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Abstract 

Load balancing is a process of distributing incoming 

tasks to available resources in cloud datacenters, where a 

resource exists in terms of a virtual machine (VM). 

Proper load balancing results in minimizing the 

computation time and improving the resource utilization 

rate. Various scheduling algorithms are applied to 

achieve load balancing in cloud datacenters. Due to the 

heterogeneous nature of resources in the cloud, greedy 

approaches are used to schedule the tasks to the VMs. 

This paper suggests a cluster-based task scheduling 

framework (CBTS) using K-Means clustering by 

considering task length and VM capacity. Here, the tasks 

are clustered based on their length, and the VMs are 

grouped based on their processing capacity. After 

clustering, the individual task in each cluster is scheduled 

to appropriate VM in the VM groups.The proposed 

system performs dynamic load balancing with an aim in 

minimizing the makespan and execution time. The 

experimental results reveal that the proposed method 

produces better results in terms of execution time, 

makespan, and deviation in workload than the 

conventional Min-Min algorithm and the recently 

developed heuristic algorithms such as Online Potential 

Finish Time (OPFT), Dynamic Cloud Task Scheduling 

(DCTS), and Grouped Task Scheduling (GTS). 

Keywords: Cloud computing, Scheduling, Load 

balancing, Clustering, Virtualization 

1 Introduction 

Cloud computing systems belong to a new class of 

distributed system that provides computation, storage, 

and networking capabilities as a service to the users 

through the Internet. These services are offered on-

demand and on a pay-as-you-go model in which the 

users are charged based on their usage of the resources. 

Large clouds, predominant today, often have functions 

distributed over multiple locations from central servers. 

Cloud computing relies on sharing of resources to 

achieve coherence and economies of scale. Cloud 

datacenters provide storage, memory, processing, and 

bandwidth [2-3, 8], to process the requests or the tasks 

that are submitted by the users. It also enables 

convenient, on-demand network access to a shared 

pool of configurable computing resources through a 

promising technology called virtualization. Virtualization 

is the backbone of cloud computing. It is a prominent 

technology that enables cloud computing by providing 

computational units in terms of virtual resources called 

virtual machines (VM) [8]. In the cloud computing 

environment, resources can be scaled up by adding VM 

instances or scaled down by removing the VM 

instances. The independent tasks submitted by the 

clients are executed by these VMs in the cloud 

computing environment where VMs run in parallel [2, 

12-13]. Thus there is a need for scheduling these tasks 

in a way that leads to effective resource utilization. 

Scheduling [7, 12-19] is a process of allocating 

resources to the tasks that are submitted by the cloud 

clients at a specific time. The main objective of 

scheduling is to minimize the makespan and response 

time, maximize resource utilization, and to have a 

balanced load on all the machines. A good scheduling 

algorithm yields good system performance. Cloud 

datacenters [2, 8, 23] consist of numerous heterogeneous 

resources. The cost of executing a task and completion 

time of a task in the cloud depends on the nature of the 

resource to which it has been assigned. Hence, 

scheduling [4-6,18] the tasks to heterogeneous resources 

in the cloud environment is said to be a challenging 

issue and it is also known to be an NP-complete 

problem. Some scheduling algorithms like First Come 

First Serve (FCFS), Shortest Job First (SJF), Round 

Robin (RR), Min-Min, Max-Min algorithms exists, but 

these are not considered as a much better solution to 

the scheduling problems in cloud computing. The 

research community has contributed to providing 

different solutions to the scheduling problem. Some 

people tried with heuristic methods and some with 

optimization techniques. Still there is a need for a 

better scheduling approach to solving the scheduling 

problem and improve the performance of datacenters 

by improving the performance metrics. Hence, to 

provide a solution to the scheduling problem, cluster-

based task scheduling (CBTS) framework using the K-
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Means clustering is proposed which clusters the tasks 

based on the task length. Tasks in each cluster are 

scheduled to suitable VMs according to their processing 

capacity. 

The rest of the report is organized as follows: In 

Chapter 2, related work is reviewed. Chapter 3 depicts 

the proposed scheduling framework and describes the 

mathematical model and the implementation details of 

the proposed system. Experimental evaluation is 

illustrated in Chapter 4. Finally, in Chapter 5, the 

conclusion and future work are discussed. 

2 Literature Review 

Various heuristic-based and optimization-based 

scheduling algorithms have been proposed in the 

literature to address the scheduling problem. Task 

grouping and VM grouping based scheduling 

algorithms have been designed by Ali et al. [1], 

Alworafi et al. [20], Marphatia [21], Pawar and Wagh 

[22], Thomas et al. [23], and Zhang and Zhou [24]. 

Each of these algorithms differs in the way the tasks 

are grouped. The scheduling algorithm in [1] divides 

the tasks in to five different categories inorder to 

reduce execution time and average latency of tasks and 

also to balance the workload on the machines. 

Alworafi et al. [20] grouped the tasks based on the 

user-assigned priority and the VMs based on their 

processing speed. The authors did not address the issue 

related to the tasks with same priority. Also task 

grouping may not be fair as it considers the priority 

assigned by the user. Instead of user-assigned priority, 

the tasks may be ranked based on their length and 

bandwidth requirements. An optimized version of First 

Come First Serve (FCFS) algorithm in [21] classifies 

the tasks based on their requirement: either deadline or 

execution cost. Tasks in each class are prioritized and 

then scheduled to the VMs following different 

scheduling approaches for each class of tasks. If any 

task belonged to the deadline class, then it is scheduled 

to a VM which provides less turnaround time. For a 

task which belongs to the cost class, it is scheduled to a 

VM which offers minimum execution cost. Thus, tasks 

in the two classes are scheduled in a parallel manner 

thereby reducing the task completion time. A 

scheduling algorithm which makes use of SLA based 

resource provisioning and online adaptive scheduling 

strategies has been developed in [22]. This algorithm 

assigns priority to the tasks based on their earliest start 

time and latest start time and the schedules them to the 

VMs in a preemptable manner. Here, the VMs are 

grouped based on the type of resource they provide. 

None of the above algorithms considers the task length 

to classify the tasks. As the smaller tasks with high 

priority may cause the longer tasks to wait for a long 

time, task completion time gets increased and hence 

the makespan. In [23], the tasks are grouped based on 

their length and user-assigned priority. Initially, task 

length difference has been calculated by finding the 

difference between the average length and the actual 

length. Based on the difference and user priority, the 

algorithm assigns credits to the tasks. The dynamic 

cloud task scheduling (DCTS) algorithm proposed in 

[24] classifies the tasks and creates the necessary VMs 

in advance, based on the scheduling history. By this 

way, it reduces the time to create the VMs and hence 

reduces the completion time of the tasks. This 

algorithm makes use of the Bayes classifier to classify 

the tasks.  

List-based scheduling algorithms namely performance- 

effective task scheduling (PETS) and predict earliest 

finish time (PEFT) have been devised by Thambidurai 

and Ilavarasan [25], and Arabnejad and Barbosa [26] 

respectively to schedule workflow tasks in heterogeneous 

environments. These algorithms differ in the way the 

ranks are computed and assigned to the tasks. PETS 

made use of three metrics namely Average Computation 

Cost (ACC), Data Transfer Cost (DTC) and the Rank 

of Predecessor Task (RPT) to compute the rank, 

whereas PEFT employed optimistic cost table (OCT). 

Both methods produced better results than heterogeneous 

earliest finish time (HEFT) algorithm. QoS-Aware 

Scheduler named Paragon has been proposed by 

Delimitrou and Kozyrakis [27]. Based on the learning 

from the previously loaded tasks, Paragon makes use 

of collaborative filtering technique to classify the new 

incoming tasks. It also identifies the tasks which 

interfere with the incoming tasks and the level of 

tolerance with the interference. A greedy algorithm is 

used to assign the classified tasks to the server which 

has the best configuration and with a workload which 

has high tolerance with the incoming task. Thus this 

kind of schedule would improve resource utilization 

which is evident from the experimental analysis. Post-

processing scheduling algorithm [11] developed by 

Tae-Young Choe generated shortest schedules by 

allocating parent tasks to different processors. This 

algorithm tries to reduce the number of processors 

required to execute the tasks. The tasks are represented 

as directed acyclic graphs (DAG) which satisfies 

Darbha’s Condition. The algorithm also adapted a 

maximum matching algorithm to find the maximum 

edge cover in the graph to reduce the number of 

processors. 

Dubey et al. [28] developed a management system 

comprising of the ideal distribution algorithm (IDA) 

and enhanced IDA (EIDA) to service multiple 

organizations in the community cloud. IDA has been 

developed to reduce execution cost and makespan in 

processing the workflow applications submitted by the 

organizations. This has been done using a suitable VM 

allocation policy in IDA. The deadline and cost of 

executing the applications have been posed as the 

constraints during VM allocation. Apart from 

minimizing the makespan and execution cost, the 

authors also tried to balance the workload on the VMs 



Cluster-based Task Scheduling Using K-Means Clustering for Load Balancing in Cloud Datacenters 123 

 

using. In EIDA, the children of smaller tasks are 

executed before the parent task so that the 

communication cost and execution delay will be 

reduced. Those child tasks are allocated to the VMs 

which can complete them before their deadline. The 

result analysis shows that IDA and EDA perform better 

than HEFT, Min-Min, and Max-Min algorithms. Jiayin 

Li et al. [29] suggested an optimized resource 

allocation mechanism that incorporates two dynamic 

scheduling algorithms namely dynamic cloud list 

scheduling (DCLS) and dynamic cloud min-min 

scheduling (DCMMS). It works well when there is a 

severe conflict among the tasks for acquiring the 

resources. Scheduling is done in a preemptive manner 

and the information about the resources is updated 

dynamically. The tasks with high priority are 

scheduled using advanced resource allocation scheme 

while the other tasks are scheduled by following the 

best-effort approach. 

In [30], the authors proposed a comparison matrix 

technique to perform a pair-wise comparison of tasks 

during scheduling for selecting the most important task. 

The selected task will be the first to be scheduled to 

speed up the task completion time. The authors also 

used the analytic hierarchy process (AHP) to determine 

the weight of tasks to assign the tasks to suitable 

resources. Etminani et al. [31] developed a selective 

algorithm that uses the Max-Min and Min-Min 

algorithms. It determines to select one of these two 

algorithms, depending on the standard deviation of the 

expected completion times of the tasks on each of the 

resources. A comparison of this algorithm with the 

FCFS algorithm shows that this algorithm is more 

efficient in minimizing the makespan. QoS Guided 

Min-Min Heuristic proposed by He et al. [32] is a new 

scheduling mechanism that is based on the traditional 

Min-Min algorithm. The QoS considered here is the 

bandwidth requirement of the incoming requests or the 

tasks submitted by the users. The algorithm first 

computes the completion time of all the tasks on all the 

hosts and then schedules those tasks whose QoS 

request is high. This algorithm works only when the 

bandwidth requirement of the tasks varies. El-Kenawy 

et al. [14] proposed an improved version of the Max-

Min algorithm named Extended Max-Min Scheduling 

using Petrinet for load balancing. It works on the 

expected execution time rather than the completion 

time as a selection basis. They used Petrinets which are 

well suited for modeling the concurrent behavior of 

distributed systems. The result shows that this 

algorithm achieves schedules with a lower makespan 

than the original Max-min.  

Nasr et al. [33-36] developed four different 

scheduling frameworks called ant colony optimization 

simulated annealing (ACOSA), water pressure change 

optimization (WPCO), online potential finish time 

(OPFT), and highest priority first execute (HPFE) as 

solutions to the scheduling problem. ACOSA and 

WPCO are optimization-based frameworks while 

HPFE and OPFT are heuristic-based frameworks. 

ACOSA is a hybrid approach that improves the quality 

of the solution and reduces the time complexity of the 

algorithm by combining the best features of ACO and 

SA. During each iteration, new solutions are obtained 

using ACO and the solutions are updated using SA. 

ASOCA uses SA to reduce the number of iterations 

thereby reducing the time complexity of the algorithm. 

In WPCO, due to the change in water pressure, both 

the volume and density get changed. Being inspired by 

this behavior of water, the authors framed the 

scheduling algorithm to distribute the tasks to suitable 

VMs. This reduces the makespan and also balances the 

workload on the VMs. HPFE is yet another solution to 

perform load balancing and also to minimize makespan. 

The framework consists of two scheduling algorithms 

namely over-scheduler and fewer-scheduler to utilize 

the VMs efficiently. Over-scheduler is used when the 

number of VMs is less than or equal to the number of 

submitted tasks. The scheduling framework makes use 

of fewer-scheduler when the number of free VMs is 

more than the number of tasks. The extra VMs are used 

to execute the next job in the arrival queue so that the 

execution time can be reduced. Experimental analysis 

proves that both ACOSA and HPFE outperform the 

existing Min-Min, HEFT, Minimum Completion Time, 

ACO, and SA algorithms. Finally, OPFT is another 

heuristic that schedules the independent tasks in such a 

way that enhances the QoS metrics such as schedule 

length, execution cost, response time, balance degree, 

and resource utilization. 

Although many contributions have been made by the 

research community towards providing a solution for 

the scheduling problem in cloud computing, still there 

is a need for new solutions to reduce the makespan 

further and also to perform load balancing. Hence, a 

new scheduling technique namely cluster-based task 

scheduling (CBTS) is proposed to minimize the 

makespan, execution time, and deviation in workload 

among the VMs. Major contributions of the proposed 

system are: 

1. Cluster the tasks based on their task length using 

the K-Means clustering algorithm 

2. Group the VMs based on their capacity and 

schedule the task clusters to appropriate VM groups 

3. Verify the efficiency of the algorithm by testing it 

in terms of the QoS metrics such as makespan, 

execution time, and deviation in load. 

3 System Implementation 

3.1 Scheduling Framework 

Figure 1 depicts the CBTS framework which 

comprises of the following components: 

‧ Cloud client 
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‧ Task manager 

‧ Load balancer 

‧ Resource manager at two levels: Global and Local 

‧ Datacenter with multiple servers 

 

Figure 1. Proposed Scheduling Framework 

When a client submits tasks to the cloud provider, 

the tasks are received by the task manager and kept in 

the task queue. A data center consists of multiple 

physical servers that provide multiple VMs as the 

resources to compute and complete those tasks. Each 

server has a local resource manager to maintain 

information regarding the VMs such as the number of 

active VMs, and their processing, storage, and 

bandwidth capacity. There is also a global resource 

manager which receives information from the local 

managers and maintains a database about the VMs that 

run in all the physical servers. The load balancer 

collects information about the tasks and VMs from the 

task manager and the global resource manager 

respectively. After collecting the information, it passes 

the same to the scheduler which generates task clusters 

and VM groups. The scheduler then allocates tasks in 

the task clusters to VMs in the VM groups. 

3.2 Mathematical Model 

A mathematical model for the research problem is 

proposed with the following assumptions: 

‧ There are n independent heterogeneous tasks to be 

scheduled to and executed in m heterogeneous 

machines.  

‧ Each task is of length L in terms of number of 

instructions (Million Instructions - MI) 

‧ Each machine has a processing capacity in terms of 

million instructions per second (MIPS) 

The scheduling problem is formulated such that n 

tasks need to be scheduled to m machines in such a 

way that workload on the machines should be in a 

balanced state or all the machines should have equal 

workload according to their capacity. Also,the total 

completion time of the tasks should be reduced. Hence, 

the objective of this scheduling problem is to distribute 

the tasks to the VMs in such a way that there will be a 

minimum deviation in the workload on all VMs. The 

objective function is thus formulated as given in 

Equation (1)  

 ( ) ( )minF x σ=   (1) 

where σ  is the standard deviation in workload. 

Equations (2-5) are devised to calculate σ . 
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where TLi is the length of ith task that is assigned to jth VM 
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The notations used in the above-mentioned equations 

are as follows: 

‧ Cj denotes the CPU capacity of jth VM in terms of 

MIPS. Since the tasks are compute-intensive, CPU 

resource is given more importance than the other 

resources. 

‧ TLi represents the length of ith task  

‧ PTij is the time taken to execute task i by VM j. 

‧ CTij is the time taken by VM j to complete task i  

‧ WTij is the time task i has been waiting to get the 

response from the CPU of VM j. 

3.3 Task Scheduling using K-Means Clustering 

Data clustering [38-41] is an important and widely 

used technique in data analysis and data mining. The 

prime objective of clustering is to split the elements in 

a dataset into subsets where elements of the same 

group are more similar to each other than the elements 
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from different groups. Various clustering techniques 

are available in data mining, among which K-Means 

clustering is a simple and efficient approach. 

Compared to the other data clustering algorithms, K-

Means clustering works efficiently in handling datasets 

with a single attribute. It is also fast and easy to 

implement. Hence, the proposed system makes use of 

K-Means to form task clusters to reduce makespan and 

perform a fair distribution of workload among the VMs.  

The dataset considered here is the meta-task set 

which consists of a batch of tasks that are to be 

scheduled to the resources. Tasks are clustered based 

on the distance between the task lengths. K in K-

Means refers to the number of clusters, which is to be 

defined beforehand. The algorithm starts by randomly 

choosing a centroid value for each cluster. As the tasks 

are to be clustered in the proposed system, task lengths 

are the data points. Tasks are clustered and scheduled 

to suitable VMs based on the processing capacity of 

VMs. This leads to a balanced workload on all the 

VMs. Algorithm 1 summarizes the procedure to form 

task clusters using K-Means clustering algorithm. 

Algorithm 2 presents the steps involved in the 

proposed CBTS scheduling. 

 

Algorithm 1. Task Clustering using K-Means 

Clustering Algorithm 

Input: Meta-task set with task length 

Output: Task clusters TG 

Step 1: Select k random instances as the centroids 

Step 2: Until clustering converges or other stopping 

criteria: 

Step 3: For each instance Tl: 

Step 4: Find the Euclidean distance d between each 

Ti and centroids Sj of all the task clusters 

( ) ( )
2

1 1
, j jd T S T S= −  

Step 5: Assign Tl to the task cluster TCj such that 

( )1
, jd T S  is minimal 

Step 6: For each task cluster TCj, find the mean as 

( )j jS TCµ=  where µ is the mean of all task 

lengths in cluster j 

 

Algorithm 2. CBTS Algorithm 

Input: task set tSet and VM list vList 

Output: Schedule with tasks to VMs 

Step 1: With tSet, form task clusters using K-Means 

clustering and store each cluster in tgList 

Step 2: Calculate the average task length of each 

task group 

Step 3: Sort the task clusters in descending order 

based on their average task length 

Step 4: Divide the VMs in vList into k groups and 

store each group in vgList 

Step 5: Compute the average processing speed of 

the VMs in each VM group 

Step 6: Sort the VM groups in descending order 

based on their average processing speed 

Step 7: Count the number of VMs in each VM 

group and store the result in the array nVMs 

Step 8: for each task cluster in tgList 

Step 9:      Initialize i and j to 0 

Step 10: for each task Ti in TCk 

Step 11:                Assign Tjto VMjof VGk 

Step 12: if (j > = nVMs[k]) 

Step 13: j=0 

Step 14: end if 

Step 15: Increment i and j by 1 

Step 16: end for 

Step 17: end for 

 

Figure 2 shows the task clusters along with the task 

length, task id, and average length of each cluster. 

Subsequent to task clustering, VMs in the datacenter 

are divided into k groups. Here, VMs are grouped 

instead of forming VM clusters. The reason is that the 

distance between the VMs will be large so that the 

cluster formation will not be efficient. Inefficient 

clusters will increase the execution time and makespan. 

Hence, VMs are just divided into k groups, where k 

represents the number of task clusters. For example, if 

there are 15 VMs, each group will have 5 VMs. If there 

are 17 VMs, two groups will have 6 VMs each and the 

other one will have the remaining 5 VMs. Figure 3 

shows the VM groups and the VMs in each group 

along with their processing capacity and average 

processing capacity of each VM group. 

 

Figure 2. Task Clusters (TC) 
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Figure 3. VM Groups (VG) 

After clustering the tasks and grouping the VMs, the 

task cluster with maximum average task length is 

assigned to the VM group with maximum average 

capacity. Here, TC2 has the highest average length and 

VG1 has the highest average processing capacity. 

Hence, TC2 is assigned to VG1, TC1 is assigned to 

VG2, and TC3 is assigned to VG3. Consider TC2 and 

VG1 where the individual task needs to be assigned to 

a suitable VM in VG1. Figure 4 describes the 

scheduling of each task in TC2 to a suitable VM in 

VG1. 

 

Figure 4. Schedule of Tasks in TC2 to VMs in VG1 

4 Experimental Evaluation 

4.1 Performance Metrics 

The performance metric is a standard definition of a 

measurable quantity that indicates some aspect of 

performance. It should be measurable and consistent 

with the performance goals of the scheduling problem. 

Any solution to the scheduling problem should try to 

minimize the makespan and execution time of the tasks. 

Hence, the proposed method was evaluated using these 

metrics.  

Makespan: Makespan is defined as the maximum 

time taken by a VM to complete the tasks in the task 

queue. It is denoted as the maximum of the completion 

time of all the tasks which is given by equation (7).  

 MCT = max{ }1, 2, 3, .., , 1, 2, ...,jCTi i m j n∈ ∈   (7) 

Execution time: It is the amount of time taken by a 

VM to run or execute a task. Here, average execution 

time defined in equations (8) and (9) is used to 

measure the performance of the datacenter. 
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Standard deviation: Standard deviation (σ) presented 

in equation (4) is a metric that is used to find the 

deviation of workload among the VMs. jL  in equation 

(6) indicates the load on jVM  and L  represents the 

average load on the VMs. 

4.2 Performance Evaluation 

The proposed CBTS method is demonstrated using 

CloudSim 3.0 [9], a cloud simulation toolkit that 

supports both the system and behavioral model of 

cloud system components such as data centers, VMs, 

and resource provisioning policies and also implements 

generic application provisioning techniques that can 

easily be extended. Table 1 presents the experimental 

setup for the demonstration. The simulation environment 

is a 32-bit Windows 7 operating system with core i5 

and 8 GB RAM. Google cluster workload is used in 

conducting the experiments. Analyzing the Google 

cluster workload traces, a realistic Google-like workload 

[37] is generated using Monte-Carlo simulation [10]. 

The analysis reveals that smaller tasks were in the 

majority and there were few big tasks. The task size 

ranges from 15,000MI to 900,000MI and the same has 

been classified as given in Table 2. In CloudSim, 

submitCloudlets() in a member function of DataCenter 

class. This method has the code to assign the tasks to 

VMs and execute the tasks in the VM to which they 

have been assigned. Hence, to implement the proposed 

scheduling model, submitCloudlets() method is 

modified. In addition to that, the Cloudlet class is 

extended to include the cluster information of the tasks. 

The results obtained through the experiments are 

compared with the recently developed task grouping-

based GTS algorithm, dynamic cloud task scheduling 

(DCTS) algorithm, and Online Potential Finish Time 

(OPFT) algorithm and also with the conventional Min-

Min algorithm.  

The results are analyzed based on the performance 

metrics which have been discussed in the previous 

section. Eight different experiments are carried out by 

varying the number of VMs and tasks. The 

experiments are conducted by keeping the VM count 

as 30 and 50 and the task count as 500, 1000, 1500, 

and 2000. Here, both the tasks and the resources 

exhibit heterogeneous characteristics.  
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Table 1. Experimental Setup 

Entity Quantity 

Datacenter 1 

Physical machines (Hosts) 4 

Processing elements (PE) in Host 4-10 

Processing capacity of each PE in the hosts 20000-35000 MIPS

Memory (RAM) capacity of Hosts 8/16/32 GB 

VMs in Datacenter 30 - 50 

PEs in each VM 1 

Processing capacity of each PE in the VMs 500-4000 MIPS 

Memory capacity of VMs 512-4196 MB 

Task length 15000-900000 MI 

Task size 60-3000 KB 

Number of tasks 100-1000 

Number of VMs 30, 50 

Number of task clusters and VM groups (k) 3-5 

Table 2. Task Classification from the Generated 

Workload 

Task Size Task Type 

15,000-55,000 MI Small 

59,000-99,000 MI Medium 

101,000-135,000 MI Large 

150,000-337,500 MI Extra-Large 

525,000-900,000 MI Huge 

 

At first, average execution time is measured and the 

resultant values are given in Table 3 and Table 4 for 30 

VMs and 50 VMs, respectively. CBTS reduces the 

average execution time by 22%, 24.7%, 29.2%, and 

33.1 when compared to OPFT, DCTS, GTS, and Min-

Min algorithms, respectively. In CBTS, after task 

clustering, tasks with huge length are scheduled to the 

VMs which are of high capacity and those with a 

smaller length to the VMs of less capacity. This 

reduces the average execution time which in turn 

reduces the makespan. Hence, using the proposed 

method makespan is reduced by 18.6%, 22.8, 42.1%, 

and 46.8% than OPFT, DCTS, GTS, and Min-

Minscheduling, respectively. 

Table 3. Average Execution Time (sec) for 30 VMs 

No. of Tasks CBTS OPFT DCTS GTS Min- Min

500 599 622 635 736 941 

1000 1058 1335 1382 1472 1587 

1500 1549 2107 2159 2301 2450 

2000 2453 3319 3367 3413 3546 

Table 4. Average Execution Time (sec) for 50 VMs 

No. of Tasks CBTS OPFT DCTS GTS Min- Min

500 370 415 453 498 523 

1000 789 893 936 1153 1487 

1500 838 1438 1459 1359 1745 

2000 1625 2255 2304 2486 2713 

 

Figure 5 and Figure 6 depict the improvement 

obtained for makespan. The last and important metric 

is the deviation in workload that exists among the VMs. 

Any scheduling mechanism should try to distribute the 

workload among the VMs based on their capacity. The 

proposed method has also tried to balance the 

workload by clustering the tasks and scheduling those 

tasks to appropriate VMs. Hence, it shows an 

improvement of about 10.3%, 13%, 54.8%, and 62.3% 

in balancing the load on the VMs when compared to 

OPFT, DCTS, GTS, and Min-Min algorithms, 

respectively. Figure 7 and Figure 8 represent the 

deviation in load for the existing and the proposed 

methods. The results show that when the number of 

tasks increases there is a huge deviation in the 

workload in Min-Min and CBTS. But, CBTS, OPFT, 

and DCTS maintains a balanced workload on the VMs 

even the number of task increases. It is also found that 

this increase also increases the makespan due to the 

limited capacity of the VMs. 

 

Figure 5. No. of Tasks vs Makespan (30VMs) 

 

Figure 6. No. of Tasks vs Makespan (50 VMs) 
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Figure 7. No. of Tasks vs Deviation in Workload (30 

VMs) 

 

Figure 8. No. of Tasks vs Deviation in Workload 

(50VMs) 

Like CBTS, GTS and DCTS are also grouping based 

scheduling algorithms. GTS groups the tasks alone into 

five categories based on the type of user and the task 

priority that is assigned by the user. Due to user-

assigned priorities, some of the shorter tasks need to 

wait for a long time. This is because the user may 

assign high priority to longer tasks. This results in 

scheduling the tasks to inappropriate VMs. GTS 

executes the tasks in the high priority category first and 

then moves to the tasks in next category. This increases 

the waiting time of the tasks which in turn increases 

the execution time. As GTS makes use of Min-Min 

algorithm to schedule the tasks in every category, it 

increases the makespan and the deviation in workload 

when compared to the proposed CBTS algorithm. 

DCTS classifies the tasks in to ‘n’ different types based 

on the scheduling history of the previously submitted 

tasks. It also creates the VMs well in advance to reduce 

the completion time of the tasks. But this leads to few 

VMs to be not utilized when there are less number of 

tasks. Also, more number of task types increases the 

time taken to assign the tasks to suitable VMs. But, 

CBTS effectively utilizes the available VMs by 

considering their processing capacity. It also assigns 

the tasks to best suitable VMs by considering both the 

task length and VM capacity. Therefore, it is evident 

from the analysis that CBTS outperforms the existing 

methods in terms of all the QoS metrics. 

4.3 Time Complexity Analysis 

This section analyses the running time of the 

proposed CBTS algorithm with the existing OPFT, 

DCTS, GTS, and Min-Min algorithms. The CBTS 

algorithm consists of totally 17 steps to perform the 

scheduling. Step 1 makes use of the K-Means 

clustering algorithm to generate the task clusters. The 

inputs to this step are the number of tasks (n), number 

of attributes (d) of a task, and number of clusters (k). 

Hence, the time complexity is O(k*n*d) [19]. Here, k 

is varied from 3 to 5, d is one, but the size of n is 

bigger. Therefore, the time complexity is simplified to 

O(n). The running time of each step in the CBTS 

algorithm is given in Table 5, where the size of ‘n’ is 

bigger than ‘m’ and ‘k’. Therefore the time complexity 

of CBTS is reduced to O(n). The time complexity of 

OPFT and DCTS is O(n) whereas it is O(m*n) for GTS 

and Min-Min algorithms. In comparison with the 

existing algorithms, CBTS, OPFT, and DCTS result in 

less time complexity than the other two algorithms. But, 

from the experimental evaluation it is proved that 

CBTS enhances the QoS metrics than existing 

agorithms. Therefore, it is clear that CBTS outperforms 

the existing methods in terms of the QoS metrics.  

Table 5. Time Complexity of CBTS 

Step (s) Input(s) Input Size 
Running 

Time 

Step 1, Step 2, 

and Steps 8-17 
Tasks 

n (maximum 

2000 ) 
O(n) 

Step 3 and 6 

Number of task 

clusters or number 

of VM groups 

k (maximum 5) O(k) 

Steps 4, 5, and 7 Number of m (maximum 50) O(m) 

5 Conclusion and Future Directions 

Scheduling in a distributed computing environment 

such as cloud computing remains to be a challenging 

issue, as cloud datacenters comprise of heterogeneous 

resources. The number of users and their requests use 

to vary dynamically in the cloud. Hence, there is a 

need for a scheduling strategy that considers this 
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heterogeneity while assigning the requests to the 

suitable resources so that the completion time of the 

requests is minimized. The proposed scheduling 

mechanism generates task clusters based on the 

similarity in the task lengths by making use of K-

Means clustering which is a simple and efficient 

clustering algorithm. Tasks in the clusters are 

scheduled to suitable VMs based on the VM capacity. 

From the experimental analysis, it is evident that the 

proposed method improves the performance of the 

datacenters by minimizing the makespan, execution 

time, and deviation in the workload. At present, task 

length alone is considered to form the clusters. A task 

may be bound to its deadline and the delay in 

completion. Therefore, the deadline may also be 

included as an additional attribute of the tasks while 

forming the task clusters. Nowadays, the research 

community has turned their attention towards applying 

nature-inspired algorithms to their research problems. 

Hence, the scheduling problem in cloud datacenters 

can also be addressed with appropriate nature-inspired 

algorithms to obtain an optimal schedule. 

References 

[1] H. G. E. D. H. Ali, I. A. Saroit, and A. M. Kotb, Grouped 

Tasks Scheduling Algorithm Based on QoS in Cloud 

Computing Network,Egyptian Informatics Journal, Vol. 18, 

No. 1, pp. 11-19, March, 2017. 

[2] S. Anousha, M. Ahmadi, An improved min-min task 

scheduling algorithm in grid computing,in: J. J. H. Park, H. R. 

Arabnia, C. Kim, W. Shi, J. M. Gil (Eds.), International 

Conference on Grid and Pervasive Computing, Springer, 

Berlin, Heidelberg, 2013, pp. 103-113. 

[3] G. B. H. Bindu, K. Ramani, C. S. Bindu, Energy aware multi 

objective genetic algorithm for task scheduling in cloud 

computing, International Journal of Internet Protocol 

Technology, Vol. 11, No. 4, pp. 242-249, October, 2018. 

[4] H. Cui, Y. Li, X. Liu, A. Ansari, Y. Liu, Cloud service 

reliability modelling and optimal task scheduling, IET 

Communications, Vol. 11, No. 2, pp. 161-167, January, 2017. 

[5] M. A. Alworafi, A. Dhari, A. A. Al-Hashmi, Suresha, A. B. 

Darem, Cost-Aware Task Scheduling in Cloud Computing 

Environment, International Journal of Computer Network 

and Information Security, Vol. 9, No. 5, pp. 52-59, May, 

2017. 

[6] J. J. Wu, H. J. Chang, Y. F. Ho, P. Liu, Scheduling of 

variable-time jobs for distributed systems with heterogeneous 

processor cardinality, International Journal of Ad Hoc and 

Ubiquitous Computing, Vol. 10, No. 2, pp. 112-121, July, 

2012. 

[7] U. Rugwiro, C. Gu, W. Ding, Task scheduling and resource 

allocation based on ant-colony optimization and deep 

reinforcement learning, Journal of Internet Technology, Vol. 

20, No. 5, pp. 1463-1475, September, 2019. 

[8] A. Bala, I. Chana, Multilevel priority-based task scheduling 

algorithm for workflows in cloud computing environment, in: 

S. Satapathy, A. Joshi, N. Modi, N. Pathak (Eds.), 

International Conference on ICT for Sustainable Development, 

Advances in Intelligent Systems and Computing, Springer, 

Singapore, 2016, pp. 685-693. 

[9] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, 

R. Buyya, CloudSim: a toolkit for modeling and simulation of 

cloud computing environments and evaluation of resource 

provisioning algorithms, Software- Practice & Experience, 

Vol. 41, No.1, pp. 23-50, January, 2011. 

[10] Y. Chen, A. S. Ganapathi, R. Griffith, R. H. Katz, Analysis 

and Lessons from a Publicly Available Google Cluster Trace, 

Technical Report No. UCB/EECS-2010-95, June, 2010. 

[11] T. Y. Choe, Task scheduling algorithm to reduce the number 

of processors using merge conditions, International Journal 

on Computer Science and Engineering, Vol. 4, No. 2, pp. 

255-266, February, 2012. 

[12] D. B. L. D., P. V. Krishna, Honey bee behavior inspired load 

balancing of tasks in cloud computing environments, Applied 

Soft Computing, Vol. 13, No. 5, pp. 2292-2303, May, 2013. 

[13] T. Dillon, C. Wu, E. Chang, Cloud computing: issues and 

challenges, International Conference on Advanced 

Information Networking and Applications, Perth, Australia, 

2010, pp. 27-33. 

[14] E. S. T. El-kenawy, A. I. El-Desoky, M. F. Al-rahamawy, 

Extended Max-Min scheduling using Petri Net and load 

balancing, International Journal of Soft Computing and 

Engineering, Vol. 2, No. 4, pp. 198-203, September, 2012. 

[15] S. Kumar, A. Mishra, Application of min-min and max-min 

algorithm for task scheduling in cloud environment under 

time shared and space shared VM models, International 

Journal of Computing Academic Research, Vol. 4, No. 6, pp. 

182-190, December, 2015. 

[16] T. Mathew, K. C. Sekaran, J. Jose, Study and analysis of 

various task scheduling algorithms in the cloud computing 

environment, International Conference on Advances in 

Computing, Communications and Informatics, New Delhi, 

India, 2014, pp. 658-664. 

[17] S. Mittal, A. Katal, An optimized task scheduling algorithm 

in cloud computing, IEEE 6th International Conference on 

Advanced Computing, Bhimavaram, India, 2016, pp. 197-202. 

[18] K. Shin, M. Cha, M. Jang, J. Jung, W. Yoon, S. Choi, Task 

scheduling algorithm using minimized duplications in 

homogeneous systems, Journal of Parallel and Distributed 

Computing, Vol. 68, No. 8, pp. 1146-1156, August, 2008. 

[19] M. Geetha, R. C. Suganthe, Task scheduling using artificial 

bee foraging optimization for load balancing in cloud data 

centers, Computer Applications in Engineering Education, 

Vol. 28, No. 4, pp. 769-778, July, 2020. 

[20] M. A. Alworafi, A. Al-Hashmi, A. Dhari, Suresha, A. B. 

Darem, Task-Scheduling in Cloud Computing Environment: 

Cost Priority Approach, International Conference on 

Cognition and Recognition, Lecture Notes in Networks and 

Systems, Springer, Singapore, 2018, pp. 99-108. 

[21] A. Marphatia, A. Muhnot, T. Sachdeva, E. Shukla, L. Kurup, 

Optimization of FCFS Based Resource Provisioning 



130 Journal of Internet Technology Volume 22 (2021) No.1 

Algorithm for Cloud Computing, IOSR Journal of Computer 

Engineering, Vol. 10, No. 5, pp. 1-5, March-April, 2013. 

[22] C. S. Pawar, and R. B. Wagh, Priority Based Dynamic 

Resource Allocation in Cloud Computing with Modified 

Waiting Queue, International Conference on Intelligent 

Systems and Signal Processing(ISSP 2013), Vallabh 

Vidyanagar, Gujarat, India, 2013, pp. 311-316. 

[23] A. Thomas, G. Krishnalal, V. P. J. Raj, Credit Based 

Scheduling Algorithm in Cloud Computing Environment, 

Procedia Computer Science, Vol. 46, pp. 913-920, 2015. 

[24] P. Y. Zhang and M. C. Zhou, Dynamic cloud task scheduling 

based on a two-stage strategy, IEEE Transactions on 

Automation Science and Engineering, Vol. 15, No. 2, pp. 

772-783, April, 2018. 

[25] E. Ilavarasan and P. Thambidurai, Low Complexity 

Performance Effective Task Scheduling Algorithm for 

Heterogeneous Computing Environments, Journal of 

Computer Science, Vol. 3, No. 2, pp. 94-103, February, 2007. 

[26] H. Arabnejad and J. G. Barbosa, List Scheduling Algorithm 

for Heterogeneous Systems by an Optimistic Cost Table, 

IEEE Transactions onParallel and Distributed Systems, Vol. 

25, No. 3, pp. 682-694, March, 2014. 

[27] C. Delimitrou and C. Kozyrakis, QoS-Aware Scheduling in 

Heterogeneous Datacenters with Paragon, ACM Transactions 

on Computer Systems, Vol. 31, No. 4, pp. 12:1-12:34, 

December, 2013. 

[28] K. Dubey, M. Y. Shams, S. C. Sharma, A. Alarifi, M. Amoon, 

A. A. Nasr, A Management System for Servicing Multi-

Organizations on Community Cloud Model in Secure Cloud 

Environment, IEEE Access, Vol. 7, pp. 159535-159546, 

October, 2019. 

[29] J. Li, M. Qiu, Z. Ming, G. Quan, X. Qin, Z. Gu, Online 

optimization for scheduling preemptable tasks on IaaS cloud 

systems, Journal of Parallel and Distributed Computing, Vol. 

72, No. 5, pp. 666-677, May, 2012. 

[30] D. Ergu, G. Kou, Y. Peng, Y. Shi, Y. Shi, The analytic 

hierarchy process: task scheduling and resource allocation in 

cloud computing environment, Journal of Supercomputing, 

Vol. 64, No. 3, pp. 835-848, June, 2013. 

[31] K. Etminani, M. A. Naghibzadeh, A Min-Min Max-Min 

selective algorithm for grid task scheduling, 3rd IEEE/IFIP 

International Conference in Central Asia on Internet, 

Tashkent, Uzbekistan, 2007, pp. 1-7. 

[32] X. He, X. Sun, G. Von Laszewski, QoS guided Min-Min 

heuristic for grid task scheduling, Journal of Computer 

Science & Technology, Vol. 18, No. 4, pp. 442-451, July, 

2003. 

[33] A. A. Nasr, N. A. El-Bahnasawy, G. Attiya, A. El-Sayed, A 

new online scheduling approach for enhancing QOS in cloud, 

Future Computing and Informatics Journal, Vol. 3, No. 2, pp. 

424-435, December, 2018. 

[34] A. A. Nasr, N. A. El-Bahnasawy, G. Attiya, A. El-Sayed, 

Cloudlet Scheduling Based Load Balancing on Virtual 

Machines in Cloud Computing Environment, Journal of 

Internet Technology, Vol. 20, No. 5, pp. 1371-1378, 

September, 2019. 

[35] A. A. Nasr, K. Dubey, N. A. El-Bahnasawy, S. C. Sharma, G. 

Attiya, A. El-Sayed, HPFE: a new secure framework for 

serving multi-users with multi-tasks in public cloud without 

violating SLA, Neural Computing & Applications, Vol. 32, 

No. 11,pp. 6821-6841, June, 2020.  

[36] A. A. Nasr, A. T. Chronopoulos, N. A. El-Bahnasawy, G. 

Attiya, A. El-Sayed, A novel water pressure change 

optimization technique for solving scheduling problem in 

cloud computing, Cluster Computing, Vol. 22, No. 2, pp. 

601-617, June, 2019. 

[37] A. Hussain, M. Aleem, GoCJ: Google Cloud Jobs Dataset, 

Mendeley Data, v1, 2018, http://dx.doi.org/10.17632/ 

b7bp6xhrcd.1#file-e5590a0b-e41b-4c66-a2b9-7a606403d69a. 

[38] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. 

Silverman, A. Y. Wu, An efficient k-means clustering 

algorithm: analysis and implementation, IEEE Transactions 

on Pattern Analysis and Machine Intelligence, Vol. 24, No. 7, 

pp. 881-892, July, 2002. 

[39] K. Wagstaff, C. Cardie, S. Rogers, S. Schrödl, Constrained K-

means clustering with background knowledge, Eighteenth 

International Conference on Machine Learning, San 

Francisco, CA, USA, 2001, pp. 577-584. 

[40] Z. Yang, X. Qin, W. Li, Y. Yang, A dynamic clustering 

algorithm for cloud computing, Information Technology 

Journal, Vol. 12, No. 18, pp. 4637-4641, 2013. 

[41] F. Y. Yuan, X. C. Zhang, S. B. Luo, Accurate property 

weighted K-means clustering algorithm based on information 

entropy, Journal of Computer Applications, Vol. 31, No. 6, 

pp. 1675-1677, June, 2011. 

Biographies 

Geetha Muthusamy is a PhD 

Candidate in Information and 

Communication Engineering at Anna 

University, Chennai. She received her 

ME (CSE) degree Anna University, 

Chennai. Her research interests 

include scheduling and load balancing in cloud 

computing, optimization algorithms and multimedia. 

 

Suganthe Ravi Chandran is a PhD 

Supervisor in Information and 

Communication Engineering at Anna 

University, Chennai. She has 

published more than 25 research 

articles in National and International 

Journals. Her research interests include Wireless 

Networks, Network Security, Blockchain Technology 

and Deep Learning. 

 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9.354330
      /MarksWeight 0.141730
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


