roughly classified 

into two types of methods. One is traditional machine 

learning method, in which it extracts features in a 

hand-design manner, and then trains a classification 

model. The other is combinational method, in which it 

utilizes deep learning and image processing to 

automatically extract features and then uses the 

features to learn a classification model. In addition, 

most of both types of methods above apply extra 

processing before feature extraction, including noise 

reduction and signal transformation [12]. Raw CSI 

measurements contain noises and outliers that could 

significantly reduce WiFi sensing performance. Noise 

reduction aims to reduce high frequency noises by 

using various filters such as moving average, median 

or low pass filters. 

The raw CSI measurement is a time-series data. 

Signal transform is often used to obtain time-frequency 

representation of the time-series data. The typical 

signal transform techniques for Wifi sensing include 

Fast Fourier Transform (FFT), Short Time Fourier 

Transform (STFT), Discrete Hilbert Transform (DHT), 

and Discrete Wavelet Transform (DWT). The signal 

transform converts 1-D signal into 2-D (or more) 

representation.  

Both types of methods above include quite complex 

processes. This not only reduces system processing 

speed but also increases implementation cost. To attack 

the drawbacks, this work proposes an approach based 

on end-to-end deep neural network (DNN), which is 

fully automatic from feature extraction, feature 

selection and classification. It does not require manual 

intervention (handcraft), and needs no signal transform 

and noise reduction. The proposed approach reduces 

the system complexity and achieves better recognition 

accuracy. The contributions of this work are 

summarized as follows: 

(1) We investigate various deep neural networks 

using CSI signals for device-free human activity 

recognition, and evaluates their performance in terms 

of recognition accuracy and network complexity.  

(2) The proposed MLP and 1D-CNN for activity 

recognition are proved to achieve much better 

performance with significantly lower network 
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complexity, as compared to the existing 2D-CNN 

based and SVM-based methods. 

(3) The proposed approach is a fully end-to-end 

deep learning architecture, which does not need hand-

crafted feature extraction and extra signal processing 

such as denoising filters and signal transforms. 

The remainder of this paper is organized as follows. 

Section 2 describes the proposed method in details; we 

first explain how to construct a CSI dataset, and then 

illustrate the design procedure of MLP and 1D-CNN 

separately using the dataset. The optimization of the 

DNN configurations, classification error analyses, and 

performance comparison are described in Section 3. 

Finally, the conclusion is drawn in Section 4. 

2 Proposed Method 

The proposed HAR method aims to predict the 

activity type of a person using CSI signal between the 

wireless access point (AP) and the network interface. 

The method is basically an end-to-end learning 

architecture. Specifically, the features of CSI signals 

and classification model are automatically learned from 

input raw data. The design of this method consists of 

two phases, offline training and online prediction, as 

shown in Figure 1. During the offline training phase, 

the proposed DNN learns the optimal parameters of the 

network (called model) using a training set. The model 

includes the functions of feature extraction and 

classification, which are jointly learned from the input 

raw data. During the online prediction the system 

receives real-time data from a network interface card 

and then predicts what kind of activity that the person 

performs using the learned model. 

 

Figure 1. Proposed HAR system architecture  

2.1 CSI Dataset Construction 

Channel state information (CSI) is often used to 

measure the quality of the channel in wireless 

communication. It describes how a signal propagates 

from the transmitter to the receiver and represents the 

combined effect of, for example, scattering, fading, and 

power decay with distance [13]. Quantitative analysis 

of signal propagation behavior within WiFi-covered 

area can identify different types of disturbances. This 

feature allows CSI to be used in a variety of 

applications, such as detecting a person’s location, the 

recognition of human activity and behavior, gesture 

recognition, and vital sign monitoring [14]. 

The channel frequency response (CFR) is often used 

to model the channel, which consists of amplitude 

response and phase response in frequency domain. Let 

X and Y be the frequency domain representations of 

transmitted and received signal vector, respectively, 

with carrier frequency 
k
f . They are related by  

 ,Y H X N= × +   (1) 

where N the additive white Gaussian noise, and H is 

the complex valued CFR, which can be estimated from 

X and Y. The channel frequency response of the kth 

subcarrier (channel) can be expressed as  

 | | exp{ },
k k k

H H j H= ∠   (2) 

where | |
k

H  is the amplitude response of the kth 

subcarrier, and 
k

H∠  is its phase response.  

We construct a CSI dataset which collects CSI 

signals reflected by 11 activities in a meeting room, as 

listed in Table 1. To evaluate the robustness of the 

proposed methods, the room we choose is with many 

desks in order to increase the complexity of the 

environment. The layout of the room is shown in 

Figure 2. It is a closed space with a length of 9.3 

meters and a width of 5.9 meters. A total of 16 anchor 

points are marked in this space. The horizontal spacing 

between two adjacent anchor points is 1.1 meters and 

the vertical spacing is 0.7 meters. The router and 

receiver are located on the front desktop and the rear 

desktop, respectively, 1 meter above the ground. Each 

activity in Table 1 is performed 8 times by 7 volunteers 

with ages ranging from 20-30 years old and height 

from 150-180 cm. 

Table 1. Human Activity Types 

Activity 

index 

Activity 

name 

Activity 

index 

Activity 

name 

1 Lie 7 Stand up 

2 Squat 8 Walk to right 

3 Bend over 9 Walk to left 

4 Standing 10 Raise hand 

5 Sitting 11 Fall down 

6 Sit down   

 

Figure 2. Experimental Environment Map 
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To collect CSI data of each activity, we adopt a 

notebook computer that installs an Intel Wi-Fi Link 

5300 network interface card with three receiving 

antennas, and a wireless network router with two 

antennas. Since CSI is at the physical layer, in addition 

to hardware support, it requires software tool to help to 

extract CSI data. In this work, we apply the packet 

data-parsing tool developed in our previous work [15], 

which strengthens Linux 802.11n CSI Tool.  

The number of CSIs in a packet is the product of the 

transmitter antenna, the receiver antenna, and the 

number of channels (sub-carriers). The Intel 5300 

network interface card used in this work has 30 

channels. Thus, the total number of CSI data per packet 

is 3×2×30 =180. Using Intel 5300 wireless network, 

we can obtain CFR containing 30 frequency responses 

defined in (2). In our work, only amplitude response is 

utilized for activity recognition. Hence, a CSI vector 

contains 180-D values of amplitude response. 

Figure 3(a) to Figure 3(d) show the amplitude 

responses of CSI corresponding to four different 

activities including standing, fall down, walk to right 

and walk to left; different colors in the figures indicate 

signals measured by different receiving antennas. It 

can be seen that the differences surely exist between 

different activities. Therefore, it is possible to identify 

activities from the CSI waveforms. 

  

(a) (b) 

  

(c) (d) 

Figure 3. Amplitude responses of CSI corresponding to four different activities; different colors in the figures 

indicate signals measured by different receiving antennas 

Some packets received are invalid, which could be 

caused by random transmission error. Therefore, the 

number of the valid packets of every activity is 

different. In other words, the length of activity 

sequences may not be the same. Due to the difficulty of 

putting variable-length data into a deep neural network, 

length normalization, which makes each activity 

sequence into segments with a fixed length, should be 

performed. Besides, the common problem in deep 

learning is it often needs a large amount of data for 

training to avoid overfitting. In our application, 

generating a large amount of activity samples is very 

difficult. For example, it is inhumane to ask voluteers 

to do hundreds of times of falling-down actions in 
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order to generate enough samples. 

In order to solve the varible-length problem and 

increase amount of training samples to avoid 

overfitting, we apply a simple length normalization 

scheme for acivity sequences as follows. We divide a 

record of each activity into several segments with 

approximate 75% overlap between adjacent segments, 

and each segment contains 30 CSI vectors. For 

example, the first segment contains packets 1 to 30, the 

second segment contains packets 9 to 38, and so on. 

The segments from the same activity record are 

assigned the same label. This scheme solves the 

variable-length problem and is efficient for data 

augmentation. Table 2 shows the number of valid 

packets and the number of segements after length 

normalization for each activity. 70% of the total 

segments are randomly chosen for training, and 30% 

for testing. 

Table 2. Number of Valid Packets and Number of 

Segments 

Activity index 
Total number 

of packets 

Total number 

of segments 

1 16114 787 

2 15485 731 

3 15612 757 

4 14687 683 

5 15236 727 

6 15801 767 

7 16291 793 

8 15212 735 

9 14905 703 

10 15273 723 

11 16524 804 

 

2.2 Deep Neural Network Design 

Two types of deep neural networks are considered in 

this work: MLP and 1D-CNN. A MLP consists of an 

input layer and an output layer with several hidden 

layers of nonlinearly-activating nodes. Since MLPs are 

fully connected, each node in one layer connects with a 

certain weight to every node in the following layer, as 

described by 

 ( ) ( ) ( ) ( ) ( )( ),i i i i iy f W w B= +  (3) 

where ( )i
x  is the input, ( )i

y is the output, ( )i
W  is the 

weight matrix, ( )i
b  is the bias vector, and ( )if  is the 

activation function [16]. The output of the previous 

layer is the input of the current layer, i.e., ( ) ( 1)i i
x y

−

= . 

The first layer (1)
x  is the original input, and the last 

layer ( )N
y  is the final output, i.e., the classification 

results. The weights and biases form the parameter set 

θ  of the network, which are learnt in the training 

process. 

In general, a CNN is composed of a number of 

convolutional layers for feature extraction, where each 

layer is usually followed by a pooling layer which is 

also followed by one or more fully connected layers for 

classification. CNN is effective for learning local 

features. As compared to MLP, CNN involves low 

computational complexity during training and 

prediction due to shared convolution kernels. The 

weights of the kernels construct the parameter set to be 

learned. 2D-CNN has been widely used and has 

achieved great success in image feature extraction and 

classification problems in the literature [17-20]. The 

CSI belongs to 1-D time-series signal, thus 1-D CNN 

is more suitable for the representation of the CSI than 

2-D CNN. In addition, the model of 1-D CNN is 

simpler than that of 2-D CNN, which will reduce the 

system complexity. Furthermore, it needs extra signal 

transform if 2D-CNN is employed to process time-

series CSI signal. Therefore, we select 1-D CNN 

instead of 2-D CNN. We use 1-D CNN to extract the 

hierarchical features of CSI from low-level to high-

level features. The high-level features extracted are 

then used to train the softmax classifier in the final 

layer of the network. 

The proposed 1D-CNN consists of several 

convolution units to extract hierarchical features from 

low level to high level. Each convolution unit contains 

1-D convolution, batch normalization, and activation 

function. Batch normalization is applied after 

convolution and before activation since it is helpful for 

improving the performance and the stability of deep 

neural networks [21]. Note that the polling is not used 

in our 1D-CNN since it degrades the performance in 

our experiment. 

In our work, total number of classes is 11, hence the 

size of the output layer of MLP or 1D-CNN is thus 11. 

The size of the input layer is 180, which is determined 

by the dimension of CSI signal. 

For either MLP or CNN, the ReLu function in (4) is 

adopted as the activation function in the hidden layers 

to avoid vanishing gradient problem [16]. And the 

softmax activation function, as defined in (5), is 

employed in the output layer, which maps the real-

value input into prediction probability in the range of 

[0, 1]. 

 

1

( ) , 1, 2, , .
j

k

z

j K
z

k

e
z j K

e

σ

=

= =

∑
…  (4) 

In addition, the dropout is also employed between 

the two hidden layers to avoid overfitting [16]. For 

MLP and 1D-CNN, several configurations are 

implemented and evaluated, which will be discussed in 

the next section. 

We apply the mini-batch gradient descent (MBGD) 

algorithm [5] to train MLP and 1D-CNN model. 

MBGD computes the gradient of the loss function J  

with respect to the parameter set θ  for the every mini-
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batch of n training examples, and then performs an 

update iteratively by 

 
( : ) ( : )

1 ( ; ; ),i x n i y n

t t
J x y

θ
θ θ ρ θ + +

−
= − ∇  (5) 

where x and y denote the target output and the 

predicted output vectors of the network; 
θ

∇  is gradient 

operator; ρ  is the learning rate. The MBGD utilizes 

the backpropagation (BP) scheme to compute gradient 

of the loss function. BP is an efficient gradient 

computation scheme which calculates the loss (error) 

function between the ground truth and network 

prediction, and back propagates the error of each layer 

from output to input. 

Several loss functions have been presented in the 

literature such as mean square error (MSE), Kullback 

Leibler (KL) Divergence and cross-entropy [16]. In 

this work, we choose cross-entropy as loss function. 

The learning of deep neural networks is to minimize 

the loss function ( , , )J x yθ  defined in (6) with respect 

to network parameter set θ  

 
1

( , , ) log .
N

i i

i

J x y x yθ

=

= −∑   (6) 

The cross-entropy indicates the difference between 

the amount of information contained in x and the 

amount of information contained in y. If the value of 

the cross-entropy is small, then the predicted output is 

close to the target output. It is noted that 
1
L or 

2
L  

regularization is usually included into the loss function 

to avoid overfitting [16]. However, in our case, the 

regularization does not improve prediction 

performance, thus we do not use it for simplicity. 

In MBGD training, choosing a proper fixed learning 

rate can be difficult. A learning rate that is too small 

results in slow convergence, while a learning rate that 

is too large can hinder convergence and cause the loss 

function to fluctuate around the minimum or even to 

diverge. To solve the problem, several gradient descent 

optimization algorithms with different learning rate 

schedules have been presented such as Adagrad, 

Adadelta, Adam and RMSprop [22]. The Adam 

(Adaptive Moment Estimation) algorithm is employed 

in this work since it has been experimentally proven to 

work well in practice [22]. The method computes 

individual adaptive learning rates for different 

parameters from estimates of first and second moments 

of the gradients. The update algorithm of the parameter 

set of the network is given by [22]  

 
1

ˆ
,

ˆ

t

t t

t

m

v

η
θ θ

ε
−

→ −

+

  (7) 

where η  is a fixed learning step size; ε  is a very small 

constant; ˆ

t
m  and ˆ

t
v  are the bias-corrected first 

moment estimate and the biased-corrected second 

moment estimate, which are calculated by 

 
1 2

ˆ ˆ, ,
1 1

t t

t tt t

m v

m v

β β
= =

− −

  (8) 

 
1 1 1

(1 ) ,
t t t

m m gβ β
−

= + −  (9) 

 
2

2 1 2
(1 ) ,

t t t
v m gβ β

−

= + −  (10) 

where 
t

g  is the gradient of lost function at time t; 
1

β  

and 
2

β  are the attenuated constants for the first 

moment and second moment, respectively.  

3 Numerical Analysis 

3.1 Optimization of DNN Configurations 

In this subsection, we explain how to obtain the 

optimal architecture for MLP and 1D-CNN. We 

compare the performance of different network 

configurations in terms of two metrics: classification 

accuracy and total number of parameters. The second 

metric reveals the complexity of a network. High 

complex network often needs a large amount of 

training data to avoid overfitting, and also requires 

high computational load. We apply the popular deep 

learning platform Keras to evaluate the two metrics of 

all deep learning architectures discussed in this paper. 

The design of architectures of DNNs need to set a 

large variety of hyper-parameters including the number 

of hidden layers, nodes of every layer, learning rate, 

batch size, etc. This is so called hyperparameter 

optimization. The goal of the hyperparameter 

optimization is to find the best set of hyper-parameters 

which achieves the greatest performance given 

network complexity. Although some general strategies 

such as grid search and random search have been 

presented [16], the optimization is still very 

challengeable due to the required huge computation. In 

this work, we apply the process of try and error based 

on our experiences to obtain a better network 

configuration in an efficient way. 

Five MLP configurations are designed in our 

experiment. The first four configurations utilize five 

hidden layers, but they have different number of nodes: 

180,360,720 and 960. The last configuration has five 

hidden layers with different numbers of neurons in 

each layer. The results shown in Table 3 indicate that 

the architecture of 960x5 achieves the best 

classification accuracy. 

For 1D-CNN, three hidden convolution blocks with 

filters of 16, 32, 32 are designed. In such architecture, 

the performance metrics under different kernel sizes 

are evaluated. As shown in Table 4, kernel size of 7 

achieves the best classification accuracy. 
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Table 3. Comparison of MLP Configurations 

MLP Configurations 
Total Number of 

Parameters 

Classification 

Accuracy (%) 

180 X 5 1,107,371 86.48 

360 X 5 2,473,931 86.76 

720 X 5 5,984,651 87.62 

960 X 5 8,901,131 89.00 

720,620,520,420,320 5,023,251 87.49 

Table 4. Comparison of 1D-CNN Configurations 

Kernel 

sizes 

Number of 

filters 

Total Number 

of Parameters 

Classification 

Accuracy (%) 

3 55-55-55 66,836 91.39 

5 55-55-55 98,736 91.76 

7 55-55-55 130,636 93.22 

9 55-55-55 162,536 92.08 

11 55-55-55 194,436 91.84 

13 55-55-55 226,336 91.15 

15 55-55-55 258,236 90.46 

17 55-55-55 290,136 90.82 

19 55-55-55 322,036 90.99 

21 55-55-55 353,936 90.50 

23 55-55-55 385,836 90.46 

25 55-55-55 417,736 91.55 

 

As stated before, we adopt Adam, which is an 

adaptive learning rate algorithm. However, our 

experiences indicate that the initial learning rate in 

Adam will affect the convergence performance. 

Therefore, we try various initial values of learning rate 

in the best architectures of MLP and 1D-CNN, 

respectively. The results are shown in Table 5. It is 

seen that the initial learning rates of 0.2 and 0.01 yield 

the best classification accuracy for MLP and 1D-CNN, 

respectively In such case, MLP achieves better 

classification accuracy of 0.24% than 1D-CNN. 

However, the total number of parameters of MLP is 

more than 68 times of that of 1D-CNN. This indicates 

that the 1D-CNN has much less network complexity 

and thus it reduces implementation cost significantly. 

Table 5. Comparison of MLP and 1D-CNN over Initial 

Learning Rates 

Total Number of 

Parameters 

Classification 

Accuracy (%) 
Learning 

Rate 
MLP 1D-CNN MLP 1D-CNN

0.2 8,901,131 130,636 93.46 92.49 

0.15 8,901,131 130,636 92.28 91.96 

0.1 8,901,131 130,636 91.96 91.92 

0.01 8,901,131 130,636 89.00 93.22 

0.001 8,901,131 130,636 84.90 88.47 

0.0001 8,901,131 130,636 63.46 56.47 

 

3.2 Error Analysis 

We use the best configurations above for 

classification error analysis and comparison. Table 6 

shows the confusion matrix of MLP, which can be 

used to analyze the misclassification error. It is seen 

that the maximal prediction error comes from the 

situation that class 3 (bend over) is miss-classified into 

class 2 (squat). Table 7 displays the confusion matrix 

of 1D-CNN. Same as MLP, the biggest classification 

error comes from the fact that predicting “bend over” 

into “squat”.  

 

To figure out the reasons of the misclassification, we 

measure the similarity between each CSI sample of the 

two classes by calculating their correlation coefficients. 

Assume that the n-dimensional sample vectors of two 

classes are denoted as 
1 2

( , , , )
n

x x x= …x  and =y  

1 2
( , , , )

n
y y y… , respectively, the sample correlation 

coefficient of two vectors is defined as [23] 

 1

2 2

1 1

( )( )

,

( ) ( )

n

i i

i

xy
n n

i i

i i

x x y y

r

x x y y

=

= =

− −

=

− −

∑

∑ ∑

 (11) 

where x  and y  are the sample means of x and y, 

respectively. 

Figure 4 shows the CSI sample waveforms 

corresponding to the top three of correlation coefficient 

values between class 2 and class 3. It is seen that the 

waveforms on the top are very similar to corresponding 

waveforms below respectively such that the correlation 

coefficient values are rather high even the waveforms 

come from different classes, which likely results in the 

misclassification. Figure 5 demonstrates the CSI 

sample waveforms corresponding to the top three of 

correlation coefficient values between class 1 and class 

11. It is obvious that the waveforms from different 

classes are not similar, and the correlation coefficients 

are low. Therefore, the misclassification rates are zero 

or very small for the two classes, as shown in Table 6 

and Table 7. 

3.3 Evaluation of Different Methods 

In this section, to prove the effectiveness of the 

proposed MLP and 1D-CNN, we implement two 

categories of existing methods: (a) 1D-CNN plus SVM, 

and (b) 2D-CNN with various signal transformations. 

The first category extracts the features of 1D time-

series CSI signal using 1D-CNN, and then trains SVM 

classification model using the extracted features. Here, 

the method is abbreviated as CNN-SVM. The second 

category applies various signal transformations to 

convert 1D CSI data into a 2D image, and then uses the 

2D image to train a 2D-CNN model. The 

transformations [24] implemented here include Short-

Time Fourier transform (STFT), Continuous Wavelet 

Transform (CWT), and Discrete Wavelet Transform 

(DWT). These methods are denoted as STFT-2DCNN, 

CWT-2DCNN and DWT-2DCNN, respectively. 
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Figure 4. CSI waveforms corresponding to the top three of correlation coefficient values (from left column to right 
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Figure 5. CSI waveforms corresponding to the top three of correlation coefficient values (from left column to right 

column) between class 1 and class 11 
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Table 6. Confusion Matrix of MLP  

Label 

Predict 
1 2 3 4 5 6 7 8 9 10 11 

1 99.21 0.00 0.40 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.44 86.73 8.85 1.77 0.00 0.00 0.88 0.88 0.44 0.00 0.00 

3 2.39 4.78 86.12 0.96 0.00 0.00 0.48 2.39 2.87 0.00 0.00 

4 0.00 1.40 1.40 96.28 0.00 0.47 0.00 0.47 0.00 0.00 0.00 

5 0.00 0.00 0.00 0.47 98.13 0.00 0.00 0.00 0.00 1.40 0.00 

6 0.00 0.00 2.17 0.00 0.43 94.78 2.17 0.00 0.00 0.43 0.00 

7 0.00 0.00 0.80 0.40 0.40 4.00 93.20 0.00 0.40 0.80 0.00 

8 0.96 0.00 0.00 1.92 0.00 0.00 0.48 88.94 6.73 0.96 0.00 

9 0.51 2.56 3.08 1.03 0.00 0.00 0.00 5.13 86.15 1.03 0.51 

10 0.00 0.41 0.41 0.41 1.24 0.41 0.41 0.00 0.00 96.69 0.00 

11 0.00 0.00 0.00 0.00 0.00 0.45 0.00 0.00 0.00 0.00 99.55 

Table 7. Confusion Matrix of 1D-CNN 

Label 

Predict 
1 2 3 4 5 6 7 8 9 10 11 

1 99.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.00 

2 1.38 83.94 10.09 1.38 0.00 0.00 0.46 0.92 1.38 0.46 0.00 

3 0.99 3.45 95.07 0.00 0.00 0.00 0.00 0.00 0.49 0.00 0.00 

4 0.00 0.93 0.00 96.73 0.00 0.00 0.93 1.40 0.00 0.00 0.00 

5 0.00 0.00 0.44 0.00 97.81 0.88 0.88 0.00 0.00 0.00 0.00 

6 0.00 0.45 0.45 0.00 0.00 93.67 4.52 0.00 0.00 0.90 0.00 

7 0.42 1.27 0.42 0.42 0.00 4.64 91.98 0.42 0.00 0.42 0.00 

8 0.00 3.00 0.00 2.15 0.00 0.00 0.00 85.41 9.01 0.43 0.00 

9 0.45 3.15 1.35 0.90 0.00 0.00 0.45 5.86 86.94 0.90 0.00 

10 0.48 1.45 0.48 0.00 1.45 0.48 1.45 0.00 0.00 94.20 0.00 

11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.00 0.00 99.56 

 

The three 2D-CNN based methods are designed with 

three 2D convolutional blocks whose 2D filter 

structures are extended from the proposed 1D-CNN. 

We evaluate the performance of the three architectures 

under different 2D kernel sizes, and the results are 

shown in Tables 8 to 10, respectively. For each method, 

we select the best configuration which gives the largest 

classification accuracy, as marked in bold. It is seen 

that among the three methods, STFT-2DCNN performs 

similar to CWT-2DCNN, and DWT-2DCNN is the 

worst. 

Table 8. Comparison of STFT-2DCNN over Kernel 

Sizes 

Kernel sizes 
Number of 

filters 

Total Number 

of Parameters

Classification 

Accuracy(%) 

5 x 5 16-32-32 14446011 84.00 

7 x 7 16-32-32 14448072 84.38 

9 x 9 16-32-32 14534715 84.50 

11 x 11 16-32-32 14598075 85.11 

13 x 13 16-32-32 14674107 85.12 

15 x 15 16-32-32 14762811 85.02 

 

 

 

 

Table 9. Comparison of CWT-2DCNN over Kernel 

Sizes 

Kernel sizes 
Number of 

filters 

Total Number

of Parameters 

Classification

Accuracy(%) 

5 x 5 16-32-32 14446011 85.14 

7 x 7 16-32-32 14448072 84.81 

9 x 9 16-32-32 14534715 85.18 

11 x 11 16-32-32 14598075 85.08 

13 x 13 16-32-32 14674107 85.25 

15 x 15 16-32-32 14762811 85.00 

Table 10. Comparison of DWT- 2DCNN over Kernel 

Sizes 

Kernel sizes
Number of 

filters 

Total Number

of Parameters 

Classification 

Accuracy(%)

5 x 5 16-32-32 14446011 72.27 

7 x 7 16-32-32 14448072 72.42 

9 x 9 16-32-32 14534715 72.50 

11 x 11 16-32-32 14598075 72.27 

13 x 13 16-32-32 14674107 72.15 

15 x 15 16-32-32 14762811 72.04 

 

The comparison of all methods is listed in Table 11. 

It is obvious that our proposed MLP and 1D-CNN 

methods performs much better than 2D-CNN-based 

methods either from classification accuracy or system 

complexity. In addition, the proposed methods reduce 

the overhead of 2D-CNN that requires converting time-

series data into 2D images. 
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Table 11. Performance Comparison of Proposed 

Methods and 2D-CNN-Based Methods 

Methods 
Total Number of 

Parameters 

Classification 

Accuracy (%) 

MLP 8,901,131 93.46 

1D-CNN 130,636 93.22 

STFT-2DCNN 14,674,107 85.12 

CWT-2DCNN 14,674,107 85.25 

DWT-2DCNN 14,534,715 72.50 

 

SVM-based methods are very popular traditional 

machine learning approaches for HAR. Here we also 

implement pure SVM and CNN-SVM. The pure SVM 

means that the raw CSI data is directly used to train a 

SVM model. It obtains classification accuracy of 

80.83%. The CNN-SVM, which combines CNN for 

feature extraction and SVM for classification, obtains 

classification accuracy of 90.90%. Again, the proposed 

1D-CNN and MLP outperform the SVM-based 

methods. 

4 Conclusions 

In this paper, we have proposed end-to-end deep 

learning-based methods for the recognition of human 

activities using raw CSI signals. Through careful 

design and optimization of hyperparameters, the 

proposed MLP and 1D-CNN achieves good 

performance with classification accuracy more than 

93%, which outperform significantly the existing 2D-

CNN methods and SVM-based methods. In addition, 

the network complexity of the proposed neural 

networks is much lower than that of 2D-CNN methods. 

Compared to MLP, the 1D-CNN achieves slightly 

lower classification accuracy but with much less 

network complexity. Development of effective and 

efficient deep neural networks for the joint task of 

indoor localization and human activity recognition [2] 

will be investigated in the future 
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