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Abstract 

In cloud computing, the resources are delivered to the 

users on demand at a considerable cost. Due to low 

maintenance and high scalability services, enterprises 

wish to deploy their newly developed application towards 

the computing environment. For large scale applications, 

fault tolerance is an essential task that guarantees the 

reliability and availability of computing services. In this 

paper, a multi-level fault tolerance scheduling mechanism 

is proposed that overcomes the real-time failure in the 

system. In the first phase, non-functional testing and 

decision making algorithm is used to find the reliability 

of virtual machines. Here, the reliability criterion is 

achieved by Reliable Decision K-Nearest Neighbor 

(RDK-NN) algorithm that considers only the best reliable 

virtual machine. In the second phase, high availability is 

achieved using a scheduling algorithm. For this purpose, 

a Teaching-Learning Based Optimization (TLBO) 

scheduling is proposed that provides a better-scheduled 

set of tasks for the corresponding users. The evaluation of 

the proposed approach is carried out under Cloudsim 

platform. The performance is determined in terms of 

makespan time, failure ratio, performance improvement 

rate, response time and rejection ratio to estimate the 

scheduling task. The result shows that the system 

achieves high reliability and availability of data with a 

multi-level format in the cloud environment. 

Keywords: Cloud computing, Makespan, Task 

assignment, Task scheduling, Fault tolerance 

1 Introduction 

In the modern computing technology, cloud 

computing offers accessing, manipulating, and 

configuring the resources to the customers via the 

internet with pay-as-you-go basis. It is an on-demand 

system that provides users to utilize the computing 

resources through service providers such as Amazon, 

Google, Microsoft, and Apple on a pay–per use basis. 

Based on the services delivered, the cloud environment 

is classified as follows: Infrastructure as a Service 

(IaaS), Platform as a Service (PaaS) & Software as a 

Service (SaaS) [1]. The IaaS infrastructure deals with 

resources such as operating system, networking 

equipment, storage, and processors. It provides the 

user with the cloud provider. The SaaS is an on-

demand software application, more popular among 

Corresponding consumers which provides the user 

with the access of software and application such as 

Google docs, Email cloud, etc. over the internet. The 

PaaS in the cloud-like Google App Engine manages 

the software application over the web that allows the 

user to create applications. This service enables the 

user to avoid the complexity of managing and buying 

the licenses, network, development tools, and other 

resources [2]. The concept of virtualization technology 

in the cloud enables the user to utilize the computing 

services with the help of virtual machines (VM) and 

lease it to the enterprises or an individual user [3]. As 

many VM are employed, the task scheduling strategy is 

adapted to allocate the task to the resources in the 

cloud [4]. Even though Cloud Computing is a general 

trend in all industries, some failures need to be 

addressed. Some of the main issues are to ensure 

robustness, reliability and availability of important 

services in the cloud system. On the other hand, 

failures in the cloud degrade the performances, which 

should be managed using the fault-tolerance technique 

[5].  

Fault-tolerance deals with the ability of a cloud 

scheduler to protect the delivery of tasks and to operate 

continuously, even in the case of failure [6-7]. The 

problems should be identified by cloud fault-tolerance 

components and should be resolved within the shortest 

period [8]. The fault may arise due to hardware failures, 

virtual machine malfunctioning, network congestion, 

and application failure [9]. Fault Management in a 

cloud computing environment depends on two major 

parameters. (i) Recovery point objective: It defines the 

volume of data lost during a fault. (ii) Recovery Time 

Objective: It defines the amount of time that takes to 

repair the fault when it occurs. Cloud resources are 

known to experience inconsistency in their 

performance delivery [10]. Fault tolerance is one of the 

important issues that detect and locate the faulty nodes 
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based on the faulty diagnosis protocol [11]. Fault 

detection in the virtualized system uses the I/O 

architecture that provides a greater benefit for the 

reliability and reusability features. Based on the I/O 

architecture model, the faults on the VM is detected 

and recovers by switching to another one and continue 

to operate without data loss [12]. The resources are 

dynamically provisioned and delivered to users in a 

transparent manner automatically on-demand. As more 

number of Virtual Machines are employed in the cloud, 

the process of assigning tasks to the cloud resources 

becomes a difficult task. Thus, a task scheduling 

strategy is applied to map the tasks and dispatch them 

to the resources in the variant environment efficiently. 

Due to this, finding an optimal solution in scheduling 

the task is considered as an NP-complete problem. In 

the cloud system, several heuristic algorithms such as 

Min-max, Max-min, and Heterogeneous Earliest Finish 

Time (HEFT) are available [13]. Some of the heuristic 

algorithms are also used to find the optimal solutions to 

the complex problems in cloud systems that include the 

Genetic Algorithm (GA), Particle Swarm Optimization 

(PSO), Ant Colony Optimization (ACO), League 

Championship Algorithm (LCA) and Deep learning 

Algorithm [14-17]. These algorithms minimize the 

search space and the execution is carried out at a 

certain time limit. The scheduling task is based on 

several strategies such as time, cost, fault tolerance, 

and quality of service (QoS) [18-19]. The scheduling 

task in the cloud environment should meet the QoS 

requirements including the deadline and the makespan 

[20-21]. The fault tolerance based scheduling is an 

efficient approach for the real-time task scheduling on 

the computing instances. The Primary-Backup (PB) 

model uses multiple copies namely primary and 

backup to execute the task in two different processing 

units for fault tolerance. 

Due to the cloud’s dynamicity and large scale 

characteristics, it has been deployed in various fields. 

Cloud reliability and availability are considered as a 

major problem [22-23]. In this research work, a 

Teaching-Learning-Based Optimization (TLBO) 

algorithm is proposed for task scheduling in cloud 

computing among the user and the cloud service 

provider. The proposed scheduling technique for fault 

tolerance awareness addresses the cloud task execution 

which would reflect on the currently available 

resources and reduce the early failure of autonomous 

tasks. It indicates that the technique is very appropriate 

for the task execution to ensure high reliability and 

availability in the cloud computing environment. 

The contributions of the work are as follows. 

‧ Fault aware scheduling ensures reliability, robustness, 

and availability for essential services as well as 

running of applications in the cloud computing 

system. 

‧ The RDK-NN decision-making algorithm helps to 

obtain a reliable VM which utilizes the available 

cloudlets, resources and also reduces the premature 

failure of the system. 

‧ The proposed TLBO fault aware scheduling ensures 

the scheduling of tasks based on fitness level within 

the minimum execution time. 

‧ Reduces fault tolerance overhead and allocate virtual 

resources effectively that meet the requirements of 

both the users and cloud providers. 

The rest of the paper is modeled as follows: Section 

2 discusses the related works of the fault aware 

scheduling techniques. The detailed explanation of the 

proposed multi-level fault aware scheduling model is 

provided in section 3. In section 4, the performance 

evaluation and comparison of existing and proposed 

scheduling methods are discussed. Finally, in section 5, 

the paper is concluded based on the analyzed results. 

2 Related Works 

Abdulhamid et al. [24] proposed a Dynamic 

Clustering League Championship Algorithm (DCLCA) 

that addresses the fault tolerance scheduling issues in 

the cloud computing environment. In League 

Championship Algorithm (LCA) fault detection is 

carried out to detect the failure at the operating system, 

virtual machine (VM), and application level. Based on 

this, the job is reassigned from the insufficient 

resources to the ideal queue resources. Here, task 

clustering is performed to categorize the most 

exceptional task cluster and to select the best VM by 

the cloud information system (CIS). Finally, 

scheduling is carried out based on the current CIS 

information that partitions the task according to the 

available resources. 

Abdulhamid and Latiff [25] proposed a fault aware 

scheduling scheme named Check Pointed League 

Championship Algorithm (CPLCA) to handle the 

unexpected task execution failure. In this task, the 

failed job is transferred to the available VM, and the 

execution is carried from the last current state using the 

checkpointing strategy. It reduces the redundant 

execution breakdown during the task event and the VM 

failure. 

Zhou et al. [26] discussed the makespan-aware 

optimum scheduling scheme with a two-stage heuristic 

method that determines the assignment and replication 

task and then estimates the schedule of the assigned 

task. In the first stage, clustering is performed for 

makespan minimization that enables the replication of 

assigned tasks to satisfy the reliability requirements. 

Almezeini and Hafez [27] proposed a task 

scheduling algorithm in cloud based on the Lion 

Optimization Algorithm (LOA). It is a nature-inspired 

metaheuristic algorithm that mimics the hunting 

behavior of the ant lions to decrease the execution time 

of the task. The lions in the residents which are 

considered as male remain in position whereas the 
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female has their strategies to search the optimal 

solution. This algorithm determines the best solution 

based on their fitness value (makespan) obtained from 

each lion. 

Xu et al. [28] proposed Min-min based time and cost 

tradeoff (MTCT) to minimize the overall completion 

time (makespan) and execution cost in the cloud 

computing environment. It determines the workflow 

scheduling issues in cloud and adopted a fault recovery 

technique to improve the reliability and fault tolerance 

techniques. In this, the given application is composed 

of a set of tasks scheduled to the proper resources with 

the consideration of fault recovery in the cloud.  

Zhang and Zhou. [29] describe the two-stage 

strategy to enhance the quality of service, makespan, 

and scheduling performance in the clouds. In the first 

stage, the task is classified, and VM is created based on 

the historical task scheduling data. At the second stage, 

matching is performed between the task and the 

suitable VM with different resource attributes. It saves 

the waiting time for scheduling the task to utilize the 

VM by the user. 

Marahatta et al. [30] proposed energy-aware fault-

tolerant dynamic scheduling scheme (EFDTS) for task 

classification. It was developed to divide the immediate 

tasks into distinct classes and then allocate them to the 

most suitable virtual machines based on their classes. 

This will lead to the reduction in response time while 

considering energy consumption. Replication was used 

for the fault tolerance to minimize the task rejection 

ratio caused by machine failure and delay. Furthermore, 

a migration policy was developed that can 

simultaneously improve energy efficiency, but no 

complementary features were considered for resource 

utilization. 

Hsieh et al. [31] proposed a Feature-oriented Fault 

Diagnosis Agreement (FFDA) protocol with the 

exchange of three round of message that detect the 

fault processors in failure mode. This model consists of 

three stages which include message exchange, fault 

diagnosis, and decision making phase. Initially, at the 

message exchange phase, the messages are collected to 

determine and eliminate the faulty processors for the 

next stage. Then apply dormant diagnosis rule for each 

round of message exchange and malicious faulty 

processor rule to find the faulty processors. Finally, the 

decision value is obtained in the decision making phase. 

However, the time consumption is high in the data 

exchange process. 

From the above analysis of the fault tolerant 

scheduling schemes, the existing schemes perform the 

execution of task in the presence of faults. Fault 

tolerance is executed in many earlier works on the 

basis of primary backup technique of scheduling the 

task on two different processors. Thus the task are able 

to schedule before its deadline but it suffers from high 

processing time. Also, at the time of processing, node 

failures may occur very frequently and thus the 

replication technique is utilized to achieve fault 

tolerance which increases the energy consumption to 

complete the same set of tasks. Further, the proactive 

fault tolerance mechanism migrates a task from 

unhealthy node to the healthy node without stopping of 

node migration. However, the overall overhead and the 

sudden failure prolong the execution time due to the 

failure in the system. The faulty recovery schemes 

mostly rely on the reactive scheme of checkpoint 

mechanism where the possible failures are predicted 

without considering scheduling issues. The task 

execution failure is no longer accidental but it is a 

common characteristic of the cloud computing 

environment. However, these affect the availability and 

reliability in the cloud environment. Hence, an active 

fault aware scheduling technique should be adapted to 

utilize the cloud resources efficiently. To overcome 

these limitations, a multilevel fault aware scheduling 

mechanism is proposed to schedule the task to ensure 

the high reliability and availability in the cloud system.  

3 Proposed Multi-Level Fault Tolerance 

Mechanism 

The proposed fault tolerance aware multi-level 

scheduling technique is processed in two phases. In the 

first phase, the allocation of a task to the virtual 

machine is carried out, and non-functional testing is 

performed to determine the efficient VM. In the second 

phase, fault tolerance aware scheduling is achieved 

through the TLBO technique execute the group of an 

independent task to a suitable VM. 

Figure 1 shows the architecture of the proposed 

multi-level fault aware scheduling algorithm. Initially, 

the task is assigned from the N- number of users to the 

service provider. Then, the fault detection is performed 

with five levels of testing, and the RDK-NN decision 

mechanism is used to obtain reliable VMs. The TLBO 

scheduling schedules the task based on their fitness 

measure to the required host. 

3.1 VM Fault Detection 

In the cloud task scheduling, the task is assigned to 

the independent virtual machine that undergoes non-

functional testing and decision phase to determine the 

best VM. It helps to obtain reliable virtual machines in 

the cloud environment and access the process of the 

client request. Initially, n number of tasks obtained 

from the cloud users are fed into multiple virtual 

machines for processing. After processing, the non-

functional testing is carried out to obtain a reliable VM. 

The testing modules are as follows. 

3.1.1 Non-Functional Testing 

Cloud Testing refers to the validation and verification 

of infrastructure, environment, and application which  
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Figure 1. The Architecture of Multi-level Fault Tolerance Using Scheduling 

are available on-demand by conforming them to the 

business model expectation of cloud computing. The 

testing modules are as follows. 

Performance Testing: The performance testing 

module checks the responding ability of the VM 

executed under a diverse workload. This type of testing 

helps to obtain a reliable VM for satisfying the 

business requirements. The formula calculates the 

testing: 

*100
Time spent for the task

performance testing
total available time

= (1) 

From equation (1), performance testing is estimated 

based on the ratio between time spend for the task to 

the total time available for testing. Here, the total 

available time refers to the time utilized by the system 

to test and monitor the VM at the predefined conditions 

in a varying workloads. 

Scalability Testing: The scalability module 

determines the ability of the VM to expand or increase 

the processing capacity on–demand. This testing 

ensures that the given task can handle the user 

requirements on the varying demand and the on-

growing capabilities of the system. It is calculated by, 

 
Averageallocationof VM speed

Scalability
Execution time

=   (2) 

Time Checker: It defines the response time of each 

VM and is estimated in milliseconds. In this, we set the 

time limit as 5000ms. The virtual machine which 

respond at this specified time limit is regarded as a 

reliable VM. 

Acceptance Test (AT): This module checks whether 

the cloud resource produces a logical result or not even 

during the failure. The failed VM is not considered for 

the next process, but the corrupted and the succeeded 

VM will be considered for further processing. It is 

estimated as follows. 

 
taskofnumbertotal

completedtasktaskremaining
AT

−

=
 (3) 

The acceptance test determines whether the system 

satisfies the acceptance criteria based on the score 

obtained from equation (3). In this, if a total of 100 

tasks is taken, then the completed task and the task 

remaining to complete are estimated and their score 

value is predicted to determine whether the entity 

accepts the system. 

Reliability Testing: It checks the reliability of each 

virtual machine. Initially, all the virtual machines 

reliability is set as 100%. If the processing factor gives 

its result on a particular time limit, its reliability either 

increases or decreases. After assessing all the virtual 

machine reliability, the result is passed to the decision 

making. The reliability is calculated as follows: 

 *100
successful responses

Reliability
Total requests

=  (4) 

3.1.2 RDK-NN for Decision Making 

This module helps to determine the best reliable 

node using Reliable Decision K-Nearest Neighbor 

(RDK-NN) algorithm. In this algorithm, the reliability 

level is fixed for each virtual machine. The maximum 

reliability factor VM is considered as the RDK-NN 

algorithm for decision making are explained as follows. 
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3.1.3 Pseudo code for Reliability Level Estimation 

Step 1: Initially, load the data; fix the reliability factor 

as 0.3 to estimate the reliability of VM 

Step 2: The similarity measure is calculated based on 

the Euclidean distance between query instances 

(resource constraints) and training samples from the 

non-functional testing to estimate the reliable VM. 

Euclidean distance is the commonly used distance 

when the data is in continuous form. 

Step 3: The above non-functional testing and system 

constraint level are considered to calculate the K-

nearest neighbor. A harmonic mean distance is 

calculated based on the sum of the harmonic average of 

the Euclidean distance metrics from one data point to 

another. The harmonic mean estimation of the RDK-

NN algorithm is calculated by, 

 

2

1

( )
n n

i i

ftt i

M

i

S P

H
N

=

−

=

∑ ∑
 (5) 

where, 
ti
f → non- functional testing with five testing 

factors (i defines the testing types) 

Si Result obtained from particular testing 

Pi → Resource constraint level 

i
N → number of testing involves detection 

Step 4: The distance is sorted and the nearest 

neighbors are determined based on the K-th minimum 

distance. The node that achieves the highest reliability 

factor is considered as the best reliable VM. 

Step 5: During the selection, if two nodes have the 

same highest reliability level, the node with a smaller 

IP address is selected as the computing cycle output. 

From the above steps, the reliable VM is selected 

among all the individual Virtual machines. Then the 

result is scheduled using fault tolerance mechanism to 

determine the high-reliability factor-based VM. 

3.2 Scheduling Mechanism 

The result achieved from the first level is then send 

to the second level of the fault awareness scheduling 

mechanism. In this, the task migration and fault 

detector approach are carried out to detect the fault at 

the initial stage. Next, task migration is performed for 

reassigning faulty jobs to the other available resources. 

After assessing the best reliable virtual machine, the 

results are scheduled using the TLBO method shown in 

Table.1. It is used to determine the optimal resource 

allocation for the task within the minimization of task 

execution time in the cloud system. 

3.2.1 Teaching Learning Based Optimization 

(TLBO) Scheduling in Cloud Environment 

TLBO is a new meta-heuristic nature-based 

algorithm in obtaining the optimal solution for 

allocating the task to the resources which reduces the 

makespan and the cost in the entire cloud system. It is 

a population-based method that determines the global 

search in optimizing the task and obtains the best VM 

at scheduling. The TLBO method is divided into two 

phases: They are learner phase and the teacher phase. 

In the learner phase, the learning is obtained between 

the learners, and the teaching phase is carried out 

between the learner and the teacher. In this algorithm, 

the population which consists of different variables is 

considered as a group of learners or class of learners. 

The different variables define the various subjects that 

are offered as the students. Here the candidate solution 

consists of the objective function which defines the 

knowledge of the students and the solution with the 

best fitness function is considered as the teacher. 

The steps in TLBO optimization algorithm are as 

follows. 

Step 1: Initialization 

Initialize the number of optimization parameters 

such as the number of tasks (cloudlets) and the 

termination criteria. 

 
{ }nN TTTTcloudlet ,...,,, 321=

  

Step 2: Estimation of Population 

A random population is generated according to the 

size and number of VMs. In TLBO, some tasks 

indicate the learners and VM defines the teachers. The 

population is expressed as follows: 

 Population =
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where, 

 VMv

tasksofnumberT
n

→

→

  

Step 3: The computational ratio (VM
cr
) is calculated 

and the computational share (VM
S

) of the VM in the 

cloud are calculated by, 

 
n

MIPSVM

MIPSVM
VM fn

i
i

f
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1

)( =∀

∑

=

=

   (7) 

 nVMMIcloudletVM f

n

i

fcrIfS ....,3,2,1,).(
1

)()( =∀×= ∑
=

 (8)  

where MIPS denotes Millions of Instructions Per 

Second (VM computing power) and MI is the Million 

Instructions (cloudlet size). 

From the above results, determine the VM with the 

high computational ratio in the system. 

Step 4: Teacher phase 

The provider derives the fitness function by 

reducing the completion time, while the client aims to 
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reduce the price of accessing cloud resources by 

reducing the makespan time. Therefore, the fitness 

value of the can be computed as 

 { }
ik

m

i
CTxf

1
min)(

=

= ∪  (9) 

Where →ikCT  completion of tasks. 

The task completion criteria ( ikCT ) defines the task 

to be completed on the VM is calculated as, 

 ∑
=

=

n

i k

i

ik
MIPSVM

MIcloudlet
CT

1

.

 (10) 

From equation (9), consider the minimum value 

)( xf  and the corresponding task is determined as the 

best virtual machine (K-best). 

Step 5: Determine the new teacher set (mean function) 

by modifying the solution based on the k-best solution. 

It is obtained by the difference (
DF ) between the 

result of VMs and the mean result of a task for the new 

set of iteration in each user. 

 
DF = )(

,,, ijfikbestj MTXr −

 (11) 

Here, the ri random value lies between 0 & 1.  

X j, kbest i → K-best’s relevant task  

Tf →  Teaching factor where 0 and 1 define the 

teaching quality which termed failed and the 

reliable VM  

M j,i → Average task of each user in iteration From (11), 

the result is added to the current solution to 

update the values. It is given by 

 
DOLDNEW

FXX +=  (12) 

where XNEW → Updated fitness function 

XOLD → The task within the design variable  

Based on the updated functions (best fitness 

function), the new values become input to the learner 

phase. 

Step 6: Learner Phase  

In this, consider the result from the teacher (XNEW) 

and their interaction between (XNEW)" themselves. A 

random interaction is determined between the learners 

to obtain new knowledge within the learners. 

Consider two random tasks p and q, send access 

cloud resources with formations XNEW, p and X’NEW, q 

and update the tasks based on the fitness comparison 

with a probability of task to access VM resources at 

time t. 

Randomly select two learners pX  and qX , p ≠ q 

If (f
p

X )≺ (f qX ) 

X"NEW, p = XNEW, p + r(XNEW, p – X’NEW, q) 

ELSE 

X"NEW, p = XNEW, p + r(X’NEW, q – XNEW, p) 

End if 

Accept, XNEW if it gets the best fitness function 

Step 7: Termination 

Check if the termination criteria (task processing to 

each VM) is satisfied. If yes, the optimal schedule set 

is achieved; otherwise, iteration is performed by 

repeating the step from 3 to 6. 

Table 1. Algorithm for the proposed Multi-Level Fault Tolerance Mechanism 

Input:- A set of tasks, resources 

Output:-To obtain the reliable and best VM (resources) for the corresponding users  

1. Initialize n number of tasks to SP 

2. Perform five types of non-functional testing //VM fault detection 

3. Determine best VM using RD-KNN decision making algorithm  

 Set the reliability factor as 0.3 

 Estimate reliable VM based on Euclidean distance 

 Calculate 
M

H  based on the average result of Euclidean distance measure 

 Sort the distance and finds the k-nearest neighbor 

 Select node with high reliability level as reliable VM  

4. Initialize the algorithm parameters of cloudlets, and termination criteria // TLBO algorithm 

 Generate the random population as in eqn (6) 

 Calculate VM cr and VMS of VM  //teachers phase 

 Determine 
ik

CT   

 Compute fitness function based on equation (9) and d etermine as K-best (best VM)  

 Update the new set of fitness function based on equation (12) and sent to learners phase 

 Compute the interaction between X
NEW

 and 
NEW

X ′′   // Learners phase 

5. Accept the task of X
NEW

 with best fitness function 

6. Terminate 

 If processing criteria is achieved 

 Else  

 Repeat learners and teachers phase 

 Schedule the task based on the minimum fitness function measure to cloud 

7. End 
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Figure 2. shows the flowchart of the TLBO 

scheduling technique. At first, initialization and 

population estimation are performed to determine the 

total population (task) in the cloud systems. Then, the 

solution update is performed based on the best value 

calculated by comparing the new solution with the 

existing solution. Then, this updated solution set is 

send to the learner phase that schedule the task based 

on the fitness function. 

 

Figure 2. Flow Chart of the TLBO scheduling mechanism 

After performing the above operations, the task is 

scheduled based on their fitness measure and send to 

the particular VM and direct to the specified host. The 

remaining task which is not scheduled is resend to the 

fitness calculation. Hence an iteration procedure is 

carried to schedule the VM with minimum fitness to 

the cloud resource. 

During scheduling the task into VM, the fault occurs 

due to the resource or system break down. Hence 

restoration is performed to obtain the status of the task. 

Thus, when the fault occurs, the failed task or VM is 

traced and then schedules the succession task with a 
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TLBO scheduling algorithm. The fault usually occurs 

at the application, VM level, and host level. The 

application-level faults are recovered by the 

Checkpoint/Restart (CR) method that stores or 

upgrades the status of the job. The VM level faults are 

solved by recreating the resources from another host. 

For this, it uses the snapshot technique that rollback the 

file system which contains the application state, output 

data as well as the system configuration. At the host 

level, the faults are resolved by scheduling the VM to 

another host. By restoring the status, the VM 

mechanism aims to increase the reliability of the cloud 

providers as well as the users. Some of the advantages 

are (a) avoid saving the whole state VM and renting 

additional VM during node redundancy, (b) the 

checkpoint point file helps in recreation as well as the 

system rollback. Initially, local check pointers save the 

checkpoint state to the disk, and then a temporary 

checkpoint file is taken, and finally, the files are 

transferred asynchronously.  

After status restoration, the process again restarts by 

reassigning and rescheduling the job in the queue of 

insufficient resources to another accessible VM. It 

reduces the load balancing problem and provides fault 

tolerance effectively by utilizing the saved state of the 

application. In this, the failed task migrates to the other 

available or the underloaded computing nodes (VM) 

for execution. Also, the suspended task that occurs due 

to overloading is instantly scheduled to the other 

alternative nodes. The task migration is helpful in the 

following scenarios (a) load balancing problems for 

VM overloaded systems (b) fault tolerance awareness 

and (c) migration which can be done based on the 

resource request in the cloud. In comparison with the 

traditional checkpoint mechanism, the proposed 

checkpoint approach does not require any redundant 

VM on standby nodes and also eliminates the run time 

processing in the recovery stage. Also, the checkpoint 

is processed in two different streams where the users 

have the flexibility to choose an appropriate 

implementation for the process of checkpoint 

mechanism. This seems that the backup overhead is 

reduced to the maximum extent and can be applied for 

the large usage of cloud. 

4 Experimental Results and Discussion 

This section provides the Metrics, dataset details, 

and the results of our proposed approach. The proposed 

multi-level fault aware scheduling mechanism is 

evaluated under the Cloudsim simulation platform [32]. 

4.1 Dataset Description 

This method is evaluated with the Google Cloud Job 

(GoCJ) dataset [33]. The dataset comprised of 19 files 

containing the data that describes the size of the job 

expressed in Millions Instruction (MI). The data is 

acquired from the Google cluster traces and is created 

using the Monte Carlo method. The data file is 

expressed in “GoCJ_Dataset_XXX.txt, where XXX 

defines the number of jobs (e.g. “GoCJ_Dataset_ 

800.txt”). The size of the job ranges from 15000-

900000 MI and is classified as small, medium, large, 

extra-large, and huge. The cloudlet sizes for the dataset 

lies between the ranges: small (15000-55000 MI) of 

about 20%, medium (59000-99000 MI) of 40%, large 

(101000-135000 MI) of 30%, extra-large (150000-

337500 MI) of 4% and Huge (525000-900000 MI) of 

6%. This method is evaluated with 500 tasks from the 

GoCJ dataset in the ratio of small (19%), medium 

(38%), large (31%), X-large (5%), and huge (7%). 

4.2 Evaluation metrics 

The proposed method is evaluated under the three 

metrics which include makespan time, failure ratio, and 

failure slowdown. The following describes the fault 

tolerance parameter metrics [34]. 

4.2.1 Makespan Time 

Makespan is defined as the maximum completion 

time that a resource taken to complete the latest task. 

The lesser of makespan denotes the better service 

quality. The makespan corresponding to the optimization 

criteria in scheduling should be minimized. Equation 

(9) defines the makespan evaluation formula in the 

cloud systems. In cloud systems, the completion time 

should be low thereby reducing the cost of the cloud 

resources. 

4.2.2 Failure Slowdown (FSD) 

It is defined as the ratio between the interruption or 

time delay occurred by the failure-to-failure free job 

execution time and the average over the total number 

of jobs. The FSD of the multilevel fault aware 

scheduling method should be smaller than other 

techniques and is expressed as follows: 

FSD

time delay occured by failure to failure free job execution time

average over total jobs

=

 
(13)

 

4.2.3 Failure Ratio (FR) 

It is defined as the ratio between the total failures of 

task happens in the proposed technique to the total 

failure in the other scheduling algorithms. The 

proposed fault aware scheduling method FD ratio 

should be better if the result comes out of less than 1. It 

is expressed as follows: 

 
( )

( )

time of failures proposed method
FR

total number of failures other methods
=  (14) 
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4.2.4 Experimental Setup 

This method was evaluated with 500 tasks from the 

GoCJ dataset in the ratio of small (19%), medium 

(38%), large (31%), X-large (5%), and huge (7%). The 

Cloudsim parameter configuration is listed in Table 2. 

Table 2. Cloudsim parameters 

Size of the job(15000-900000 MI) Range 

CPU 500-2500 MIPS 

Memory 500-4096 MB 

BW 500-1000 bit 

Number of VM 50 

MIPS of Processing Element (PE) 250-23000 

VM memory RAM 256-4500 MB 

No. of PEs per VM 1-8 

Datacenter no 10,15,20,30 

Host no 2-500 

Type of manager Time Shared 

Cloudlet 500 

System architecture X86 

Virtual Machine Manager Xen 

OS Windows 

 

4.3 Observed Result 

The performance of the proposed multilevel fault 

aware scheduling technique is evaluated under 

makespan, failure ratio and failure slow down. 

Figure 3 shows the result of the makespan metrics 

calculated with 500 tasks and the comparison is carried 

out under the MTCT, DCLCA, and CPLCA techniques. 

The result indicates, when increasing the number of 

cloudlets, makespan (execution time) keeps on 

increasing. The existing method shows a high 

makespan time compared to the proposed technique. 

This outcome shows that the proposed multi-level fault 

aware scheduling method utilizes less execution time 

than the existing approaches. 

 

Figure 3. Makespan time results 

Figure 4 shows the failure ratio comparison of the 

proposed scheduling method with the other algorithms. 

The FR varies from 0.66-0.35 as the task gets 

increasing in the MTCT technique while DCLCA 

varies from 0.5-0.12 and the CPLCA method varies 

from 0.49-0.375. However, the proposed method 

performs well and obtains the lowest range in the 

failure ratio. 

 

Figure 4. Failure Ratio (FR) of Multilevel Fault aware 

scheduling algorithm 

It clearly shows that the proposed method performs 

better than the existing techniques and the range lies 

within 1. 

Figure 5. represents the failure slow down ratio 

compared with the existing algorithms. The FSD value 

increases when the number of tasks increases. The 

existing MTCT, DCLCA, and CPLCA methods 

achieve the increasing range of FSD ratio, but the 

proposed technique performs lesser ranges even at the 

increasing number of task levels. 

 

Figure 5. Failure Slowdown (FSD) of Multilevel Fault 

aware scheduling algorithm 
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5 Conclusion 

In this paper, the multi-level fault aware scheduling 

mechanism in real-time cloud computing environment 

is addressed. In this, fault detection is carried out with 

the testing phase to determine the best reliable VM 

performed by using the RDKNN decision mechanism. 

Then the cloudlet is scheduled using the Teaching 

Learning Based Optimization Algorithm (TLBO with 

the best makespan (execution time). This algorithm 

schedules the task to the resources based on their 

fitness estimation. Due to this strategy, the VM 

resources are utilized effectively improving the 

reliability and availability in the cloud environment. 

The fault -aware technique was evaluated with the 

CloudSim toolkit. The experimental results show that 

the proposed scheduling mechanism for fault aware 

scheduling detection and scheduling provides better 

scheduling results than the other intelligent techniques. 
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