
Cluster-based Task Scheduling Using K-Means Clustering for Load Balancing in Cloud Datacenters 121

Cluster-based Task Scheduling Using K-Means Clustering for

Load Balancing in Cloud Datacenters

Geetha Muthusamy, Suganthe Ravi Chandran

Department of Computer Science and Engineering, Kongu Engineering College, India

geetha@kongu.ac.in, suganthe_rc@kongu.ac.in*

*Corresponding Author: Geetha Muthusamy; E-mail: geetha@kongu.ac.in

DOI: 10.3966/160792642021012201012

Abstract

Load balancing is a process of distributing incoming

tasks to available resources in cloud datacenters, where a

resource exists in terms of a virtual machine (VM).

Proper load balancing results in minimizing the

computation time and improving the resource utilization

rate. Various scheduling algorithms are applied to

achieve load balancing in cloud datacenters. Due to the

heterogeneous nature of resources in the cloud, greedy

approaches are used to schedule the tasks to the VMs.

This paper suggests a cluster-based task scheduling

framework (CBTS) using K-Means clustering by

considering task length and VM capacity. Here, the tasks

are clustered based on their length, and the VMs are

grouped based on their processing capacity. After

clustering, the individual task in each cluster is scheduled

to appropriate VM in the VM groups.The proposed

system performs dynamic load balancing with an aim in

minimizing the makespan and execution time. The

experimental results reveal that the proposed method

produces better results in terms of execution time,

makespan, and deviation in workload than the

conventional Min-Min algorithm and the recently

developed heuristic algorithms such as Online Potential

Finish Time (OPFT), Dynamic Cloud Task Scheduling

(DCTS), and Grouped Task Scheduling (GTS).

Keywords: Cloud computing, Scheduling, Load

balancing, Clustering, Virtualization

1 Introduction

Cloud computing systems belong to a new class of

distributed system that provides computation, storage,

and networking capabilities as a service to the users

through the Internet. These services are offered on-

demand and on a pay-as-you-go model in which the

users are charged based on their usage of the resources.

Large clouds, predominant today, often have functions

distributed over multiple locations from central servers.

Cloud computing relies on sharing of resources to

achieve coherence and economies of scale. Cloud

datacenters provide storage, memory, processing, and

bandwidth [2-3, 8], to process the requests or the tasks

that are submitted by the users. It also enables

convenient, on-demand network access to a shared

pool of configurable computing resources through a

promising technology called virtualization. Virtualization

is the backbone of cloud computing. It is a prominent

technology that enables cloud computing by providing

computational units in terms of virtual resources called

virtual machines (VM) [8]. In the cloud computing

environment, resources can be scaled up by adding VM

instances or scaled down by removing the VM

instances. The independent tasks submitted by the

clients are executed by these VMs in the cloud

computing environment where VMs run in parallel [2,

12-13]. Thus there is a need for scheduling these tasks

in a way that leads to effective resource utilization.

Scheduling [7, 12-19] is a process of allocating

resources to the tasks that are submitted by the cloud

clients at a specific time. The main objective of

scheduling is to minimize the makespan and response

time, maximize resource utilization, and to have a

balanced load on all the machines. A good scheduling

algorithm yields good system performance. Cloud

datacenters [2, 8, 23] consist of numerous heterogeneous

resources. The cost of executing a task and completion

time of a task in the cloud depends on the nature of the

resource to which it has been assigned. Hence,

scheduling [4-6,18] the tasks to heterogeneous resources

in the cloud environment is said to be a challenging

issue and it is also known to be an NP-complete

problem. Some scheduling algorithms like First Come

First Serve (FCFS), Shortest Job First (SJF), Round

Robin (RR), Min-Min, Max-Min algorithms exists, but

these are not considered as a much better solution to

the scheduling problems in cloud computing. The

research community has contributed to providing

different solutions to the scheduling problem. Some

people tried with heuristic methods and some with

optimization techniques. Still there is a need for a

better scheduling approach to solving the scheduling

problem and improve the performance of datacenters

by improving the performance metrics. Hence, to

provide a solution to the scheduling problem, cluster-

based task scheduling (CBTS) framework using the K-

122 Journal of Internet Technology Volume 22 (2021) No.1

Means clustering is proposed which clusters the tasks

based on the task length. Tasks in each cluster are

scheduled to suitable VMs according to their processing

capacity.

The rest of the report is organized as follows: In

Chapter 2, related work is reviewed. Chapter 3 depicts

the proposed scheduling framework and describes the

mathematical model and the implementation details of

the proposed system. Experimental evaluation is

illustrated in Chapter 4. Finally, in Chapter 5, the

conclusion and future work are discussed.

2 Literature Review

Various heuristic-based and optimization-based

scheduling algorithms have been proposed in the

literature to address the scheduling problem. Task

grouping and VM grouping based scheduling

algorithms have been designed by Ali et al. [1],

Alworafi et al. [20], Marphatia [21], Pawar and Wagh

[22], Thomas et al. [23], and Zhang and Zhou [24].

Each of these algorithms differs in the way the tasks

are grouped. The scheduling algorithm in [1] divides

the tasks in to five different categories inorder to

reduce execution time and average latency of tasks and

also to balance the workload on the machines.

Alworafi et al. [20] grouped the tasks based on the

user-assigned priority and the VMs based on their

processing speed. The authors did not address the issue

related to the tasks with same priority. Also task

grouping may not be fair as it considers the priority

assigned by the user. Instead of user-assigned priority,

the tasks may be ranked based on their length and

bandwidth requirements. An optimized version of First

Come First Serve (FCFS) algorithm in [21] classifies

the tasks based on their requirement: either deadline or

execution cost. Tasks in each class are prioritized and

then scheduled to the VMs following different

scheduling approaches for each class of tasks. If any

task belonged to the deadline class, then it is scheduled

to a VM which provides less turnaround time. For a

task which belongs to the cost class, it is scheduled to a

VM which offers minimum execution cost. Thus, tasks

in the two classes are scheduled in a parallel manner

thereby reducing the task completion time. A

scheduling algorithm which makes use of SLA based

resource provisioning and online adaptive scheduling

strategies has been developed in [22]. This algorithm

assigns priority to the tasks based on their earliest start

time and latest start time and the schedules them to the

VMs in a preemptable manner. Here, the VMs are

grouped based on the type of resource they provide.

None of the above algorithms considers the task length

to classify the tasks. As the smaller tasks with high

priority may cause the longer tasks to wait for a long

time, task completion time gets increased and hence

the makespan. In [23], the tasks are grouped based on

their length and user-assigned priority. Initially, task

length difference has been calculated by finding the

difference between the average length and the actual

length. Based on the difference and user priority, the

algorithm assigns credits to the tasks. The dynamic

cloud task scheduling (DCTS) algorithm proposed in

[24] classifies the tasks and creates the necessary VMs

in advance, based on the scheduling history. By this

way, it reduces the time to create the VMs and hence

reduces the completion time of the tasks. This

algorithm makes use of the Bayes classifier to classify

the tasks.

List-based scheduling algorithms namely performance-

effective task scheduling (PETS) and predict earliest

finish time (PEFT) have been devised by Thambidurai

and Ilavarasan [25], and Arabnejad and Barbosa [26]

respectively to schedule workflow tasks in heterogeneous

environments. These algorithms differ in the way the

ranks are computed and assigned to the tasks. PETS

made use of three metrics namely Average Computation

Cost (ACC), Data Transfer Cost (DTC) and the Rank

of Predecessor Task (RPT) to compute the rank,

whereas PEFT employed optimistic cost table (OCT).

Both methods produced better results than heterogeneous

earliest finish time (HEFT) algorithm. QoS-Aware

Scheduler named Paragon has been proposed by

Delimitrou and Kozyrakis [27]. Based on the learning

from the previously loaded tasks, Paragon makes use

of collaborative filtering technique to classify the new

incoming tasks. It also identifies the tasks which

interfere with the incoming tasks and the level of

tolerance with the interference. A greedy algorithm is

used to assign the classified tasks to the server which

has the best configuration and with a workload which

has high tolerance with the incoming task. Thus this

kind of schedule would improve resource utilization

which is evident from the experimental analysis. Post-

processing scheduling algorithm [11] developed by

Tae-Young Choe generated shortest schedules by

allocating parent tasks to different processors. This

algorithm tries to reduce the number of processors

required to execute the tasks. The tasks are represented

as directed acyclic graphs (DAG) which satisfies

Darbha’s Condition. The algorithm also adapted a

maximum matching algorithm to find the maximum

edge cover in the graph to reduce the number of

processors.

Dubey et al. [28] developed a management system

comprising of the ideal distribution algorithm (IDA)

and enhanced IDA (EIDA) to service multiple

organizations in the community cloud. IDA has been

developed to reduce execution cost and makespan in

processing the workflow applications submitted by the

organizations. This has been done using a suitable VM

allocation policy in IDA. The deadline and cost of

executing the applications have been posed as the

constraints during VM allocation. Apart from

minimizing the makespan and execution cost, the

authors also tried to balance the workload on the VMs

Cluster-based Task Scheduling Using K-Means Clustering for Load Balancing in Cloud Datacenters 123

using. In EIDA, the children of smaller tasks are

executed before the parent task so that the

communication cost and execution delay will be

reduced. Those child tasks are allocated to the VMs

which can complete them before their deadline. The

result analysis shows that IDA and EDA perform better

than HEFT, Min-Min, and Max-Min algorithms. Jiayin

Li et al. [29] suggested an optimized resource

allocation mechanism that incorporates two dynamic

scheduling algorithms namely dynamic cloud list

scheduling (DCLS) and dynamic cloud min-min

scheduling (DCMMS). It works well when there is a

severe conflict among the tasks for acquiring the

resources. Scheduling is done in a preemptive manner

and the information about the resources is updated

dynamically. The tasks with high priority are

scheduled using advanced resource allocation scheme

while the other tasks are scheduled by following the

best-effort approach.

In [30], the authors proposed a comparison matrix

technique to perform a pair-wise comparison of tasks

during scheduling for selecting the most important task.

The selected task will be the first to be scheduled to

speed up the task completion time. The authors also

used the analytic hierarchy process (AHP) to determine

the weight of tasks to assign the tasks to suitable

resources. Etminani et al. [31] developed a selective

algorithm that uses the Max-Min and Min-Min

algorithms. It determines to select one of these two

algorithms, depending on the standard deviation of the

expected completion times of the tasks on each of the

resources. A comparison of this algorithm with the

FCFS algorithm shows that this algorithm is more

efficient in minimizing the makespan. QoS Guided

Min-Min Heuristic proposed by He et al. [32] is a new

scheduling mechanism that is based on the traditional

Min-Min algorithm. The QoS considered here is the

bandwidth requirement of the incoming requests or the

tasks submitted by the users. The algorithm first

computes the completion time of all the tasks on all the

hosts and then schedules those tasks whose QoS

request is high. This algorithm works only when the

bandwidth requirement of the tasks varies. El-Kenawy

et al. [14] proposed an improved version of the Max-

Min algorithm named Extended Max-Min Scheduling

using Petrinet for load balancing. It works on the

expected execution time rather than the completion

time as a selection basis. They used Petrinets which are

well suited for modeling the concurrent behavior of

distributed systems. The result shows that this

algorithm achieves schedules with a lower makespan

than the original Max-min.

Nasr et al. [33-36] developed four different

scheduling frameworks called ant colony optimization

simulated annealing (ACOSA), water pressure change

optimization (WPCO), online potential finish time

(OPFT), and highest priority first execute (HPFE) as

solutions to the scheduling problem. ACOSA and

WPCO are optimization-based frameworks while

HPFE and OPFT are heuristic-based frameworks.

ACOSA is a hybrid approach that improves the quality

of the solution and reduces the time complexity of the

algorithm by combining the best features of ACO and

SA. During each iteration, new solutions are obtained

using ACO and the solutions are updated using SA.

ASOCA uses SA to reduce the number of iterations

thereby reducing the time complexity of the algorithm.

In WPCO, due to the change in water pressure, both

the volume and density get changed. Being inspired by

this behavior of water, the authors framed the

scheduling algorithm to distribute the tasks to suitable

VMs. This reduces the makespan and also balances the

workload on the VMs. HPFE is yet another solution to

perform load balancing and also to minimize makespan.

The framework consists of two scheduling algorithms

namely over-scheduler and fewer-scheduler to utilize

the VMs efficiently. Over-scheduler is used when the

number of VMs is less than or equal to the number of

submitted tasks. The scheduling framework makes use

of fewer-scheduler when the number of free VMs is

more than the number of tasks. The extra VMs are used

to execute the next job in the arrival queue so that the

execution time can be reduced. Experimental analysis

proves that both ACOSA and HPFE outperform the

existing Min-Min, HEFT, Minimum Completion Time,

ACO, and SA algorithms. Finally, OPFT is another

heuristic that schedules the independent tasks in such a

way that enhances the QoS metrics such as schedule

length, execution cost, response time, balance degree,

and resource utilization.

Although many contributions have been made by the

research community towards providing a solution for

the scheduling problem in cloud computing, still there

is a need for new solutions to reduce the makespan

further and also to perform load balancing. Hence, a

new scheduling technique namely cluster-based task

scheduling (CBTS) is proposed to minimize the

makespan, execution time, and deviation in workload

among the VMs. Major contributions of the proposed

system are:

1. Cluster the tasks based on their task length using

the K-Means clustering algorithm

2. Group the VMs based on their capacity and

schedule the task clusters to appropriate VM groups

3. Verify the efficiency of the algorithm by testing it

in terms of the QoS metrics such as makespan,

execution time, and deviation in load.

3 System Implementation

3.1 Scheduling Framework

Figure 1 depicts the CBTS framework which

comprises of the following components:

‧ Cloud client

124 Journal of Internet Technology Volume 22 (2021) No.1

‧ Task manager

‧ Load balancer

‧ Resource manager at two levels: Global and Local

‧ Datacenter with multiple servers

Figure 1. Proposed Scheduling Framework

When a client submits tasks to the cloud provider,

the tasks are received by the task manager and kept in

the task queue. A data center consists of multiple

physical servers that provide multiple VMs as the

resources to compute and complete those tasks. Each

server has a local resource manager to maintain

information regarding the VMs such as the number of

active VMs, and their processing, storage, and

bandwidth capacity. There is also a global resource

manager which receives information from the local

managers and maintains a database about the VMs that

run in all the physical servers. The load balancer

collects information about the tasks and VMs from the

task manager and the global resource manager

respectively. After collecting the information, it passes

the same to the scheduler which generates task clusters

and VM groups. The scheduler then allocates tasks in

the task clusters to VMs in the VM groups.

3.2 Mathematical Model

A mathematical model for the research problem is

proposed with the following assumptions:

‧ There are n independent heterogeneous tasks to be

scheduled to and executed in m heterogeneous

machines.

‧ Each task is of length L in terms of number of

instructions (Million Instructions - MI)

‧ Each machine has a processing capacity in terms of

million instructions per second (MIPS)

The scheduling problem is formulated such that n

tasks need to be scheduled to m machines in such a

way that workload on the machines should be in a

balanced state or all the machines should have equal

workload according to their capacity. Also,the total

completion time of the tasks should be reduced. Hence,

the objective of this scheduling problem is to distribute

the tasks to the VMs in such a way that there will be a

minimum deviation in the workload on all VMs. The

objective function is thus formulated as given in

Equation (1)

 () ()minF x σ= (1)

where σ is the standard deviation in workload.

Equations (2-5) are devised to calculate σ .

1

 1, 2, 3, ...,

m

j

j

C C j m VMs
=

= ∀ ∈∑ (2)

1

 1, 2, 3, ...,

n

j i

i

L TL i n tasks

=

= ∀ ∈∑ (3)

where TLi is the length of ith task that is assigned to jth VM

 ()
1

1
n

j

j

L L

N

σ

=

= −∑ (4)

 i
ij

j

TL
PT

C
= (5)

 ij ij ijCT PT WT= + (6)

The notations used in the above-mentioned equations

are as follows:

‧ Cj denotes the CPU capacity of jth VM in terms of

MIPS. Since the tasks are compute-intensive, CPU

resource is given more importance than the other

resources.

‧ TLi represents the length of ith task

‧ PTij is the time taken to execute task i by VM j.

‧ CTij is the time taken by VM j to complete task i

‧ WTij is the time task i has been waiting to get the

response from the CPU of VM j.

3.3 Task Scheduling using K-Means Clustering

Data clustering [38-41] is an important and widely

used technique in data analysis and data mining. The

prime objective of clustering is to split the elements in

a dataset into subsets where elements of the same

group are more similar to each other than the elements

Cluster-based Task Scheduling Using K-Means Clustering for Load Balancing in Cloud Datacenters 125

from different groups. Various clustering techniques

are available in data mining, among which K-Means

clustering is a simple and efficient approach.

Compared to the other data clustering algorithms, K-

Means clustering works efficiently in handling datasets

with a single attribute. It is also fast and easy to

implement. Hence, the proposed system makes use of

K-Means to form task clusters to reduce makespan and

perform a fair distribution of workload among the VMs.

The dataset considered here is the meta-task set

which consists of a batch of tasks that are to be

scheduled to the resources. Tasks are clustered based

on the distance between the task lengths. K in K-

Means refers to the number of clusters, which is to be

defined beforehand. The algorithm starts by randomly

choosing a centroid value for each cluster. As the tasks

are to be clustered in the proposed system, task lengths

are the data points. Tasks are clustered and scheduled

to suitable VMs based on the processing capacity of

VMs. This leads to a balanced workload on all the

VMs. Algorithm 1 summarizes the procedure to form

task clusters using K-Means clustering algorithm.

Algorithm 2 presents the steps involved in the

proposed CBTS scheduling.

Algorithm 1. Task Clustering using K-Means

Clustering Algorithm

Input: Meta-task set with task length

Output: Task clusters TG

Step 1: Select k random instances as the centroids

Step 2: Until clustering converges or other stopping

criteria:

Step 3: For each instance Tl:

Step 4: Find the Euclidean distance d between each

Ti and centroids Sj of all the task clusters

() ()
2

1 1
, j jd T S T S= −

Step 5: Assign Tl to the task cluster TCj such that

()1
, jd T S is minimal

Step 6: For each task cluster TCj, find the mean as

()j jS TCµ= where µ is the mean of all task

lengths in cluster j

Algorithm 2. CBTS Algorithm

Input: task set tSet and VM list vList

Output: Schedule with tasks to VMs

Step 1: With tSet, form task clusters using K-Means

clustering and store each cluster in tgList

Step 2: Calculate the average task length of each

task group

Step 3: Sort the task clusters in descending order

based on their average task length

Step 4: Divide the VMs in vList into k groups and

store each group in vgList

Step 5: Compute the average processing speed of

the VMs in each VM group

Step 6: Sort the VM groups in descending order

based on their average processing speed

Step 7: Count the number of VMs in each VM

group and store the result in the array nVMs

Step 8: for each task cluster in tgList

Step 9: Initialize i and j to 0

Step 10: for each task Ti in TCk

Step 11: Assign Tjto VMjof VGk

Step 12: if (j > = nVMs[k])

Step 13: j=0

Step 14: end if

Step 15: Increment i and j by 1

Step 16: end for

Step 17: end for

Figure 2 shows the task clusters along with the task

length, task id, and average length of each cluster.

Subsequent to task clustering, VMs in the datacenter

are divided into k groups. Here, VMs are grouped

instead of forming VM clusters. The reason is that the

distance between the VMs will be large so that the

cluster formation will not be efficient. Inefficient

clusters will increase the execution time and makespan.

Hence, VMs are just divided into k groups, where k

represents the number of task clusters. For example, if

there are 15 VMs, each group will have 5 VMs. If there

are 17 VMs, two groups will have 6 VMs each and the

other one will have the remaining 5 VMs. Figure 3

shows the VM groups and the VMs in each group

along with their processing capacity and average

processing capacity of each VM group.

Figure 2. Task Clusters (TC)

126 Journal of Internet Technology Volume 22 (2021) No.1

Figure 3. VM Groups (VG)

After clustering the tasks and grouping the VMs, the

task cluster with maximum average task length is

assigned to the VM group with maximum average

capacity. Here, TC2 has the highest average length and

VG1 has the highest average processing capacity.

Hence, TC2 is assigned to VG1, TC1 is assigned to

VG2, and TC3 is assigned to VG3. Consider TC2 and

VG1 where the individual task needs to be assigned to

a suitable VM in VG1. Figure 4 describes the

scheduling of each task in TC2 to a suitable VM in

VG1.

Figure 4. Schedule of Tasks in TC2 to VMs in VG1

4 Experimental Evaluation

4.1 Performance Metrics

The performance metric is a standard definition of a

measurable quantity that indicates some aspect of

performance. It should be measurable and consistent

with the performance goals of the scheduling problem.

Any solution to the scheduling problem should try to

minimize the makespan and execution time of the tasks.

Hence, the proposed method was evaluated using these

metrics.

Makespan: Makespan is defined as the maximum

time taken by a VM to complete the tasks in the task

queue. It is denoted as the maximum of the completion

time of all the tasks which is given by equation (7).

 MCT = max{ }1, 2, 3, .., , 1, 2, ...,jCTi i m j n∈ ∈ (7)

Execution time: It is the amount of time taken by a

VM to run or execute a task. Here, average execution

time defined in equations (8) and (9) is used to

measure the performance of the datacenter.

 i
ij

j

T
ET

L

= (8)

1 1

m n

ij

j i
ET

n

ET

= =

=

∑∑ (9)

Standard deviation: Standard deviation (σ) presented

in equation (4) is a metric that is used to find the

deviation of workload among the VMs. jL in equation

(6) indicates the load on jVM and L represents the

average load on the VMs.

4.2 Performance Evaluation

The proposed CBTS method is demonstrated using

CloudSim 3.0 [9], a cloud simulation toolkit that

supports both the system and behavioral model of

cloud system components such as data centers, VMs,

and resource provisioning policies and also implements

generic application provisioning techniques that can

easily be extended. Table 1 presents the experimental

setup for the demonstration. The simulation environment

is a 32-bit Windows 7 operating system with core i5

and 8 GB RAM. Google cluster workload is used in

conducting the experiments. Analyzing the Google

cluster workload traces, a realistic Google-like workload

[37] is generated using Monte-Carlo simulation [10].

The analysis reveals that smaller tasks were in the

majority and there were few big tasks. The task size

ranges from 15,000MI to 900,000MI and the same has

been classified as given in Table 2. In CloudSim,

submitCloudlets() in a member function of DataCenter

class. This method has the code to assign the tasks to

VMs and execute the tasks in the VM to which they

have been assigned. Hence, to implement the proposed

scheduling model, submitCloudlets() method is

modified. In addition to that, the Cloudlet class is

extended to include the cluster information of the tasks.

The results obtained through the experiments are

compared with the recently developed task grouping-

based GTS algorithm, dynamic cloud task scheduling

(DCTS) algorithm, and Online Potential Finish Time

(OPFT) algorithm and also with the conventional Min-

Min algorithm.

The results are analyzed based on the performance

metrics which have been discussed in the previous

section. Eight different experiments are carried out by

varying the number of VMs and tasks. The

experiments are conducted by keeping the VM count

as 30 and 50 and the task count as 500, 1000, 1500,

and 2000. Here, both the tasks and the resources

exhibit heterogeneous characteristics.

Cluster-based Task Scheduling Using K-Means Clustering for Load Balancing in Cloud Datacenters 127

Table 1. Experimental Setup

Entity Quantity

Datacenter 1

Physical machines (Hosts) 4

Processing elements (PE) in Host 4-10

Processing capacity of each PE in the hosts 20000-35000 MIPS

Memory (RAM) capacity of Hosts 8/16/32 GB

VMs in Datacenter 30 - 50

PEs in each VM 1

Processing capacity of each PE in the VMs 500-4000 MIPS

Memory capacity of VMs 512-4196 MB

Task length 15000-900000 MI

Task size 60-3000 KB

Number of tasks 100-1000

Number of VMs 30, 50

Number of task clusters and VM groups (k) 3-5

Table 2. Task Classification from the Generated

Workload

Task Size Task Type

15,000-55,000 MI Small

59,000-99,000 MI Medium

101,000-135,000 MI Large

150,000-337,500 MI Extra-Large

525,000-900,000 MI Huge

At first, average execution time is measured and the

resultant values are given in Table 3 and Table 4 for 30

VMs and 50 VMs, respectively. CBTS reduces the

average execution time by 22%, 24.7%, 29.2%, and

33.1 when compared to OPFT, DCTS, GTS, and Min-

Min algorithms, respectively. In CBTS, after task

clustering, tasks with huge length are scheduled to the

VMs which are of high capacity and those with a

smaller length to the VMs of less capacity. This

reduces the average execution time which in turn

reduces the makespan. Hence, using the proposed

method makespan is reduced by 18.6%, 22.8, 42.1%,

and 46.8% than OPFT, DCTS, GTS, and Min-

Minscheduling, respectively.

Table 3. Average Execution Time (sec) for 30 VMs

No. of Tasks CBTS OPFT DCTS GTS Min- Min

500 599 622 635 736 941

1000 1058 1335 1382 1472 1587

1500 1549 2107 2159 2301 2450

2000 2453 3319 3367 3413 3546

Table 4. Average Execution Time (sec) for 50 VMs

No. of Tasks CBTS OPFT DCTS GTS Min- Min

500 370 415 453 498 523

1000 789 893 936 1153 1487

1500 838 1438 1459 1359 1745

2000 1625 2255 2304 2486 2713

Figure 5 and Figure 6 depict the improvement

obtained for makespan. The last and important metric

is the deviation in workload that exists among the VMs.

Any scheduling mechanism should try to distribute the

workload among the VMs based on their capacity. The

proposed method has also tried to balance the

workload by clustering the tasks and scheduling those

tasks to appropriate VMs. Hence, it shows an

improvement of about 10.3%, 13%, 54.8%, and 62.3%

in balancing the load on the VMs when compared to

OPFT, DCTS, GTS, and Min-Min algorithms,

respectively. Figure 7 and Figure 8 represent the

deviation in load for the existing and the proposed

methods. The results show that when the number of

tasks increases there is a huge deviation in the

workload in Min-Min and CBTS. But, CBTS, OPFT,

and DCTS maintains a balanced workload on the VMs

even the number of task increases. It is also found that

this increase also increases the makespan due to the

limited capacity of the VMs.

Figure 5. No. of Tasks vs Makespan (30VMs)

Figure 6. No. of Tasks vs Makespan (50 VMs)

128 Journal of Internet Technology Volume 22 (2021) No.1

Figure 7. No. of Tasks vs Deviation in Workload (30

VMs)

Figure 8. No. of Tasks vs Deviation in Workload

(50VMs)

Like CBTS, GTS and DCTS are also grouping based

scheduling algorithms. GTS groups the tasks alone into

five categories based on the type of user and the task

priority that is assigned by the user. Due to user-

assigned priorities, some of the shorter tasks need to

wait for a long time. This is because the user may

assign high priority to longer tasks. This results in

scheduling the tasks to inappropriate VMs. GTS

executes the tasks in the high priority category first and

then moves to the tasks in next category. This increases

the waiting time of the tasks which in turn increases

the execution time. As GTS makes use of Min-Min

algorithm to schedule the tasks in every category, it

increases the makespan and the deviation in workload

when compared to the proposed CBTS algorithm.

DCTS classifies the tasks in to ‘n’ different types based

on the scheduling history of the previously submitted

tasks. It also creates the VMs well in advance to reduce

the completion time of the tasks. But this leads to few

VMs to be not utilized when there are less number of

tasks. Also, more number of task types increases the

time taken to assign the tasks to suitable VMs. But,

CBTS effectively utilizes the available VMs by

considering their processing capacity. It also assigns

the tasks to best suitable VMs by considering both the

task length and VM capacity. Therefore, it is evident

from the analysis that CBTS outperforms the existing

methods in terms of all the QoS metrics.

4.3 Time Complexity Analysis

This section analyses the running time of the

proposed CBTS algorithm with the existing OPFT,

DCTS, GTS, and Min-Min algorithms. The CBTS

algorithm consists of totally 17 steps to perform the

scheduling. Step 1 makes use of the K-Means

clustering algorithm to generate the task clusters. The

inputs to this step are the number of tasks (n), number

of attributes (d) of a task, and number of clusters (k).

Hence, the time complexity is O(k*n*d) [19]. Here, k

is varied from 3 to 5, d is one, but the size of n is

bigger. Therefore, the time complexity is simplified to

O(n). The running time of each step in the CBTS

algorithm is given in Table 5, where the size of ‘n’ is

bigger than ‘m’ and ‘k’. Therefore the time complexity

of CBTS is reduced to O(n). The time complexity of

OPFT and DCTS is O(n) whereas it is O(m*n) for GTS

and Min-Min algorithms. In comparison with the

existing algorithms, CBTS, OPFT, and DCTS result in

less time complexity than the other two algorithms. But,

from the experimental evaluation it is proved that

CBTS enhances the QoS metrics than existing

agorithms. Therefore, it is clear that CBTS outperforms

the existing methods in terms of the QoS metrics.

Table 5. Time Complexity of CBTS

Step (s) Input(s) Input Size
Running

Time

Step 1, Step 2,

and Steps 8-17
Tasks

n (maximum

2000)
O(n)

Step 3 and 6

Number of task

clusters or number

of VM groups

k (maximum 5) O(k)

Steps 4, 5, and 7 Number of m (maximum 50) O(m)

5 Conclusion and Future Directions

Scheduling in a distributed computing environment

such as cloud computing remains to be a challenging

issue, as cloud datacenters comprise of heterogeneous

resources. The number of users and their requests use

to vary dynamically in the cloud. Hence, there is a

need for a scheduling strategy that considers this

Cluster-based Task Scheduling Using K-Means Clustering for Load Balancing in Cloud Datacenters 129

heterogeneity while assigning the requests to the

suitable resources so that the completion time of the

requests is minimized. The proposed scheduling

mechanism generates task clusters based on the

similarity in the task lengths by making use of K-

Means clustering which is a simple and efficient

clustering algorithm. Tasks in the clusters are

scheduled to suitable VMs based on the VM capacity.

From the experimental analysis, it is evident that the

proposed method improves the performance of the

datacenters by minimizing the makespan, execution

time, and deviation in the workload. At present, task

length alone is considered to form the clusters. A task

may be bound to its deadline and the delay in

completion. Therefore, the deadline may also be

included as an additional attribute of the tasks while

forming the task clusters. Nowadays, the research

community has turned their attention towards applying

nature-inspired algorithms to their research problems.

Hence, the scheduling problem in cloud datacenters

can also be addressed with appropriate nature-inspired

algorithms to obtain an optimal schedule.

References

[1] H. G. E. D. H. Ali, I. A. Saroit, and A. M. Kotb, Grouped

Tasks Scheduling Algorithm Based on QoS in Cloud

Computing Network,Egyptian Informatics Journal, Vol. 18,

No. 1, pp. 11-19, March, 2017.

[2] S. Anousha, M. Ahmadi, An improved min-min task

scheduling algorithm in grid computing,in: J. J. H. Park, H. R.

Arabnia, C. Kim, W. Shi, J. M. Gil (Eds.), International

Conference on Grid and Pervasive Computing, Springer,

Berlin, Heidelberg, 2013, pp. 103-113.

[3] G. B. H. Bindu, K. Ramani, C. S. Bindu, Energy aware multi

objective genetic algorithm for task scheduling in cloud

computing, International Journal of Internet Protocol

Technology, Vol. 11, No. 4, pp. 242-249, October, 2018.

[4] H. Cui, Y. Li, X. Liu, A. Ansari, Y. Liu, Cloud service

reliability modelling and optimal task scheduling, IET

Communications, Vol. 11, No. 2, pp. 161-167, January, 2017.

[5] M. A. Alworafi, A. Dhari, A. A. Al-Hashmi, Suresha, A. B.

Darem, Cost-Aware Task Scheduling in Cloud Computing

Environment, International Journal of Computer Network

and Information Security, Vol. 9, No. 5, pp. 52-59, May,

2017.

[6] J. J. Wu, H. J. Chang, Y. F. Ho, P. Liu, Scheduling of

variable-time jobs for distributed systems with heterogeneous

processor cardinality, International Journal of Ad Hoc and

Ubiquitous Computing, Vol. 10, No. 2, pp. 112-121, July,

2012.

[7] U. Rugwiro, C. Gu, W. Ding, Task scheduling and resource

allocation based on ant-colony optimization and deep

reinforcement learning, Journal of Internet Technology, Vol.

20, No. 5, pp. 1463-1475, September, 2019.

[8] A. Bala, I. Chana, Multilevel priority-based task scheduling

algorithm for workflows in cloud computing environment, in:

S. Satapathy, A. Joshi, N. Modi, N. Pathak (Eds.),

International Conference on ICT for Sustainable Development,

Advances in Intelligent Systems and Computing, Springer,

Singapore, 2016, pp. 685-693.

[9] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose,

R. Buyya, CloudSim: a toolkit for modeling and simulation of

cloud computing environments and evaluation of resource

provisioning algorithms, Software- Practice & Experience,

Vol. 41, No.1, pp. 23-50, January, 2011.

[10] Y. Chen, A. S. Ganapathi, R. Griffith, R. H. Katz, Analysis

and Lessons from a Publicly Available Google Cluster Trace,

Technical Report No. UCB/EECS-2010-95, June, 2010.

[11] T. Y. Choe, Task scheduling algorithm to reduce the number

of processors using merge conditions, International Journal

on Computer Science and Engineering, Vol. 4, No. 2, pp.

255-266, February, 2012.

[12] D. B. L. D., P. V. Krishna, Honey bee behavior inspired load

balancing of tasks in cloud computing environments, Applied

Soft Computing, Vol. 13, No. 5, pp. 2292-2303, May, 2013.

[13] T. Dillon, C. Wu, E. Chang, Cloud computing: issues and

challenges, International Conference on Advanced

Information Networking and Applications, Perth, Australia,

2010, pp. 27-33.

[14] E. S. T. El-kenawy, A. I. El-Desoky, M. F. Al-rahamawy,

Extended Max-Min scheduling using Petri Net and load

balancing, International Journal of Soft Computing and

Engineering, Vol. 2, No. 4, pp. 198-203, September, 2012.

[15] S. Kumar, A. Mishra, Application of min-min and max-min

algorithm for task scheduling in cloud environment under

time shared and space shared VM models, International

Journal of Computing Academic Research, Vol. 4, No. 6, pp.

182-190, December, 2015.

[16] T. Mathew, K. C. Sekaran, J. Jose, Study and analysis of

various task scheduling algorithms in the cloud computing

environment, International Conference on Advances in

Computing, Communications and Informatics, New Delhi,

India, 2014, pp. 658-664.

[17] S. Mittal, A. Katal, An optimized task scheduling algorithm

in cloud computing, IEEE 6th International Conference on

Advanced Computing, Bhimavaram, India, 2016, pp. 197-202.

[18] K. Shin, M. Cha, M. Jang, J. Jung, W. Yoon, S. Choi, Task

scheduling algorithm using minimized duplications in

homogeneous systems, Journal of Parallel and Distributed

Computing, Vol. 68, No. 8, pp. 1146-1156, August, 2008.

[19] M. Geetha, R. C. Suganthe, Task scheduling using artificial

bee foraging optimization for load balancing in cloud data

centers, Computer Applications in Engineering Education,

Vol. 28, No. 4, pp. 769-778, July, 2020.

[20] M. A. Alworafi, A. Al-Hashmi, A. Dhari, Suresha, A. B.

Darem, Task-Scheduling in Cloud Computing Environment:

Cost Priority Approach, International Conference on

Cognition and Recognition, Lecture Notes in Networks and

Systems, Springer, Singapore, 2018, pp. 99-108.

[21] A. Marphatia, A. Muhnot, T. Sachdeva, E. Shukla, L. Kurup,

Optimization of FCFS Based Resource Provisioning

130 Journal of Internet Technology Volume 22 (2021) No.1

Algorithm for Cloud Computing, IOSR Journal of Computer

Engineering, Vol. 10, No. 5, pp. 1-5, March-April, 2013.

[22] C. S. Pawar, and R. B. Wagh, Priority Based Dynamic

Resource Allocation in Cloud Computing with Modified

Waiting Queue, International Conference on Intelligent

Systems and Signal Processing(ISSP 2013), Vallabh

Vidyanagar, Gujarat, India, 2013, pp. 311-316.

[23] A. Thomas, G. Krishnalal, V. P. J. Raj, Credit Based

Scheduling Algorithm in Cloud Computing Environment,

Procedia Computer Science, Vol. 46, pp. 913-920, 2015.

[24] P. Y. Zhang and M. C. Zhou, Dynamic cloud task scheduling

based on a two-stage strategy, IEEE Transactions on

Automation Science and Engineering, Vol. 15, No. 2, pp.

772-783, April, 2018.

[25] E. Ilavarasan and P. Thambidurai, Low Complexity

Performance Effective Task Scheduling Algorithm for

Heterogeneous Computing Environments, Journal of

Computer Science, Vol. 3, No. 2, pp. 94-103, February, 2007.

[26] H. Arabnejad and J. G. Barbosa, List Scheduling Algorithm

for Heterogeneous Systems by an Optimistic Cost Table,

IEEE Transactions onParallel and Distributed Systems, Vol.

25, No. 3, pp. 682-694, March, 2014.

[27] C. Delimitrou and C. Kozyrakis, QoS-Aware Scheduling in

Heterogeneous Datacenters with Paragon, ACM Transactions

on Computer Systems, Vol. 31, No. 4, pp. 12:1-12:34,

December, 2013.

[28] K. Dubey, M. Y. Shams, S. C. Sharma, A. Alarifi, M. Amoon,

A. A. Nasr, A Management System for Servicing Multi-

Organizations on Community Cloud Model in Secure Cloud

Environment, IEEE Access, Vol. 7, pp. 159535-159546,

October, 2019.

[29] J. Li, M. Qiu, Z. Ming, G. Quan, X. Qin, Z. Gu, Online

optimization for scheduling preemptable tasks on IaaS cloud

systems, Journal of Parallel and Distributed Computing, Vol.

72, No. 5, pp. 666-677, May, 2012.

[30] D. Ergu, G. Kou, Y. Peng, Y. Shi, Y. Shi, The analytic

hierarchy process: task scheduling and resource allocation in

cloud computing environment, Journal of Supercomputing,

Vol. 64, No. 3, pp. 835-848, June, 2013.

[31] K. Etminani, M. A. Naghibzadeh, A Min-Min Max-Min

selective algorithm for grid task scheduling, 3rd IEEE/IFIP

International Conference in Central Asia on Internet,

Tashkent, Uzbekistan, 2007, pp. 1-7.

[32] X. He, X. Sun, G. Von Laszewski, QoS guided Min-Min

heuristic for grid task scheduling, Journal of Computer

Science & Technology, Vol. 18, No. 4, pp. 442-451, July,

2003.

[33] A. A. Nasr, N. A. El-Bahnasawy, G. Attiya, A. El-Sayed, A

new online scheduling approach for enhancing QOS in cloud,

Future Computing and Informatics Journal, Vol. 3, No. 2, pp.

424-435, December, 2018.

[34] A. A. Nasr, N. A. El-Bahnasawy, G. Attiya, A. El-Sayed,

Cloudlet Scheduling Based Load Balancing on Virtual

Machines in Cloud Computing Environment, Journal of

Internet Technology, Vol. 20, No. 5, pp. 1371-1378,

September, 2019.

[35] A. A. Nasr, K. Dubey, N. A. El-Bahnasawy, S. C. Sharma, G.

Attiya, A. El-Sayed, HPFE: a new secure framework for

serving multi-users with multi-tasks in public cloud without

violating SLA, Neural Computing & Applications, Vol. 32,

No. 11,pp. 6821-6841, June, 2020.

[36] A. A. Nasr, A. T. Chronopoulos, N. A. El-Bahnasawy, G.

Attiya, A. El-Sayed, A novel water pressure change

optimization technique for solving scheduling problem in

cloud computing, Cluster Computing, Vol. 22, No. 2, pp.

601-617, June, 2019.

[37] A. Hussain, M. Aleem, GoCJ: Google Cloud Jobs Dataset,

Mendeley Data, v1, 2018, http://dx.doi.org/10.17632/

b7bp6xhrcd.1#file-e5590a0b-e41b-4c66-a2b9-7a606403d69a.

[38] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R.

Silverman, A. Y. Wu, An efficient k-means clustering

algorithm: analysis and implementation, IEEE Transactions

on Pattern Analysis and Machine Intelligence, Vol. 24, No. 7,

pp. 881-892, July, 2002.

[39] K. Wagstaff, C. Cardie, S. Rogers, S. Schrödl, Constrained K-

means clustering with background knowledge, Eighteenth

International Conference on Machine Learning, San

Francisco, CA, USA, 2001, pp. 577-584.

[40] Z. Yang, X. Qin, W. Li, Y. Yang, A dynamic clustering

algorithm for cloud computing, Information Technology

Journal, Vol. 12, No. 18, pp. 4637-4641, 2013.

[41] F. Y. Yuan, X. C. Zhang, S. B. Luo, Accurate property

weighted K-means clustering algorithm based on information

entropy, Journal of Computer Applications, Vol. 31, No. 6,

pp. 1675-1677, June, 2011.

Biographies

Geetha Muthusamy is a PhD

Candidate in Information and

Communication Engineering at Anna

University, Chennai. She received her

ME (CSE) degree Anna University,

Chennai. Her research interests

include scheduling and load balancing in cloud

computing, optimization algorithms and multimedia.

Suganthe Ravi Chandran is a PhD

Supervisor in Information and

Communication Engineering at Anna

University, Chennai. She has

published more than 25 research

articles in National and International

Journals. Her research interests include Wireless

Networks, Network Security, Blockchain Technology

and Deep Learning.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

