
Multilevel Fault-Tolerance Aware Scheduling Technique in Cloud Environment 109

Multilevel Fault-Tolerance Aware Scheduling Technique in

Cloud Environment

Devi K.1, Paulraj D.2
1 Department of CSE, SRM Valliammai Engineering College, India

2 Department of CSE, RMD Engineering College, India

devii.jeya@gmail.com, kingrajpaul@gmail.com*

*Corresponding Author: Devi K.; E-mail: devii.jeya@gmail.com

DOI: 10.3966/160792642021012201011

Abstract

In cloud computing, the resources are delivered to the

users on demand at a considerable cost. Due to low

maintenance and high scalability services, enterprises

wish to deploy their newly developed application towards

the computing environment. For large scale applications,

fault tolerance is an essential task that guarantees the

reliability and availability of computing services. In this

paper, a multi-level fault tolerance scheduling mechanism

is proposed that overcomes the real-time failure in the

system. In the first phase, non-functional testing and

decision making algorithm is used to find the reliability

of virtual machines. Here, the reliability criterion is

achieved by Reliable Decision K-Nearest Neighbor

(RDK-NN) algorithm that considers only the best reliable

virtual machine. In the second phase, high availability is

achieved using a scheduling algorithm. For this purpose,

a Teaching-Learning Based Optimization (TLBO)

scheduling is proposed that provides a better-scheduled

set of tasks for the corresponding users. The evaluation of

the proposed approach is carried out under Cloudsim

platform. The performance is determined in terms of

makespan time, failure ratio, performance improvement

rate, response time and rejection ratio to estimate the

scheduling task. The result shows that the system

achieves high reliability and availability of data with a

multi-level format in the cloud environment.

Keywords: Cloud computing, Makespan, Task

assignment, Task scheduling, Fault tolerance

1 Introduction

In the modern computing technology, cloud

computing offers accessing, manipulating, and

configuring the resources to the customers via the

internet with pay-as-you-go basis. It is an on-demand

system that provides users to utilize the computing

resources through service providers such as Amazon,

Google, Microsoft, and Apple on a pay–per use basis.

Based on the services delivered, the cloud environment

is classified as follows: Infrastructure as a Service

(IaaS), Platform as a Service (PaaS) & Software as a

Service (SaaS) [1]. The IaaS infrastructure deals with

resources such as operating system, networking

equipment, storage, and processors. It provides the

user with the cloud provider. The SaaS is an on-

demand software application, more popular among

Corresponding consumers which provides the user

with the access of software and application such as

Google docs, Email cloud, etc. over the internet. The

PaaS in the cloud-like Google App Engine manages

the software application over the web that allows the

user to create applications. This service enables the

user to avoid the complexity of managing and buying

the licenses, network, development tools, and other

resources [2]. The concept of virtualization technology

in the cloud enables the user to utilize the computing

services with the help of virtual machines (VM) and

lease it to the enterprises or an individual user [3]. As

many VM are employed, the task scheduling strategy is

adapted to allocate the task to the resources in the

cloud [4]. Even though Cloud Computing is a general

trend in all industries, some failures need to be

addressed. Some of the main issues are to ensure

robustness, reliability and availability of important

services in the cloud system. On the other hand,

failures in the cloud degrade the performances, which

should be managed using the fault-tolerance technique

[5].

Fault-tolerance deals with the ability of a cloud

scheduler to protect the delivery of tasks and to operate

continuously, even in the case of failure [6-7]. The

problems should be identified by cloud fault-tolerance

components and should be resolved within the shortest

period [8]. The fault may arise due to hardware failures,

virtual machine malfunctioning, network congestion,

and application failure [9]. Fault Management in a

cloud computing environment depends on two major

parameters. (i) Recovery point objective: It defines the

volume of data lost during a fault. (ii) Recovery Time

Objective: It defines the amount of time that takes to

repair the fault when it occurs. Cloud resources are

known to experience inconsistency in their

performance delivery [10]. Fault tolerance is one of the

important issues that detect and locate the faulty nodes

110 Journal of Internet Technology Volume 22 (2021) No.1

based on the faulty diagnosis protocol [11]. Fault

detection in the virtualized system uses the I/O

architecture that provides a greater benefit for the

reliability and reusability features. Based on the I/O

architecture model, the faults on the VM is detected

and recovers by switching to another one and continue

to operate without data loss [12]. The resources are

dynamically provisioned and delivered to users in a

transparent manner automatically on-demand. As more

number of Virtual Machines are employed in the cloud,

the process of assigning tasks to the cloud resources

becomes a difficult task. Thus, a task scheduling

strategy is applied to map the tasks and dispatch them

to the resources in the variant environment efficiently.

Due to this, finding an optimal solution in scheduling

the task is considered as an NP-complete problem. In

the cloud system, several heuristic algorithms such as

Min-max, Max-min, and Heterogeneous Earliest Finish

Time (HEFT) are available [13]. Some of the heuristic

algorithms are also used to find the optimal solutions to

the complex problems in cloud systems that include the

Genetic Algorithm (GA), Particle Swarm Optimization

(PSO), Ant Colony Optimization (ACO), League

Championship Algorithm (LCA) and Deep learning

Algorithm [14-17]. These algorithms minimize the

search space and the execution is carried out at a

certain time limit. The scheduling task is based on

several strategies such as time, cost, fault tolerance,

and quality of service (QoS) [18-19]. The scheduling

task in the cloud environment should meet the QoS

requirements including the deadline and the makespan

[20-21]. The fault tolerance based scheduling is an

efficient approach for the real-time task scheduling on

the computing instances. The Primary-Backup (PB)

model uses multiple copies namely primary and

backup to execute the task in two different processing

units for fault tolerance.

Due to the cloud’s dynamicity and large scale

characteristics, it has been deployed in various fields.

Cloud reliability and availability are considered as a

major problem [22-23]. In this research work, a

Teaching-Learning-Based Optimization (TLBO)

algorithm is proposed for task scheduling in cloud

computing among the user and the cloud service

provider. The proposed scheduling technique for fault

tolerance awareness addresses the cloud task execution

which would reflect on the currently available

resources and reduce the early failure of autonomous

tasks. It indicates that the technique is very appropriate

for the task execution to ensure high reliability and

availability in the cloud computing environment.

The contributions of the work are as follows.

‧ Fault aware scheduling ensures reliability, robustness,

and availability for essential services as well as

running of applications in the cloud computing

system.

‧ The RDK-NN decision-making algorithm helps to

obtain a reliable VM which utilizes the available

cloudlets, resources and also reduces the premature

failure of the system.

‧ The proposed TLBO fault aware scheduling ensures

the scheduling of tasks based on fitness level within

the minimum execution time.

‧ Reduces fault tolerance overhead and allocate virtual

resources effectively that meet the requirements of

both the users and cloud providers.

The rest of the paper is modeled as follows: Section

2 discusses the related works of the fault aware

scheduling techniques. The detailed explanation of the

proposed multi-level fault aware scheduling model is

provided in section 3. In section 4, the performance

evaluation and comparison of existing and proposed

scheduling methods are discussed. Finally, in section 5,

the paper is concluded based on the analyzed results.

2 Related Works

Abdulhamid et al. [24] proposed a Dynamic

Clustering League Championship Algorithm (DCLCA)

that addresses the fault tolerance scheduling issues in

the cloud computing environment. In League

Championship Algorithm (LCA) fault detection is

carried out to detect the failure at the operating system,

virtual machine (VM), and application level. Based on

this, the job is reassigned from the insufficient

resources to the ideal queue resources. Here, task

clustering is performed to categorize the most

exceptional task cluster and to select the best VM by

the cloud information system (CIS). Finally,

scheduling is carried out based on the current CIS

information that partitions the task according to the

available resources.

Abdulhamid and Latiff [25] proposed a fault aware

scheduling scheme named Check Pointed League

Championship Algorithm (CPLCA) to handle the

unexpected task execution failure. In this task, the

failed job is transferred to the available VM, and the

execution is carried from the last current state using the

checkpointing strategy. It reduces the redundant

execution breakdown during the task event and the VM

failure.

Zhou et al. [26] discussed the makespan-aware

optimum scheduling scheme with a two-stage heuristic

method that determines the assignment and replication

task and then estimates the schedule of the assigned

task. In the first stage, clustering is performed for

makespan minimization that enables the replication of

assigned tasks to satisfy the reliability requirements.

Almezeini and Hafez [27] proposed a task

scheduling algorithm in cloud based on the Lion

Optimization Algorithm (LOA). It is a nature-inspired

metaheuristic algorithm that mimics the hunting

behavior of the ant lions to decrease the execution time

of the task. The lions in the residents which are

considered as male remain in position whereas the

Multilevel Fault-Tolerance Aware Scheduling Technique in Cloud Environment 111

female has their strategies to search the optimal

solution. This algorithm determines the best solution

based on their fitness value (makespan) obtained from

each lion.

Xu et al. [28] proposed Min-min based time and cost

tradeoff (MTCT) to minimize the overall completion

time (makespan) and execution cost in the cloud

computing environment. It determines the workflow

scheduling issues in cloud and adopted a fault recovery

technique to improve the reliability and fault tolerance

techniques. In this, the given application is composed

of a set of tasks scheduled to the proper resources with

the consideration of fault recovery in the cloud.

Zhang and Zhou. [29] describe the two-stage

strategy to enhance the quality of service, makespan,

and scheduling performance in the clouds. In the first

stage, the task is classified, and VM is created based on

the historical task scheduling data. At the second stage,

matching is performed between the task and the

suitable VM with different resource attributes. It saves

the waiting time for scheduling the task to utilize the

VM by the user.

Marahatta et al. [30] proposed energy-aware fault-

tolerant dynamic scheduling scheme (EFDTS) for task

classification. It was developed to divide the immediate

tasks into distinct classes and then allocate them to the

most suitable virtual machines based on their classes.

This will lead to the reduction in response time while

considering energy consumption. Replication was used

for the fault tolerance to minimize the task rejection

ratio caused by machine failure and delay. Furthermore,

a migration policy was developed that can

simultaneously improve energy efficiency, but no

complementary features were considered for resource

utilization.

Hsieh et al. [31] proposed a Feature-oriented Fault

Diagnosis Agreement (FFDA) protocol with the

exchange of three round of message that detect the

fault processors in failure mode. This model consists of

three stages which include message exchange, fault

diagnosis, and decision making phase. Initially, at the

message exchange phase, the messages are collected to

determine and eliminate the faulty processors for the

next stage. Then apply dormant diagnosis rule for each

round of message exchange and malicious faulty

processor rule to find the faulty processors. Finally, the

decision value is obtained in the decision making phase.

However, the time consumption is high in the data

exchange process.

From the above analysis of the fault tolerant

scheduling schemes, the existing schemes perform the

execution of task in the presence of faults. Fault

tolerance is executed in many earlier works on the

basis of primary backup technique of scheduling the

task on two different processors. Thus the task are able

to schedule before its deadline but it suffers from high

processing time. Also, at the time of processing, node

failures may occur very frequently and thus the

replication technique is utilized to achieve fault

tolerance which increases the energy consumption to

complete the same set of tasks. Further, the proactive

fault tolerance mechanism migrates a task from

unhealthy node to the healthy node without stopping of

node migration. However, the overall overhead and the

sudden failure prolong the execution time due to the

failure in the system. The faulty recovery schemes

mostly rely on the reactive scheme of checkpoint

mechanism where the possible failures are predicted

without considering scheduling issues. The task

execution failure is no longer accidental but it is a

common characteristic of the cloud computing

environment. However, these affect the availability and

reliability in the cloud environment. Hence, an active

fault aware scheduling technique should be adapted to

utilize the cloud resources efficiently. To overcome

these limitations, a multilevel fault aware scheduling

mechanism is proposed to schedule the task to ensure

the high reliability and availability in the cloud system.

3 Proposed Multi-Level Fault Tolerance

Mechanism

The proposed fault tolerance aware multi-level

scheduling technique is processed in two phases. In the

first phase, the allocation of a task to the virtual

machine is carried out, and non-functional testing is

performed to determine the efficient VM. In the second

phase, fault tolerance aware scheduling is achieved

through the TLBO technique execute the group of an

independent task to a suitable VM.

Figure 1 shows the architecture of the proposed

multi-level fault aware scheduling algorithm. Initially,

the task is assigned from the N- number of users to the

service provider. Then, the fault detection is performed

with five levels of testing, and the RDK-NN decision

mechanism is used to obtain reliable VMs. The TLBO

scheduling schedules the task based on their fitness

measure to the required host.

3.1 VM Fault Detection

In the cloud task scheduling, the task is assigned to

the independent virtual machine that undergoes non-

functional testing and decision phase to determine the

best VM. It helps to obtain reliable virtual machines in

the cloud environment and access the process of the

client request. Initially, n number of tasks obtained

from the cloud users are fed into multiple virtual

machines for processing. After processing, the non-

functional testing is carried out to obtain a reliable VM.

The testing modules are as follows.

3.1.1 Non-Functional Testing

Cloud Testing refers to the validation and verification

of infrastructure, environment, and application which

112 Journal of Internet Technology Volume 22 (2021) No.1

Figure 1. The Architecture of Multi-level Fault Tolerance Using Scheduling

are available on-demand by conforming them to the

business model expectation of cloud computing. The

testing modules are as follows.

Performance Testing: The performance testing

module checks the responding ability of the VM

executed under a diverse workload. This type of testing

helps to obtain a reliable VM for satisfying the

business requirements. The formula calculates the

testing:

*100
Time spent for the task

performance testing
total available time

= (1)

From equation (1), performance testing is estimated

based on the ratio between time spend for the task to

the total time available for testing. Here, the total

available time refers to the time utilized by the system

to test and monitor the VM at the predefined conditions

in a varying workloads.

Scalability Testing: The scalability module

determines the ability of the VM to expand or increase

the processing capacity on–demand. This testing

ensures that the given task can handle the user

requirements on the varying demand and the on-

growing capabilities of the system. It is calculated by,

Averageallocationof VM speed

Scalability
Execution time

= (2)

Time Checker: It defines the response time of each

VM and is estimated in milliseconds. In this, we set the

time limit as 5000ms. The virtual machine which

respond at this specified time limit is regarded as a

reliable VM.

Acceptance Test (AT): This module checks whether

the cloud resource produces a logical result or not even

during the failure. The failed VM is not considered for

the next process, but the corrupted and the succeeded

VM will be considered for further processing. It is

estimated as follows.

taskofnumbertotal

completedtasktaskremaining
AT

−

=
 (3)

The acceptance test determines whether the system

satisfies the acceptance criteria based on the score

obtained from equation (3). In this, if a total of 100

tasks is taken, then the completed task and the task

remaining to complete are estimated and their score

value is predicted to determine whether the entity

accepts the system.

Reliability Testing: It checks the reliability of each

virtual machine. Initially, all the virtual machines

reliability is set as 100%. If the processing factor gives

its result on a particular time limit, its reliability either

increases or decreases. After assessing all the virtual

machine reliability, the result is passed to the decision

making. The reliability is calculated as follows:

 *100
successful responses

Reliability
Total requests

= (4)

3.1.2 RDK-NN for Decision Making

This module helps to determine the best reliable

node using Reliable Decision K-Nearest Neighbor

(RDK-NN) algorithm. In this algorithm, the reliability

level is fixed for each virtual machine. The maximum

reliability factor VM is considered as the RDK-NN

algorithm for decision making are explained as follows.

Multilevel Fault-Tolerance Aware Scheduling Technique in Cloud Environment 113

3.1.3 Pseudo code for Reliability Level Estimation

Step 1: Initially, load the data; fix the reliability factor

as 0.3 to estimate the reliability of VM

Step 2: The similarity measure is calculated based on

the Euclidean distance between query instances

(resource constraints) and training samples from the

non-functional testing to estimate the reliable VM.

Euclidean distance is the commonly used distance

when the data is in continuous form.

Step 3: The above non-functional testing and system

constraint level are considered to calculate the K-

nearest neighbor. A harmonic mean distance is

calculated based on the sum of the harmonic average of

the Euclidean distance metrics from one data point to

another. The harmonic mean estimation of the RDK-

NN algorithm is calculated by,

2

1

()
n n

i i

ftt i

M

i

S P

H
N

=

−

=

∑ ∑
 (5)

where,
ti
f → non- functional testing with five testing

factors (i defines the testing types)

Si Result obtained from particular testing

Pi → Resource constraint level

i
N → number of testing involves detection

Step 4: The distance is sorted and the nearest

neighbors are determined based on the K-th minimum

distance. The node that achieves the highest reliability

factor is considered as the best reliable VM.

Step 5: During the selection, if two nodes have the

same highest reliability level, the node with a smaller

IP address is selected as the computing cycle output.

From the above steps, the reliable VM is selected

among all the individual Virtual machines. Then the

result is scheduled using fault tolerance mechanism to

determine the high-reliability factor-based VM.

3.2 Scheduling Mechanism

The result achieved from the first level is then send

to the second level of the fault awareness scheduling

mechanism. In this, the task migration and fault

detector approach are carried out to detect the fault at

the initial stage. Next, task migration is performed for

reassigning faulty jobs to the other available resources.

After assessing the best reliable virtual machine, the

results are scheduled using the TLBO method shown in

Table.1. It is used to determine the optimal resource

allocation for the task within the minimization of task

execution time in the cloud system.

3.2.1 Teaching Learning Based Optimization

(TLBO) Scheduling in Cloud Environment

TLBO is a new meta-heuristic nature-based

algorithm in obtaining the optimal solution for

allocating the task to the resources which reduces the

makespan and the cost in the entire cloud system. It is

a population-based method that determines the global

search in optimizing the task and obtains the best VM

at scheduling. The TLBO method is divided into two

phases: They are learner phase and the teacher phase.

In the learner phase, the learning is obtained between

the learners, and the teaching phase is carried out

between the learner and the teacher. In this algorithm,

the population which consists of different variables is

considered as a group of learners or class of learners.

The different variables define the various subjects that

are offered as the students. Here the candidate solution

consists of the objective function which defines the

knowledge of the students and the solution with the

best fitness function is considered as the teacher.

The steps in TLBO optimization algorithm are as

follows.

Step 1: Initialization

Initialize the number of optimization parameters

such as the number of tasks (cloudlets) and the

termination criteria.

{ }nN TTTTcloudlet ,...,,, 321=

Step 2: Estimation of Population

A random population is generated according to the

size and number of VMs. In TLBO, some tasks

indicate the learners and VM defines the teachers. The

population is expressed as follows:

 Population =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

vnTnTnT

v

v

PPP

PPP

PPP

,2,1,

,22,21,2

,12,11,1

.....

...........

.....

....

 (6)

where,

 VMv

tasksofnumberT
n

→

→

Step 3: The computational ratio (VM
cr
) is calculated

and the computational share (VM
S

) of the VM in the

cloud are calculated by,

n

MIPSVM

MIPSVM
VM fn

i
i

f
fcr,3,2,1,

1

)(=∀

∑

=

=

 (7)

 nVMMIcloudletVM f

n

i

fcrIfS,3,2,1,).(
1

)()(=∀×= ∑
=

 (8)

where MIPS denotes Millions of Instructions Per

Second (VM computing power) and MI is the Million

Instructions (cloudlet size).

From the above results, determine the VM with the

high computational ratio in the system.

Step 4: Teacher phase

The provider derives the fitness function by

reducing the completion time, while the client aims to

114 Journal of Internet Technology Volume 22 (2021) No.1

reduce the price of accessing cloud resources by

reducing the makespan time. Therefore, the fitness

value of the can be computed as

 { }
ik

m

i
CTxf

1
min)(

=

= ∪ (9)

Where →ikCT completion of tasks.

The task completion criteria (ikCT) defines the task

to be completed on the VM is calculated as,

 ∑
=

=

n

i k

i

ik
MIPSVM

MIcloudlet
CT

1

.

 (10)

From equation (9), consider the minimum value

)(xf and the corresponding task is determined as the

best virtual machine (K-best).

Step 5: Determine the new teacher set (mean function)

by modifying the solution based on the k-best solution.

It is obtained by the difference (
DF) between the

result of VMs and the mean result of a task for the new

set of iteration in each user.

DF =)(

,,, ijfikbestj MTXr −

 (11)

Here, the ri random value lies between 0 & 1.

X j, kbest i → K-best’s relevant task

Tf → Teaching factor where 0 and 1 define the

teaching quality which termed failed and the

reliable VM

M j,i → Average task of each user in iteration From (11),

the result is added to the current solution to

update the values. It is given by

DOLDNEW

FXX += (12)

where XNEW → Updated fitness function

XOLD → The task within the design variable

Based on the updated functions (best fitness

function), the new values become input to the learner

phase.

Step 6: Learner Phase

In this, consider the result from the teacher (XNEW)

and their interaction between (XNEW)" themselves. A

random interaction is determined between the learners

to obtain new knowledge within the learners.

Consider two random tasks p and q, send access

cloud resources with formations XNEW, p and X’NEW, q

and update the tasks based on the fitness comparison

with a probability of task to access VM resources at

time t.

Randomly select two learners pX and qX , p ≠ q

If (f
p

X)≺ (f qX)

X"NEW, p = XNEW, p + r(XNEW, p – X’NEW, q)

ELSE

X"NEW, p = XNEW, p + r(X’NEW, q – XNEW, p)

End if

Accept, XNEW if it gets the best fitness function

Step 7: Termination

Check if the termination criteria (task processing to

each VM) is satisfied. If yes, the optimal schedule set

is achieved; otherwise, iteration is performed by

repeating the step from 3 to 6.

Table 1. Algorithm for the proposed Multi-Level Fault Tolerance Mechanism

Input:- A set of tasks, resources

Output:-To obtain the reliable and best VM (resources) for the corresponding users

1. Initialize n number of tasks to SP

2. Perform five types of non-functional testing //VM fault detection

3. Determine best VM using RD-KNN decision making algorithm

 Set the reliability factor as 0.3

 Estimate reliable VM based on Euclidean distance

 Calculate
M

H based on the average result of Euclidean distance measure

 Sort the distance and finds the k-nearest neighbor

 Select node with high reliability level as reliable VM

4. Initialize the algorithm parameters of cloudlets, and termination criteria // TLBO algorithm

 Generate the random population as in eqn (6)

 Calculate VM cr and VMS of VM //teachers phase

 Determine
ik

CT

 Compute fitness function based on equation (9) and d etermine as K-best (best VM)

 Update the new set of fitness function based on equation (12) and sent to learners phase

 Compute the interaction between X
NEW

 and
NEW

X ′′ // Learners phase

5. Accept the task of X
NEW

 with best fitness function

6. Terminate

 If processing criteria is achieved

 Else

 Repeat learners and teachers phase

 Schedule the task based on the minimum fitness function measure to cloud

7. End

Multilevel Fault-Tolerance Aware Scheduling Technique in Cloud Environment 115

Figure 2. shows the flowchart of the TLBO

scheduling technique. At first, initialization and

population estimation are performed to determine the

total population (task) in the cloud systems. Then, the

solution update is performed based on the best value

calculated by comparing the new solution with the

existing solution. Then, this updated solution set is

send to the learner phase that schedule the task based

on the fitness function.

Figure 2. Flow Chart of the TLBO scheduling mechanism

After performing the above operations, the task is

scheduled based on their fitness measure and send to

the particular VM and direct to the specified host. The

remaining task which is not scheduled is resend to the

fitness calculation. Hence an iteration procedure is

carried to schedule the VM with minimum fitness to

the cloud resource.

During scheduling the task into VM, the fault occurs

due to the resource or system break down. Hence

restoration is performed to obtain the status of the task.

Thus, when the fault occurs, the failed task or VM is

traced and then schedules the succession task with a

116 Journal of Internet Technology Volume 22 (2021) No.1

TLBO scheduling algorithm. The fault usually occurs

at the application, VM level, and host level. The

application-level faults are recovered by the

Checkpoint/Restart (CR) method that stores or

upgrades the status of the job. The VM level faults are

solved by recreating the resources from another host.

For this, it uses the snapshot technique that rollback the

file system which contains the application state, output

data as well as the system configuration. At the host

level, the faults are resolved by scheduling the VM to

another host. By restoring the status, the VM

mechanism aims to increase the reliability of the cloud

providers as well as the users. Some of the advantages

are (a) avoid saving the whole state VM and renting

additional VM during node redundancy, (b) the

checkpoint point file helps in recreation as well as the

system rollback. Initially, local check pointers save the

checkpoint state to the disk, and then a temporary

checkpoint file is taken, and finally, the files are

transferred asynchronously.

After status restoration, the process again restarts by

reassigning and rescheduling the job in the queue of

insufficient resources to another accessible VM. It

reduces the load balancing problem and provides fault

tolerance effectively by utilizing the saved state of the

application. In this, the failed task migrates to the other

available or the underloaded computing nodes (VM)

for execution. Also, the suspended task that occurs due

to overloading is instantly scheduled to the other

alternative nodes. The task migration is helpful in the

following scenarios (a) load balancing problems for

VM overloaded systems (b) fault tolerance awareness

and (c) migration which can be done based on the

resource request in the cloud. In comparison with the

traditional checkpoint mechanism, the proposed

checkpoint approach does not require any redundant

VM on standby nodes and also eliminates the run time

processing in the recovery stage. Also, the checkpoint

is processed in two different streams where the users

have the flexibility to choose an appropriate

implementation for the process of checkpoint

mechanism. This seems that the backup overhead is

reduced to the maximum extent and can be applied for

the large usage of cloud.

4 Experimental Results and Discussion

This section provides the Metrics, dataset details,

and the results of our proposed approach. The proposed

multi-level fault aware scheduling mechanism is

evaluated under the Cloudsim simulation platform [32].

4.1 Dataset Description

This method is evaluated with the Google Cloud Job

(GoCJ) dataset [33]. The dataset comprised of 19 files

containing the data that describes the size of the job

expressed in Millions Instruction (MI). The data is

acquired from the Google cluster traces and is created

using the Monte Carlo method. The data file is

expressed in “GoCJ_Dataset_XXX.txt, where XXX

defines the number of jobs (e.g. “GoCJ_Dataset_

800.txt”). The size of the job ranges from 15000-

900000 MI and is classified as small, medium, large,

extra-large, and huge. The cloudlet sizes for the dataset

lies between the ranges: small (15000-55000 MI) of

about 20%, medium (59000-99000 MI) of 40%, large

(101000-135000 MI) of 30%, extra-large (150000-

337500 MI) of 4% and Huge (525000-900000 MI) of

6%. This method is evaluated with 500 tasks from the

GoCJ dataset in the ratio of small (19%), medium

(38%), large (31%), X-large (5%), and huge (7%).

4.2 Evaluation metrics

The proposed method is evaluated under the three

metrics which include makespan time, failure ratio, and

failure slowdown. The following describes the fault

tolerance parameter metrics [34].

4.2.1 Makespan Time

Makespan is defined as the maximum completion

time that a resource taken to complete the latest task.

The lesser of makespan denotes the better service

quality. The makespan corresponding to the optimization

criteria in scheduling should be minimized. Equation

(9) defines the makespan evaluation formula in the

cloud systems. In cloud systems, the completion time

should be low thereby reducing the cost of the cloud

resources.

4.2.2 Failure Slowdown (FSD)

It is defined as the ratio between the interruption or

time delay occurred by the failure-to-failure free job

execution time and the average over the total number

of jobs. The FSD of the multilevel fault aware

scheduling method should be smaller than other

techniques and is expressed as follows:

FSD

time delay occured by failure to failure free job execution time

average over total jobs

=

(13)

4.2.3 Failure Ratio (FR)

It is defined as the ratio between the total failures of

task happens in the proposed technique to the total

failure in the other scheduling algorithms. The

proposed fault aware scheduling method FD ratio

should be better if the result comes out of less than 1. It

is expressed as follows:

()

()

time of failures proposed method
FR

total number of failures other methods
= (14)

Multilevel Fault-Tolerance Aware Scheduling Technique in Cloud Environment 117

4.2.4 Experimental Setup

This method was evaluated with 500 tasks from the

GoCJ dataset in the ratio of small (19%), medium

(38%), large (31%), X-large (5%), and huge (7%). The

Cloudsim parameter configuration is listed in Table 2.

Table 2. Cloudsim parameters

Size of the job(15000-900000 MI) Range

CPU 500-2500 MIPS

Memory 500-4096 MB

BW 500-1000 bit

Number of VM 50

MIPS of Processing Element (PE) 250-23000

VM memory RAM 256-4500 MB

No. of PEs per VM 1-8

Datacenter no 10,15,20,30

Host no 2-500

Type of manager Time Shared

Cloudlet 500

System architecture X86

Virtual Machine Manager Xen

OS Windows

4.3 Observed Result

The performance of the proposed multilevel fault

aware scheduling technique is evaluated under

makespan, failure ratio and failure slow down.

Figure 3 shows the result of the makespan metrics

calculated with 500 tasks and the comparison is carried

out under the MTCT, DCLCA, and CPLCA techniques.

The result indicates, when increasing the number of

cloudlets, makespan (execution time) keeps on

increasing. The existing method shows a high

makespan time compared to the proposed technique.

This outcome shows that the proposed multi-level fault

aware scheduling method utilizes less execution time

than the existing approaches.

Figure 3. Makespan time results

Figure 4 shows the failure ratio comparison of the

proposed scheduling method with the other algorithms.

The FR varies from 0.66-0.35 as the task gets

increasing in the MTCT technique while DCLCA

varies from 0.5-0.12 and the CPLCA method varies

from 0.49-0.375. However, the proposed method

performs well and obtains the lowest range in the

failure ratio.

Figure 4. Failure Ratio (FR) of Multilevel Fault aware

scheduling algorithm

It clearly shows that the proposed method performs

better than the existing techniques and the range lies

within 1.

Figure 5. represents the failure slow down ratio

compared with the existing algorithms. The FSD value

increases when the number of tasks increases. The

existing MTCT, DCLCA, and CPLCA methods

achieve the increasing range of FSD ratio, but the

proposed technique performs lesser ranges even at the

increasing number of task levels.

Figure 5. Failure Slowdown (FSD) of Multilevel Fault

aware scheduling algorithm

118 Journal of Internet Technology Volume 22 (2021) No.1

5 Conclusion

In this paper, the multi-level fault aware scheduling

mechanism in real-time cloud computing environment

is addressed. In this, fault detection is carried out with

the testing phase to determine the best reliable VM

performed by using the RDKNN decision mechanism.

Then the cloudlet is scheduled using the Teaching

Learning Based Optimization Algorithm (TLBO with

the best makespan (execution time). This algorithm

schedules the task to the resources based on their

fitness estimation. Due to this strategy, the VM

resources are utilized effectively improving the

reliability and availability in the cloud environment.

The fault -aware technique was evaluated with the

CloudSim toolkit. The experimental results show that

the proposed scheduling mechanism for fault aware

scheduling detection and scheduling provides better

scheduling results than the other intelligent techniques.

References

[1] Q. Zhang, L. Cheng, and R. Boutaba, Cloud computing: state-

of-the-art and research challenges, Journal of internet

services and applications, Vol. 1, pp. 7-18, May, 2010.

[2] G. Aceto, A. Botta, W. De Donato, and A. Pescapè, Survey

Cloud monitoring: A survey, Computer Networks, Vol. 57,

No. 9, pp. 2093-2115, June, 2013.

[3] F. Chang, J. Ren, and R. Viswanathan, Optimal resource

allocation in clouds, 2010 IEEE 3rd International Conference

on Cloud Computing, Miami, FL, USA, 2010, pp. 418-425.

[4] Q.-Y. Huang and T.-L. Huang, An optimistic job scheduling

strategy based on QoS for Cloud Computing, 2010 International

Conference on Intelligent Computing and Integrated Systems,

Guilin, China, 2010, pp. 673-675.

[5] K. Lu, R. Yahyapour, P. Wieder, E. Yaqub, M. Abdullah, B.

Schloer, and C. Kotsokalis, Fault-tolerant service level

agreement lifecycle management in clouds using actor system,

Future Generation Computer Systems, Vol. 54, pp. 247-259,

January, 2016.

[6] A. Ganesh, M. Sandhya, and S. Shankar, A study on fault

tolerance methods in cloud computing, 2014 IEEE International

Advance Computing Conference (IACC), Gurgaon, India,

2014, pp. 844-849.

[7] J. He, M. Dong, K. Ota, M. Fan, and G. Wang, NetSecCC: A

scalable and fault-tolerant architecture for cloud computing

security, Peer-to-Peer Networking and Applications, Vol. 9,

No. 1, pp. 67-81, January, 2016.

[8] M. N. Cheraghlou, A. Khadem-Zadeh, and M. Haghparast, A

survey of fault tolerance architecture in cloud computing,

Journal of Network and Computer Applications, Vol. 61, pp.

81-92, February, 2016.

[9] M. A. Mukwevho, and T. Celik, Toward a Smart Cloud: A

Review of Fault-tolerance Methods in Cloud Systems, IEEE

Transactions on Services Computing, pp. 1-1, March, 2018.

DOI: 10.1109/TSC.2018.2816644

[10] C. N. Höfer and G. Karagiannis, Cloud computing services:

taxonomy and comparison, Journal of Internet Services and

Applications, Vol. 2, pp. 81-94, September, 2011.

[11] S. C. Wang, M. L. Chiang, K. Q. Yan, and Y. T. Tsai, Fault-

diagnosis and Decision Making Algorithm for Determining

Faulty Nodes in Malicious and Dormant Wireless Sensor

Networks, Journal of Internet Technology, Vol. 19, No. 7, pp.

2135-2145, December, 2018.

[12] H. Jo, H. Kim, J. W. Jang, J. Lee, and S. Maeng, Transparent

fault tolerance of device drivers for virtual machines, IEEE

Transactions on Computers, Vol. 59, No. 11, pp. 1466-1479,

November, 2010.

[13] S. H. Madni, M. S. Latiff, M. Abdullahi, S. M. Abdulhamid,

and M. J. Usman, Performance comparison of heuristic

algorithms for task scheduling in IaaS cloud computing

environment, PloS one, Vol. 12, No. 5, e0176321, May, 2017.

[14] M. Kalra, and S. Singh, A review of metaheuristic scheduling

techniques in cloud computing, Egyptian informatics journal,

Vol. 16, No. 3, pp. 275-295, November, 2015.

[15] S. H. Madni, M. S. Latiff, Y. Coulibaly and S. M. Abdulhamid,

An appraisal of meta-heuristic resource allocation techniques

for IaaS cloud, Indian Journal of Science and Technology,

Vol. 9, No. 4, pp. 1-14, January, 2016.

[16] M. A. Tawfeek, A. El-Sisi, A. E. Keshk, and F. A. Torkey,

Cloud task scheduling based on ant colony optimization, The

International Arab Journal of Information Technology, Vol.

12, No. 2, pp. 129-137, March, 2015.

[17] K. Devi D. Paulraj, and B. Muthusenthil, Deep Learning

Based Security Model for Cloud based Task Scheduling, KSII

Transactions on Internet and Information Systems, Vol. 14,

No. 9, pp. 3663-3679, September, 2020.

[18] Z. Wang, L. Gao, Y. Gu, Y. Bao, and G. Yu, A fault-tolerant

framework for asynchronous iterative computations in cloud

environments, IEEE Transactions on Parallel and Distributed

Systems, Vol. 29, No. 8, pp. 1678-1692, August, 2018.

[19] N. Almezeini, and A. Hafez, An Enhanced Workflow

Scheduling Algorithm in Cloud Computing, 6th International

Conference on Cloud Computing and Services Science, Rome,

Italy, 2016, pp. 67-73.

[20] N. Jain, I. Menache, J. S. Naor, and J. Yaniv, Near-optimal

scheduling mechanisms for deadline-sensitive jobs in large

computing clusters, ACM Transactions on Parallel

Computing, Vol. 2, No. 1, pp. 1-29, May, 2015.

[21] M. A. Rodriguez and R. Buyya, Deadline based resource

provisioning and scheduling algorithm for scientific

workflows on clouds, IEEE transactions on Cloud Computing,

Vol. 2, No. 2, pp. 222-235, April-June, 2014.

[22] J. Wang, W. Bao, X. Zhu, L. T. Yang, and Y. Xiang,

FESTAL: fault-tolerant elastic scheduling algorithm for real-

time tasks in virtualized clouds, IEEE Transactions on

Computers, Vol. 64, No. 9, pp. 2545-2558, September, 2015.

[23] C. Y. Chen, Task scheduling for maximizing performance

and reliability considering fault recovery in heterogeneous

distributed systems, IEEE Transactions on Parallel and

Distributed Systems, Vol. 27, No. 2, pp. 521-532, February,

2016.

Multilevel Fault-Tolerance Aware Scheduling Technique in Cloud Environment 119

[24] S. M. Abdulhamid, M. S. Latiff, S. H. Madni, and M.

Abdullahi, Fault tolerance aware scheduling technique for

cloud computing environment using dynamic clustering

algorithm, Neural Computing and Applications, Vol. 29, No.

1, pp. 279-293, January, 2018.

[25] S. M. Abdulhamid and M. S. Latiff, A checkpointed league

championship algorithm-based cloud scheduling scheme with

secure fault tolerance responsiveness, Applied Soft Computing,

Vol. 61, pp. 670-680, December, 2017.

[26] J. Zhou, K. Cao, P. Cong, T. Wei, M. Chen, G. Zhang, J. Yan,

and Y. Ma, Reliability and temperature constrained task

scheduling for makespan minimization on heterogeneous

multi-core platforms, Journal of Systems and Software, Vol.

133, pp. 1-16, November, 2017.

[27] N. Almezeini and A. Hafez, Task Scheduling in Cloud

Computing using Lion Optimization Algorithm, International

Journal of Advanced Computer Science and Applications

(IJACSA), Vol. 8, No. 11, pp. 77-83, 2017.

[28] H. Xu, B. Yang, W. Qi, and E. Ahene, A multi-objective

optimization approach to workflow scheduling in clouds

considering fault recovery, Transactions on Internet and

Information Systems (TIIS), Vol. 10, No. 3, pp. 976-995,

March, 2016.

[29] P. Zhang and M. Zhou, Dynamic cloud task scheduling based

on a two-stage strategy, IEEE Transactions on Automation

Science and Engineering, Vol. 15, No. 2, pp. 772-783, April,

2018.

[30] A. Marahatta, Y. Wang, F. Zhang, A. K. Sangaiah, S. K.

Tyagi, and Z. Liu, Energy-Aware Fault-Tolerant Dynamic

Task Scheduling Scheme for Virtualized Cloud Data Centers,

Mobile Networks and Applications, Vol. 24, No. 3, pp. 1063–

1077, June, 2019.

[31] H. C. Hsieh, M. L. Chiang, W. C. Tsai, and Y. C. Chen, A

Feature-Oriented Fault Diagnosis Agreement Protocol in

Distributed Systems, Journal of Internet Technology, Vol. 20,

No. 5, pp. 1401-1413, September, 2019.

[32] R. N. Calheiros, R. Ranjan and A. Beloglazov, C. A. De Rose,

and R. Buyya, CloudSim: a toolkit for modeling and

simulation of cloud computing environments and evaluation

of resource provisioning algorithms, Software: Practice and

experience, Vol. 41, No. 1, pp. 23-50, January, 2011.

[33] A. Hussain and M. Aleem, GoCJ: Google Cloud Jobs Dataset

for Distributed and Cloud Computing Infrastructures, Data,

Vol. 3, No. 4, Article No. 38, December, 2018.

[34] R. Garg and A. K. Singh, Fault tolerant task scheduling on

computational grid using checkpointing under transient faults,

Arabian Journal for Science and Engineering, Vol. 39, No. 12,

pp. 8775-8791, December, 2014.

Biographies

Devi K. received her B.E degree in

Computer Science and Engineering

from the Manonmaniam Sundharanar

University, in 2003, the M.E degree

from the Anna University, Chennai, in

2005.She is currently working as an

Assistant Professor in the Department

of Computer Science Engineering at SRM Valliammai

Engineering College, Chennai. Her current research

interests are Cloud fault tolerance, Scheduling, Deep

learning approaches in Cloud and Network security.

She is member of the ISTE, CSI and Indian Science

Congress.

Paulraj D. received his PhD degree in

computer science and engineering

from Anna University.He has 20 years

of experience including 9 years

industrial experience. He has received

his B.E (CSE) degree first class from

Bangalore University in 1993, M.E (CSE) and Ph.D in

Service Oriented Architecture from Anna University

respectively in the year 2004 and 2012. During his

Ph.D he has proved that Semantic Web Services can be

composed using Process Model Ontology instead of

Service Profile Ontology. He has published several

research publications in refereed International Journals

with high impact factor and International Conferences

as well. He is the life member of ISTE and a member

of IET. He had received IET Men Engineer Award in

the year 2012. His research interests include Machine

Learning, Data Science, Service Oriented Architecture

(SOA), Semantic Web Services, Computer Network

and Interface, Cloud and Grid Computing, Big Data

Analytics, Block Chain Technologies, Augmented

Reality, Virtual Reality.

120 Journal of Internet Technology Volume 22 (2021) No.1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

