
A Generic Conversion from Proxy Signatures to Certificate-based Signatures 209

A Generic Conversion from Proxy Signatures to

Certificate-based Signatures

Rufen Huang1,2, Zhenjie Huang1,3, Qunshan Chen1,2

1 School of Computer Science, Minnan Normal University, China
2 Key Laboratory of Data Science and Intelligence Application, Fujian Province University, China

3 Fujian Key Laboratory of Granular Computing, China

hrf@mnnu.edu.cn, zjhuang@mnnu.edu.cn, qschen@mnnu.edu.cn*

*Corresponding Author: Rufen Huang; E-mail: hrf@mnnu.edu.cn

DOI: 10.3966/160792642021012201020

Abstract

The proxy signature (PS) and the certificate-based

signature (CBS) are both popular cryptographic protocol.

The former is a special signature which allows an entity

to delegate his signing rights to another, while the later is

another attractive cryptography primitive whose original

motivation is to simplify certificate’s management and to

eliminate key escrow problem. However, there is a

drawback in the existing security model of PS, and there

are something in common between the CBS and the PS.

In the paper, we first analyze the drawback of the existing

security model of PS. Secondly, we propose an improved

security model for PS which is stronger than the existing

one to overcome its drawback, new model allows an

adversary of PS to issue both queries for different proxy

signers but the same original signer. Thirdly, we

proposed a new paradigm PS-2-CBS which is a generic

conversion from an existing secure PS to a secure CBS

after analyzed the relationship between the CBSs and the

PSs. and prove that our PS-2-CBS is secure if the

underlying PS is secure under improved security model

of PS. Finally, an example of PS-2-CBS is gave.

Keywords: Certificate-based signature, Conversion,

Delegation, Proxy signature, Security model

1 Introduction

Proxy signature (PS) is a special signature which

allows an entity to delegate its signing rights to another,

and it was invented y Mambo et al. [1]. In a PS, there

are two entities involved, including an original signer

and a proxy signer. A PS protocol allows an original

signer to delegate its signing power to a proxy signer,

who can sign messages on behalf of the original signer.

The PS was found a lot of practical applications,

particularly in mobile communications [2], electronic

commerce [2] and distributed computing [3] etc.,

where delegation of signing rights is very common.

According to the types of delegation, the proxy

signature can be classified into full delegation, partial

delegation, delegation by warrant, and partial

delegation with warrant [4]. A number of proxy

signature schemes have been introduced, such as

partial delegation [1], delegation by warrant ([3] and

[5]), and partial delegation with warrant [4]. Among

them, the full delegation systems are the least secure

and impractical in practice, and the delegation by

warrant systems are more practical, and are used more

generally. The research of PS have aroused great

interest of scholars, various PS schemes have been

proposed, such as PS with revocable anonymity ([6]

and [7]), quantum PS ([8] and [9]), transitive [10], ID-

based PS [11], lattice-Based PS [12], and attribute-

Based PS [13].

The certificate-based cryptography (CBC) was first

proposed by Gentry [14] in Eurocrypt 2003, whose

original motivation is to simplify certificate management

procedures, The certificate-based signature (CBS) was

introduced by Kang et al. [15] to extending the idea of

Gentry’s CBC. The CBS simplified use and

management of certificates in the conventional PKI-

based signature system and to overcome key escrow

problem in identity-based signature system [16]. There

are a Certificate Authority (CA) and a signer in a CBS

scheme. The signer generates himself key pair and

requests a certificate from the CA, while the certificate

in a CBS as a part of the signing key, and the public

key be included in the certificate which corresponds to

signer. In this way, there isn’t to check the existence of

certificate. Since Kang et al.’s [15] first CBS scheme, a

number of definitions, security models and schemes of

CBS are presented continually, such as Li et al.’s

security model and efficient construction of CBS [17],

Au et al.’s certificate-based (linkable) ring signature

scheme [18], Kumar et al.’s proxy blind CBS scheme

[19], Li et al. CBS scheme without pairings [20]. In

addition, there are some extensions of the basic CBS

schemes, such as Huang et al.’s blind scheme [21], and

Ma et al.’s aggregation scheme [22].

However, little work has been conducted to deal

with the conversion between the CBS and the PS. In

210 Journal of Internet Technology Volume 22 (2021) No.1

2014, Huang et al. [23] proposed a generic construction

from certificate-based Signature to proxy signature.

There are still no paper about the conversion from PS

to CBS. The CBS simplifies the use and management

of certificates, and overcomes key escrow problem,

and it has drawn much attention due to its unique

advantages and has gained many achievements over

the years. In the paper, we propose a generic

construction PS-2-CBS from an existing secure PS to a

CBS.

The contributions of the paper are summarized as

follows. First, we analyze the definitions and security

model for CBS and PS delegated by warrant, and

illustrate that the existing security model of PS isn’t

perfect, because it doesn’t allow adversaries to issue

delegation query oracles and proxy-sign query oracles

for different proxy signer but same original signer.

Second, we introduce an improved security model for

PS which is stronger than the previous, and allows that

an adversary queries the delegation query oracles and

proxy-sign query oracles on different proxy signers

possibly but the same original signer. The improved

one overcomes the disadvantage of the previous. Third,

we proposed a new paradigm PS-2-CBS which is a

generic conversion from an existing secure PS to a

secure CBS. That means we construct a new CBS

scheme PS-2-CBS from an existing secure PS scheme.

Table 1 lists the abbreviations and notations in the

paper.

Table 1. Abbreviations and notations used in our work

Notation Meaning

CBS Certificate-based signature

PS Proxy signature

PS-2-CBS
A conversion from a proxy signature to a

certificate-based signature

CPS a challenger of the proxy signature

CCBS
a challenger of the certificate-based

signature

ΠCB a certificate-based signature scheme

ΠPS a proxy signature scheme

The rest of the paper is organized as follows. In

Section 2, we give a brief summary about related

syntax, adversarial types and security model of PS, and

propose an improved security model for PS. We sketch

the necessary definitions for CBS in Section 3. In

Section 4, we introduce a generic conversion PS-2-

CBS form the existing PSs to the CBSs, and prove that

our PS-2-CBS is secure in the random oracle model. In

Section 5, an example is given to illustrate the

application of our new paradigm PS-2-CBS. Finally,

we make a brief concluding remarks in Section 6.

2 The Proxy Signatures

We first review the syntax and security model for

the PS [24], then analyse the drawback in existing

security model of PS, and introduce an improved

security model which is more perfect than the previous.

For convenience, we use the prefix PS- to denote the

PS system throughout the paper.

2.1 The Syntax of PS

A PS scheme delegated by warrant involves two

entities, an original signer and a proxy signer, and is

comprised of five algorithms including PS-Setup, PS-

KeyGen, PS-DeleGen, PS-PSign and PS-Verify.

Definition 2.1 (PS). A proxy signature scheme

delegated by warrant is defined as follows.

‧ PS-Setup(k): Takes input the system security

parameter, and generates the system public parameters

PS-params.

‧ PS-KeyGen(PS-params): Takes input the system

public parameters, the algorithm generates the key

pairs for signers. It includes two sub-algorithms as

follows:

– PS-OKeyGen(PS-params): Generates the original

signer’s private-public key (SKO, PKO).

– PS-PKeyGen(PS-params): Generates the proxy

signer’s private-public key (SKP, PKP).

‧ PS-DeleGen(PS-params, w, SKO): Takes input the

system public parameters, the original signer’s

private key and a warrant, the algorithm generates a

delegation Dw on the warrant w.

‧ PS-PSign(m, PS-params, w, Dw, SKP): Takes input a

message, the system public parameters, a warrant

and its delegation, the proxy signer’s private key,

generates a proxy signature σ which corresponds to

the message m.

‧ PS-Verify(m, ,σ PS-params, w, Dw, PKO, PKP):

Takes input the message/signature pair, the system

public parameters, a warrant and its delegation, the

original signer’s and the proxy signer’s public key.

The algorithm returns “accept” if signature σ is a

valid signature on the message m, otherwise returns

“reject”.

2.2 Security Model for PS

2.2.1 Adversarial Model

There are three types of adversaries with different

capabilities in a PS scheme. A PS scheme is secure if it

can resist each type of adversary.

‧ Adversary A1: Type 1 Adversary A1 has the private

key of the proxy signer, and the public keys of the

original signer and proxy signer, which simulates a

malicious proxy signer.

‧ Adversary A2: Type 2 adversary A2 has the private

key of the original signer, and the public keys of the

original signer and proxy signer, which simulates a

malicious original signer.

‧ Adversary A3: Type 3 Adversary A3 only has the

public keys of original signer and proxy signer,

A Generic Conversion from Proxy Signatures to Certificate-based Signatures 211

which simulates an outside adversary.

2.2.2 The Existing Attack Model

A PS scheme must be existential unforgeable against

adversaries A1, A2 and A3, respectively. It is obvious if a

PS scheme is existential unforgeable against adversaries

A1 and A2, then it must be existential unforgeable

against adversary A3. Therefore, we can only consider

the existential unforgeable against type 1-2 adversaries

for a PS scheme. The existential unforgeability of the

PS is defined by the game1 and game2, in which the

adversaries A1 and A2 will interact with their challenger,

respectively.

Game 1. The existential unforgeability against a type

1 adversary A1 is defined by the following game, in

which the adversaries A1 will interact with its

challenger C.

‧ PS-Setup: The challenger C runs the algorithm PS-

Setup to get the system public parameters PS-

params, and runs the algorithm PS-KeyGen to get

key pair of the original signer and the proxy signer:

(SKO, PKO) and (SKP, PKP), returns PS-params and

(SKP, PKP, PKO) to the adversary A1.

‧ PS-Query Oracles: In polynomial time, the adversary

A1 can request DeleQuery and PSignQuery oracles

adaptively.

(1) DeleQuery: On a new DeleQuery(wi), the

challenger C runs the algorithm PS-DeleGen to

get delegation Dwi, and returns Dwi to the

adversary A1.
(2) PSignQuery: On a new PSignQuery(mj, wi), the

challenger C first issues the PS-DeleQuery(wi) to

obtain the delegation Dwi corresponding the

warrant wi, then runs the algorithm PS-PSign,

and returns a signature σ j on the message mj to

A1.

‧ PS-Output: Adversary A1 outputs a signature forgery
*

σ finally, such that:

– *

σ
 is a valid proxy signature on the message *

m

under the warrant *

w ;

– *

w has never been submitted to DeleQuery;

–(*

m , *

w) has never been submitted to PSignQuery.

Game 2. The existential unforgeability against a type

2 adversary A2 is defined by the following game, in

which the adversaries A2 will interact with its

challenger C.

‧PS-Setup: The challenger C runs the algorithm PS-

Setup to get the system public parameters PS-

params, and runs the algorithm PS-KeyGen to get

key pair of the original signer and the proxy signer:

(SKO, PKO) and (SKP, PKP), returns PS-params and

(SKO, PKO, PKP) to the adversary A2.

‧ PS-Query Oracles: In polynomial time, type 2

adversary A2 can request PSignQuery oracles

adaptively.

– PSignQuery: On a new PSignQuery(mj, wi), the

challenger C returns a signature σ j on mj to A2.

‧ PS-Output: Adversary A2 outputs a forged signature
*

σ
 finally, such that:

– *

σ
 is a valid proxy signature on the message m*

under the warrant w*;

–(*

m , *

w) has never been submitted to PSignQuery.

2.2.3 The Improved Attack Model

As mentioned, the existing security model of PS is

only used in the case of fixed proxy signer and single

one. That means, in the existing security model,

adversary is neither allowed to query other proxy

signers’ delegation except the specified proxy signer,

nor to query other proxy signers’ signature except the

specified proxy signer, and the forged proxy signature

must also be the specified proxy signer’s signature.

Thus, the adversary attack model defined as above is

not strong enough. We will introduce an improved

adversary attack model which allows both queries as

mentioned above. The improved attack model will

overcome the drawback mentioned above and allows

that an adversary queries the delegation query oracles

and the proxy-sign query oracles for different proxy

signers but always the same original signer.

Definition 2.2 (PS-Game1). The game is defined

between a type 1 adversary A1 and a challenger C.

‧ PS-Setup: For a given security parameter k, the

challenger C runs the algorithm PS-Setup to obtain

the system public parameters PS-params, and runs

the algorithm PS-KeyGen to obtain the original

signer O’s key pair (SKO, PKO), returns PS-params

and PKO to the adversary A1.

‧ PS-Query Oracles: In polynomial time, the

adversary A1 can request PKeyQuery, DeleQuery

and PSignQuery oracles adaptively.

(1) PKeyQuery: Let Pi denote the identity of a proxy

signer. On a new PKeyQuery(Pi), the challenger

C returns the proxy signer Pi’s key pair (SKPi,

PKPi) to A1.

(2) DeleQuery: On a new DeleQuery(wj, Pi), the

challenger C returns a delegation Dwj to A1.

(3) PSignQuery: On a new PSignQuery(m, wj, Pi),

the challenger C returns a signature σ to A1.

‧ PS-Output: Adversary A1 outputs a forged proxy

signature *

σ on the message *

m under warrant *

w

for the proxy signer *

P
 finally, such that:

– *

σ
 is a valid proxy signature on the message *

m

under the warrant *

w and the proxy signer *

P ;

– (*

,w *

P) has never been submitted to DeleQuery;

– *(,m
*

,w
*)P has never been submitted to

PSignQuery.

Definition 2.3 (PS-Game 2). The game is defined

between a type 2 adversary A2 and a challenger C.

212 Journal of Internet Technology Volume 22 (2021) No.1

‧ PS-Setup: For a given security parameter k, the

challenger C runs the algorithm PS-Setup to obtain

the system public parameters PS-params, and runs

the algorithm PS-OKeyGen to obtain the original

signer O’s key pair (SKO, PKO), gives PS-params

and (SKO, PKO) to the adversary A2.

‧ PS-Query Oracles: In polynomial time, the adversary

A2 can request PKeyQuery, ReleaseQuery and

PSignQuery oracles adaptively.

(1) KeyQuery: Let Pi denote the identity of a proxy

signer. On a new PKeyQuery(Pi), the challenger

C returns the proxy signer Pi’s public key PKPi to

A2.

(2) ReleaseQuery: On a new ReleaseQuery(Pi), the

challenger C returns Pi’s private key SKPi to A2.

(3) PSignQuery: On a new PSignQuery(m, wj, Pi),

the challenger C returns a signature σ to A2.

‧ PS-Output: Adversary A2 outputs a forged signature
*

σ finally, such that:

– *

σ
 is a valid proxy signature on the message *

m

under the warrant *

w and the proxy signer *

P ;

– *

P has never been submitted to ReleaseQuery;

– *(,m *

,w *)P has never been submitted to

PSignQuery.

Definition 2.4 (Unforgeability of PS). A proxy

signature scheme is existential unforgeable under

adaptively chosen message attacks iff the probability of

success that any polynomial bounded adversary A1 and

A2 win the PS-Game 1 and PS-Game 2 respectively is

negligible.

3 The Certificate-based Signatures

We review the definitions of CBS [17], and use the

prefix CB- to denote a CBS system in the paper.

3.1 The Syntax of CBS

Definition 3.1 (CBS). A certificate-based signature

scheme involves two entities, a CA and a signer, and is

comprised of five algorithms.

‧ CB-Setup(k): Takes input a security parameter, and

generates the CA’s master key pair (mpk, msk) and

the system public parameters CB-params.

‧ CB-UKeyGen(CB-params, ID): Takes input the

system public parameters and the signer’s identity,

generates (PKID, SKID) as the signer’s public/private

key.

‧ CB-CertGen(CB-params, msk, ID, PKID): Takes

input the system public parameters, the CA’s master

secret key, the signer’s identity and his public key,

generates a signer’s certificate CertID.

‧ CB-Sign(m, CB-params, ID, SKID, CertID): Takes

input a message, the system public parameters, the

signer’s identity and his private key, certificate,

generates a signature σ which corresponds to the

message m.

‧ CB-Verify(m, ,σ CB-params, mpk, ID, PKID): Takes

input a message/CBS pair, the system public

parameters, the CA’s master public key, the signer’s

identity and his public key, outputs “accept” if σ is

valid signature, otherwise, outputs “reject”.

3.2 Security Model of CBS

There are two types of adversaries with different

capabilities, AI and AII. A CBS scheme must be secure

against each type of adversaries. The type I adversary

AI simulates the scenario where the adversary is

allowed to replace public keys of any entities except

the certifier, and AI is in possession of the private key

of the signer, but doesn’t know anything about the

CA’s master secret key. The type II adversary AII

simulates a malicious CA which is able to produce

certificate but is not allowed to replace the target

signer’s public key, and doesn’t know anything about

the signer’s private key. The unforgeability of the CBS

is defined by two games CB-Game 1 and CB-Game 2,

in which AI and AII will interact with their challenger C,

respectively.

Definition 3.2 (CB-Game 1). The CB-Game 1 is

defined by the following game.

‧ CB-Setup: The challenger C runs CB-Setup(k),

returns the system public parameters CB-params and

the system master public key mpk to the adversary

AI, and keeps the system master secret key msk by

himself.

‧ CB-Query Oracls: In polynomial time t, the

adversary AI issues query oracles as follows:

(1) UKeyQuery. On a new UKeyQuery(IDi), if IDi

has already been created, nothing is to be

performed by the challenger C, otherwise, the C

runs CB-UKeyGen and returns IDi’s key pair

(SKIDi, PKIDi) to AI .

(2) CertQuery. On a new CertQuery(IDi, PKIDi), the

challenger C returns a certificate CertIDi to AI.

(3) ReplPKQuery. On a new ReplPKQuery(IDi), the

adversary AI replaces IDi ’s public key with a new

value PK’
IDi which is chose by himself.

(4) SignQuery. On a new SignQuery(m, IDi, PKIDi),

C runs CB-Sign and returns a signature σ to AI.

‧ CB-Output: Adversary AI outputs a signature forgery
*

σ
 finally such that:

– *

σ
 is a valid signature on the message *

m under

the public key PKID
* with the identity ID*;

– (ID*, PKID
*) has never been submitted to

CertQuery oracle;

– (m*, ID*, PKID
*) has never been submitted to

SignQuery oracle.

Definition 3.3 (CB-Game 2). The CB-game 2 is

defined by the following game.

‧ CB-Setup: The challenger C runs the algorithm CB-

Setup(k), returns the system public parameters CB-

A Generic Conversion from Proxy Signatures to Certificate-based Signatures 213

params and the system master key pair (mpk, msk)

to the adversary AII .

‧ CB-Query Oracles: In polynomial time t, the

adversary AII can adaptively issue the UKeyQuery,

CorruptionQuery and SignQuery oracles, but

doesn’t issue CertQuery oracles, because AII has the

knowledge of the CA’s master secret key msk and he

can generate the signer’s certificate.

(1) UKeyQuery. On a new UKeyQuery(IDi), the

challenger C runs the algorithm CB-UKeyGen

and returns IDi’s public key PKIDi to AII .

(2) CorruptionQuery. On a new CorruptionQuery(IDi),

the challenger C returns IDi’s private key SKIDi to

AII if IDi has been created.

(3) SignQuery. The SignQuery is similar to CB-

Game 1.

‧ CB-Output: Adversary AII outputs a signature forgery
*

σ finally such that:

– *

σ
 is a valid signature on the message m* under

the public key PKID
* with the identity ID*;

– ID* has never been submitted to CorruptionQuery

oracle.

– (m*, ID*) has never been submitted to SignQuery

oracle.

Definition 3.4 (Unforgability of CBS). If and only if

the probability is negligible that any polynomial

bounded adversary AI and AII win the two games

defined above, then a CBS scheme is existential

unforgeable under adaptively chosen message attack.

4 The Generic Conversion from PS to CBS

We are aware of the common between CBS and PS

through analyzed the similarities and differences

between CBS and PS, and present a generic conversion

PS-2-CBS from an existing PS to a CBS, and prove its

security.

4.1 Comparisons

PS and CBS are completely different signature and

are developed independently, but We find there are

something in common between them.

First, there are two participants either in a CBS or a

PS scheme. That is, there are a CA and a signer in a

CBS scheme, and the CA generates an up-to-date

certificate which corresponds a signer’s identity and

public key, while there are an original signer and a

proxy signer in a PS scheme, and the original signer

generates an authorization information which contains

the signers’ identity and scope of proxy signing and the

valid period. Secondly, the action of two participants in

a CBS is similar to that in a PS. More specifically, the

CA in a CBS is similar to the original signer in a PS,

they will both generate an authorization for another

signer. That is, a delegation for the proxy signer in a

PS or a certificate for the signer in a CBS, the signer in

a CBS is similar to the proxy signer in a PS. They will

both generate a valid signature by using authorization

information and their own private key. In which, the

authorization information is a certificate in CBS and a

delegation in PS. Thirdly, either the CBS or the PS, two

pieces of secret information are required when

generating a signature. That is, it will require both a

proxy signer’s private key and a delegation when

generating the PS on a message, while it will require

both a signer’s private key and a certificate when

generating the CBS on a message.

4.2 The Conversion from PS to CBS

We introduce a generic conversion from a secure PS

to a secure CBS to construct a PS-2-CBS below. We

will use ΠPS to denote a PS scheme, and ΠCB to

denote a CBS scheme below.

‧ CB-Setup: Takes inputting a security parameter k,

runs PS-Setup(k) of ΠPS to get PS-params, then runs

OKeyGen(PS-params) of ΠPS to get (SKO, PKO).

Sets CB-params=PS-params, mpk=PKO, msk=SKO.

Returns CB-params as the system public parameters

and (mpk, msk) as the system master key pair of ΠCB.

‧ CB-UKeyGen: Takes inputting the system public

parameters CB-params and the signer’s identity ID,

sets PS-params=CB-params, runs PKeyGen(PS-

params) of ΠPS to get (SKP, PKP), and sets (SKID,

PKID)=(SKP, PKP). Returns (SKID, PKID) as the

signer ID’s key pair of ΠCB.

‧ CB-CertGen: Takes inputting the system public

parameters CB-params and the system maser secret

key msk, a signer’s identity ID and his public key

PKID, sets PS-params=CB-params, w=ID||PKID,

SKO=msk, runs PS-DeleGen(PS-params, w, SKO) of

ΠPS to get Dw, then sets CertID=Dw. Returns CertID

as the signer ID’s certificate.

‧CB-PSign: Takes inputting a message m to be signed,

the system public parameters CB-params, a signer’s

identity ID and his private key SKID, certificate

CertID, sets PS-params=CB-params, w=ID||PKID,

Dw=CertID, SKP=SKID, runs PS-PSign(m, PS-params,

w, Dw, SKP) of ΠPS to gets a signature σ . Returns

σ as a CBS on m.

‧ CB-Verify: Takes inputting a message m and the

corresponding signature σ , public parameters CB-

params, the master public key mpk, a signer’s

identity and public key pair (ID, PKID), sets PS-

params=CB-params, w=ID||PKID, Dw=CertID,

PKO=mpk, PKP=PKID. Returns PS-Verify(m, ,σ PS-

params, w, Dw, PKO, PKP).

4.3 Security Proof

Theorem 1 (Unforgeability). The constructed PS-2-

CBS scheme is existential unforgeable against

adaptively chosen-message attack if the underlying PS

scheme is secure in improved security model of PS.

214 Journal of Internet Technology Volume 22 (2021) No.1

Lemma 1. The proposed PS-2-CBS scheme is

existential unforgeable against type I adversary CB-AI

if the underlying PS scheme is existentially

unforgeable against type 1 adversary PS-A1 under

adaptively chosen-message attack in improved security

model of PS.

Proof: We denote a type I adversary of CBS by CB-

AI. Assume that CB-AI can win CB-Game 1 of PS-2-

CBS, then we can construct a type 1 adversary PS-A1 to

win the PS-Game 1 for underlying PS scheme, in

which, PS-A1 is the challenger CCB simultaneously. We

denote a challenger of the PS by CPS.

‧ CB-Setup: The challenger CPS first runs PS-Setup(k)

of Π PS to obtain PS-params, then runs PS-

OKeyGen(PS-params) of ΠPS to get (SKO, PKO),

returns {PS-params, PKO} to PS-A1. PS-A1 sets CB-

params=PS-params, mpk=PKO, returns

{CB−params, mpk} to CB-AI.

‧ CB-Query Oracles: Type I adversary CB-AI issue the

following query oracles adaptively:

– UKeyQuery: For a new query IDi, type I

adversary CB-AI gives IDi to PS-A1, PS-A1 sets

Pi=IDi, and sends to the challenger CPS. The

challenger CPS issues the PKeyQuery(Pi), and

returns Pi’s key pair (SKPi, PKPi) to PS-A1; PS-A1

sets (SKIDi, PKIDi) = (SKPi, PKPi), returns (SKIDi,

PKIDi) to CB-AI.

– CertQuery: For a new query (IDi, PKIDi), type I

adversary CB-AI gives (IDi, PKIDi) to PS-A1, PS-

A1 sets wi=IDi||PKIDi, Pi=IDi and sends to the

challenger CPS. The challenger CPS issues

DeleQuery(wi, Pi), and returns Dwi to PS-A1; PS-

A1 sets CertIDi=Dwi, and returns CertIDi to CB-AI.

– ReplPKQuery: When CB-AI makes the query on

(IDi, PK’
IDi), CCB sets PK’

IDi as the current public

key.

– SignQuery: For a new query (mj, IDi, PKIDi), type

I adversary CB-AI sends (mj, IDi, PKIDi) to PS-A1,

PS-A1 sets wi=IDi||PKIDi, Dwi=CertIDi, Pi=IDi and

sends to the challenger CPS. The challenger CPS

issues PSignQuery(mj, wi, Pi) to obtain a signature

σ j, and returns σ j to PS-A1; PS-A1 returns σ j to

CB-AI.

‧ CB-Output: Finally, CB-AI outputs a forged CBS *

σ

on m* for a target ID* and PKID
*. CB-AI sets

w*=ID*||PKID
, P=ID*, outputs (m*, *

,σ w*) as a PS

forgery. If *

σ
 is a valid CBS forgery for a target ID*

and PKID
*, then *

σ must be a valid PS under the

warrant w* and the proxy signer P*. This means that

if we forge a CBS signature *

σ , then *

σ must be a

forgery of PS, and our PS-2-CBS scheme is

existentially unforgeable against type I adversary

CB-AI if underlying PS scheme is existentially

unforgeable against type 1 adversary PS-A1 in

improved security model of PS. The proof process is

illustrated in Figure 1.

Figure 1. Proof diagram of PS-2-CBS Game 1

Lemma 2. The proposed PS-2-CBS scheme is

existential unforgeable against type II adversary CB-AII

if the underlying PS scheme is existentially

unforgeable against type 2 adversary PS-A2 under

adaptively chosen-message attack in improved security

model of PS.

Proof: We denote a type II adversary of CBS by CB-

AII. Assume that CB-AII can win CB-Game 2 of PS-2-

CBS above, then we can construct a type 2 adversary

PS-A2 to win the PS-Game 2 for underlying PS scheme,

in which, PS-A2 is the challenger CCB simultaneously.

We denote a challenger of the PS by CPS.

‧ CB-Setup: The challenger CPS first runs PS-Setup(k)

of ΠPS to obtain PS-params, then runs PS-OKeyGen

(PS-params) of ΠPS to get (SKO, PKO), sends PS-

params, SKO, PKO to PS-A2. PS-A2 sets CB-

params=PS-params, mpk=PKO, msk=SKO, and

returns CB-params, mpk, msk to CB-AII.

‧ CB-Query Oracles: Type II adversary CB-AII issues

adaptively query racles as follows.

– UKeyQuery: For a new query IDi, the adversary

CB-AII gives IDi to PS-A2, PS-A2 sets Pi=IDi and

sends to the challenger CPS. The challenger CPS

issues PKeyQuery(Pi) and returns Pi’s public key

PKPi to PS-A2; PS-A2 sets PKIDi=PKPi, returns

PKIDi to CB-AII.

– CorruptionQuery: For a new query IDi, the

adversary CB-AII gives IDi to PS-A2, PS-A2 sets

Pi=IDi and sends to the challenger CPS. The

challenger CPS issues ReleaseQuery(Pi) and

returns the proxy signer Pi’s private key SKPi to

PS-A2; PS-A2 sets SKIDi=SKPi, and returns SKIDi to

CB-AII.

– SignQuery: For a new query (mj, IDi, PKIDi), the

adversary CB−AII sends (mj, IDi, PKIDi) to PS-A2,

PS-A2 sets wi=IDi||PKIDi, Dwi=CertIDi, Pi=IDi and

sends to the challenger CPS. The challenger CPS

issues PSignQuery (mj, wi, Pi) to obtain a

signature σ j, and returns σ j to PS-A2; PS-A2

A Generic Conversion from Proxy Signatures to Certificate-based Signatures 215

returns σ j to CB-AII.

‧ CB-Output: CB-AII outputs a forged CBS *

σ on the

m* for a target ID* and the public key PKID
* finally.

CBS-AII sets w*=ID*||PKID
, P=ID*, outputs

(m*, *

,σ w*) as a PS forgery. If *

σ is a valid CBS

forgery for a target ID* and PKID
*, then *

σ must be

a valid PS under the warrant w* and the proxy signer

P*. This means that if we forge a CBS signature *

σ

successfully, then the signature *

σ
 must be a

forgery for PS. The proposed PS-2-CBS scheme is

existentially unforgeable against type II adversary

CB-AII if underlying PS scheme is existentially

unforgeable against type 2 adversary PS-A2 in

improved security model of PS. The proof process is

illustrated in Figure 2.

Figure 2. Proof diagram of PS-2-CBS Game 2

5 An Example of PS-2-CBS

We give a concrete example of the PS-2-CBS. We

first sketch out an existing PS scheme [25], and

construct a concrete CBS scheme by using our generic

construction PS-2-CBS based on the scheme [25].

5.1 Underlying PS Scheme

The [25]’s proxy signature scheme consists of the

following algorithms.

‧ Setup: Let k be the system security parameter, G1 be

an additive group with prime order q, P∈G1 is a

generator, and G2 be a multiplicative group of the

same order q. A bilinear pairing is a map e : G1 ×G1

→ G2. H0: {0, 1}*
→G1 and H1: {0, 1}*

→Zq
* are two

distinct cryptographic hash functions. The system

public parameters are params={k, G1, G2, e, q, P, H0,

H1}.

‧ KeyGen: The original signer A picks xA∈Zq
* at

random, outputs the original signer A’s key pair (xA,

PA=xAP). The proxy signer B picks xB ∈ Zq
* at

random, outputs the proxy signer B’s key pair (xB,

PB=xBP).

‧ DeleGen:

– Given a warrant w, the original signer A computes

QB=H0(IDB, PB, w), DAB=xAQB, where IDB is the

identity of proxy signer B. Output DAB as a

delegation under the warrant w;

– The original signer A sends DAB to the proxy

signer B;

– The proxy signer B verifies whether the equation

holds: e(DAB, P)=e(QB, PA);

–The proxy signer B sets (xB, DAB) as his proxy key.

‧ Sign: Given a message m to be signed, the proxy

signer B compute σ =(1÷(H1(m)+xB))DAB. Outputs

σ as a proxy signature on the message m.

‧ Verification: Given a message/signature pair (m, σ),

the system public parameters params, the original

signer A’s public key PA and the proxy signer B’s

public key PB, the algorithm checks the equation

e(σ , H1(m)P + PB)=e(QB, PA). If the equality holds,

outputs “accept”, otherwise, outputs “reject”.

5.2 The Converted PS-2-CBS Scheme

We produce a CBS scheme from the PS which is

illustrated in section 5.1 by using the PS-2-CBS. The

produced certificated-based signature PS-2-CBS

scheme is as follows.

‧ Setup: It is the same as in the Section 5.1 for

generating the system parameters. The algorithm

picks sC ∈Zq
* at random, and sets msk=sC as the

system master secret key, computes mpk=sCP as the

system master public key. The system public

parameters are params={k, G1, G2, e, q, P, H0, H1}.

‧ UKeyGen: Given the system public parameters

params, the system master public key mpk and a

signer’s identity IDA, the algorithm picks sA∈Zq
* at

random, sets SKA=sA and computes PKA=sAP, then

the signer IDA ’s key pair is (SKA, PKA).

‧ CertGen: Given the system public parameters

params, the system master secret key msk, a signer’s

identity IDA and his public key PKA, the algorithm

computes QA=H0(IDA, PKA, IDA||PKA) and

CertA=sCQA, which can be verified by checking the

equation: e(CertA, P)=e(QA, mpk).

‧ Sign: Given a message m to be signed, the system

public parameters params, the system master public

key mpk, a signer’s identity IDA and his public key

PKA. The signer works as follows:

– The temporary signing key is SA=(sA, CertA);

– Computes h=H1(m), σ =(1÷(h+sA))CertA.

Outputs σ as a certificated-based signature on the

message m.

‧ Verifiy: Given a message/signature pair (m, σ), the

system public parameters params, the system master

public key mpk, and a signer’s identity IDA and his

public key PKA, the algorithm works as follows:

– Computes QA=H0(IDA, PKA, IDA||PKA), h=H1(m);

216 Journal of Internet Technology Volume 22 (2021) No.1

– Checks whether the equation e(σ , hP+PKA)=e(QA,

mpk) holds. If it holds, outputs “accept”, otherwise,

outputs “reject”.

6 Conclusion

In this paper, aiming at constructing a generic

conversion PS-2-CBS from PS to CBS, we introduced

an improved security model of PS after analyzed the

drawback of the existing one. In contrast to existing

security model, improved one is stronger and allows an

adversary of PS access to delegation queries and

proxy-sign queries for different proxy signers but the

same original signer. With the help of the improved

security model, we proposed a new paradigm PS-2-

CBS which is a generic conversion from an existing

secure PS to a secure CBS. With the aid of the PS-2-

CBS, we can construct a CBS conveniently by using an

existing PS. Comparing with traditional PKI-based

system and the identity-based system, the certificate-

based signature simplifies use and management of

certificates, and overcomes key escrow problem well.

In the future, we will try to research the relationship

between the special PS and special CBS, and the

convertion of them.

Acknowledgements

The authors acknowledge the Natural Science

Foundation of Fujian Province of China (Grant:

2019J01750), the National Science Foundation of

China (Grant: 61170246), the Education and Scientific

Research Fund for Young and Middle-aged Teachers

of Fujian Province of China (Grant: JA170345).

Besides, the authors would like to thank the

anonymous reviewers for their helpful comments and

suggestions.

References

[1] M. Mambo, K. Usuda, E. Okamoto, Proxy signatures:

delegation of the power to sign messages, Proceedings of

IEICE transactions on fundamentals of electronics,

communications and computer sciences, Vol. E79-A, No 9,

pp. 1338-1354, September, 1996.

[2] J. Dai, X. Yang, J. Dong, Designated-receiver proxy signature

scheme for electronic commerce, International Conference on

Systems, Man and Cybernetics, Washington, DC, 2003, pp.

384-389.

[3] B. C. Neuman, Proxy-based authorization and accounting for

distributed systems, 13th International Conference on

Distributed Computing Systems, Pittsburgh, Pennsylvania,

1993, pp. 283-291.

[4] S. Kim, S. Park, D. Won, Proxy Signatures, Revisited,

Information and Communications Security, Beijing, China,

1997, pp. 223-232.

[5] V. Varadharajan, P. Allen, S. Black, An analysis of the proxy

problem in distributed systems, 1991 IEEE computer society

symposium on research in security and privacy, Oakland, CA,

1991, pp. 255-275.

[6] H. Q. Wang, A Proxy Ring Signature Scheme with Revocable

Anonymity Based on Bilinear Pairings, Journal of Internet

Technology, Vol. 11, No. 5, pp. 627-632, September, 2010.

[7] J. H. Zhang, P. Li, On the Security of a Proxy Ring Signature

with Revocable Anonymity, Journal of Internet Technology,

Vol. 16, No. 7, pp. 1169-1175, December, 2015.

[8] G. B. Xu, Novel Quantum Proxy Signature without

Entanglement, International Journal of Theoretical Physics,

Vol. 54, No. 8, pp. 2605-2612, August, 2015.

[9] H. W. Qin, K. S. Wallace, Tang, T. Raylin, Batch quantum

multi-proxy signature, Optical and quantum electronics, Vol.

50, No. 12, pp. 450.1-450.8, November, 2018.

[10] F. Zhu, X. Tao, C. Lin, W. Wu, A Proxy Transitive Signature

Scheme, Journal of Internet Technology, Vol. 19, No. 4, pp.

1273-1284, July, 2018.

[11] C. Zhou, Z. Cui, G. Gao, On the Security of an Improved

Identity-based Proxy Signature Scheme without Random

Oracles, Journal of Internet Technology, Vol. 19, No. 7, pp.

2057-2068, December, 2018.

[12] F. G. Wu, Y. Wang, Z. Xiao, Z. M. Zheng, An Efficient

Lattice-Based Proxy Signature with Message Recovery, 2017

Security, Privacy, and Anonymity in Computation,

Communication, and Storage: 10th International Conference

(SpaCCS 2017), Guangzhou, China, 2017, pp. 321-331.

[13] C. X. Sun, Y. F. Guo, Y. L. Li, One Secure Attribute-Based

Proxy Signature, Wireless Personal Communications, Vol.

103, No. 2, pp. 1273-1283, November, 2018.

[14] C. Gentry, Certificate-based Encryption and the Certificate

Revocation Problem, International Conference on the Theory

and Applications of Cryptographic Techniques, Warsaw,

Poland, 2003, pp. 272-293.

[15] B. G. Kang, J. H. Park, S. G. Hahn, A Certificate-based

Signature Scheme, Cryptographers’ Track at the Rsa

Conference, San Francisco, CA, 2004, 99-111.

[16] A. Shamir, Identity-Based Cryptosystems and Signature

Schemes, Workshop on the Theory and Application of

Cryptographic Techniques, in: G. R. Blakley, D. Chaum

(Eds), Advances in Cryptology. CRYPTO 1984. Lecture

Notes in Computer Science, vol 196, Springer, Berlin,

Heidelberg, 1985, pp. 47-53.

[17] J. G. Li, X. Y. Huang, Y. Mu, S. Willy, Q. H. Wu,

Certificate-based Signature: Security Model and Efficient

Construction, Public Key Infrastructure: 4th European PKI

Workshop, Palma de Mallorca, Spain, 2007, pp. 110-125.

[18] M. H. Au, J. K. Liu, W. Susilo, T. H. Yuen, Certificate Based

(Linkable) Ring Signature, in: E. Dawson, D. S. Wong (Eds.),

Information Security Practice and Experience. ISPEC 2007.

Lecture Notes in Computer Science, vol. 4464, Springer,

Berlin, Heidelberg, 2007, pp. 79-92.

[19] G. K. Verma, B. B. Singh, H. Singh, Provably Secure

Certificate-Based Proxy Blind Signature Scheme from

Pairings, Information Sciences, Vol. 468, pp. 1-13, November,

A Generic Conversion from Proxy Signatures to Certificate-based Signatures 217

2018.

[20] J. Li, Z. Wang, Y. Zhang, Provably secure certificate-based

signature scheme without pairings, Information Sciences, Vol.

233, pp. 313-320, June, 2013.

[21] R. F. Huang, Q. Nong, Efficient Certificate-Based Blind

Signature Scheme without Bilinear Pairings, Applied

Mechanics and Materials, Vol. 220-223, pp. 2735–2739,

November, 2012.

[22] X. X. Ma, J. Shao, C. Zuo, R. Meng, Efficient Certificate-

Based Signature and Its Aggregation, in: J. Liu, P. Samarati

(Eds.), Information Security Practice and Experience. ISPEC

2017. Lecture Notes in Computer Science, vol. 10701,

Springer, Cham, 2017, pp. 391-408.

[23] R. F. Huang, Z. J. Huang, Q. S. Chen, Provable Secure

Generic Construction of Proxy Signature from Certificate-

based Signature, The Open Automation and Control Systems

Journal, Vol. 6, No. 1, pp. 566-574, December, 2014.

[24] Y. Yong, Y. Mu, S. Willy, Y. Sun, Y. F. Ji, Provably secure

proxy signature scheme from factorization, Journal of

Mathematical and Computer Modelling, Vol. 55, No. 3-4, pp.

1160-1168, February, 2012.

[25] X. Y. Huang, Y. Mu, S. Willy, F. G. Zhang, X. F. Chen, A

Short Proxy Signature Scheme: Efficient Authentication in

the Ubiquitous World, International Conference on

Embedded and Ubiquitous Computing (EUC 2005), Nagasaki,

Japan, 2005, pp. 480-489.

Biographies

Rufen Huang received his M.S. from

Department of Automation at Xiamen

University. She is an professor in the

School of Computer Science at

Minnan Normal University, China.

Her research interests include Network,

cryptography and information security.

She has published research papers in

the area of cryptography and information security.

Zhenjie Huang received the Ph.D.

degree in cryptography from Xidian

University, China in 2005. He is

currently a full professor in the Fujian

Key Laboratory of Granular

Computing and Application, Minnan

Normal University. His current

research interests include cryptography and

information security.

Qunshan Chen received his M.S. in

Mathematics from Xiamen University.

He is a lecturer in the School of

Computer Science at Minnan Normal

University, China. His main research

interests include cryptography and

information security. His main

contribution is in the area of digital signatures. He has

published several research papers in the area of digital

signatures.

218 Journal of Internet Technology Volume 22 (2021) No.1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

