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Abstract 

With the development of Wireless Sensor Network 

(WSN), more and more researchers pay their attention to 

the deployment of sensor nodes, especially for the 

coverage of WSN in three dimension space. However, 

getting the maximum for coverage rate in WSN quickly 

and accurately is still a front issue. Firstly, this paper 

proposes a modified GBMO algorithm combining with 

the concept of parallel, so that the time efficiency and 

convergency improve to a large extend, and the search for 

global optimum is capable of getting faster. Then, the 

improvement in search and convergency efficiency of 

proposed PGBMO is demonstrated according to 23 

benchmark functions composed of unimodal, multimodal 

and fixed-dimension function. Finally, a novel WSN 3-D 

terrain deployment scheme optimized by PGBMO is 

proposed to improve the coverage of the network. 

Experimental results demonstrate that the performance on 

the coverage of WSN gets efficient improvement 

compared to traditional particle swarm optimization (PSO) 

and original GBMO. 

Keywords: Gases Brownian Motion Optimization, Parallel 

Gases Brownian Motion Optimization, Sensor 

Deployment, Wireless Sensor Network 

1 Introduction 

The searching for optimization can be explained as 

the process of getting some problems solved under 

certain conditions. The optimization can be viewed as 

an algorithm that dedicated to searching for optimal 

solutions [1-4]. Inspired by biological evolution, larger 

amount of optimization algorithms with different 

evolution strategies were presented is last decades [5-

7]. Owing to that optimization algorithms imitate the 

habits of all kinds of creatures in nature, the 

optimization algorithms vary from different rules and 

characteristics. As a result, the problems under solved 

and applications for optimization algorithms are 

suitable for different algorithms as well. In other words, 

the searching for optimization is dependent on the 

actual functions, such as unimodal and multimodal 

functions. The optimization algorithm is composed of 

exploration and exploitation. Exploration is the process 

by which a group of organisms finds the best solution 

in situ, while the exploitation is the external search for 

the latest solution strategy. This paper mainly studies 

the evolutionary algorithm of Gases Brownian Motion 

Optimization (GBMO), which construct the searching 

for optimum based on molecular gas. Each molecule is 

constantly searching for the optimal solution, and 

finally the best solution is found through turbulent 

rotational motion and gases brownian motion. 

At present, the WSN has been found to be very 

suitable in many application fields including environmental 

monitoring, industrial control, information security, 5G 

networks and disaster early warning [8-12], and the 

coverage rate of sensors is the main concerns. Because 

the current WSN implement network awareness by 

spreading on the network for coverage, different 

schemes are provided according to different sensing 

models to improve the network coverage [13-16]. For 

the sake of achieving the functional requirements in the 

network, a large number of sensor nodes have to be 

deployed in the WSN which may results in redundant 

coverage and waste unnecessary resources [17-19]. 

Therefore, effective node deployment is an important 

issue for current WSNs and the performance of the 

entire network is directly affected by the coverage of 

the target area. The monitor by sensors for target area 

can be divided into static and dynamic, which means 

that the sensors is either static or dynamic during the 

monitor [20-21]. In both cases, it can be applied to two-

dimensional and three-dimensional space deployment in 

actual scenarios. In the early stage of WSN, network 

coverage based on two-dimensional plane model was 

paid much attention. Along with people’s pursuit of 

real life and the need of actual scenes, 3d space node 

deployment has been paid more and more attention to 

solve many practical problems in life, such as 

underwater dynamic monitoring and security 
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deployment [22-24]. It is not enough to solve these 

problems only by using two-dimensional coverage, so 

the problem of coverage in three-dimensional 

environments has drawn more and more attention from 

researchers. 

Therefore, the PGBMO is proposed to optimize the 

three-dimensional coverage problem for WSN. The 

other parts are arranged as follows: Firstly, the basic 

GBMO algorithm and WSN 3-D coverage model are 

described. Secondly, a new communication strategy 

was introduced to improve GBMO. Thirdly, PGBMO 

is applied to the WSN three-dimensional coverage 

model. In the fourth part, the performance of PGBMO 

is verified by 23 test functions. Detect the pros and 

cons of PGBMO applied to the WSN three-

dimensional coverage model in the fifth part. Finally, 

the work of this paper is summarized.  

2 Related Works 

This section focuses on the traditional GBMO and 

basic sensing models of WSN 3-D coverage. The 

GBMO is a heuristic algorithm for solving 

optimization problems. It is introduced as follows: 

2.1 Gases Brownian Motion Optimization 

In 2011, M.Abdechiri et al. proposed GBMO, which 

is a heuristic algorithm for simulating molecular 

motion [25]. To obtain a globally optimal solution, 

GBMO concentrates on exploring the solution through 

the Brownian motion of gas molecules and search for 

the optimal solution through the turbulent rotation 

motion. The concept of Brownian motion of gas 

molecules is to simulate the randomization of particles 

by the form of molecules irregular movement in the 

environment. In the heuristic algorithm, all particles 

are randomly generated, which coincides with the 

Brownian movement. Similarly, when a gas molecule 

reaches a specified limit, turbulent rotational motion 

enters a turbulent state. The cause of turbulence is the 

instability of gas molecules, which is consistent with 

the randomness of the molecules in the algorithm. In 

the GBMO, when gas molecules make brownian 

motion to constantly find the optimal solution, gas 

molecules start turbulent rotation motion for global 

optimal search. Through brownian motion and 

turbulent rotational motion, the gas molecule finally 

obtains the optimal solution it seeks. Based on these 

two motions, each molecule represents a solution. 

Constant molecular movement is a process of mutual 

achievement [26]. To facilitate the description of 

GBMO, it is effectively described with these basic 

parameters: molecular temperature T , changing 

number of molecules X , and molecular mass M . A 

detailed demonstration of the GBMO algorithm is as 

follows: 

Step 1: Gas molecules are randomly initialized 

throughout the environment. 

Step 2: Because the radius of each molecule is 

different, the radius of each gas molecule must be 

randomly defined. Termed R , [0,1]R∈ . 

Step 3: Initialize molecular temperature T . In the 

initial brownian motion, the temperature was first 

involved in the activity of gas molecules. In the 

Brownian motion of life, as the temperature increases, 

the gas molecules move more intensely. 

Correspondingly, for the participation of temperature 

in GBMO, the effect of the temperature on the 

molecule’s constant motion has no doubt on the 

convergence of the algorithm. 

Step 4: By using equation (1) and equation (2), the 

velocity and position of the gas molecules are updated. 

 
1

3 ( )
( 1) ( ) ( )

( )

d d

i i

i

kT t
v t v t Sign r

M t
+ = + ×  (1) 

 
1

( 1) ( ) ( ) ( )d d d

i i i
x t x t Sign r v t+ = + ×  (2) 

Where ( 1)d

i
x t +  represents the velocity of the i -th 

gas molecule in the d -th dimension, just as ( 1)d

i
v t +  

represents the position of the i -th gas molecule in the 

d -th dimension. In addition, k  stands for Boltzmann 

constant and is set to 23
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Step 5: All molecules are evaluated by calculating the 

objective function value. 

Step 6: After continually performing the Brownian 

motion, the appellants formally participate in the 

turbulent rotational motion in the following way. Set 

the constants a =1.5 and b  =1.2 to participate in this 

event. The following equations are listed to update the 

gas molecule position. 
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Where 
2
r  is a random number, 

2
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2
( )Sign r  

is described as: 

 
2

2

2

1 ( 0.5)
( )

1 ( 0.5)

if r
Sign r

if r

− <⎧
= ⎨

≥⎩
 (5) 

Step 7: Use the objective function to evaluate the 

molecules after turbulent rotation. 

Step 8: The mass M  and temperature T  of the gas 

molecules are updated with the following equation. 
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Where the ( )
i

fit t , ( )worst t  and ( )best t  respectively 

represent the molecular fitness function value, the best 

value, and the worst value of the i -th gas molecule at 

time t . 

 
1
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i

T T
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Where ( ( ))
i

mean fit t  is the average value of the 

function values of all molecules at time t . 

Step 9: If the algorithm reaches the motion termination 

condition, it is terminated. Otherwise, repeat steps 4-8 

until the termination conditions are met. 

2.2 The 3-D Network Coverage Model 

In WSN, the network coverage model and node 

deployment greatly affect the WSN coverage problem. 

The points and faces in the sensor construct a 

geometric relationship through the perception model. 

This is an important criterion for measuring the quality 

of sensor services. The perception model of WSN 

usually has 0-1 model and probability model. In this 

paper, we will optimize the WSN network coverage 

through the 0-1 model. Therefore, we will introduce 

the 0-1 model in detail. 

0-1 model: In the WSN network coverage model, 

this model is the most commonly used perception 

model. In layman’s terms, 1 represents a sensor node 

covered an event, 0 represents no coverage. This article 

combines the concept of a line-of-sight (LOS) in 

literature [27]. That is: there is no obstacle between the 

two nodes to communicate. This is absolute perception. 

Let the coordinates of the node S  in WSN be 

( , , )
x y z

S S S , and the position of the target node 

be ( , , )
x y z

T T T , The sensing radius is R , and the 

distance between the sensor node S  and the target 

node T  is: 

 2 2 2( , ) ( ) ( ) ( )
x x y y z z

D S T S T S T S T= − + − + −   (8) 

According to the above, the 0-1 perception model is: 

 
1 ( ( , ) ) &

( , )
0

D S T R if LOS
O S T

otherwise

<⎧
= ⎨
⎩

  (9) 

As can be seen from the above formula, if the three 

dimensional area is perceived, the probability of the 

perception model is 1, otherwise it is 0.  

3 Our Proposed PGBMO and Its 

Improvement on Node Coverage of WSN 

In this section, we describe the PGBMO proposed in 

this article and the three-digit deployment problem 

applied to WSN. Heuristic algorithms sometimes lead 

to premature convergence. The weakening of 

population diversity is a prominent manifestation of 

premature convergence. Next, we will explain in detail 

our proposed parallel strategy. 

3.1 Parallel Gases Brownian Motion 

Optimization 

The PGBMO uses the idea of parallelism to improve 

the convergence and accuracy of the algorithm [28-29]. 

The idea of parallelism is to divide a large population 

into several small sub-populations to perform tasks 

independently. Although each subpopulation may fall 

into a local optimum, as long as appropriate 

communication strategies are added, this situation can 

be prevented in time. The PGBMO evenly divides the 

population into p groups, denoted as 
1 2

{ , , ..., }
p

G G G G= , 

where {1, 2, 3, ...}.p =  Let t  be the number of 

population iterations. Whenever the iteration number 

for the sub-populations is at t R= , the sub-populations 

communicate, where 
1 1 1

{ ,2 ,3 ,...}R R R R= . This article 

proposes four communication strategies. We will 

explain one by one. 

3.1.1 Communication Strategy with Displacement  

When each subpopulation is in the R  iteration, each 

group of gas molecules communicates in GBMO. The 

means of communication is displacement’s exchange 

of ideas. The following will explain in detail the 

displacement way of thinking. Firstly, the sub-

populations of each group still perform their tasks as 

usual. The core of their task is still to optimize 

according to the original rules. Then, because each 

sub-population after long-term optimization may cause 

the gas molecule to enter a locally optimal state, when 

t R= , each sub-population starts to meet. They seek 

optimal solutions from each subpopulation. And 

compare their optimal solutions again to find the best 

gas molecules in all populations. We call the optimal 

gas molecule the winner. Finally, in each 

subpopulation, several gas molecules are randomly 

selected. We call these randomly selected gas 

molecules sub-random molecules. The most critical 

step is to use the winner to replace the sub-random 

molecule to complete the communication.  

In general, this communication is to use the best 

individual in all groups to replace individuals randomly 

selected by each subpopulation [30]. This can 

effectively prevent the subpopulation from falling into 

the local optimality prematurely. This algorithm is 

called PGBMO-DC (Parallel Gases Brownian Motion 

Optimization-Displacement Communication). Figure 1 

shows the operation diagram of the PGBMO-DC 

algorithm.  
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Figure 1. The PGBMO-DC Algorithm Diagram 

3.1.2 Communication Strategy with Exchange 

Displacement 

This communication chooses two different 

communication methods to communicate [31-32, 39-

40]. When the population reaches 
1 1 1

{ ,3 ,5 ,...}R R R R= , 

GBMO uses the idea of exchange to communicate. 

Exchange’s way of thinking is to use the idea of 

survival and elimination. We will introduce specific 

operations in detail. Firstly, select the best gas 

molecule and the worst gas molecule from the sub-

populations. We refer to this as a sub-winner and a 

sub-loser, which are denoted w

p
G  and l

pG  respectively. 

Secondly, divide this p  group into two small teams in 

groups of two. Suppose there are 4 groups in total, then 

1
G  and 

2
G  are a group, and 

3
G  and 

4
G  are a group. 

Finally, exchange operations in each small team. That 

is, the sub-winners in the p -th group are used to 

exchange with the sub-losers in the ( 1)p + -th group. 

And use the sub-losers of the group p  to exchange 

with the sub-winners of the group 1.p +  Mathematically 

described as follows:  

 
1

w l

p pG replace G
+

���������

  (10) 

 
1

w l

p preplaceG G
+
���������

  (11) 

The local optimum can be effectively avoided by the 

mutual exchange of subpopulations. It is the subtlety of 

this algorithm to exchange the worst value of each 

group with the best in time. However, merely 

switching the optimal is not enough to make the 

algorithm reach a good state. Therefore, when R =  

1 1 1
{2 ,4 ,6 ,...},R R R  we use the communication method 

of PGBMO-DC algorithm to communicate. This 

avoids the monotony of the algorithm. Combining the 

two ideas of exchange and displacement can diversify 

the algorithm and effectively avoid the appearance of 

local optimization. We call this algorithm PGBMO-

EDC (Parallel Gases Brownian Motion Optimization-

Exchange Displacement Communication). Figure 2 

gives a detailed description of the PGBMO-EDC 

algorithm.  

 

Figure 2. The PGBMO-EDC Algorithm Diagram 

3.1.3 Communication Strategy with Switch 

Regrouping 

If each subpopulation continues to seek optimization 

through the original orbit, then this will lead to huge 
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differences between the subpopulations [33]. It may 

cause each sub-population to develop toward the 

optimal they think, rather than the global optimal. 

Therefore, the communication strategy used this time 

is to optimize the algorithm through the idea of 

communication regrouping to find the global optimal. 

When each subpopulation iterates to 
1 1 1

{ ,3 ,5 ,...},R R R R=  

each subpopulation begins to pass through. The idea 

adopted this time is the philosophy of Switch. After 

each of their sub-populations  

finds sub-winners w

p
G  and sub-losers l

pG , randomly 

selects the x  group to switch. That is, randomly select 

x  groups in the ( )p x p<  group to save their w

p
G . 

Then randomly select ( )y x y=  group to save their l

pG . 

Finally, use the w

p
G  of these x  groups to randomly 

replace l

pG  of the other y groups. They will regain 

their fitness function. However, only the idea of 

communication is not sufficient for perfect 

optimization, so when 
1 1 1

{2 ,4 ,6 ,...}R R R R= , let each 

subpopulation be regrouped. Regrouping is a method 

of random grouping. Random grouping is equivalent to 

adding a good disturbance to increase the search space. 

This can ensure population diversity and prevent each 

subpopulation from falling into a local optimum.  

In short, our communication method uses not only 

switch but also the concept of Regrouping, so we call 

this communication strategy PGBMO-SRC (Parallel 

Gases Brownian Motion Optimization-Switch Regrouping 

Communication). Figure 3 shows the communication 

strategy of PGBMO-SRC.  

3.1.4 Communication Strategy with Displacement 

Regrouping 

This article combines the displacement idea of 

PGBMO-DC with the idea of Regrouping in PGBMO-

SRC to achieve optimization. That is, when 

1 1 1
{ ,3 ,5 ,...},R R R R=  use displacement’s way of 

thinking to communicate; when 
1 1 1

{2 ,4 ,6 ,...}R R R R= , 

regroup the entire population randomly. We will all the 

communication strategy of this hybrid program 

PGBMO-DRC (Parallel Gases Brownian Motion 

Optimization-Displacement Regrouping Communication). 

Figure 4 shows the communication method of 

PGBMO-DRC.  

3.2 The PGBMO Application in WSN Based 

on Node Coverage 

This article is aim to solve the problem of coverage 

the maximize area in 3-D terrain with limited number 

of sensor nodes. There are many ways to solve the 

problem of two dimensional plane coverage [34], and 

achieved good performance. However, the simulation 

of placing sensor nodes on a two dimensional plane is  

 

Figure 3. The PGBMO-SRC Algorithm Diagram 

 

Figure 4. The PGBMO-DRC Algorithm Diagram 
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obviously different from the real-world problem. In 

order to more actually simulate the coverage problem, 

this paper layout the sensor nodes on 3-D terrain. 

Solving the coverage problem essentially is find the 

optimal deployment strategy. The different strategies 

have a significant influence to coverage rate especially 

on 3-D terrain. In recent years, many researchers 

utilized the intelligent computing algorithm to settle 

similar problems [35]. This paper improves the 

performance of GBMO by applying communication 

strategy and uses this novel algorithm to solve the 

coverage problem of WSN on 3-D terrain. 

In a specific 3-D terrain, if you know the value of 

any two coordinates of a point, you can calculate the 

value of the third coordinate of the point. Therefore, 

the algorithm can optimize the deployment strategy by 

optimizing the sensor node positions in any two 

dimensions. Every individual of algorithm represents a 

deployment strategy, so the individual is initialed as 

Figure 5:  

POS1,1 POS2,1

POS1,2 POS2,2

POSn-1,1

POSn-1,2

POSn,1

POSn,2

ⅡⅡ

ⅡⅡ

 

Figure 5. Design of Individual Dimension Values 

Each individual update their position according to 

equation (12) and evaluate their fitness according to 

the following equation: 

 
1 1

1
( ) ( ( , ))

M P

p q

q p

R i O S T
M

= =

= ∑ ∑  (12) 

Where ( )R i  represents the population coverage rate 

at the i -th iteration. P  is defined as the number of 

sensors. M  represents pixels on the 3-D terrain. 

( , )
p q

O S T  represents whether the q  pixel is covered 

by the p  sensor, and it is obtained by the equation (9). 

4 Experimental Simulation and Analysis 

of The Proposed Algorithm 

In this section, to prove whether the parallel 

communication strategy is effective, we used 23 test 

functions to test its performance. The test environment 

is MATLAB 2015b. Referring to the literature [36-37], 

The Figure 6 to Figure 8 respectively enumerate 2-D 

versions of unimodal, multimodal, fixed-dimension 

functions in order to understand the functions more 

clearly. 

4.1 Parameter Arrangement 

To verify the performance of the proposed algorithm, 

we compare them with PSO and GBMO. Also, keep 

the parameter settings of each of them consistent. They 

run an average of 30 tests on each test function for 

comparison experiments. To better comprehend the 

convergence of each algorithm, the number of 

iterations ( Iteration ) is set to 1000. For testing the 

performance of each parallel strategy fairly, we divide 

the proposed several parallel algorithms into 4 groups. 

That is, g  = 4. And 
1

R  is set to 20, that is, exchange 

or regroup every 20 times. Table 1 lists the parameter 

settings of these algorithms. The specific algorithm 

process of the PSO algorithm refers to the literature 

[38]. Here we set the constant c  to 2.0 and the weight 

w  to 0.9. In GBMO and the four parallel strategies, a  

is set to 1.5 and b  is 1.2. Their temperature T  

initialization is set to 900, and the Boltzmann constant 

k  is set to 1.38066 ×  23
10

− . And the population of 

these several algorithms ( pop ) is set to 40. 

  

(a) f1 (b) f2 (c) f3 (d) f4 

   

(e) f5 (f) f6 (g) f7 

Figure 6. 2-D Versions of Unimodal Benchmark Functions 
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(a) f8 (b) f9 (c) f10 (d) f11 

  

(e) f12 (f) f13 

Figure 7. 2-D Versions of Multimodal Benchmark Functions 

    

(a) f14 (b) f15 (c) f16 (d) f17 

 

(e) f18 (f) f19 (g) f20 (h) f21 

  

(i) f22 (j) f23 

Figure 8. 2-D Version of Fixed-Dimension Multimodal Benchmark Functions 
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Table 1. Parameter Setting 

Algorithm Parameter 

PSO 2.0, 0.9, 40, 1000c w pop Iteration= = = =  

GBMO 900, 1.5, 1.2, 40, 1000T a b pop Iteration= = = = =  

PGBMO-DC 900, 1.5, 1.2, 40, 4, 1000T a b pop g Iteration= = = = = =  

PGBMO-EDC 900, 1.5, 1.2, 40, 4, 1000T a b pop g Iteration= = = = = =  

PGBMO-SRC 900, 1.5, 1.2, 40, 4, 1000T a b pop g Iteration= = = = = =  

PGBMO-DRC 900, 1.5, 1.2, 40, 4, 1000T a b pop g Iteration= = = = = =  

 

Table 2 shows the final results of each function, 

expressed as mean (AVG.) and standard deviation 

(STSD.). The top line of each function is the average 

(AVG.), and the bottom line is the standard deviation 

(STSD.). It can be seen from the column of GBMO 

that the superposition of italics and bold indicates that 

GBMO has better performance than PSO. It can be 

seen from the four parallel algorithms, namely 

PGBMO-DC (PG-DC), PGBMO-EDC (PG-EDC), 

PGBMO-SRC (PG-SRC) and PGBMO-DRC (PG-

DRC), with better performance than GBMO is marked 

as bold. Finally, the comparison results of GBMO and 

PSO and the comparison results of four parallel 

algorithms and GBMO are calculated and marked in 

the table. If the comparison results of the two 

algorithms are similar, they are indicated by an 

underscore “----”. In the comparison results, “WIN” 

represents the number of wins compared with the two 

algorithms. Similarly, “LOSE” and “SIMILAR” 

represent failure and similar results, respectively. This 

paper also marks the cases where the standard 

deviation (STSD.) winners of the two algorithms are 

marked as bold in similar cases. It is obvious from 

Table 2 that the four communication strategies 

proposed in this paper are far superior to the traditional 

GBMO algorithm. 

Table 2. The Results of Simulation Experiments 

PSO GBMO PGBMO-DC PGBMO-EDC PGBMO-SRC PGBMO-DRC 
Function 

AVG. STSD. AVG. STSD. AVG. STSD. AVG. STSD. AVG. STSD. AVG. STSD. 

f1 2.26E+00 5.13E-01 1.28E-02 2.94E-04 5.59E-06 1.77E-10 4.71E-04 3.20E-06 8.85E-04 6.97E-06 1.04E-04 2.79E-08 

f2 1.07E+00 2.03E-01 3.03E-02 4.98E-04 1.52E-02 2.19E-04 1.86E-02 4.45E-04 6.88E-03 5.64E-05 1.80E-02 3.19E-04 

f3 1.54E+02 3.06E+03 4.77E+01 2.97E+04 1.37E-01 3.68E-02 3.17E-01 2.35E-01 5.91E-01 1.06E+00 1.53E+00 1.32E+01

f4 3.93E+00 4.15E+00 8.00E-03 9.30E-05 2.93E-04 6.73E-08 1.31E-03 6.85E-07 2.48E-03 6.92E-06 2.91E-03 2.19E-05 

f5 1.89E+02 1.37E+04 6.46E-04 1.37E-06 4.86E-04 2.08E-06 4.71E-03 7.04E-05 5.85E-05 1.13E-08 4.17E-03 4.47E-05 

f6 2.28E+00 4.84E-01 1.10E-02 2.67E-04 4.60E-04 3.20E-07 7.80E-03 1.84E-03 5.95E-04 7.48E-07 1.07E-02 2.19E-04 

f7 1.33E-02 2.81E-05 4.75E-04 1.13E-07 3.27E-04 6.33E-08 4.11E-04 5.88E-05 9.79E-05 3.77E-09 5.11E-04 1.15E-07 

f8 -6.17E+03 8.58E+05 -1.16E+04 2.77E+04 -1.26E+04 2.57E+02 -1.25E+04 1.63E+03 -1.26E+04 5.55E+00 -1.25E+04 2.25E+03

f9 2.93E+01 4.11E+01 8.32E-03 2.10E-04 5.44E-04 1.18E-06 2.64E-03 8.51E-06 4.81E-04 5.26E-07 2.97E-03 1.81E-05 

f10 2.28E+00 1.57E-01 7.20E-03 5.54E-05 2.19E-03 3.07E-06 3.70E-03 1.05E-05 2.57E-03 6.05E-06 7.63E-03 2.43E-04 

f11 1.00E+00 1.18E-03 2.61E-03 4.37E-06 6.16E-04 3.54E-06 2.73E-04 2.32E-07 7.91E-04 1.96E-06 9.18E-04 5.34E-06 

f12 2.65E+00 2.89E+00 2.06E-05 1.11E-09 1.88E-05 8.00E-10 1.45E-05 4.09E-10 2.35E-06 2.38E-11 2.41E-04 1.60E-07 

f13 3.06E-01 1.95E-02 1.33E-05 3.63E-10 1.05E-05 3.94E-11 1.72E-05 6.28E-10 3.90E-06 1.51E-11 3.51E-04 2.60E-06 

f14 2.75E+00 2.70E+00 9.98E-01 1.89E-18 9.98E-01 6.64E-20 9.98E-01 4.24E-17 9.98E-01 2.42E-20 9.98E-01 4.85E-17 

f15 6.06E-04 1.82E-07 1.66E-03 3.60E-09 5.91E-04 9.07E-08 6.76E-04 9.49E-08 9.47E-04 1.38E-07 5.79E-04 5.81E-08 

f16 -1.03E+00 4.24E-16 -1.01E+00 3.72E-04 -1.03E+00 6.93E-11 -1.03E+00 8.20E-09 -1.03E+00 3.81E-07 -1.03E+00 6.15E-09 

f17 3.98E-01 7.57E-15 4.18E-01 5.75E-04 3.99E-01 2.86E+00 3.99E-01 1.21E-06 4.03E-01 1.39E-05 3.99E-01 5.97E-07 

f18 3.00E+00 1.24E-14 3.28E+00 7.89E-02 3.01E+00 5.68E-05 3.09E+00 1.02E-02 3.97E+00 3.59E-01 3.07E+00 4.67E-03 

f19 -3.86E+00 4.09E-15 -3.73E+00 4.18E-03 -3.85E+00 3.47E-05 -3.36E+00 1.32E-01 -3.47E+00 6.63E-02 -3.34E+00 1.44E-01 

f20 -3.27E+00 4.21E-03 -1.67E+00 2.21E-01 -3.21E+00 4.54E-02 -1.63E+00 2.65E-01 -1.64E+00 2.86E-01 -1.72E+00 2.06E-01 

f21 -5.39E+00 9.31E+00 -1.02E+01 4.15E-07 -1.02E+01 1.09E-08 -1.02E+01 4.79E-07 -1.02E+01 3.70E-09 -1.02E+01 3.08E-06 

f22 -6.82E+00 1.33E+01 -1.04E+01 1.05E-07 -1.04E+01 1.87E-09 -1.04E+01 8.40E-07 -1.04E+01 1.53E-08 -1.04E+01 3.39E-06 

f23 -7.63E+00 1.46E+01 -1.05E+01 5.57E-07 -1.05E+01 3.32E-09 -1.05E+01 2.63E-06 -1.05E+01 2.12E-08 -1.05E+01 2.91E-06 

WIN   17  19  15  16  13  

LOSE   6  0  4  3  6  

SIMILAR   0  4  4  4  4  

 

4.2 Unimodal Benchmark Functions 

Unimodal functions are used most vividly by f1 to 

f6. They only have global optimal solutions. To verify 

the convergence speed of an algorithm, these 6 

functions are usually used to implement it. Table 2 and 

Figure 9 show that the four optimization strategies 

proposed are far superior to PSO and GBMO. But in f5, 

PGBMO-EDC and PGBMO-DRC are in a slightly 

failed state compared to GBMO, and PGBMO-DRC is 
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also relatively weak compared to GBMO. In most 

cases, these four parallel strategies not only converge 

fast but also quickly reach the global optimal. 

Therefore, if faced with a single-peak function, the 

algorithm proposed in this paper is very effective. 

  

(a) f1 (b) f2 

  

(c) f3 (d) f4 

  

(e) f5 (f) f6 

 

(g) f7 

Figure 9. Convergence Tendency for Unimodal Benchmark Functions 
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4.3 Multimodal Benchmark Functions 

The f8-f13 is used to express Multimodal Functions 

well. Their characteristic is that there are so many 

difficulties to find the global optimal that it is almost 

difficult to find. Having many locally optimal solutions 

is a salient feature of these 9 functions. Table 2 and 

Figure 10 show that, although all algorithms are better 

than PSO, for some functions, their ability to avoid 

local optimization is still weak. In particular, PGBMO-

DRC is particularly weak in such functions, which 

shows that it does not use the Multimodal Functions 

solution. The PGBMO-DC and PGBMO-SRC are 

excellent, which is conducive to their ability to give 

better solutions to such functions. 

  

(a) f8 (b) f9 

  

(c) f10 (d) f11 

  

(e) f12 (f) f13 

Figure 10. Convergence Tendency for Multimodal Benchmark Functions

4.4 Fixed-Dimension Multimodal Benchmark 

Functions 

The f14-f23 is the performance of Fixed-Dimension 

Multimodal Functions. Their local optimal values are 

only a few, and the dimension is small. Table 2 and 

Figure 11 show that the PGBMO-EDC, PGBMO-SRC, 

and PGBMO-DRC algorithms proposed in this paper 

perform poorly in Fixed-Dimension Multimodal 

Functions, indicating that the algorithms we proposed 

are slightly unfavorable for solving such function 

problems. However, PGBMO-DC outperforms such 
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functions. This shows that PGBMO-DC has the 

excellent convergence ability to avoid local 

optimization in solving such functions. And it can be 

seen that the four parallel methods proposed in this 

paper show good results in f21-f23, and quickly find 

the global optimal. This represents the advantages of 

the proposed algorithm. 

  

(a) f14 (b) f15 

  

(c) f16 (d) f17 

  

(e) f18 (f) f19 

  

(g) f20 (h) f21 

Figure 11. Convergence Tendency for Fixed-Dimension Multimodal Benchmark Functions 
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(i) f22 (j) f23 

Figure 11. Convergence Tendency for Fixed-Dimension Multimodal Benchmark Functions (continue)

5 WSN Coverage Optimization Experiment 

Simulation 

5.1 Parameter Design 

To test the effectiveness of the algorithm proposed 

in this paper for 3-D coverage of WSN, a simulation 

experiment is carried out on a plane with a terrain area 

of 50 ×  50. The sensor nodes are randomly scattered in 

the three-dimensional terrain. The simulated 3-D 

terrain is shown in Figure 12. To fully verify the 

optimized performance of PGBMO on the coverage of 

WSN nodes, this article selects basic GBMO and 

traditional PSO and compares it. Use PSO and GBMO 

to apply to 3-D coverage, denoted as C-PSO and C-

GBMO respectively. Use the parallel strategy mentioned 

in this article to optimize the three-dimensional coverage 

problem, which are denoted Coverage-PGBMO-DC 

(C-PGDC), Coverage-PGBMO-EDC (C-PGEDC), 

Coverage-PGBMO-SRC (C-PGSRC) and Coverage-

PGBMO-DRC (C-PGDRC). The number of randomly 

deployed nodes varies from 30 to 80. The 

communication radius of the node ranges from [5m-

30m]. The maximum number of iterations is set to 10. 

The number of populations is set to 20. For fair 

competition, each algorithm is simulated 30 times to 

take the average and standard deviation. The 

simulation parameters are shown in Table 3. Where the 

basic parameters of these algorithms are shown in 

Table 1. However, for every 
1

R  exchange of several 

parallel strategies, the parameters will be different, as 

shown in Table 3. 

5.2 Sensor Node Incremental Mode 

Simulation 

In order to effectively verify the performance of the 

algorithm proposed in this paper on three-dimensional 

coverage, this section uses sensor nodes to 

continuously change and other parameters unchanged 

for comparison. Table 4 records the coverage of sensor 

nodes [30-80] respectively. And record the average 

value of each algorithm to better compare its coverage. 

Table 3. Experimental Settings for Parameters 

Parameter Name Parameter Values 

Sensing region area 50m × 50m 

population size 20 

Number of iterations 10 

Total number of sensor nodes 30-80 

Communication range 5m-30m 

C-PGDC 
1

R =5 

C-PGEDC1 
1

R =5 

C-PGEDC2 
1

R =2 

C-PGSRC 
1

R =2 

C-PGDRC 
1

R =2 

 

 

Figure 12. Topographic Map of Deployed Sensor 

Nodes 
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Table 4. Table of Sensor Nodes Increasing Network Coverage 

Nodes Number 30
Node  

40
Node  

50
Node  

60
Node  

70
Node  

80
Node  AVG. 

C-PSO 0.4564 0.5504 0.6216 0.6913 0.7469 0.7854 0.6209 

C-GBMO 0.4588 0.5554 0.6273 0.6912 0.7448 0.7853 0.6221 

C-PGDC 0.4759 0.5660 0.6465 0.7056 0.7565 0.8013 0.6386 

C-PGEDC1 0.4688 0.5646 0.6415 0.7028 0.7565 0.7990 0.6339 

C-PGEDC2 0.4746 0.5664 0.6466 0.7070 0.7614 0.7995 0.6370 

C-PGSRC 0.4684 0.5629 0.6403 0.7042 0.7535 0.7971 0.6328 

C-PGDRC 0.4755 0.5740 0.6499 0.7127 0.7630 0.8057 0.6406 

 

As can be seen from Table 4 and Figure 13, as the 

number of sensor nodes increases, the network 

coverage rate also continues to increase. Figure 13 

shows that C-PGDRC coverage works best. Because 

C-PGDRC combines the advantages of PGDC’s 

communication strategy and regrouping well, its 

coverage is the best in the field. It can also be seen 

from the Figure 14 that C-PGSRC is relatively weak, 

and it is relatively weak for solving the three-

dimensional coverage problem. In short, it is obvious 

from Figure 14 that the strategy proposed in this paper 

is far superior to PSO and GBMO. 
 

Figure 13. Graph of Increasing Network Coverage of 

Sensor Nodes 

  
Node30 Node40 

  
Node50 Node60 

  
Node70 Node80 

Figure 14. Histogram of Network Coverage with Varying Number of Nodes
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5.3 Communication Radius Incremental 

Mode Simulation 

Table 5 and Figure 15 show the coverage ratio with 

a communication radius of [5m-30m]. The results 

show that with the increase of the communication 

radius, the coverage gradually increases so that the 

coverage reaches 100% later. It can be seen from Table 

5 that when the communication radius is large enough, 

the algorithm can achieve full coverage. To clearly see 

the significant change in coverage, Figure 16 plots the 

coverage of each algorithm. It can be seen from Figure 

16 that when the communication radius is 15, the PSO 

and GBMO coverage has not yet been reached, and the 

parallel algorithm proposed in this paper achieves full 

coverage. This further proves the effectiveness of the 

proposed algorithm. 

Table 5. Table of Communication Radius Increasing Network Coverage 

Communication Radius 5
R  

10
R  

15
R  

20
R  

25
R  

30
R  AVG. 

C-PSO 0.4564 0.9397 0.9996 1 1 1 0.7282 

C-GBMO 0.4588 0.9421 0.9998 1 1 1 0.7294 

C-PGDC 0.4759 0.9568 1 1 1 1 0.7380 

C-PGEDC1 0.4688 0.9514 1 1 1 1 0.7344 

C-PGEDC2 0.4746 0.9596 1 1 1 1 0.7373 

C-PGSRC 0.4684 0.9526 1 1 1 1 0.7342 

C-PGDRC 0.4755 0.9638 1 1 1 1 0.7378 

 

Figure 15. Graph of Increasing Network Coverage of Communication Radius 

  

Radius10 Radius15 

Figure 16. Histogram of Network Coverage with Varying Communication Radius 
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6 Conclusion 

Efficient deployment of sensors to get maximum 

coverage plays an important role in WSN, in order to 

get the problems of 3-D coverage solved to improve 

the rate of coverage, this paper presented a modify 

GBMO algorithm that adopts four communication 

strategies to enhance the convergency, and took into 

consideration the concept of LOS to model WSN. 

Experiments on 23 benchmark functions composed of 

different types of functions proved that the efficiency 

of optimization convergency is well improved. 

Furthermore, the increase of coverage rate in WSN 

was demonstrated based on the random distribution of 

sensors and the changes of communication radius. In 

future research, we will further improve the problem of 

three dimensional coverage. The proposed methods 

may be further improved by applying some optimization 

methods [41-44]. 
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