
Overview of Deep Reinforcement Learning Improvements and Applications 239

Overview of Deep Reinforcement Learning

Improvements and Applications

Junjie Zhang1, Cong Zhang1, Wei-Che Chien2

1 School of Mathematics and Computer science, Wuhan Polytechnic University, China
2 Department of Computer Science and Information Engineering, National Dong Hwa University, Taiwan

1281259317@qq.com, hb_wh_zc@163.com, wcc@gms.ndhu.edu.tw*

*Corresponding Author: Cong Zhang; E-mail: hb_wh_zc@163.com

DOI: 10.3966/160792642021032202002

Abstract

The deep reinforcement learning value has received a

lot of attention from researchers since it was proposed. It

combines the data representation capability of deep

learning and the self-learning capability of reinforcement

learning to give agents the ability to make direct action

decisions on raw data. Deep reinforcement learning

continuously optimizes the control strategy by using

value function approximation and strategy search

methods, ultimately resulting in an agent with a higher

level of understanding of the target task. This paper

provides a systematic description and summary of the

corresponding improvements of these two types of

classical method machines. First, this paper briefly

describes the basic algorithms of classical deep

reinforcement learning, including the Monte Carlo

algorithm, the Q-Learning algorithm, and the most

primitive deep Q network. Then the machine

improvement method of deep reinforcement learning

method based on value function and strategy gradient is

introduced. And then the applications of deep

reinforcement learning in robot control, algorithm

parameter optimization and other fields are outlined.

Finally, the future of deep reinforcement learning is

envisioned based on the current limitations of deep

reinforcement learning.

Keywords: Deep reinforcement learning, Value function,

Policy gradient, Sparse reward

1 Introduction

One of the main goals of research in the field of

Artificial Intelligence (AI) is the implementation of a

fully autonomous agent [1]. The agent not only learns

the optimal strategy under the current task based on

previously performed actions and feedback from the

environment, but also continuously improves the action

strategy through repeated experimentation. The

emergence of deep reinforcement learning accelerates

the process of achieving this goal. The deep learning

part of deep reinforcement learning uses deep neural

networks, which gives reinforcement learning a

powerful ability to characterize strategies and states

that can be used to simulate complex decision-making

processes. In addition, reinforcement learning allows

the agent to learn on its own, interact with its

environment, and progress through trial and error [2].

Deep reinforcement learning, as an important branch of

artificial intelligence research, is considered to be the

key to achieve humanoid intelligence and has received

wide attention from both academic and industrial

communities.

Unlike classical machine learning, reinforcement

learning is a self-supervised learning method in which

agents in reinforcement learning on the one hand can

autonomously interact with the environment, observe

and obtain environmental feedback; on the other hand,

it can train based on the reward value of the action and

environmental feedback and optimizes the action

strategy. Earlier approaches to reinforcement learning

were based on optimal control theory, which described

the sequential decision problem of reinforcement

learning as an adaptive dynamic programming (ADP)

problem [3]. Based on this approach, researchers

extend the sequential decision problem to obtain a

strategy-based reinforcement learning problem and

propose various strategy search algorithms to solve the

problem. Further, in order to understand the advantages

and disadvantages of strategies in a simple and

intuitive way, scholars have introduced the value

function as a criterion for strategy evaluation and

proposed a series of classical reinforcement learning

models such as Q-learning [4]. At present, the

development of reinforcement learning has entered a

phase where it is integrated with deep learning.

Traditional reinforcement learning methods are limited

by the ability to represent strategies and can only deal

with simple decision problems. The emergence of deep

learning breaks this limitation, and the combination

with deep learning injects new power into

reinforcement learning theory and applications.

Google’s artificial intelligence team DeepMind

combines deep neural networks with perceptual

240 Journal of Internet Technology Volume 22 (2021) No.2

capabilities in deep learning and reinforcement

learning with decision-making capabilities to form

Deep Reinforcement Learning. In 2017, the DeepMind

team constructed AlphaGo using deep reinforcement

learning algorithms and used AlphaGo to defeat the

world’s No. 1 human player with a score of 3:0. Not

only that, but the DeepMind team has constructed and

implemented human expert-level Agents in many

challenge areas. These Agents construct and learn

about their own knowledge directly from raw input

signals, without any manual coding or a prior

knowledge. Therefore, deep reinforcement learning is

an end-to-end machine learning model that is highly

versatile. At present, deep reinforcement learning has

been widely used in simulation [5], optimization and

scheduling [6-8], game gaming [9-10] and other fields.

Deep reinforcement learning models, while

performing well for virtual decision problems, such as

game decisions, do not perform well for many other

decision problems, especially those in real

environments. For example, in the field of robot

control, a robot needs to make decisions about the next

action to be performed based on information about its

state and environment. In this seemingly simple

process, the robot not only needs to do the work of

executing the strategy, but also needs to do the work of

evaluating and optimizing the strategy. For deep

strategies or value function networks, a large number

of samples are required for training. In the

reinforcement learning model based on value function

networks, the robot can get one sample in one motion-

observation cycle. In contrast, in the reinforcement

learning model based on deep strategy search, the robot

can obtain one sample after many motion-observation

cycles. Therefore, in order to train a better deep

reinforcement learning model, more training samples

are required, which requires a large amount of training

time. An alternative is to train in a virtual environment

and fine-tune the trained model in a real environment,

however, this relies heavily on the ability of the

environmental simulator to simulate the real

environment, and the development of high-

performance general-purpose simulators is also of

interest to reinforcement learning researchers [11].

Deep reinforcement learning is still in the emerging

stage and belongs to the emerging research field of

artificial intelligence, which has a broad development

space and bright application prospect. In the second

part of this paper, we briefly introduce the basic

theories of reinforcement learning, including the Monte

Carlo algorithm, Q-learning algorithm and deep

reinforcement learning network, etc. The third part

introduces the current common deep reinforcement

learning models and the improvement methods of the

reinforcement learning models based on value function

networks and policy search. The fourth section outlines

the applications of deep reinforcement learning in the

areas of game decision making, robot control, and

optimal scheduling. The fifth part discusses the current

limitations of deep reinforcement learning and

discusses the theoretical dilemmas of reinforcement

learning and the solutions proposed by current hot

papers. The sixth part briefly discusses the prospects

for future applications of deep reinforcement learning.

2 Basic Theory of Reinforcement Learning

2.1 Monte Carlo Algorithm

The Monte Carlo (MC) algorithm, also known as the

computer stochastic simulation method, is a

computational method based on “random numbers”. It

requires only the simulation of sample data series

(states, actions, rewards) or actual data obtained

through interaction with the environment to find the

optimal (better) strategy. When the problem to be

solved is the probability of a random event, or the

expected value of a random variable, the probability of

this random event is estimated by an “experimental”

method with the frequency of this event, or some

numerical characteristics of this random variable are

obtained and used as a solution to the problem.

The MC algorithm has four advantages.

(a) they can learn optimal behaviour directly from

environmental interactions, but this does not require a

dynamic model of the environment.

(b) They can be used as simulation or sample

models. For many applications, the MC algorithm can

easily simulate sample plots even though it is difficult

to construct exact models of migration probabilities in

the DP method.

(c) It is easy and efficient to use the MC algorithm

on a small subset of states.

(d) The MC algorithm is less harmful when it

violates Markovian properties.

The MC algorithm solves the reinforcement learning

problem based on averaging the sampling returns.

Assume that there is a termination state and that any

strategy can reach this termination state in a finite

number of steps with probability 1. In order to estimate

the value function, we need to execute the strategy

multiple times. Based on this feature of the MC

algorithm, the problem it solves must be able to be

decomposed into fragments. The updated state - value

function for the MC algorithm is as follows:

 []1
() () ()

t t t t
V s V s R V sα

+
= + − . (1)

where α denotes the step parameter and Rt denotes the

reward value at time t.

2.2 Q-learning Algorithm

The Q-Learning algorithm is a model-independent

reinforcement learning algorithm, which was

introduced by Watkins in 1989. It is an important

milestone in reinforcement learning, the algorithm is a

Overview of Deep Reinforcement Learning Improvements and Applications 241

powerful mutual combination of relevant theories of

dynamic planning and the psychology of animal

learning, with the goal of solving sequential optimal

decision problems with delayed reporting. The iterative

formula of Q-Learning algorithm is shown in followed

equation.

[]1 1

(,) (,)

max (,) (,)

t t t t

t t t t t

Q s a Q s a

r Q s a Q s aα γ
+ +

= +

+ −

. (2)

where α is the learning factor (or learning step), γ is the

discount rate, and rt+1 is the reinforcement value

returned by the environment to the learning system at

moment t+1. Q(s, a) is the value function.

The flow chart of the Q-learning algorithm is shown

in Figure 1.

Inutialize Q table

Choose an action a

Perform action

Measure rewrd

Update Q

Figure 1. Flowchart of the Q-learning algorithm

2.3 Deep Reinforcement Learning Algorithms

2.3.1 Deep Learning

Deep learning is a general term for a class of pattern

analysis methods that primarily involve convolutional

neural networks (CNNs), deep self-coding neural

networks, and deep confidence networks. The deep

learning model consists mainly of multiple non-linear

operational units. Data is input from the input layer of

the deep neural network and after passing through

several hidden layers, it is output from the output layer.

In this way, the model can automatically learn the

distributed features in large-scale data [12]. Compared

with traditional machine learning methods, deep

learning models have a more powerful data

representation capability and can even extract high-

latitude data features that cannot be directly understood

by humans. At present, some of the more

representative models for deep learning are stacked

self-encoders [13-14], restricted Boltzmann machines

[15-16], deep belief networks [17-18], recurrent neural

networks [19-20] and so on.

2.3.2 Deep Reinforcement Learning

With the growth of training data and the

improvement of computational power, more and more

experts and researchers combine deep learning with

classical reinforcement learning to form the initial deep

reinforcement learning model. Riedmiller et al.

proposed a neural fitting Q iterative algorithm (NFQ)

using a multilayer perceptual machine instead of a Q-

value function [21]. Lange [22] and others combined

self-encoders with deep learning and proposed a deep

autoencoder model (DAE). However, the real

landmark was the Deep Q Network (DQN) proposed

by Mnih et al.

Deep Q networks are an extension of the Q-learning

algorithm. It possesses not only the representational

capabilities of deep convolutional networks, but also

the decision making capabilities of reinforcement

learning. The deep convolutional network in DQN can

perceive complex environmental information, and the

reinforcement learning part makes an analysis of the

perceived information and makes decisions about the

next action to be performed. DQN uses deep

convolutional networks to approximate the value

function in Q-learning, but also destroys the

unconditional convergence of the Q-Learning

algorithm. To address this issue, DQN has made

improvements in the following two aspects:

On the one hand, two deep neural networks are

constructed in the DQN, which are identical in

structure. However, the roles of the two neural

networks are different. One of the neural networks is

used to approximate the value function in Q-Learning,

while the other neural network is only used to compute

the target Q value. In addition, the two neural networks

update their parameters in different ways and at

different times. The first neural network updates the

neural network parameters based on the loss function

after each round of training. The other neural network

is not involved in the training and is directly

synchronized with the parameters of the first neural

network after several rounds of training. The updated

formula of loss function is as follows:

 2

'
I (r maxQ (s', ';)) Q(s, ;))

a
a aγ ω ω

−

= + − . (3)

Where s represents the current state, a represents the

action performed, and r represents the reward value of

the environment to the agent. (, ;)Q s a ω is the output

value of the current Q-Evaluate network to evaluate the

value function of the current state-action pair when an

action a is executed in the state of s. (', ';)Q s a ω
− is the

Q value of the target value function calculated using

the Q-Target network.

The updated formula of Q-Evaluate network

242 Journal of Internet Technology Volume 22 (2021) No.2

parameters is as follows:

 1 '
[r maxQ (s', ';)

Q(s, ;)] Q(s, ;)

t t a
a

a a

ω ω α γ ω

ω ω

−

+
= + +

− ∇
. (4)

Where ωt is the parameter values of the neural

network at time t, s is the current state, a is the action

performed, and r is the reward value of the

environment to the agent. (, ;)Q s a ω
− is the output

value of the current Q-Evaluate network to evaluate the

value function of the current state-action pair when an

action a is executed in the state of s. (', ';)Q s a ω
− is the

Q value of the target value function calculated using

the Q-Target network.

On the other hand, a memory bank is added to the

DQN to store the training samples over a period of

time. The state space can be approximated as a

continuous space in the agent training process. Without

processing, the correlation between two adjacent

training samples is high, which is not conducive to the

training and learning of deep neural networks. Instead,

use a memory bank to store training samples over a

period of time, and then randomly remove a portion of

the samples during training. This can reduce the

correlation between the training samples and improve

the utilization of the training samples.

3 Improvement Methods of Deep

Reinforcement Learning

3.1 Deep Reinforcement Learning Methods

Based on Value Functions

In order to accelerate the training rate and improve

the stability of the model, experts and scholars in the

computer field have proposed various improved

versions based on DQN. According to the different

emphasis on DQN improvement, they can be divided

into three major categories: improvement of algorithm

logic, improvement of neural network structure and

improvement of introducing new mechanisms. In

addition, there are a number of other improvement

methods. In the following, we will elaborate on these

improvement methods, including their research

background, improvement ideas, advantages and

disadvantages.

3.1.1 Double Deep Q Network (DDQN)

When using deep Q-network to make decisions and

evaluate actions, the Q-max value will be referred to.

However, the Q-max value is often larger than the Q

value of the next action performed by the agent. This

can therefore lead to an overestimation of the Q action

value function. To solve this problem, Hasselt et al.

proposed the DDQN algorithm.

The deep neural network structure of DDQN is

exactly the same as that of DQN, but its parameter

update method is different from that of DQN. Equation

(5) is the parameter update method for the deep neural

network in DQN, and it can be seen that the DQN

optimizes the neural network with the largest error Q-

max value every time, which leads to the

overestimation of the Q action value function by the

neural network. However, the DDQN selects the action

based on the current Q network for the target Q value

and uses the target Q network to calculate the Q value

corresponding to that action. By this method, the

problem of overestimation of the Q action value

function by the neural network is solved.

The updated formula of DQN’s deep neural network

parameters are as follows:

1 1

 = r max (, ;)
t t t t
Y Q s aγ θ

+ +
+ . (5)

Where, rt+1 is the reward value of the environmental

feedback at moment t+1. γ is the discount factor.

1
(, ;)

t t
Q s a θ

+
 represents the output value of the Q

network with parameter
t

θ after performing action a in

state st+1.

The updated formula of DQN’s deep neural network

parameters are as follows:

1 1

1

 = r (,

arg max (, ;),)

t t t

t t t

Y Q s

Q s a

γ

θ θ

+ +

+

+

. (6)

Where, rt+1 is the reward value of the

environmental feedback at moment t+1. γ is the

discount factor.
1

(, ;)
t t

Q s a θ
+

 represents the output

value of the Q network with parameter
t

θ after

performing action a in state st+1.

3.1.2 Deep Q-learning from Demonstration (DQfD)

Since classical deep learning models are trained with

a large number of interactions with the environment in

order to achieve better learning performance. It is

acceptable when the tasks of the deep learning model

can be accurately simulated by a computer. In practice,

however, many problems cannot be simulated

accurately by the computer, which severely limits the

scope for using deep reinforcement learning in real-

world tasks. Therefor it is essential that the agent has a

good performance at the beginning of its training.

While it is difficult to find a completely accurate

simulator for real-world problems, most of these

problems have data from systems that were run under

previous controllers. In other words, the agent needs to

learn as much as possible from the demonstration data

during the pre-training phase. Hester et al. in Google’s

AI team have proposed the Demonstration Deep Q

Learning algorithm, which uses demonstration data to

greatly speed up the learning process.

Demonstration DQNs have an additional model pre-

training phase compared to classical DQNs. First, the

Overview of Deep Reinforcement Learning Improvements and Applications 243

demonstration DQN is pre-trained on exemplary data.

The purpose of the pre-training phase is to allow the

initialized value function to simulate the demonstrator

so that the agent gets a deep neural network with better

performance before interacting with the real

environment. The update of the deep neural network

combines four loss functions: the 1-step double Q-

learning loss, an n-step double Q-learning loss, a

supervised large margin classification loss, and an L2

regularization loss on the network weights and biases.

supervised loss is used to classify the demonstrator’s

actions. The Q learning loss ensures that the network

satisfies the Bellman equation and can be used as a

starting point for TD learning. The overall loss

function formula is:

1

2 3 2

() () ()

() ()

DQ n

E

L Q L Q L Q

L Q L Q

λ

λ λ

= +

+ +

. (7)

Where, λ is the weight of the different loss functions.

the n-step returns corresponding to Ln(Q) are：

1

1 1
()= ...

max (,)

n

n t t t n

n

t n

L Q r r r

Q s a

γ γ

γ

−

+ + −

+

+ + +

+

. (8)

The large interval classification loss function is

defined as：

() max[(,)

(,)] (,)

E

E E

L Q Q s a

l a a Q s a

= +

−

. (9)

Where, aE is the action taken by the expert

demonstrator in state s, l(aE, a) is an interval function,

it is equal to 0 when aE=a, and positive in the other

cases.

In all 42 Atari games, the initial scores of the

demonstrator DQNs were higher than those of the

preferentially competing double DQN [23-25], with

better initial performance.

3.1.3 Least Squares Deep Q Network (LS-DQN)

When a deep reinforcement learning model is used

to learn high-dimensional data, the model has a low

feature learning rate in some cases and the

performance of the model is not satisfactory. When

reinforcement learning uses a linear function as a

reward-value function approximator, the learning

process is more stable and requires only a small

number of hyperparameters to be adjusted. Levine et al.

[26] combined deep reinforcement learning with linear

least squares and proposed the least-squares DQN.

The least-squares DQN is divided into two main

stages.

(a) The least-squares DQN optimizes the weights of

the deep neural network using the conventional

approach. In this case, the optimization targets are the

parameters in the entire deep neural network, including

all parameters in the hidden and output layers.

(b) After n rounds of parameter updates in the neural

network, the goal of supervised learning is constructed

using a dataset D with sample number N and the

approximated reward value function Qn-1 from the last

update: 1

1
+ max (, ')n

i i i
y r Q s aγ

−

+
= . Then consider yi as

the true value to be approximated by Q(s, a). To solve

the approximation QN for the next iteration by

supervised learning:

 1

1 2

1

argmin ((,)

(max (, ')))

N

N

i i

i

N

i i

Q Q s a

r Q s aγ

=

−

+

= −

+

∑
. (10)

The key to the LS-DQN learning process is the

introduction of the Bayesian regularization term used

for least-squares updating, which uses the parameters

of the last hidden layer of the DQN as a Bayesian prior

for fitting the Q-iteration algorithm, preventing

overfitting of the data. Experiments show that the deep

reinforcement learning algorithm incorporating the

least-squares update method performs significantly

better than DQN and DDQN in some Atari games.

3.1.4 Average DQNs

In order to improve the stability of deep

reinforcement learning algorithm and reduce the

negative impact of uncertainty on it, Anschel et al. [27]

improved the classical DQN algorithm and proposed

the average DQN algorithm. The algorithm saves the

output value of each deep neural network and averages

the output value of several previous neural networks.

Using this method makes the training process of the

model more stable. In addition, the model performance

is improved by reducing the target approximation error.

The average DQN averages the previously learned Q

values.

M

1 mm 1

1
(,) (, ;)

M
i i

Q s a Q s a θ
− −

=

= ∑ . (11)

The updated formula of depth neural network is.

1

max (,)
i

y r Q s aγ
−

= + . (12)

It is shown that an appropriate increase in the size of

M not only allows the model to learn better strategies,

but also reduces the overestimation of Q values,

significantly improving the stability and game

performance of the model. Moreover, since the average

DQN does not modify the deep neural network

structure of the DQN, the average DQN can be

combined with other improved DQN models, such as

DDQN, competitive network structure and preferred

experience replay.

3.1.5 Dueling DQN

Wang et al. [28] proposed the Dueling DQN by

dividing the neural network into two parts. One part is

244 Journal of Internet Technology Volume 22 (2021) No.2

the advantage function part and the other part is the

value function part. The output value of the advantage

function part is affected by both the state s and the

action a of the input, while the output value of the

value function part is only related to the current state s

and not to the specific action a to be performed.

Ultimately, the output value of DuDQN is given by the

following formula:

(, ; , ,) V(s; ,)

+ A(s, ; ,)

Q s a

a

θ α β θ β

θ α

=

. (13)

Where, s is the input state, a is the action performed.

θ is the weight of the input and hidden layers of the

deep neural network. β is the neural network parameter

of the value function part and α is the neural network

parameter of the advantage function part. V(s; ,)θ β is

the output value of the value function part.

A(s, ; ,)a θ α is the output value of the advantage

function part.

Without processing, it is impossible to determine the

difference between the neural network of the advantage

function part and the neural network of the value

function part. Therefore, some appropriate adjustments

were made to the previous Q-value formula for the

final Q-value calculation. The adjusted formula is:

'

(, ; , ,) V(s; ,) A(s, ; ,)

 max (, '; ,)
a A

Q s a a

A s a

θ α β θ β θ α

θ α
∈

= +

−

. (14)

In practical use, the mean value of the dominant

function is usually used instead of the maximum value

of the dominant function to solve the problem, which

improves the stability of optimization to some extent

under the premise of ensuring the performance.

Since DuDQN improves DQN only in terms of

neural network structure, DuDQN can be combined

with other improved DQN models to form a more

stable deep reinforcement learning model. Experiments

have shown that the DuDQN model that combines the

DDQN and preferred experience replay mechanisms

performs better in some Atari games than the DQN and

DDQN models that only use preferred experience

replay. In addition, Raghu et al. [29] combined DDQN

with DuDQN and proposed the Dueling Double-Deep

Q Network. They used this model to address the

problem of learning the best treatment strategy for

sepsis and achieved better results.

3.1.6 Deep Recurrent Q Network (DRQN)

The limitations of DQNs are revealed when they are

used to make game decisions. DQN has limited

memory capacity. Also, good game performance of the

DQN is strongly correlated with the integrity of the

game screen. To solve this problem, Hausknecht et al.

[30] proposed a Deep Recurrent Q Network (DRQN)

by combining long- and short-term memory networks

[31] with DQNs.

Previously, when a DQN is used to make game

decisions, the last four frames of the game are

extracted as input to the deep neural network, but then

the DQN is only able to learn these four frames. In

other words, the DQN can only remember 4 frames. In

some games, when the agent needs to analyze and

make decisions based on more than 4 frames, the

model cannot satisfy Markovianity: the future state

depends on the present state. The DRQN model

replaces the first fully connected layer in the DQN to

LSTM and uses LSTM to remember the previous

training process.

The neural network structure of the DRQN is shown

in Figure 2.

Input layer

Conv1 layer

Conv2 layer
Conv3 layer

LSTM

Q-Values

Figure 2. Network structure of the DRQN

3.1.7 Bootstrap DQN

How to learn to explore effectively remains a major

challenge for reinforcement learning. The agent takes a

series of actions in anticipation of maximizing the

cumulative reward value. However, unlike the standard

planning questions, agents in reinforcement learning

learn through their own post-action experiences and do

not have any knowledge of the environment prior to

learning. Thus, the agent’s search strategy for the

environment is critical to the training and learning of

the overall model. Common random jitter search

strategies such as the ε-greedy search algorithm are

used. This algorithm attempts to randomly select the

action to be performed with a certain probability by not

selecting the action that has the highest payoff in the

current state. The probability of randomly selecting an

Overview of Deep Reinforcement Learning Improvements and Applications 245

action can be adjusted by ε.

However, in complex situations, the ε-greedy

algorithm is difficult to achieve the desired results.

This is because it is difficult for a simple random

strategy to reach a state far from the current state. The

whole process is still searching around the Q value of

the neural network. In other words, a simple random

strategy does not affect the general direction of the

neural network search. To solve this problem, Osband

et al. [32] proposed the Booststrapped DQN

(Booststrapped DQN) algorithm, which is the first

practical reinforcement learning algorithm that

combines reinforcement learning with a deep

adventurous exploration process.

The bootstrapped DQN network structure includes a

shared network and a K bootstrapped head (Head)

network. The shared network is used to learn the joint

feature representation of all data. Each bootstrap head

is trained on its bootstrap sample dataset. The bootstrap

sample data is obtained from a random sample of the

overall sample using the bootstrap algorithm [33]. The

usual form of the bootstrap algorithm is to randomly

sample M times with return from the original sample

set with sample number M. The resulting sample set is

the bootstrap sample set. The bootstrap DQN collects

the Q value of each bootstrap head before each round

of training, and the agent explores based on the Q

value of the bootstrap head until the end of the round.

Then, in the next round, one of the bootstrapped heads

is selected at random for exploration until the end of

the training round.

The network structure of the bootstrap DQN is

shown in Figure 3.

Head

1

Head

1

Head

1

Shared network

Frame

Figure 3. Network structure of the bootstrap DQN

3.1.8 Priority Experience Replay (PER)

By storing each training sample in a memory bank,

the classical DQN model allows the model to

remember previously learned experiences and reduces

the correlation between adjacent training data.

However, DQN only uses a random method to draw

training samples from the memory bank with equal

probability of each training sample being drawn, and

does not take into account that the importance of

different samples is different. Therefore, Schaul et al.

proposed a preferential experience replay method that

allows samples to be drawn based on the importance of

the training samples. More important training samples

have a higher probability to be drawn, thus the training

of the Q network is more efficiency.

The importance of the samples in the memory bank

is determined by the time-difference score (TD) error.

In a Q network, the TD error is the difference between

the target Q value computed by the target Q network

and the current Q value computed by the current Q

network. The larger the TD error, the greater the effect

of its sample on the propagation of the neural network.

Therefore, the larger the absolute value of TD error,

the higher the probability that a sample will be

extracted. The random priority sampling method is

used when sampling samples of different priority levels.

That is, an importance sampling mechanism is used to

avoid the bias caused by the update process.

Experiments have shown that in some Atari games, the

DQN and DDQN models that incorporate the priority

experience replay mechanism perform better than the

games that use the DQN and DDQN models alone.

3.1.9 DQNs that Introduce Internal Fear

Mechanisms

The agent can make catastrophic mistakes when

using reinforcement learning for real tasks. And, due to

the optimization of neural networks using function

approximation, agents will always periodically enter

more dangerous states. To enable agents without

memory functions to avoid catastrophic mistakes,

Lipton et al. [34] propose DQNs that introduce the

Intrinsic Fear (IF) mechanism to alleviate these

problems by avoiding dangerous states.

In classical DQNs, the neural network is optimized

with the goal of maximizing the cumulative reward

value. In contrast, in DQNs that introduce Intrinsic

Fear, the neural network is optimized with the goal of

minimizing the probability of a catastrophic state.

Compared to classical DQNs, DQNs that introduce

internal fears also have a hazard model. This hazard

model is a biclass neural network with the same input

and hidden layers as the DQN’s Q network, and the

output layer consists of two neurons. The role of the

hazard model is to predict the likelihood of a

catastrophe occurring within a short period of time for

the agent in its current state.

Introducing internal fears, the formula for

calculating the optimal target value of DQN is:

 max (', ';) (';)IF

Q dy r Q s a d sθ λ θ= + − ⋅ . (15)

In the formula, d(-) is the hazard model. λ is the fear

factor that determines the size of the effect of the

internal fear mechanism on the Q function update.

Experiments have shown that for some tasks, DQN

that introduces internal fear can enjoy the benefits of

246 Journal of Internet Technology Volume 22 (2021) No.2

using function-approximation optimization neural

networks while avoiding permanent catastrophe. But it

does not have an accurate prediction of the dangerous

state in the state space. In a problem, if a single action

from any state leads to a catastrophe with high

probability, this model will perform poorly.

3.1.10 Summary

This summary presents nine improved approaches to

DQN based on value functions. The various versions of

DQN-based improvements are classified according to

the different approaches to DQN improvement. These

models can be broadly categorized into three main

groups: improvements to the algorithm logic,

improvements to the neural network structure, and

improvements that introduce new mechanisms. The

proposed problem solving, improvement methods, and

experimental results of the various improved

algorithms are presented in the following table:

Table 1. Characteristics and experimental results of the DQN improvement method

Model Issues to be addressed Improved methodology Experimental results

DDQN

Overestimation of action value

functions in Q learning

Decoupling the selection of target

Q-value actions and the

computation of target Q-values

using the target Q network

Outperforms DQN in Atari games

DQfD

Poor performance of the model

after initialization

During the pre-training phase, the

model is allowed to learn from the

demonstration data.

Outperforms DQN at the start of

most Atari games

LSDQN

The model does not perform well

when learning high-dimensional

data

Combining Least Squares and

DQN to improve model stability

 Outperforms DQN in Atari games

Average

DQN

The instability and variability of

the model during training can

negatively affect it

Averaging the Q values of the

model output from previous

training sessions

Reduced over-estimation of Q

values and better game performance

in Atari and Gridworld games

Dueling

DQN

Unsatisfactory convergence rate

and stability of the model

Dividing the output layer of the Q

network in the DQN into two parts

to make the functionality of the

network clearer

DuDQN combining the DDQN

and preferred experience replay

mechanisms outperformed DQN

and DDQN using only preferred

experience replay in the Atari

game

DRQN

During training, model observations

of the environment are erroneous

and not always complete.

Combining a long- and short-term

memory network with a DQN

gives the DQN the ability to

remember the game environment

DRQN outperformed DQN when

trained with partial observations

and evaluated with full observations

Bootstrap

DQN

Classical DQN’s exploration of the

environment is shallow, leading to

an unsatisfactory convergence rate

of the model

Propose a deep exploration strategy

and estimate the uncertainty of

DQNs

Improved learning speed of models

on many Atari games

PER

Training samples of different

importance have equal probability

of being learned by the neural

network, which is not conducive to

fast convergence of the model

Prioritize samples based on their

TD errors to improve the probability

of drawing quality samples

Improved performance of DQN

and DDQN in the game

IF

The agents in the model

periodically go into catastrophic

states

Add a fear model. The model

assesses the probability of an agent

entering a catastrophic state in a

short period of time

Outperformed DQN in the Cart-

Pole Game

3.2 Deep Reinforcement Learning Approach

Based on Strategy Search

Corresponding to the value function-based

reinforcement learning method is the strategy search-

based reinforcement learning method. Instead of

evaluating the merits of the actions performed in each

round, a strategy search-based reinforcement learning

approach directly evaluates the strategies performed

throughout the round based on sampling, and then uses

maximizing the cumulative returns as the target

optimization model.

3.2.1 Actor-Critic (AC) Algorithm

For tasks where the action space is continuous or the

spatial dimension is too high, reinforcement learning

methods based on approximation of value functions are

usually difficult to obtain a more optimal solution.

Overview of Deep Reinforcement Learning Improvements and Applications 247

Reinforcement learning methods based on strategy

search can directly parameterize the strategy and

approximate the optimal strategy, which works better

results. However, the strategy search algorithm is weak

in evaluating the strategies, which is not conducive to

the convergence of the whole model.

The Actor-Critic algorithm is a combination of value

function-based and strategy gradient-based methods

[35-37]. The algorithm consists of two neural networks,

which are the Actor network and the Critic network.

The role of the Actor network is to analyze the current

state of the environment and make decisions about the

actions to be performed, while the role of the Critic

network is to evaluate the decisions made by the agent,

and the Critic network will continuously update itself

as training progresses.

The network structure of the AC algorithm is shown

in Figure 4.

s a

dense1 dense2 dense3

s

Q(s,a)

dense1 dense2 dense3

a

(a) (b)

Figure 4. Actor network (a) and critic network (b)

The updated formula of the Actor network is:

 ln (,)
i i a at t
a a t t t

t

s a v
θ θ

θ θ α π= + ∇∑ . (16)

Where, θat is the neural network parameter for the

Actor network. θvt is the neural network parameter for

the Critic network.

The updated formula for the Critic network is.

1

1

2

' ((;)

(;))

i

i i v it

i

i

v v t t v

t

t v

r V s

V s

θ

θ

π

θ

π

θ θ α γ θ

θ

−

+
= + ∇ +

−

∑
. (17)

Where, the input and hidden layers of the Actor

network and Critic network have the same neural

network structure.

3.2.2 Deep Deterministic Policy Gradient (DDPG)

Lillicrap et al. [38] combine two neural networks in

the AC algorithm with the idea of DQN to propose a

reinforcement learning model based on the

Deterministic Policy Gradient: Deep Deterministic

Policy Gradient.

Classical DQN performs well in discrete and low-

dimensional action spaces. However, when DQN is

trained in a continuous and high-dimensional action

space, they usually discretize the continuous action

space, which leads to the phenomenon of “dimensional

catastrophe”. In other words, the number of actions in

the agent’s action space increases exponentially with

increasing dimensionality. This phenomenon will

hinder the updating and optimization of neural

networks. DDPG uses the empirical replay mechanism

in DQN and a separate target network to reduce the

correlation between neighboring training samples and

increase the stability and robustness of the algorithm.

Since classical DQN can not handle tasks with

continuous action spaces, DDPG uses AC approach

based on the DPG algorithm.

The empirical replay mechanism used in DDPG is

identical to DQN, but the target network is updated in a

different way. In DQN, the target network does not

participate in the training of the model and its

parameters are derived from the Q network assignment.

In DDPG, however, the respective target networks of

Actor and Critic participate in the training of the entire

model and are updated in a slower manner. In this way,

DDPG improves the stability of the learning process.

 = (1)θ τθ τ θ
− −

+ − . (18)

 = (1)w w wτ τ
− −

+ − . (19)

Where, θ- is the parameter of the Actor target

network. w- is the parameter of the Critic target

network. τ controls the rate at which the target

network is updated.

The Schematic illustration of DDPG is shown in

Figure 5.

248 Journal of Internet Technology Volume 22 (2021) No.2

Replay memory D

Actor Net Critic Net Actor Net Critic Net

Policy Gradient Loss Function

Input Input

Update

Q(a)

Q(a)

a a'

Q(a')

Main Net Target Net

Figure 5. Schematic illustration of DDPG

Experiments show that DDPG can achieve good

results in more than 20 physical simulation tasks using

the same learning algorithm, network structure and

network parameters. This shows that DDPG has good

robustness. Not only that, DDPG can directly use raw

pixels as input data into the model for end-to-end

learning capabilities. However, DDPG, like most

model-free reinforcement learning methods, requires a

large number of training samples and training time to

enable the model to have a more optimal performance

when the model is trained.

3.2.3 Probability Surrogate Action Deterministic

Policy Gradient (PSADPG)

Wang and Jing [39] proposed surrogate agent-

environment interface (SAEI) in reinforcement

learning. They developed the probability surrogate

action deterministic policy gradient (PSADPG)

algorithm based on SAEI. SADPG is an improved

DDPG algorithm that allows continuous control of

discrete actions.

The Schematic illustration of surrogate agent-

environment interface is shown in Figure 6.

Environment Agent

Sample Function

Reward,Observation

Probability

Action

Surrogate Environment

Figure 6. Schematic illustration of PSADPG

PSADPG does not directly adopt the actions

obtained from decisions made by the agent, but rather

by extracting the sampling steps from the decision task

of the agent and integrating them into the environment.

Experiments show that PSADPG performs comparable

to DQN in Acrobot with discrete control tasks.

3.2.4 DDPG from Demonstrations (DDPGfD)

When learning in a high-dimensional complex space

using a DDPG model, it is difficult to define a reward

function with excellent performance. To solve this

problem, Vecerik et al. [40] proposed the

demonstration DDPG model. The model is a common

model-free off-strategy model that approximates the

demonstration data as a reward value function with

good performance to train and optimize the model.

There are five differences between DDPGfD and

DDPG:

(1) The data from the manual demonstration is first

converted into the form of a sample of reinforcement

learning data: (s, a, s0, r). The demonstration transfer

Overview of Deep Reinforcement Learning Improvements and Applications 249

data are then placed in the memory bank of the

reinforcement learning model before training begins. In

addition, these demonstration transfer data will be

permanently stored in the memory bank and the

amount of these data will not be reduced as the training

progresses.

(2) The sampling ratio between the model transfer

data and the agent data in the memory bank is

automatically adjusted by a priority replay mechanism.

(3) Both single-step and n-step reward values are

used to update the deep neural network in the model.

(4) The deep neural network is updated multiple

times in each round. The DDPG is updated only once

in each round, which significantly reduces the

efficiency of using the samples in the memory. Thus,

taking a multiple update approach allows the agent to

fully learn from the data from previous interactions

with the environment.

(5) Add L2 regularization on both the Actor and

Critic networks to stabilize the final learning

performance.

The loss function for the Critic network is calculated

as:

1 1

2

() () ()

()

Critic n

C

reg

L w L w L w

L w

λ

λ

= +

+

. (20)

The updated gradient for Actor network is:

2

() () ()C

Actor regL J L
θ θ θ

θ θ λ θ∇ = −∇ + ∇ . (21)

3.2.5 A3C

Mnih et al. [41] proposed an asynchronous update

reinforcement learning model (A3C) based on the AC

algorithm, in which four asynchronous training

reinforcement learning algorithms were implemented,

namely one-step Q-learning, one-step Sarsa, n-step Q-

learning, and advantage actor-critic, respectively.

Compared to Actor-Critic, A3C is optimized in the

following three aspects:

In the first aspect, A3C creates multiple agents that

perform actions and learning in multiple environments

without interfering with each other. In other words,

A3C creates multiple agents for training and learning

in multiple threads, and also creates a shared public

network. The agents in each thread independently

interact with and obtain empirical data from the

environments, which operate independently of each

other. When the agents in each thread have interacted

with the environment to a certain amount of data, they

begin to compute the gradients of the neural network

loss function in their own threads. This gradient

information is then passed to the public neural network

and the public network is instructed to make updates.

Multiple threads independently interact with the

environment and pass the gradient information to the

shared network. At regular intervals, the neural

networks in the threads are synchronized with the

parameters of the public network.

In the second aspect, in Actor-Critic, two different

Actor networks and Critic networks are used. Whereas

in A3C, the two networks are put together. The Actor

network and Critic network share an input layer, the

Actor network outputs state values and the Critic

network outputs the corresponding strategies. The

network structure of A3C is shown in Figure 7.

S

Actor Net

Critic Net

π(s)

V(s)

Figure 7. Network structure of A3C

In the third aspect, a natural gradient update method

based on the advantage function is proposed, and

regularization is used to reduce the variance of the

strategy gradient, thus ensuring the stability of strategy

learning. The expression for the advantage function is.

1

1 1
(,) ...

(') ()

n

t t t n

n

A S t R R R

V S V S

γ γ

γ

−

+ + −
= + + +

+ −

. (22)

Experiments have shown that in many of the Atari

2600’s gaming tests, A3C is used less than previous

GPU-based reinforcement learning algorithms. This

may be because the A3C can run on servers with multi-

core, multi-threaded CPUs. In addition, A3C performs

better than other classical deep reinforcement learning

models on some continuous motion control problems.

A3C is now the most versatile and successful deep

reinforcement learning algorithm.

3.2.6 GPU-based A3C (GA3C)

Babaeizadeh et al. [42] propose an updated version

of A3C: the GPU-based A3C algorithm (GA3C).

GA3C takes advantage of the GPU’s fast vector

operations to speed up the training rate of the entire

algorithm. The A3C algorithm, however, is based on

the processor’s multi-threaded capabilities to increase

the training rate of the algorithm.

The GA3C has three main components [43].

(1) Agent. the GA3C agent is the same as the A3C

agent. The agent selects actions and collects samples

based on the learned strategy. However, the GA3C

agents do not need to make a copy of the model

respectively. They simply add the current state to the

prediction queue as a request before selecting an action.

After the agent performs a certain number of steps, it

250 Journal of Internet Technology Volume 22 (2021) No.2

will work backwards to calculate the total return for

each step and finally add the total return and the

experience data generated during training to the

training queue.

(2) Predictor. the request samples from the

prediction queue are taken out of the queue and entered

as training data into the GPU’s DNN model. When the

prediction is complete, the Predictor returns the

predicted results to the corresponding agent. To reduce

latency, multiple predictors can be run simultaneously.

(3) Trainer. the request samples from the training

queue are taken out of the queue and input as training

data into the GPU’s DNN model. To reduce latency,

multiple trainers can be run simultaneously.

Experiments show that the training rate of GA3C is

higher than that of the multi-core processor-based A3C,

and GA3C reduces the memory consumption during

training. However, GA3C has the following two

problems.

(1) It is necessary to coordinate the number of

Agents, Predictor and Trainer in GA3C.

(2) There may be a strategy delay. That is, the

strategy that produces the current training sample is not

the current strategy to be updated, resulting in

instability of the algorithm.

3.2.7 Summary

This summary first introduces the basic principles of

the reinforcement learning algorithm based on strategy

search. The original AC algorithm is then introduced

and improved reinforcement learning algorithms based

on the AC algorithm are presented, including DDPG,

which combines the AC algorithm and DNN; DDPGfD

that can learn from a demonstration sample; PSADPG,

which can continuously control discrete actions; A3C

and the GPU version of A3C, which will enable

asynchronous updates. The algorithms described above,

along with their respective solutions and experimental

results, are shown in the following table.

Table 2. Characteristics and experimental results of the DDPG and A3C improvement method

Model Issues to be addressed Improved methodology Experimental results

AC

For tasks that are continuous in the

action space, reinforcement learning

methods based on value functions

are often difficult to achieve a more

optimal solution

Combine Actor and Critic networks

to leverage the strengths of each

More stable algorithms and shorter

training times

DDPG

The phenomenon of “dimensional

catastrophe” occurs when reinforcement

learning methods are trained in a

continuous, high-dimensional action

space.

Combining AC algorithms and

DQN ideas to make them

applicable to continuous action

domains

Can solve more than 20 physical

simulation tasks with performance

comparable to traditional planning

algorithms

PSADPG

Reinforcement learning cannot be

applied in the task of continuous

control of discrete actions by Yu

Yao

The sampling step is extracted

from the decision task of the

intelligences and integrated into

the environment.

PSADPG rivals DQN’s performance

in Acrobot with discrete control

tasks

DDPGfD

It is difficult to assess rewards for

each action in the actual task

The model is trained and

optimized by approximating the

demonstration data to a reward

value function with good

performance.

DDPGfD performs better than

DDPG in a task in which four

simulated robots insert objects at

specified locations

A3C

The usual AC algorithm uses only

one agent for learning, which is

inefficient

Create multiple agents in

multiple virtual environments,

train in parallel, and achieve

asynchronous updates

In the Atari game, A3C’s training

time is less than that of GPU-

based algorithms.

GA3C

A3C uses processor multithreading

to accelerate learning, but GPU

vectoring is even faster

Increase the amount of training

data generated and processed per

second using GPUs

Faster training rate than CPU-

based A3C algorithm

4 Application of Deep Reinforcement

Learning

4.1 Robot Control

In the field of robot control, formalizing a specific

task and determining a reward value function that

performs well is difficult [44]. In addition, the reward

value of the environment in a virtual scenario can be

fed directly to the agent in the form of a signal.

However, in a robot control task, the robot needs the

spider to observe the environmental feedback and

summarize the reward. This process places

considerable demands on the robot’s perceptual

abilities.

Due to the difficulty of applying reinforcement

learning to physical tasks, current robot control tasks

Overview of Deep Reinforcement Learning Improvements and Applications 251

are very simple [45]. Levine [46] et al. combined

trajectory optimization and supervised learning to train

humanoid robots in a simulation environment to

achieve walking motion gait control. Schulman et al.

[47-48] proposed TRPO and PPO algorithms and

implemented stable training algorithms using the actor-

critic framework. Peng et al [49] used hierarchical deep

reinforcement learning algorithms to train the motion

of a 3D bionic robot in a simulation environment.

Recently, more efficient and stable deep reinforcement

learning algorithms such as MPO algorithm [50], SAC

algorithm [51], and TD3 algorithm have been proposed.

In addition to training the motion gait of the bionic

robot in the simulation environment, Hwangbo et al

[52] applied the training results in the simulation

environment directly to the ANYmal quadrupedal

robot to achieve stable and efficient quadrupedal

motion gait control; Haarnoja et al [53] used an

improved SAC algorithm to train directly on the

Minitaur quadrupedal robot for multiple motion gait

control.

There are a number of problems with current

reinforcement learning algorithms in the field of robot

control:

(1) Training samples are used inefficiently. Humans

can quickly learn motor gait such as walking, running

and jumping, whereas the existing reinforcement

learning methods require a lot of trial and error.

Therefore, it takes a lot of time to collect and train

samples. Not only that, the large number of

interactions will also lead to wear and tear on the

bionic robot.

(2) Inability to effectively multi-task learning. Most

of the existing reinforcement learning algorithms can

only learn a single task. When learning other types of

tasks, they need to be retrained.

(3) Poor migration from the simulation environment

to the actual platform. Most of the existing

reinforcement learning methods build a simulation

model of the robot and train the robot’s gait in the

simulation environment, however, the actual model

and the simulation model are often quite different,

which leads to a large deviation when the strategy

trained in the simulation environment is directly

transferred to the actual robot.

(4) Poor robustness. In actual robot control tasks, the

information obtained by the robot is incomplete due to

errors in the sensors. However, the information

observed by robots in the simulated environment is

complete. Therefore, the model trained in this situation

does not perform well in the real task.

4.2 Parameter Optimization

In traditional neural networks, the parameters of the

network are generally optimized by methods such as

gradient descent. However, it takes a lot of time and

effort to repeatedly adjust the learning rate in the

gradient descent method. Therefore, through some

mechanism to automatically set the learning rate and

initial parameters of the network according to different

tasks before the training of the network will greatly

improve the training rate of the model.

To address the above problem, Hansen et al. [54]

proposed a gradient descent method based on Q-values.

The method can automatically set different learning

rates according to the specific task. Andrychoiwicz et

al. [55] proposed an agent self-learning model. The

model learns to optimize the parameters of other neural

networks by training one neural network. Liu et al [56]

combined the dual elite collaborative algorithm and

deep learning to propose an improved deep

reinforcement learning model. The model can optimize

the parameters of semi-variant functions in the Kriging

interpolation method and improve the interpolation

accuracy of the algorithm. In addition, Google uses the

reinforcement learning algorithm to optimize the

parameter settings of data center servers and save 40%

of power energy.

In summary, the application of deep reinforcement

learning in the direction of optimizing parameters is

still at a preliminary stage for the time being. However,

deep reinforcement learning has been proven to have

considerable potential in this direction. With more and

more experts and researchers studying this direction in

depth, the method of deep reinforcement learning

model for automatic parameter optimization will

certainly be widely used in various optimization tasks.

4.3 Other Directions

In addition to robot control, the field of algorithmic

parameter optimization, reinforcement learning has

applications in computer vision, game decision making,

natural language processing, automated driving, and

game theory [57-59].

In the field of machine vision, deep reinforcement

learning models with visual perception capabilities can

predict the actions that need to be performed

afterwards based on the original image picture. Oh et al

[60] performed a long-term prediction task for high-

dimensional video images by controlling the input of

actions with a deep reinforcement learning model.

Caicedo et al. [61] combined CNN and DQN models

with image perception capabilities to achieve precise

localization of target regions in images.

In most complex strategy game tasks, the decision

making ability of agents in deep reinforcement learning

now comprehensively surpasses that of the top human

gamers. Siliver et al. [62] added two deep

convolutional neural networks to AlphaGo and

combined the training methods of reinforcement

learning with supervised learning. The end result is a

model with a level of performance that surpasses that

of human Go world champions.

252 Journal of Internet Technology Volume 22 (2021) No.2

5 Challenges and Perspectives for

Reinforcement Learning

Although more and more researchers are exploring

and extending deep reinforcement learning, there are

still many challenges in applying it to practical tasks.

Based on these challenges and the limitations of

reinforcement learning itself, we attempt to prospect

the development direction of deep reinforcement

learning.

In the process of strategy implementation, the agent,

on the one hand, needs to fully learn the strategies it

has already learned and avoid blind experimentation.

On the other hand, the agent needs to explore as many

unknown strategies as possible in order to discover the

best strategy to solve the problem. The currently used

stochastic strategy allows the agent to traverse various

states to avoid the agent falling into a local optimal

solution. However, the random strategy execution

makes the agent search back and forth between

unnecessary states, which wastes more training time

and computational resources. Therefore, how to

balance exploring the environment and exploiting the

experience may be a key research direction for the

future.

(1) How to effectively evaluate the merits of a

strategy is the key to improving agent learning

efficiency. At present, strategy evaluation relies mainly

on the reward-value function. However, in some

complex decision-making tasks, it is difficult to design

a reward-value function with good performance. Not

only that, there is not always a suitable positive or

negative feedback for every action in the actual task.

When the state space dimension is high, the problem of

sparse reward value will occur. Therefore, how to set a

good reward value function according to different tasks

and avoid the sparse reward problem will be the focus

of future research.

(2) Since most of the current research in the field of

deep reinforcement learning focuses on model-free

methods, a large number of training samples are

required to train the agent using this method. It is

unrealistic to use agents and the environment for a

large number of interactions in a real task. A model-

based (model-based) approach can effectively solve

this problem and improve the efficiency of sampling.

Therefore, model-based methods for deep

reinforcement learning will receive much attention in

the future.

(3) Although deep neural network-based reinforcement

learning can handle many high-dimensional input

problems, it still requires a large number of samples.

To accelerate the learning rate of deep reinforcement

learning, the model can be pre-trained using the

knowledge previously gained from the relevant task.

At this point, the combination of migration learning

and deep reinforcement learning can reduce the

number of interactions between the agent and the

environment. Therefore, using migration learning to

allow deep reinforcement learning methods to solve

multiple different tasks after a small number of

debugging may be a key research focus in the future.

6 Conclusions

Deep reinforcement learning, as one of the most

popular research directions in the field of artificial

intelligence, has gained the attention of many

professionals. This paper first introduces the current

research status and development trend of deep

reinforcement learning, and systematically introduces

the basic algorithm of reinforcement learning. Then the

deep reinforcement learning method based on value

functions and its improvement methods are introduced

in detail, including methods to improve the training

logic of algorithms: DDQN, DQNfD, Least Squares

DQN and Average DQN, methods to improve the

network structure: Dueling DQN, DRQN and

Bootstrap DQN, methods to improve by adding new

mechanisms: DQN with preferential replay and DQN

with internal fear mechanism, followed by a detailed

description of the machine improvement method of

deep reinforcement learning method based on strategy

gradient. Then, the applications of deep reinforcement

learning in robot control, algorithm parameter

optimization and other fields are introduced. Finally,

the future of deep reinforcement learning is envisioned

based on the current limitations of deep reinforcement

learning. Although there are still many challenges in

the field of deep reinforcement learning, as research

and the theory continues to develop, deep

reinforcement learning will become an important part

of building general artificial intelligence systems.

7 Conflicts of Interest

All authors declare that: (a) no support, financial or

otherwise, has been received from any organization

that may have an interest in the submitted work; and (b)

there are no other relationships or activities that could

appear to have influenced the submitted work.

Acknowledgments

This work was supported in part by the Hubei

Provincial Major Science and Technology Special

Projects under Grant 2018ABA099, in part by the

Natural Science Foundation of Hubei Province under

Grant 2018CFB408, in part by the National Natural

Science Foundation of China under Grant 61272278, in

part by the innovation and education promotion fund of

science and technology development center of Ministry

of education in 2019 under Grant 2018A01038, and in

part by the Wuhan Polytechnic University Talent

Overview of Deep Reinforcement Learning Improvements and Applications 253

Introduction (Training) Scientific Research Project

under Grant 2019RZ02.

References

[1] K. Arulkumaran, M. P. Deisenroth, M. Brundage, A. A.

Bharath, A brief survey of deep reinforcement learning,

https://arxiv.org/abs/1708.05866, 2017.

[2] J. Hou, H. Li, J. Hu, C. Zhao, Y. Guo, S. Li, Q. Pan, A review

of the applications and hotspots of reinforcement learning,

2017 IEEE International Conference on Unmanned Systems

(ICUS), Beijing, China, 2017, pp. 506-511.

[3] A. Gosavi, Reinforcement learning: A tutorial survey and

recent advances, INFORMS Journal on Computing, Vol. 21,

No. 2, pp. 178-192, Spring, 2009.

[4] C. J. Watkins, P. Dayan, Q-learning, Machine learning, Vol.

8, No. 3-4, pp. 279-292, May, 1992.

[5] Q.-M. Fu, Q. Liu, H. Wang, F. Xiao, J. Yu, J. Li, A novel off

policy Q (λ) algorithm based on linear function

approximation, Chinese Journal of Computers, Vol. 37, No. 3,

pp. 677-686, March, 2014.

[6] J. Kober, J. A. Bagnell, J. Peters, Reinforcement learning in

robotics: A survey, The International Journal of Robotics

Research, Vol. 32, No. 11, pp. 1238-1274, September, 2013.

[7] Y. Wei, M. Zhao, A reinforcement learning-based approach

to dynamic job-shop scheduling, Acta Automatica Sinica, Vol.

31, No. 5, pp. 765-771, September, 2005.

[8] E. Ipek, O. Mutlu, J. F. Martínez, R. Caruana, Self-optimizing

memory controllers: A reinforcement learning approach,

ACM SIGARCH Computer Architecture News, Vol. 36, No. 3,

pp. 39-50, June, 2008.

[9] G. Tesauro, TD-Gammon, a self-teaching backgammon

program, achieves master-level play, Neural computation,

Vol. 6, No. 2, pp. 215-219, March, 1994.

[10] X. Wang, T. Sandholm, Reinforcement learning to play an

optimal Nash equilibrium in team Markov games, Advances

in neural information processing systems, Vancouver, British

Columbia, Canada, 2002, pp. 1603-1610.

[11] Q. Liu, J. Zhai, Z. Zhang, S. Zhong, Q. Zhou, P. Zhang, J. Xu,

A Survey on deep reinforcement learning, Chinese Journal of

Computers, Vol. 41, No. 1, pp. 1-27, January, 2018.

[12] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature, Vol.

521, No. 7553, pp. 436-444, May, 2015.

[13] P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol,

Extracting and composing robust features with denoising

autoencoders, Proceedings of the 25th international conference

on Machine learning, Helsinki, Finland, 2008, pp. 1096-1103.

[14] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A.

Manzagol, Stacked denoising autoencoders: Learning useful

representations in a deep network with a local denoising

criterion, Journal of machine learning research, Vol. 11, pp.

3371-3408, March, 2010.

[15] I. Sutskever, G. E. Hinton, G. W. Taylor, The recurrent

temporal restricted boltzmann machine, Advances in neural

information processing systems, Vancouver, British Columbia,

Canada, 2008, pp. 1601-1608.

[16] G. E. Hinton, A practical guide to training restricted

Boltzmann machines, in: G. Montavon, G. B. Orr, K. R.

Müller (Eds.), Neural networks: Tricks of the trade, Springer,

2012, pp. 599-619.

[17] H. Lee, R. Grosse, R. Ranganath, A. Y. Ng, Convolutional

deep belief networks for scalable unsupervised learning of

hierarchical representations, Proceedings of the 26th annual

international conference on machine learning, Montreal,

Quebec, Canada, 2009, pp. 609-616.

[18] S. Kombrink, T. Mikolov, M. Karafiát, L. Burget, Recurrent

neural network based language modeling in meeting

recognition, Twelfth annual conference of the international

speech communication association, Florence, Italy, 2011, pp.

2877-2880.

[19] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, D.

Wierstra, Draw: A recurrent neural network for image

generation, https://arxiv.org/abs/1502.04623, 2015.

[20] K. Simonyan; A. Zisserman, Very deep convolutional

networks for large-scale image recognition, https://arxiv.org/

abs/1409.1556, 2014.

[21] M. Riedmiller, Neural fitted Q iteration–first experiences with

a data efficient neural reinforcement learning method, European

Conference on Machine Learning, Porto, Portugal, 2005, pp.

317-328.

[22] S. Lange, M. Riedmiller, Deep auto-encoder neural networks

in reinforcement learning, The 2010 International Joint

Conference on Neural Networks (IJCNN), Barcelona, Spain,

2010, pp. 1-8.

[23] H. Van Hasselt, A. Guez, D. Silver, Deep reinforcement

learning with double q-learning, https://arxiv.org/abs/1509.

06461, 2015.

[24] T. Schaul, J. Quan, I. Antonoglou, D. Silver, Prioritized

experience replay, https://arxiv.org/abs/1511.05952, 2015.

[25] L.-J. Lin, Self-improving reactive agents based on reinforcement

learning, planning and teaching, Machine learning, Vol. 8, No.

3-4, pp. 293-321, May, 1992.

[26] N. Levine, T. Zahavy, D. J. Mankowitz, A. Tamar, S. Mannor,

Shallow updates for deep reinforcement learning, Advances in

Neural Information Processing Systems, Long Beach, CA,

USA, 2017, pp. 3135-3145.

[27] O. Anschel, N. Baram, N. Shimkin, Averaged-dqn: Variance

reduction and stabilization for deep reinforcement learning,

International Conference on Machine Learning, Sydney,

Australia, 2017, pp. 176-185.

[28] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, N.

Freitas, Dueling network architectures for deep reinforcement

learning, International conference on machine learning, New

York, NY, USA, 2016, pp. 1995-2003.

[29] A. Raghu, M. Komorowski, L. A. Celi, P. Szolovits, M.

Ghassemi, Continuous state-space models for optimal sepsis

treatment-a deep reinforcement learning approach, https://

arxiv.org/abs/1705.08422, 2017.

[30] M. Hausknecht, P. Stone, Deep recurrent q-learning for

partially observable mdps, https://arxiv.org/abs/1507.06527,

2015.

[31] H. Sak, A. Senior, F. Beaufays, Long short-term memory

254 Journal of Internet Technology Volume 22 (2021) No.2

based recurrent neural network architectures for large

vocabulary speech recognition, https://arxiv.org/abs/1402.

1128, 2014.

[32] I. Osband, C. Blundell, A. Pritzel, B. Van Roy, Deep

exploration via bootstrapped DQN, Advances in neural

information processing systems, Barcelona, Spain, 2016, pp.

4026-4034.

[33] J. Krolik, G. Niezgoda, D. Swingler, A bootstrap approach for

evaluating source localization performance on real sensor

array data, IEEE International Conference on Acoustics,

Speech, and Signal Processing, Toronto, Ontario, Canada,

1991, pp. 1281-1284.

[34] Z. C. Lipton, K. Azizzadenesheli, A. Kumar, L. Li, J. Gao, L.

Deng, Combating Reinforcement Learning’s Sisyphean Curse

with Intrinsic Fear, https://arxiv.org/abs/1611.01211, 2016.

[35] J. Peters, S. Schaal, Natural actor-critic, Neurocomputing, Vol.

71, No. 7-9, pp. 1180-1190, March, 2008.

[36] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, M. Lee,

Natural actor–critic algorithms, Automatica, Vol. 45, No. 11,

pp. 2471-2482, November, 2009.

[37] T. Degris, P. M. Pilarski, R. S. Sutton, Model-free

reinforcement learning with continuous action in practice,

2012 American Control Conference (ACC), Montreal, QC,

Canada, 2012, pp. 2177-2182.

[38] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y.

Tassa, D. Silver, D. Wierstra, Continuous control with deep

reinforcement learning, https://arxiv.org/abs/1509.02971, 2015.

[39] S. Wang, Y. Jing, Deep Reinforcement Learning with

Surrogate Agent-Environment Interface, https://arxiv.org/abs/

1709.03942, 2017.

[40] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B.

Piot, N. Heess, T. Rothörl, T. Lampe, M. Riedmiller,

Leveraging demonstrations for deep reinforcement learning

on robotics problems with sparse rewards, https://arxiv.org/

abs/1707.08817, 2017.

[41] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T.

Harley, D. Silver, K. Kavukcuoglu, Asynchronous methods

for deep reinforcement learning, International conference on

machine learning, New York, NY, USA, 2016, pp. 1928-

1937.

[42] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, J. Kautz,

Reinforcement learning through asynchronous advantage

actor-critic on a gpu, https://arxiv.org/abs/1611.06256, 2016.

[43] L. Wan, X. Lan, H. Zhang, N. Zheng, A Review of deep

reinforcement learning theory and application, Pattern

Recognition and Artificial Intelligence, Vol. 32, No. 1, pp.

67-81, January, 2019.

[44] J. Liu, F. Gao, X. Luo, Survey of deep reinforcement learning

based on value function and policy gradient, Chinese Journal

of Computers, Vol. 42, No. 6, pp. 1406-1438, June, 2019.

[45] F. Y. S. Lin, C. H. Hsiao, Y. F. Wen, S. T. Kuo, Markov

Decision Process to Achieve Near-Optimal Admission

Control Mechanism for 5G Cloud Radio Networks, Journal

of Internet Technology, Vol. 20, No. 5, pp. 1561-1573,

September, 2019.

[46] S. Levine, V. Koltun, Learning complex neural network

policies with trajectory optimization, International Conference

on Machine Learning, Beijing, China, 2014, pp. 829-837.

[47] J. Schulman, S. Levine, P. Abbeel, M. Jordan, P. Moritz,

Trust region policy optimization, International conference on

machine learning, Lille, France, 2015, pp. 1889-1897.

[48] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov,

Proximal policy optimization algorithms, https://arxiv.org/

abs/1707.06347, 2017.

[49] X. B. Peng, G. Berseth, K. Yin, M. Van De Panne, Deeploco:

Dynamic locomotion skills using hierarchical deep reinforcement

learning, ACM Transactions on Graphics (TOG), Vol. 36, No.

4, pp. 1-13, July, 2017.

[50] A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N.

Heess, M. Riedmiller, Maximum a posteriori policy optimization,

https://arxiv.org/abs/1806.06920, 2018.

[51] S. Fujimoto, H. Van Hoof, D. Meger, Addressing function

approximation error in actor-critic methods, https://arxiv.org/

abs/1802.09477, 2018.

[52] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,

V. Koltun, M. Hutter, Learning agile and dynamic motor

skills for legged robots, Science Robotics, Vol. 4, No. 26, pp.

1-13, January, 2019.

[53] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, S. Levine,

Learning to walk via deep reinforcement learning, https://

arxiv.org/abs/1812.11103, 2018.

[54] S. Hansen, Using deep q-learning to control optimization

hyperparameters, https://arxiv.org/abs/1602.04062, 2016.

[55] M. Andrychowicz, M. Denil, S. G. Colmenarejo, M. W.

Hoffman, D. Pfau, T. Schaul, B. Shillingford, N. De Freitas,

Learning to learn by gradient descent by gradient descent,

Advances in neural information processing systems,

Barcelona, Spain, 2016, pp. 3981-3989.

[56] Y. Liu, C. Zhang, Application of Dueling DQN and DECGA

for Parameter Estimation in Variogram Models, IEEE Access,

Vol. 8, pp. 38112-38122, February, 2020.

[57] Q. Zhang, C. Zhou, N. Xiong, Y. Qin, X. Li, S. Huang,

Multimodel-based incident prediction and risk assessment in

dynamic cybersecurity protection for industrial control

systems, IEEE Transactions on Systems, Man, and Cybernetics:

Systems, Vol. 46, No. 10, pp. 1429-1444, October, 2016.

[58] L. Ma, W. Xie, Y. Zhang, X. Feng, Extreme Learning

Machine Based Defect Detection for Solder Joints, Journal of

Internet Technology, Vol. 21, No. 5, pp. 1535-1543,

September, 2020.

[59] R. Fei, Y. Zhu, Q. Yao, Q. Xu, B. Hu, A Deep Learning

Method Based Self-Attention and Bi-directional LSTM in

Emotion Classification, Journal of Internet Technology, Vol.

21, No. 5, pp. 1447-1461, September, 2020.

[60] J. Oh, X. Guo, H. Lee, R. L. Lewis, S. Singh, Action-

conditional video prediction using deep networks in atari

games, Advances in neural information processing systems,

Montreal, Quebec, Canada, 2015, pp. 2863-2871.

[61] J. C. Caicedo, S. Lazebnik, Active object localization with

deep reinforcement learning, Proceedings of the IEEE

international conference on computer vision, Santiago, Chile,

2015, pp. 2488-2496.

Overview of Deep Reinforcement Learning Improvements and Applications 255

[62] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A.

Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y.

Chen, T. Lillicrap, F. Hui, L. Sifre, G. Driessche, T. Graepel,

D. Hassabis, Mastering the game of go without human

knowledge, Nature, Vol. 550, No. 7676, pp. 354-359,

October, 2017.

Biographies

Junjie Zhang received the B.S.

degree in computer science from

Wuhan Polytechnic University in

2018. He is currently a master of

Wuhan Polytechnic University, China.

His research interests include social

learning, machine learning,

recommender system, and data mining.

Cong Zhang received the Ph.D.

degree in computer application

technology from Wuhan University,

in 2010. He is currently a Professor

with the School of Mathematics and

Computer Science, Wuhan Polytechnic

University, China. His main research

interests include multimedia signal processing and

artificial intelligence algorithm optimization.

Wei-Che Chien is currently an

Assistant Professor with the

Department of Computer Science and

Information Engineering, National

Dong Hwa University, Hualien,

Taiwan. His research interests include

wireless rechargeable sensor networks,

5G mobile networks, AIoT, fog

computing and cloud computing.

256 Journal of Internet Technology Volume 22 (2021) No.2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

