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Abstract 

The deep reinforcement learning value has received a 

lot of attention from researchers since it was proposed. It 

combines the data representation capability of deep 

learning and the self-learning capability of reinforcement 

learning to give agents the ability to make direct action 

decisions on raw data. Deep reinforcement learning 

continuously optimizes the control strategy by using 

value function approximation and strategy search 

methods, ultimately resulting in an agent with a higher 

level of understanding of the target task. This paper 

provides a systematic description and summary of the 

corresponding improvements of these two types of 

classical method machines. First, this paper briefly 

describes the basic algorithms of classical deep 

reinforcement learning, including the Monte Carlo 

algorithm, the Q-Learning algorithm, and the most 

primitive deep Q network. Then the machine 

improvement method of deep reinforcement learning 

method based on value function and strategy gradient is 

introduced. And then the applications of deep 

reinforcement learning in robot control, algorithm 

parameter optimization and other fields are outlined. 

Finally, the future of deep reinforcement learning is 

envisioned based on the current limitations of deep 

reinforcement learning. 

Keywords: Deep reinforcement learning, Value function, 

Policy gradient, Sparse reward 

1 Introduction 

One of the main goals of research in the field of 

Artificial Intelligence (AI) is the implementation of a 

fully autonomous agent [1]. The agent not only learns 

the optimal strategy under the current task based on 

previously performed actions and feedback from the 

environment, but also continuously improves the action 

strategy through repeated experimentation. The 

emergence of deep reinforcement learning accelerates 

the process of achieving this goal. The deep learning 

part of deep reinforcement learning uses deep neural 

networks, which gives reinforcement learning a 

powerful ability to characterize strategies and states 

that can be used to simulate complex decision-making 

processes. In addition, reinforcement learning allows 

the agent to learn on its own, interact with its 

environment, and progress through trial and error [2]. 

Deep reinforcement learning, as an important branch of 

artificial intelligence research, is considered to be the 

key to achieve humanoid intelligence and has received 

wide attention from both academic and industrial 

communities. 

Unlike classical machine learning, reinforcement 

learning is a self-supervised learning method in which 

agents in reinforcement learning on the one hand can 

autonomously interact with the environment, observe 

and obtain environmental feedback; on the other hand, 

it can train based on the reward value of the action and 

environmental feedback and optimizes the action 

strategy. Earlier approaches to reinforcement learning 

were based on optimal control theory, which described 

the sequential decision problem of reinforcement 

learning as an adaptive dynamic programming (ADP) 

problem [3]. Based on this approach, researchers 

extend the sequential decision problem to obtain a 

strategy-based reinforcement learning problem and 

propose various strategy search algorithms to solve the 

problem. Further, in order to understand the advantages 

and disadvantages of strategies in a simple and 

intuitive way, scholars have introduced the value 

function as a criterion for strategy evaluation and 

proposed a series of classical reinforcement learning 

models such as Q-learning [4]. At present, the 

development of reinforcement learning has entered a 

phase where it is integrated with deep learning. 

Traditional reinforcement learning methods are limited 

by the ability to represent strategies and can only deal 

with simple decision problems. The emergence of deep 

learning breaks this limitation, and the combination 

with deep learning injects new power into 

reinforcement learning theory and applications. 

Google’s artificial intelligence team DeepMind 

combines deep neural networks with perceptual 
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capabilities in deep learning and reinforcement 

learning with decision-making capabilities to form 

Deep Reinforcement Learning. In 2017, the DeepMind 

team constructed AlphaGo using deep reinforcement 

learning algorithms and used AlphaGo to defeat the 

world’s No. 1 human player with a score of 3:0. Not 

only that, but the DeepMind team has constructed and 

implemented human expert-level Agents in many 

challenge areas. These Agents construct and learn 

about their own knowledge directly from raw input 

signals, without any manual coding or a prior 

knowledge. Therefore, deep reinforcement learning is 

an end-to-end machine learning model that is highly 

versatile. At present, deep reinforcement learning has 

been widely used in simulation [5], optimization and 

scheduling [6-8], game gaming [9-10] and other fields. 

Deep reinforcement learning models, while 

performing well for virtual decision problems, such as 

game decisions, do not perform well for many other 

decision problems, especially those in real 

environments. For example, in the field of robot 

control, a robot needs to make decisions about the next 

action to be performed based on information about its 

state and environment. In this seemingly simple 

process, the robot not only needs to do the work of 

executing the strategy, but also needs to do the work of 

evaluating and optimizing the strategy. For deep 

strategies or value function networks, a large number 

of samples are required for training. In the 

reinforcement learning model based on value function 

networks, the robot can get one sample in one motion-

observation cycle. In contrast, in the reinforcement 

learning model based on deep strategy search, the robot 

can obtain one sample after many motion-observation 

cycles. Therefore, in order to train a better deep 

reinforcement learning model, more training samples 

are required, which requires a large amount of training 

time. An alternative is to train in a virtual environment 

and fine-tune the trained model in a real environment, 

however, this relies heavily on the ability of the 

environmental simulator to simulate the real 

environment, and the development of high-

performance general-purpose simulators is also of 

interest to reinforcement learning researchers [11]. 

Deep reinforcement learning is still in the emerging 

stage and belongs to the emerging research field of 

artificial intelligence, which has a broad development 

space and bright application prospect. In the second 

part of this paper, we briefly introduce the basic 

theories of reinforcement learning, including the Monte 

Carlo algorithm, Q-learning algorithm and deep 

reinforcement learning network, etc. The third part 

introduces the current common deep reinforcement 

learning models and the improvement methods of the 

reinforcement learning models based on value function 

networks and policy search. The fourth section outlines 

the applications of deep reinforcement learning in the 

areas of game decision making, robot control, and 

optimal scheduling. The fifth part discusses the current 

limitations of deep reinforcement learning and 

discusses the theoretical dilemmas of reinforcement 

learning and the solutions proposed by current hot 

papers. The sixth part briefly discusses the prospects 

for future applications of deep reinforcement learning. 

2 Basic Theory of Reinforcement Learning 

2.1 Monte Carlo Algorithm 

The Monte Carlo (MC) algorithm, also known as the 

computer stochastic simulation method, is a 

computational method based on “random numbers”. It 

requires only the simulation of sample data series 

(states, actions, rewards) or actual data obtained 

through interaction with the environment to find the 

optimal (better) strategy. When the problem to be 

solved is the probability of a random event, or the 

expected value of a random variable, the probability of 

this random event is estimated by an “experimental” 

method with the frequency of this event, or some 

numerical characteristics of this random variable are 

obtained and used as a solution to the problem. 

The MC algorithm has four advantages. 

(a) they can learn optimal behaviour directly from 

environmental interactions, but this does not require a 

dynamic model of the environment. 

(b) They can be used as simulation or sample 

models. For many applications, the MC algorithm can 

easily simulate sample plots even though it is difficult 

to construct exact models of migration probabilities in 

the DP method. 

(c) It is easy and efficient to use the MC algorithm 

on a small subset of states. 

(d) The MC algorithm is less harmful when it 

violates Markovian properties. 

The MC algorithm solves the reinforcement learning 

problem based on averaging the sampling returns. 

Assume that there is a termination state and that any 

strategy can reach this termination state in a finite 

number of steps with probability 1. In order to estimate 

the value function, we need to execute the strategy 

multiple times. Based on this feature of the MC 

algorithm, the problem it solves must be able to be 

decomposed into fragments. The updated state - value 

function for the MC algorithm is as follows: 

 [ ]1
( ) ( ) ( )

t t t t
V s V s R V sα

+
= + − . (1) 

where α denotes the step parameter and Rt denotes the 

reward value at time t. 

2.2 Q-learning Algorithm 

The Q-Learning algorithm is a model-independent 

reinforcement learning algorithm, which was 

introduced by Watkins in 1989. It is an important 

milestone in reinforcement learning, the algorithm is a 
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powerful mutual combination of relevant theories of 

dynamic planning and the psychology of animal 

learning, with the goal of solving sequential optimal 

decision problems with delayed reporting. The iterative 

formula of Q-Learning algorithm is shown in followed 

equation.  

 
[ ]1 1

( , ) ( , )

max ( , ) ( , )

t t t t

t t t t t

Q s a Q s a

r Q s a Q s aα γ
+ +

= +

+ −

. (2) 

where α is the learning factor (or learning step), γ is the 

discount rate, and rt+1 is the reinforcement value 

returned by the environment to the learning system at 

moment t+1. Q(s, a) is the value function. 

The flow chart of the Q-learning algorithm is shown 

in Figure 1. 

Inutialize Q table

Choose an action a

Perform action

Measure rewrd

Update Q
 

Figure 1. Flowchart of the Q-learning algorithm 

2.3 Deep Reinforcement Learning Algorithms 

2.3.1 Deep Learning 

Deep learning is a general term for a class of pattern 

analysis methods that primarily involve convolutional 

neural networks (CNNs), deep self-coding neural 

networks, and deep confidence networks. The deep 

learning model consists mainly of multiple non-linear 

operational units. Data is input from the input layer of 

the deep neural network and after passing through 

several hidden layers, it is output from the output layer. 

In this way, the model can automatically learn the 

distributed features in large-scale data [12]. Compared 

with traditional machine learning methods, deep 

learning models have a more powerful data 

representation capability and can even extract high-

latitude data features that cannot be directly understood 

by humans. At present, some of the more 

representative models for deep learning are stacked 

self-encoders [13-14], restricted Boltzmann machines 

[15-16], deep belief networks [17-18], recurrent neural 

networks [19-20] and so on. 

2.3.2 Deep Reinforcement Learning 

With the growth of training data and the 

improvement of computational power, more and more 

experts and researchers combine deep learning with 

classical reinforcement learning to form the initial deep 

reinforcement learning model. Riedmiller et al. 

proposed a neural fitting Q iterative algorithm (NFQ) 

using a multilayer perceptual machine instead of a Q-

value function [21]. Lange [22] and others combined 

self-encoders with deep learning and proposed a deep 

autoencoder model (DAE). However, the real 

landmark was the Deep Q Network (DQN) proposed 

by Mnih et al. 

Deep Q networks are an extension of the Q-learning 

algorithm. It possesses not only the representational 

capabilities of deep convolutional networks, but also 

the decision making capabilities of reinforcement 

learning. The deep convolutional network in DQN can 

perceive complex environmental information, and the 

reinforcement learning part makes an analysis of the 

perceived information and makes decisions about the 

next action to be performed. DQN uses deep 

convolutional networks to approximate the value 

function in Q-learning, but also destroys the 

unconditional convergence of the Q-Learning 

algorithm. To address this issue, DQN has made 

improvements in the following two aspects: 

On the one hand, two deep neural networks are 

constructed in the DQN, which are identical in 

structure. However, the roles of the two neural 

networks are different. One of the neural networks is 

used to approximate the value function in Q-Learning, 

while the other neural network is only used to compute 

the target Q value. In addition, the two neural networks 

update their parameters in different ways and at 

different times. The first neural network updates the 

neural network parameters based on the loss function 

after each round of training. The other neural network 

is not involved in the training and is directly 

synchronized with the parameters of the first neural 

network after several rounds of training. The updated 

formula of loss function is as follows: 

 2

'
I  (r maxQ (s', '; )) Q(s, ; ))

a
a aγ ω ω

−

= + − . (3) 

Where s represents the current state, a represents the 

action performed, and r represents the reward value of 

the environment to the agent. ( , ; )Q s a ω  is the output 

value of the current Q-Evaluate network to evaluate the 

value function of the current state-action pair when an 

action a is executed in the state of s. ( ', '; )Q s a ω
−  is the 

Q value of the target value function calculated using 

the Q-Target network. 

The updated formula of Q-Evaluate network 
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parameters is as follows: 

 1 '
[r  maxQ (s', '; ) 

Q(s, ; )] Q(s, ; )

t t a
a

a a

ω ω α γ ω

ω ω

−

+
= + +

− ∇
. (4) 

Where ωt is the parameter values of the neural 

network at time t, s is the current state, a is the action 

performed, and r is the reward value of the 

environment to the agent. ( , ; )Q s a ω
−  is the output 

value of the current Q-Evaluate network to evaluate the 

value function of the current state-action pair when an 

action a is executed in the state of s. ( ', '; )Q s a ω
−  is the 

Q value of the target value function calculated using 

the Q-Target network. 

On the other hand, a memory bank is added to the 

DQN to store the training samples over a period of 

time. The state space can be approximated as a 

continuous space in the agent training process. Without 

processing, the correlation between two adjacent 

training samples is high, which is not conducive to the 

training and learning of deep neural networks. Instead, 

use a memory bank to store training samples over a 

period of time, and then randomly remove a portion of 

the samples during training. This can reduce the 

correlation between the training samples and improve 

the utilization of the training samples. 

3 Improvement Methods of Deep 

Reinforcement Learning 

3.1 Deep Reinforcement Learning Methods 

Based on Value Functions 

In order to accelerate the training rate and improve 

the stability of the model, experts and scholars in the 

computer field have proposed various improved 

versions based on DQN. According to the different 

emphasis on DQN improvement, they can be divided 

into three major categories: improvement of algorithm 

logic, improvement of neural network structure and 

improvement of introducing new mechanisms. In 

addition, there are a number of other improvement 

methods. In the following, we will elaborate on these 

improvement methods, including their research 

background, improvement ideas, advantages and 

disadvantages. 

3.1.1 Double Deep Q Network (DDQN) 

When using deep Q-network to make decisions and 

evaluate actions, the Q-max value will be referred to. 

However, the Q-max value is often larger than the Q 

value of the next action performed by the agent. This 

can therefore lead to an overestimation of the Q action 

value function. To solve this problem, Hasselt et al. 

proposed the DDQN algorithm. 

The deep neural network structure of DDQN is 

exactly the same as that of DQN, but its parameter 

update method is different from that of DQN. Equation 

(5) is the parameter update method for the deep neural 

network in DQN, and it can be seen that the DQN 

optimizes the neural network with the largest error Q-

max value every time, which leads to the 

overestimation of the Q action value function by the 

neural network. However, the DDQN selects the action 

based on the current Q network for the target Q value 

and uses the target Q network to calculate the Q value 

corresponding to that action. By this method, the 

problem of overestimation of the Q action value 

function by the neural network is solved. 

The updated formula of DQN’s deep neural network 

parameters are as follows: 

 
1 1

 = r max ( , ; )
t t t t
Y Q s aγ θ

+ +
+ . (5) 

Where, rt+1 is the reward value of the environmental 

feedback at moment t+1. γ is the discount factor. 

1
( , ; )

t t
Q s a θ

+
 represents the output value of the Q 

network with parameter 
t

θ  after performing action a in 

state st+1. 

The updated formula of DQN’s deep neural network 

parameters are as follows: 

 
1 1

1

 = r ( ,

arg max ( , ; ), )

t t t

t t t

Y Q s

Q s a

γ

θ θ

+ +

+

+

.  (6) 

Where, rt+1 is the reward value of the 

environmental feedback at moment t+1. γ is the 

discount factor. 
1

( , ; )
t t

Q s a θ
+

 represents the output 

value of the Q network with parameter 
t

θ  after 

performing action a in state st+1. 

3.1.2 Deep Q-learning from Demonstration (DQfD) 

Since classical deep learning models are trained with 

a large number of interactions with the environment in 

order to achieve better learning performance. It is 

acceptable when the tasks of the deep learning model 

can be accurately simulated by a computer. In practice, 

however, many problems cannot be simulated 

accurately by the computer, which severely limits the 

scope for using deep reinforcement learning in real-

world tasks. Therefor it is essential that the agent has a 

good performance at the beginning of its training. 

While it is difficult to find a completely accurate 

simulator for real-world problems, most of these 

problems have data from systems that were run under 

previous controllers. In other words, the agent needs to 

learn as much as possible from the demonstration data 

during the pre-training phase. Hester et al. in Google’s 

AI team have proposed the Demonstration Deep Q 

Learning algorithm, which uses demonstration data to 

greatly speed up the learning process. 

Demonstration DQNs have an additional model pre-

training phase compared to classical DQNs. First, the 
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demonstration DQN is pre-trained on exemplary data. 

The purpose of the pre-training phase is to allow the 

initialized value function to simulate the demonstrator 

so that the agent gets a deep neural network with better 

performance before interacting with the real 

environment. The update of the deep neural network 

combines four loss functions: the 1-step double Q-

learning loss, an n-step double Q-learning loss, a 

supervised large margin classification loss, and an L2 

regularization loss on the network weights and biases. 

supervised loss is used to classify the demonstrator’s 

actions. The Q learning loss ensures that the network 

satisfies the Bellman equation and can be used as a 

starting point for TD learning. The overall loss 

function formula is:  

 
1

2 3 2

( ) ( ) ( )

( ) ( )

DQ n

E

L Q L Q L Q

L Q L Q

λ

λ λ

= +

+ +

. (7) 

Where, λ is the weight of the different loss functions. 

the n-step returns corresponding to Ln(Q) are： 

 

1

1 1
( )= ...

max ( , )

n

n t t t n

n

t n

L Q r r r

Q s a

γ γ

γ

−

+ + −

+

+ + +

+

. (8) 

The large interval classification loss function is 

defined as： 

 
( ) max[ ( , )

( , )] ( , )

E

E E

L Q Q s a

l a a Q s a

= +

−

. (9) 

Where, aE is the action taken by the expert 

demonstrator in state s, l(aE, a) is an interval function, 

it is equal to 0 when aE=a, and positive in the other 

cases.  

In all 42 Atari games, the initial scores of the 

demonstrator DQNs were higher than those of the 

preferentially competing double DQN [23-25], with 

better initial performance. 

3.1.3 Least Squares Deep Q Network (LS-DQN) 

When a deep reinforcement learning model is used 

to learn high-dimensional data, the model has a low 

feature learning rate in some cases and the 

performance of the model is not satisfactory. When 

reinforcement learning uses a linear function as a 

reward-value function approximator, the learning 

process is more stable and requires only a small 

number of hyperparameters to be adjusted. Levine et al. 

[26] combined deep reinforcement learning with linear 

least squares and proposed the least-squares DQN. 

The least-squares DQN is divided into two main 

stages. 

(a) The least-squares DQN optimizes the weights of 

the deep neural network using the conventional 

approach. In this case, the optimization targets are the 

parameters in the entire deep neural network, including 

all parameters in the hidden and output layers. 

(b) After n rounds of parameter updates in the neural 

network, the goal of supervised learning is constructed 

using a dataset D with sample number N and the 

approximated reward value function Qn-1 from the last 

update: 1

1
+ max ( , ')n

i i i
y r Q s aγ

−

+
= . Then consider yi as 

the true value to be approximated by Q(s, a). To solve 

the approximation QN for the next iteration by 

supervised learning: 

 1

1 2

1

argmin ( ( , )

( max ( , ')))

N

N

i i

i

N

i i

Q Q s a

r Q s aγ

=

−

+

= −

+

∑
. (10) 

The key to the LS-DQN learning process is the 

introduction of the Bayesian regularization term used 

for least-squares updating, which uses the parameters 

of the last hidden layer of the DQN as a Bayesian prior 

for fitting the Q-iteration algorithm, preventing 

overfitting of the data. Experiments show that the deep 

reinforcement learning algorithm incorporating the 

least-squares update method performs significantly 

better than DQN and DDQN in some Atari games. 

3.1.4 Average DQNs 

In order to improve the stability of deep 

reinforcement learning algorithm and reduce the 

negative impact of uncertainty on it, Anschel et al. [27] 

improved the classical DQN algorithm and proposed 

the average DQN algorithm. The algorithm saves the 

output value of each deep neural network and averages 

the output value of several previous neural networks. 

Using this method makes the training process of the 

model more stable. In addition, the model performance 

is improved by reducing the target approximation error. 

The average DQN averages the previously learned Q 

values.  

 
M

1 mm 1

1
( , ) ( , ; )

M
i i

Q s a Q s a θ
− −

=

= ∑ . (11) 

The updated formula of depth neural network is. 

 
1

max ( , )
i

y r Q s aγ
−

= + . (12) 

It is shown that an appropriate increase in the size of 

M not only allows the model to learn better strategies, 

but also reduces the overestimation of Q values, 

significantly improving the stability and game 

performance of the model. Moreover, since the average 

DQN does not modify the deep neural network 

structure of the DQN, the average DQN can be 

combined with other improved DQN models, such as 

DDQN, competitive network structure and preferred 

experience replay. 

3.1.5 Dueling DQN 

Wang et al. [28] proposed the Dueling DQN by 

dividing the neural network into two parts. One part is 



244 Journal of Internet Technology Volume 22 (2021) No.2 

 

the advantage function part and the other part is the 

value function part. The output value of the advantage 

function part is affected by both the state s and the 

action a of the input, while the output value of the 

value function part is only related to the current state s 

and not to the specific action a to be performed. 

Ultimately, the output value of DuDQN is given by the 

following formula: 

 
( , ; , , ) V(s; , ) 

+ A(s, ; , )

Q s a

a

θ α β θ β

θ α

=

. (13) 

Where, s is the input state, a is the action performed. 

θ is the weight of the input and hidden layers of the 

deep neural network. β is the neural network parameter 

of the value function part and α is the neural network 

parameter of the advantage function part. V(s; , )θ β  is 

the output value of the value function part. 

A(s, ; , )a θ α  is the output value of the advantage 

function part. 

Without processing, it is impossible to determine the 

difference between the neural network of the advantage 

function part and the neural network of the value 

function part. Therefore, some appropriate adjustments 

were made to the previous Q-value formula for the 

final Q-value calculation. The adjusted formula is: 

 
'

( , ; , , ) V(s; , ) A(s, ; , )

 max ( , '; , )
a A

Q s a a

A s a

θ α β θ β θ α

θ α
∈

= +

−

. (14) 

In practical use, the mean value of the dominant 

function is usually used instead of the maximum value 

of the dominant function to solve the problem, which 

improves the stability of optimization to some extent 

under the premise of ensuring the performance. 

Since DuDQN improves DQN only in terms of 

neural network structure, DuDQN can be combined 

with other improved DQN models to form a more 

stable deep reinforcement learning model. Experiments 

have shown that the DuDQN model that combines the 

DDQN and preferred experience replay mechanisms 

performs better in some Atari games than the DQN and 

DDQN models that only use preferred experience 

replay. In addition, Raghu et al. [29] combined DDQN 

with DuDQN and proposed the Dueling Double-Deep 

Q Network. They used this model to address the 

problem of learning the best treatment strategy for 

sepsis and achieved better results. 

3.1.6 Deep Recurrent Q Network (DRQN) 

The limitations of DQNs are revealed when they are 

used to make game decisions. DQN has limited 

memory capacity. Also, good game performance of the 

DQN is strongly correlated with the integrity of the 

game screen. To solve this problem, Hausknecht et al. 

[30] proposed a Deep Recurrent Q Network (DRQN) 

by combining long- and short-term memory networks 

[31] with DQNs. 

Previously, when a DQN is used to make game 

decisions, the last four frames of the game are 

extracted as input to the deep neural network, but then 

the DQN is only able to learn these four frames. In 

other words, the DQN can only remember 4 frames. In 

some games, when the agent needs to analyze and 

make decisions based on more than 4 frames, the 

model cannot satisfy Markovianity: the future state 

depends on the present state. The DRQN model 

replaces the first fully connected layer in the DQN to 

LSTM and uses LSTM to remember the previous 

training process. 

The neural network structure of the DRQN is shown 

in Figure 2. 

Input layer

Conv1 layer

Conv2 layer
Conv3 layer

LSTM

Q-Values

 

Figure 2. Network structure of the DRQN 

3.1.7 Bootstrap DQN 

How to learn to explore effectively remains a major 

challenge for reinforcement learning. The agent takes a 

series of actions in anticipation of maximizing the 

cumulative reward value. However, unlike the standard 

planning questions, agents in reinforcement learning 

learn through their own post-action experiences and do 

not have any knowledge of the environment prior to 

learning. Thus, the agent’s search strategy for the 

environment is critical to the training and learning of 

the overall model. Common random jitter search 

strategies such as the ε-greedy search algorithm are 

used. This algorithm attempts to randomly select the 

action to be performed with a certain probability by not 

selecting the action that has the highest payoff in the 

current state. The probability of randomly selecting an 
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action can be adjusted by ε. 

However, in complex situations, the ε-greedy 

algorithm is difficult to achieve the desired results. 

This is because it is difficult for a simple random 

strategy to reach a state far from the current state. The 

whole process is still searching around the Q value of 

the neural network. In other words, a simple random 

strategy does not affect the general direction of the 

neural network search. To solve this problem, Osband 

et al. [32] proposed the Booststrapped DQN 

(Booststrapped DQN) algorithm, which is the first 

practical reinforcement learning algorithm that 

combines reinforcement learning with a deep 

adventurous exploration process. 

The bootstrapped DQN network structure includes a 

shared network and a K bootstrapped head (Head) 

network. The shared network is used to learn the joint 

feature representation of all data. Each bootstrap head 

is trained on its bootstrap sample dataset. The bootstrap 

sample data is obtained from a random sample of the 

overall sample using the bootstrap algorithm [33]. The 

usual form of the bootstrap algorithm is to randomly 

sample M times with return from the original sample 

set with sample number M. The resulting sample set is 

the bootstrap sample set. The bootstrap DQN collects 

the Q value of each bootstrap head before each round 

of training, and the agent explores based on the Q 

value of the bootstrap head until the end of the round. 

Then, in the next round, one of the bootstrapped heads 

is selected at random for exploration until the end of 

the training round.  

The network structure of the bootstrap DQN is 

shown in Figure 3. 

Head

1

Head

1

Head

1

Shared network

Frame
 

Figure 3. Network structure of the bootstrap DQN 

3.1.8 Priority Experience Replay (PER) 

By storing each training sample in a memory bank, 

the classical DQN model allows the model to 

remember previously learned experiences and reduces 

the correlation between adjacent training data. 

However, DQN only uses a random method to draw 

training samples from the memory bank with equal 

probability of each training sample being drawn, and 

does not take into account that the importance of 

different samples is different. Therefore, Schaul et al. 

proposed a preferential experience replay method that 

allows samples to be drawn based on the importance of 

the training samples. More important training samples 

have a higher probability to be drawn, thus the training 

of the Q network is more efficiency. 

The importance of the samples in the memory bank 

is determined by the time-difference score (TD) error. 

In a Q network, the TD error is the difference between 

the target Q value computed by the target Q network 

and the current Q value computed by the current Q 

network. The larger the TD error, the greater the effect 

of its sample on the propagation of the neural network. 

Therefore, the larger the absolute value of TD error, 

the higher the probability that a sample will be 

extracted. The random priority sampling method is 

used when sampling samples of different priority levels. 

That is, an importance sampling mechanism is used to 

avoid the bias caused by the update process. 

Experiments have shown that in some Atari games, the 

DQN and DDQN models that incorporate the priority 

experience replay mechanism perform better than the 

games that use the DQN and DDQN models alone. 

3.1.9 DQNs that Introduce Internal Fear 

Mechanisms 

The agent can make catastrophic mistakes when 

using reinforcement learning for real tasks. And, due to 

the optimization of neural networks using function 

approximation, agents will always periodically enter 

more dangerous states. To enable agents without 

memory functions to avoid catastrophic mistakes, 

Lipton et al. [34] propose DQNs that introduce the 

Intrinsic Fear (IF) mechanism to alleviate these 

problems by avoiding dangerous states. 

In classical DQNs, the neural network is optimized 

with the goal of maximizing the cumulative reward 

value. In contrast, in DQNs that introduce Intrinsic 

Fear, the neural network is optimized with the goal of 

minimizing the probability of a catastrophic state. 

Compared to classical DQNs, DQNs that introduce 

internal fears also have a hazard model. This hazard 

model is a biclass neural network with the same input 

and hidden layers as the DQN’s Q network, and the 

output layer consists of two neurons. The role of the 

hazard model is to predict the likelihood of a 

catastrophe occurring within a short period of time for 

the agent in its current state. 

Introducing internal fears, the formula for 

calculating the optimal target value of DQN is: 

 max ( ', '; ) ( '; )IF

Q dy r Q s a d sθ λ θ= + − ⋅ . (15) 

In the formula, d(-) is the hazard model. λ is the fear 

factor that determines the size of the effect of the 

internal fear mechanism on the Q function update. 

Experiments have shown that for some tasks, DQN 

that introduces internal fear can enjoy the benefits of 
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using function-approximation optimization neural 

networks while avoiding permanent catastrophe. But it 

does not have an accurate prediction of the dangerous 

state in the state space. In a problem, if a single action 

from any state leads to a catastrophe with high 

probability, this model will perform poorly. 

3.1.10 Summary 

This summary presents nine improved approaches to 

DQN based on value functions. The various versions of 

DQN-based improvements are classified according to 

the different approaches to DQN improvement. These 

models can be broadly categorized into three main 

groups: improvements to the algorithm logic, 

improvements to the neural network structure, and 

improvements that introduce new mechanisms. The 

proposed problem solving, improvement methods, and 

experimental results of the various improved 

algorithms are presented in the following table: 

Table 1. Characteristics and experimental results of the DQN improvement method 

Model Issues to be addressed Improved methodology Experimental results 

DDQN 

Overestimation of action value 

functions in Q learning 

Decoupling the selection of target 

Q-value actions and the 

computation of target Q-values 

using the target Q network 

Outperforms DQN in Atari games 

DQfD 

Poor performance of the model 

after initialization 

During the pre-training phase, the 

model is allowed to learn from the 

demonstration data. 

Outperforms DQN at the start of 

most Atari games 

LSDQN

The model does not perform well 

when learning high-dimensional 

data 

Combining Least Squares and 

DQN to improve model stability 

 Outperforms DQN in Atari games 

Average 

DQN 

The instability and variability of 

the model during training can 

negatively affect it 

Averaging the Q values of the 

model output from previous 

training sessions 

Reduced over-estimation of Q 

values and better game performance 

in Atari and Gridworld games 

Dueling 

DQN 

Unsatisfactory convergence rate 

and stability of the model 

Dividing the output layer of the Q 

network in the DQN into two parts 

to make the functionality of the 

network clearer 

DuDQN combining the DDQN 

and preferred experience replay 

mechanisms outperformed DQN 

and DDQN using only preferred 

experience replay in the Atari 

game 

DRQN 

During training, model observations 

of the environment are erroneous 

and not always complete. 

Combining a long- and short-term 

memory network with a DQN 

gives the DQN the ability to 

remember the game environment 

DRQN outperformed DQN when 

trained with partial observations 

and evaluated with full observations 

Bootstrap 

DQN 

Classical DQN’s exploration of the 

environment is shallow, leading to 

an unsatisfactory convergence rate 

of the model 

Propose a deep exploration strategy 

and estimate the uncertainty of 

DQNs 

Improved learning speed of models 

on many Atari games 

PER 

Training samples of different 

importance have equal probability 

of being learned by the neural 

network, which is not conducive to 

fast convergence of the model 

Prioritize samples based on their 

TD errors to improve the probability 

of drawing quality samples 

Improved performance of DQN 

and DDQN in the game 

IF 

The agents in the model 

periodically go into catastrophic 

states 

Add a fear model. The model 

assesses the probability of an agent 

entering a catastrophic state in a 

short period of time 

Outperformed DQN in the Cart-

Pole Game 

 

3.2 Deep Reinforcement Learning Approach 

Based on Strategy Search 

Corresponding to the value function-based 

reinforcement learning method is the strategy search-

based reinforcement learning method. Instead of 

evaluating the merits of the actions performed in each 

round, a strategy search-based reinforcement learning 

approach directly evaluates the strategies performed 

throughout the round based on sampling, and then uses 

maximizing the cumulative returns as the target 

optimization model. 

3.2.1 Actor-Critic (AC) Algorithm 

For tasks where the action space is continuous or the 

spatial dimension is too high, reinforcement learning 

methods based on approximation of value functions are 

usually difficult to obtain a more optimal solution. 
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Reinforcement learning methods based on strategy 

search can directly parameterize the strategy and 

approximate the optimal strategy, which works better 

results. However, the strategy search algorithm is weak 

in evaluating the strategies, which is not conducive to 

the convergence of the whole model. 

The Actor-Critic algorithm is a combination of value 

function-based and strategy gradient-based methods 

[35-37]. The algorithm consists of two neural networks, 

which are the Actor network and the Critic network. 

The role of the Actor network is to analyze the current 

state of the environment and make decisions about the 

actions to be performed, while the role of the Critic 

network is to evaluate the decisions made by the agent, 

and the Critic network will continuously update itself 

as training progresses.  

The network structure of the AC algorithm is shown 

in Figure 4. 

s a

dense1 dense2 dense3
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Figure 4. Actor network (a) and critic network (b)

The updated formula of the Actor network is: 

 ln ( , )
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Where, θat is the neural network parameter for the 

Actor network. θvt is the neural network parameter for 

the Critic network.  

The updated formula for the Critic network is. 
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Where, the input and hidden layers of the Actor 

network and Critic network have the same neural 

network structure. 

3.2.2 Deep Deterministic Policy Gradient (DDPG) 

Lillicrap et al. [38] combine two neural networks in 

the AC algorithm with the idea of DQN to propose a 

reinforcement learning model based on the 

Deterministic Policy Gradient: Deep Deterministic 

Policy Gradient. 

Classical DQN performs well in discrete and low-

dimensional action spaces. However, when DQN is 

trained in a continuous and high-dimensional action 

space, they usually discretize the continuous action 

space, which leads to the phenomenon of “dimensional 

catastrophe”. In other words, the number of actions in 

the agent’s action space increases exponentially with 

increasing dimensionality. This phenomenon will 

hinder the updating and optimization of neural 

networks. DDPG uses the empirical replay mechanism 

in DQN and a separate target network to reduce the 

correlation between neighboring training samples and 

increase the stability and robustness of the algorithm. 

Since classical DQN can not handle tasks with 

continuous action spaces, DDPG uses AC approach 

based on the DPG algorithm. 

The empirical replay mechanism used in DDPG is 

identical to DQN, but the target network is updated in a 

different way. In DQN, the target network does not 

participate in the training of the model and its 

parameters are derived from the Q network assignment. 

In DDPG, however, the respective target networks of 

Actor and Critic participate in the training of the entire 

model and are updated in a slower manner. In this way, 

DDPG improves the stability of the learning process. 

 = (1 )θ τθ τ θ
− −

+ − . (18) 

 = (1 )w w wτ τ
− −

+ − . (19) 

Where, θ- is the parameter of the Actor target 

network. w- is the parameter of the Critic target 

network. τ  controls the rate at which the target 

network is updated. 

The Schematic illustration of DDPG is shown in 

Figure 5. 
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Figure 5. Schematic illustration of DDPG 

Experiments show that DDPG can achieve good 

results in more than 20 physical simulation tasks using 

the same learning algorithm, network structure and 

network parameters. This shows that DDPG has good 

robustness. Not only that, DDPG can directly use raw 

pixels as input data into the model for end-to-end 

learning capabilities. However, DDPG, like most 

model-free reinforcement learning methods, requires a 

large number of training samples and training time to 

enable the model to have a more optimal performance 

when the model is trained. 

3.2.3 Probability Surrogate Action Deterministic 

Policy Gradient (PSADPG)  

Wang and Jing [39] proposed surrogate agent-

environment interface (SAEI) in reinforcement 

learning. They developed the probability surrogate 

action deterministic policy gradient (PSADPG) 

algorithm based on SAEI. SADPG is an improved 

DDPG algorithm that allows continuous control of 

discrete actions. 

The Schematic illustration of surrogate agent-

environment interface is shown in Figure 6. 
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Figure 6. Schematic illustration of PSADPG 

PSADPG does not directly adopt the actions 

obtained from decisions made by the agent, but rather 

by extracting the sampling steps from the decision task 

of the agent and integrating them into the environment. 

Experiments show that PSADPG performs comparable 

to DQN in Acrobot with discrete control tasks. 

3.2.4 DDPG from Demonstrations (DDPGfD) 

When learning in a high-dimensional complex space 

using a DDPG model, it is difficult to define a reward 

function with excellent performance. To solve this 

problem, Vecerik et al. [40] proposed the 

demonstration DDPG model. The model is a common 

model-free off-strategy model that approximates the 

demonstration data as a reward value function with 

good performance to train and optimize the model. 

There are five differences between DDPGfD and 

DDPG: 

(1) The data from the manual demonstration is first 

converted into the form of a sample of reinforcement 

learning data: (s, a, s0, r). The demonstration transfer 
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data are then placed in the memory bank of the 

reinforcement learning model before training begins. In 

addition, these demonstration transfer data will be 

permanently stored in the memory bank and the 

amount of these data will not be reduced as the training 

progresses. 

(2) The sampling ratio between the model transfer 

data and the agent data in the memory bank is 

automatically adjusted by a priority replay mechanism. 

(3) Both single-step and n-step reward values are 

used to update the deep neural network in the model. 

(4) The deep neural network is updated multiple 

times in each round. The DDPG is updated only once 

in each round, which significantly reduces the 

efficiency of using the samples in the memory. Thus, 

taking a multiple update approach allows the agent to 

fully learn from the data from previous interactions 

with the environment. 

(5) Add L2 regularization on both the Actor and 

Critic networks to stabilize the final learning 

performance. 

The loss function for the Critic network is calculated 

as: 

 
1 1
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The updated gradient for Actor network is: 
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3.2.5 A3C 

Mnih et al. [41] proposed an asynchronous update 

reinforcement learning model (A3C) based on the AC 

algorithm, in which four asynchronous training 

reinforcement learning algorithms were implemented, 

namely one-step Q-learning, one-step Sarsa, n-step Q-

learning, and advantage actor-critic, respectively. 

Compared to Actor-Critic, A3C is optimized in the 

following three aspects: 

In the first aspect, A3C creates multiple agents that 

perform actions and learning in multiple environments 

without interfering with each other. In other words, 

A3C creates multiple agents for training and learning 

in multiple threads, and also creates a shared public 

network. The agents in each thread independently 

interact with and obtain empirical data from the 

environments, which operate independently of each 

other. When the agents in each thread have interacted 

with the environment to a certain amount of data, they 

begin to compute the gradients of the neural network 

loss function in their own threads. This gradient 

information is then passed to the public neural network 

and the public network is instructed to make updates. 

Multiple threads independently interact with the 

environment and pass the gradient information to the 

shared network. At regular intervals, the neural 

networks in the threads are synchronized with the 

parameters of the public network. 

In the second aspect, in Actor-Critic, two different 

Actor networks and Critic networks are used. Whereas 

in A3C, the two networks are put together. The Actor 

network and Critic network share an input layer, the 

Actor network outputs state values and the Critic 

network outputs the corresponding strategies. The 

network structure of A3C is shown in Figure 7. 
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Figure 7. Network structure of A3C 

In the third aspect, a natural gradient update method 

based on the advantage function is proposed, and 

regularization is used to reduce the variance of the 

strategy gradient, thus ensuring the stability of strategy 

learning. The expression for the advantage function is. 
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Experiments have shown that in many of the Atari 

2600’s gaming tests, A3C is used less than previous 

GPU-based reinforcement learning algorithms. This 

may be because the A3C can run on servers with multi-

core, multi-threaded CPUs. In addition, A3C performs 

better than other classical deep reinforcement learning 

models on some continuous motion control problems. 

A3C is now the most versatile and successful deep 

reinforcement learning algorithm. 

3.2.6 GPU-based A3C (GA3C) 

Babaeizadeh et al. [42] propose an updated version 

of A3C: the GPU-based A3C algorithm (GA3C). 

GA3C takes advantage of the GPU’s fast vector 

operations to speed up the training rate of the entire 

algorithm. The A3C algorithm, however, is based on 

the processor’s multi-threaded capabilities to increase 

the training rate of the algorithm. 

The GA3C has three main components [43]. 

(1) Agent. the GA3C agent is the same as the A3C 

agent. The agent selects actions and collects samples 

based on the learned strategy. However, the GA3C 

agents do not need to make a copy of the model 

respectively. They simply add the current state to the 

prediction queue as a request before selecting an action. 

After the agent performs a certain number of steps, it 



250 Journal of Internet Technology Volume 22 (2021) No.2 

 

will work backwards to calculate the total return for 

each step and finally add the total return and the 

experience data generated during training to the 

training queue. 

(2) Predictor. the request samples from the 

prediction queue are taken out of the queue and entered 

as training data into the GPU’s DNN model. When the 

prediction is complete, the Predictor returns the 

predicted results to the corresponding agent. To reduce 

latency, multiple predictors can be run simultaneously. 

(3) Trainer. the request samples from the training 

queue are taken out of the queue and input as training 

data into the GPU’s DNN model. To reduce latency, 

multiple trainers can be run simultaneously.  

Experiments show that the training rate of GA3C is 

higher than that of the multi-core processor-based A3C, 

and GA3C reduces the memory consumption during 

training. However, GA3C has the following two 

problems. 

(1) It is necessary to coordinate the number of 

Agents, Predictor and Trainer in GA3C. 

(2) There may be a strategy delay. That is, the 

strategy that produces the current training sample is not 

the current strategy to be updated, resulting in 

instability of the algorithm.  

3.2.7 Summary 

This summary first introduces the basic principles of 

the reinforcement learning algorithm based on strategy 

search. The original AC algorithm is then introduced 

and improved reinforcement learning algorithms based 

on the AC algorithm are presented, including DDPG, 

which combines the AC algorithm and DNN; DDPGfD 

that can learn from a demonstration sample; PSADPG, 

which can continuously control discrete actions; A3C 

and the GPU version of A3C, which will enable 

asynchronous updates. The algorithms described above, 

along with their respective solutions and experimental 

results, are shown in the following table. 

Table 2. Characteristics and experimental results of the DDPG and A3C improvement method 

Model Issues to be addressed Improved methodology Experimental results 

AC 

For tasks that are continuous in the 

action space, reinforcement learning 

methods based on value functions 

are often difficult to achieve a more 

optimal solution 

Combine Actor and Critic networks 

to leverage the strengths of each 

More stable algorithms and shorter 

training times 

DDPG 

The phenomenon of “dimensional 

catastrophe” occurs when reinforcement 

learning methods are trained in a 

continuous, high-dimensional action 

space. 

Combining AC algorithms and 

DQN ideas to make them 

applicable to continuous action 

domains 

Can solve more than 20 physical 

simulation tasks with performance 

comparable to traditional planning 

algorithms 

PSADPG 

Reinforcement learning cannot be 

applied in the task of continuous 

control of discrete actions by Yu 

Yao 

The sampling step is extracted 

from the decision task of the 

intelligences and integrated into 

the environment. 

PSADPG rivals DQN’s performance 

in Acrobot with discrete control 

tasks 

DDPGfD 

It is difficult to assess rewards for 

each action in the actual task 

The model is trained and 

optimized by approximating the 

demonstration data to a reward 

value function with good 

performance. 

DDPGfD performs better than 

DDPG in a task in which four 

simulated robots insert objects at 

specified locations 

A3C 

The usual AC algorithm uses only 

one agent for learning, which is 

inefficient 

Create multiple agents in 

multiple virtual environments, 

train in parallel, and achieve 

asynchronous updates 

In the Atari game, A3C’s training 

time is less than that of GPU-

based algorithms.  

GA3C 

A3C uses processor multithreading 

to accelerate learning, but GPU 

vectoring is even faster 

Increase the amount of training 

data generated and processed per 

second using GPUs 

Faster training rate than CPU-

based A3C algorithm 

 

4 Application of Deep Reinforcement 

Learning 

4.1 Robot Control 

In the field of robot control, formalizing a specific 

task and determining a reward value function that 

performs well is difficult [44]. In addition, the reward 

value of the environment in a virtual scenario can be 

fed directly to the agent in the form of a signal. 

However, in a robot control task, the robot needs the 

spider to observe the environmental feedback and 

summarize the reward. This process places 

considerable demands on the robot’s perceptual 

abilities. 

Due to the difficulty of applying reinforcement 

learning to physical tasks, current robot control tasks 
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are very simple [45]. Levine [46] et al. combined 

trajectory optimization and supervised learning to train 

humanoid robots in a simulation environment to 

achieve walking motion gait control. Schulman et al. 

[47-48] proposed TRPO and PPO algorithms and 

implemented stable training algorithms using the actor-

critic framework. Peng et al [49] used hierarchical deep 

reinforcement learning algorithms to train the motion 

of a 3D bionic robot in a simulation environment. 

Recently, more efficient and stable deep reinforcement 

learning algorithms such as MPO algorithm [50], SAC 

algorithm [51], and TD3 algorithm have been proposed. 

In addition to training the motion gait of the bionic 

robot in the simulation environment, Hwangbo et al 

[52] applied the training results in the simulation 

environment directly to the ANYmal quadrupedal 

robot to achieve stable and efficient quadrupedal 

motion gait control; Haarnoja et al [53] used an 

improved SAC algorithm to train directly on the 

Minitaur quadrupedal robot for multiple motion gait 

control.  

There are a number of problems with current 

reinforcement learning algorithms in the field of robot 

control: 

(1) Training samples are used inefficiently. Humans 

can quickly learn motor gait such as walking, running 

and jumping, whereas the existing reinforcement 

learning methods require a lot of trial and error. 

Therefore, it takes a lot of time to collect and train 

samples. Not only that, the large number of 

interactions will also lead to wear and tear on the 

bionic robot. 

(2) Inability to effectively multi-task learning. Most 

of the existing reinforcement learning algorithms can 

only learn a single task. When learning other types of 

tasks, they need to be retrained. 

(3) Poor migration from the simulation environment 

to the actual platform. Most of the existing 

reinforcement learning methods build a simulation 

model of the robot and train the robot’s gait in the 

simulation environment, however, the actual model 

and the simulation model are often quite different, 

which leads to a large deviation when the strategy 

trained in the simulation environment is directly 

transferred to the actual robot. 

(4) Poor robustness. In actual robot control tasks, the 

information obtained by the robot is incomplete due to 

errors in the sensors. However, the information 

observed by robots in the simulated environment is 

complete. Therefore, the model trained in this situation 

does not perform well in the real task. 

4.2 Parameter Optimization 

In traditional neural networks, the parameters of the 

network are generally optimized by methods such as 

gradient descent. However, it takes a lot of time and 

effort to repeatedly adjust the learning rate in the 

gradient descent method. Therefore, through some 

mechanism to automatically set the learning rate and 

initial parameters of the network according to different 

tasks before the training of the network will greatly 

improve the training rate of the model. 

To address the above problem, Hansen et al. [54] 

proposed a gradient descent method based on Q-values. 

The method can automatically set different learning 

rates according to the specific task. Andrychoiwicz et 

al. [55] proposed an agent self-learning model. The 

model learns to optimize the parameters of other neural 

networks by training one neural network. Liu et al [56] 

combined the dual elite collaborative algorithm and 

deep learning to propose an improved deep 

reinforcement learning model. The model can optimize 

the parameters of semi-variant functions in the Kriging 

interpolation method and improve the interpolation 

accuracy of the algorithm. In addition, Google uses the 

reinforcement learning algorithm to optimize the 

parameter settings of data center servers and save 40% 

of power energy. 

In summary, the application of deep reinforcement 

learning in the direction of optimizing parameters is 

still at a preliminary stage for the time being. However, 

deep reinforcement learning has been proven to have 

considerable potential in this direction. With more and 

more experts and researchers studying this direction in 

depth, the method of deep reinforcement learning 

model for automatic parameter optimization will 

certainly be widely used in various optimization tasks. 

4.3 Other Directions 

In addition to robot control, the field of algorithmic 

parameter optimization, reinforcement learning has 

applications in computer vision, game decision making, 

natural language processing, automated driving, and 

game theory [57-59]. 

In the field of machine vision, deep reinforcement 

learning models with visual perception capabilities can 

predict the actions that need to be performed 

afterwards based on the original image picture. Oh et al 

[60] performed a long-term prediction task for high-

dimensional video images by controlling the input of 

actions with a deep reinforcement learning model. 

Caicedo et al. [61] combined CNN and DQN models 

with image perception capabilities to achieve precise 

localization of target regions in images. 

In most complex strategy game tasks, the decision 

making ability of agents in deep reinforcement learning 

now comprehensively surpasses that of the top human 

gamers. Siliver et al. [62] added two deep 

convolutional neural networks to AlphaGo and 

combined the training methods of reinforcement 

learning with supervised learning. The end result is a 

model with a level of performance that surpasses that 

of human Go world champions. 
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5 Challenges and Perspectives for 

Reinforcement Learning 

Although more and more researchers are exploring 

and extending deep reinforcement learning, there are 

still many challenges in applying it to practical tasks. 

Based on these challenges and the limitations of 

reinforcement learning itself, we attempt to prospect 

the development direction of deep reinforcement 

learning. 

In the process of strategy implementation, the agent, 

on the one hand, needs to fully learn the strategies it 

has already learned and avoid blind experimentation. 

On the other hand, the agent needs to explore as many 

unknown strategies as possible in order to discover the 

best strategy to solve the problem. The currently used 

stochastic strategy allows the agent to traverse various 

states to avoid the agent falling into a local optimal 

solution. However, the random strategy execution 

makes the agent search back and forth between 

unnecessary states, which wastes more training time 

and computational resources. Therefore, how to 

balance exploring the environment and exploiting the 

experience may be a key research direction for the 

future. 

(1) How to effectively evaluate the merits of a 

strategy is the key to improving agent learning 

efficiency. At present, strategy evaluation relies mainly 

on the reward-value function. However, in some 

complex decision-making tasks, it is difficult to design 

a reward-value function with good performance. Not 

only that, there is not always a suitable positive or 

negative feedback for every action in the actual task. 

When the state space dimension is high, the problem of 

sparse reward value will occur. Therefore, how to set a 

good reward value function according to different tasks 

and avoid the sparse reward problem will be the focus 

of future research. 

(2) Since most of the current research in the field of 

deep reinforcement learning focuses on model-free 

methods, a large number of training samples are 

required to train the agent using this method. It is 

unrealistic to use agents and the environment for a 

large number of interactions in a real task. A model-

based (model-based) approach can effectively solve 

this problem and improve the efficiency of sampling. 

Therefore, model-based methods for deep 

reinforcement learning will receive much attention in 

the future. 

(3) Although deep neural network-based reinforcement 

learning can handle many high-dimensional input 

problems, it still requires a large number of samples. 

To accelerate the learning rate of deep reinforcement 

learning, the model can be pre-trained using the 

knowledge previously gained from the relevant task. 

At this point, the combination of migration learning 

and deep reinforcement learning can reduce the 

number of interactions between the agent and the 

environment. Therefore, using migration learning to 

allow deep reinforcement learning methods to solve 

multiple different tasks after a small number of 

debugging may be a key research focus in the future. 

6 Conclusions 

Deep reinforcement learning, as one of the most 

popular research directions in the field of artificial 

intelligence, has gained the attention of many 

professionals. This paper first introduces the current 

research status and development trend of deep 

reinforcement learning, and systematically introduces 

the basic algorithm of reinforcement learning. Then the 

deep reinforcement learning method based on value 

functions and its improvement methods are introduced 

in detail, including methods to improve the training 

logic of algorithms: DDQN, DQNfD, Least Squares 

DQN and Average DQN, methods to improve the 

network structure: Dueling DQN, DRQN and 

Bootstrap DQN, methods to improve by adding new 

mechanisms: DQN with preferential replay and DQN 

with internal fear mechanism, followed by a detailed 

description of the machine improvement method of 

deep reinforcement learning method based on strategy 

gradient. Then, the applications of deep reinforcement 

learning in robot control, algorithm parameter 

optimization and other fields are introduced. Finally, 

the future of deep reinforcement learning is envisioned 

based on the current limitations of deep reinforcement 

learning. Although there are still many challenges in 

the field of deep reinforcement learning, as research 

and the theory continues to develop, deep 

reinforcement learning will become an important part 

of building general artificial intelligence systems. 
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