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Abstract 

Implantable medical devices are playing a key role in 

the paradigm shift of providing healthcare services. 

Particularly, this paper highlights the role of artificial 

pancreas system (APS) in the management of blood sugar 

level, especially to patients that are diagnosed with 

Diabetes Mellitus (DM). APS provides convenience in 

the self-management of blood sugar level. However, 

because of the added wireless connectivity feature, the 

system can be exposed to more security threats and 

attacks. Hence, it is essential to resolve the security and 

privacy issues for APS. In this paper, we first introduce 

the basic architecture of the existing APS and elaborate 

the roles of each component. Then the security challenges 

for APS are discussed starting from the component that 

poses high risk to the patient’s health and safety. To 

address those challenges, we propose a specification-

based misbehavior detection system, called SMDAps, 

which monitors events within the APS to detect 

misbehaving components based on the behavior-rule that 

are derived systematically from the embedded system 

requirements. Moreover, the monitoring task is 

supplemented with an outlier detection method to detect 

anomalous glucose data points. To demonstrate the 

effectiveness of our approach, we emulate the 

functionalities of the embedded devices integrated into 

the APS and adopt a glucose-response model found in the 

UVa/Padova simulator. Based on investigation, the 

proposed glucose outlier detection can accurately 

distinguish anomalous glucose data points of more than 

94% when such points deviate of more than 5% from the 

true value. Additionally, the effectiveness of SMDAps 

showed a dominating detection rate at a considerable 

degree when compared to the contemporary machine 

learning approaches such as Support Vector Machine and 

k-Nearest Neighborhood classifiers. The SMDAps, kNN, 

and SVM achieve a AUROC of 99.98%, 99.96%, and 

99.95%, respectively, for detecting aggressive attacker 

type associated with the duration of exposure during the 

simulation runtime. 

Keywords: Diabetes, Implantable medical device, 

Artificial pancreas system, Intrusion 

Detection System (IDS), Specification-based 

IDS 

1 Introduction 

The future of healthcare providers is expected to 

transform its method in delivering medical services to 

patients [1-2]. Implantable medical devices (IMD) 

have currently received growing attention by many 

researchers to drive the paradigm shift of healthcare 

services. These devices are placed inside or on the 

surface of the human body through surgical procedures 

and are intended to remain there if necessary. Coronary 

stents, hip implants, intraocular lenses, cardiac 

pacemakers, cardiac defibrillators, and artificial 

pancreas system (APS) are some known IMD that 

many patients use today. These devices are 

theoretically safe, but those could be dangerous to the 

human body if proper medical procedures are not 

followed. Among these devices, we believe that the 

last three devices mentioned are the most critical one 

since they are responsible for the vital organs of the 

human body, thus safe operation is particularly 

important. Especially, this paper pays more attention to 

the APS. 

As human life spans increase, the prevalence of 

diabetes is remarkably increasing. According to the 

World Health Organization, the reported global 

incidence of diabetes is continuously increasing for the 

past 3 decades. The number of patients has quadrupled 

since 1980 and age demographic has widened ranging 

from youth (below 18) to senior group (above 70) [3]. 

For diabetes, continuous blood glucose monitoring and 

accordingly, prompt insulin administration are 

essential for treatment. Manual management is 

evidently a laborious task, especially to those that are 

diagnosed with type 1 DM. For this reason, diabetes 

patients seek a more sustainable system that can mimic 



2 Journal of Internet Technology Volume 22 (2021) No.1 

a healthy pancreas fits to that requirement. APS is a 

closed-loop control management system that combines 

insulin pump with continuous glucose monitor to assist 

the automatic adjustment of hormone insulin delivery. 

There are several medical device manufacturers, which 

are racing to develop an APS with the support of Food 

and Drug Administration (FDA).  

An existing model of APS is composed of three 

basic components: a continuous glucose meter (CGM), 

a control algorithm platform, and an insulin pump as 

shown in Figure 1. The collaborative function of these 

components provides automated regulation of blood 

glucose level. Accordingly, the burden of the patients 

on diabetes self-management is minimal. In this model, 

the CGM periodically provides the person’s sugar level 

to the control algorithm platform, which subsequently 

computes the appropriate insulin dose and sends 

command to the subcutaneous insulin pump to deliver 

the hormone insulin in the human body [4]. Now 

considering that the different elements in the system 

communicate wirelessly, it suffers the same security 

challenges from many wireless systems. Although, 

much research has been conducted to obtain the 

optimum insulin dose to ensure health safety, security 

aspect is still underdeveloped. 

 

Figure 1. An exemplary of the open-source artificial pancreas model and communication sequence along with the 

embedded system requirements of each element 

Intrusion detection system can be considered as one 

of the effective security solutions; however, the two 

representative approaches, i.e., signature-based, and 

anomaly-based detection, are not suit for APS due to 

the following reasons. The former cannot address well 

zero-day attacks, which APS is vulnerable to because 

of the difficulty to update the system in a timely 

manner, while the latter can cause APS to suffer from 

heavy computation overhead because of the 

dependency to machine learning or statistical profiling 

[5]. Accordingly, as an effective alternative, we 

propose a specification-based misbehavior detection, 

called SMDAps, wherein we specify the intended 

behavior of APS. To the best of our knowledge, this is 

the first study that attempts to secure interconnected 

devices specific to the APS environment through 

network intrusion detection. The contributions of this 

paper are the following: 

‧ We analyze the operations of APS and identify the 

vulnerabilities and security challenges. 

‧ We systematically derived the behavior-rules based 

on embedded software requirements of each 

individual devices. 

‧ We modified the Kalman-filter estimation method to 

assist the monitoring task for glucose outlier 

detection. 

‧ To evaluate our approach, we extended the FDA-

approved T1DM simulator called UVa/Padova by 

adding the communication functionalities of each 

devices while maintaining the quality of the glucose 

response model. 

The remainder of this paper is organized as follows. 

Section 2 discusses the security challenges of APS 

based on open-source model and in turn express our 

motivations in response to those challenges. Section 3 

surveys some existing approaches of misbehavior 

detection. The proposed solution to address the 

identified problems is presented in Section 4, followed 

by the experimental results in Section 5. Section 6 

finally concludes this paper. 

2 Security Challenges and Motivations 

Highlighting the security issues of each module in 

APS is imperative. According, we analyzed and 

present in this section the threats of existing APS 
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model start from the module that poses high risk to 

patient’s safety. 

2.1 Subcutaneous Insulin Pump 

The improvements of insulin pump made the device 

suitable for everyday use in delivering insulin to the 

body and much portable compared to their 

predecessors. Its latest added feature is the wireless 

connectivity, which unfortunately causes patients to be 

faced with increase threats and attacks [4]. An 

adversary could be able to remotely change device 

settings that places the life of patients in danger, i.e., 

causing hypoglycemia if the pump dispenses more than 

the recommended insulin dose [6]. Hence, this device 

can be accounted with highest risk to patient’s health if 

not quickly mitigated. 

2.2 Control Algorithm Platform 

The control algorithm is the one responsible for 

computing the appropriate dosage of insulin, with 

respect to the received glucose level, that the pump 

module should deliver to the human body. When this 

module transmits a dispense command, the pump 

device acts accordingly. Currently, the personal 

computer (PC) or smart phones are the most common 

platform where the control algorithm is deployed. 

Multiple incidents showed that these platforms are 

vulnerable to malware such as viruses, worm, etc. [7], 

and this presents threats to the AP system. If 

compromised, it may send malicious commands to the 

insulin pump. 

2.3 Continuous Glucose Monitor (CGM) 

CGM is weighed with lowest risk in the preservation 

of human lives since it only reads patient’s body 

physiological condition. However, this module is 

accounted to be an obstacle in achieving the safety 

requirement of the system because it may operate 

maliciously if compromised by providing incorrect 

blood glucose level [8]. In addition, current CGMs are 

also equipped with wireless connectivity to transmit 

the patient’s condition (glucose level) to a trusted 

component. Thus, it also suffers from privacy issues. 

Outside attackers that impersonates either of these 

components are also a major threat for they can 

mislead the legitimate ones in the system. Even though 

no actual attack has been reported by patients or 

manufacturers, the author in [9] and [10] used 

laboratory experiments to prove that such security 

issues exist on commercial devices. The safety of 

patients is crucial if these vulnerabilities are exploited 

by malicious hackers; hence, it is imperative that these 

devices are protected against hostile attackers. The 

FDA has already encouraged insulin pump 

manufacturers to address security in their products. In 

response, the manufacturers started to employ 

contemporary security measures, i.e., lightweight 

encryption and authentication, on their latest products 

as an implicit solution to secure the interconnected 

devices. Meanwhile, despite the efforts of the FDA in 

warning the public on using the old models of 

commercial products [11], more and more individuals 

are joining in a subcultural diabetes community who 

hacked their own insulin pump and develop a do-it-

yourself APS using an open-source code such Open-

APS or AndroidAPS [12]. Their decision in joining is 

due to financial cost as well as it allows them to 

customize the system according to their personal needs. 

This motivated us to develop an intrusion detection 

system based on specification-based approach that 

caters not only to the new products but more 

importantly to the older ones. Moreover, we believe 

that contemporary measures are not enough to protect 

the system from attacks because adversary can always 

find ways to bypass with it. 

3 Existing Approaches 

Misbehavior detection method is an effective 

solution to mitigate the risk of network attacks [13]. 

To-date, signature-based, anomaly-based, and 

specification-based method are known types of 

misbehavior detection techniques. The signature-based 

method is weak in detecting unknown threats or zero-

day attacks for it heavily relies on the patterns of 

known threats [14]. The weakness of this method 

makes it unsuitable solution in the APS environment 

because of the difficulty in quickly updating the system 

if new vulnerabilities arise. Meanwhile, anomaly-based 

and specification-based techniques are effective 

alternatives in detecting unknown threats because their 

detection mechanisms depend on the normal operation 

of the system [15]. Table 1 shows the summary of 

some current works that employed the said techniques. 

The former utilizes machine learning (ML) methods 

like Deep Learning (DL) [16], Support Vector 

Machine (SVM) [17], and k-Nearest Neighborhood 

(kNN) [18] to establish a profile of the system’s 

normal behavior from a large amount of collected data. 

On the other hand, the specification-based approach 

only requires the derivation of rules (behavior-rules) 

that are based on the behavioral-specification of the 

system. Even though both techniques are effective, the 

latter is a more suitable solution to the APS 

environment considering that the devices integrated 

into it have limited resources. The ML techniques are 

known to have a relatively high computational 

operation. Related works conducted by [19] and [20] 

shows the feasibility of specification-based technique 

in resource constrained devices. Both works presented 

a high detection accuracy with low memory 

consumption, runtime, and computation overhead. 

However, the derived rules are application-specific 

(military UAV and PCA), and this cannot be applied to 

APS. Additionally, the validation of the operational 



4 Journal of Internet Technology Volume 22 (2021) No.1 

Table 1. Related works of misbehavior detection in Internet-of-Things 

Ref. Approach Short Description Application Domain 
Detection 

Rate 

[16] Anomaly-based IDS 

The authors applied Feed-Forward Deep Neural 

Network to detect Blackhole, Sinkhole, Wormhole, 

DDoS, and Opportunistic Service attacks in smart home 

environment 

Smart Home IoT 98.0% 

[17] Anomaly-based IDS 

The authors integrated four supervised machine learning 

techniques such as SVM, Decision Tree, Random 

Forest, and kNN to detect malicious traffic flow in a 

personal medical device. 

Personal Medical 

Device 
98.0% 

[18] Anomaly-based IDS 

The authors proposed an intrusion detection framework 

while utilizing Artificial Neural Network Decision Tree, 

Random Forest, and kNN to monitor malicious traffic 

flow and operational data in multiple smart medical 

devices. 

Smart Healthcare 

system 
91.0% 

[19] Specification-based IDS 

The authors applied specification-based approach in 

military unmanned aerial vehicle (UAV) network 

environment. Derived a behavior-rules are specific to 

uav operations. 

Unmanned Aerial 

Vehicle IoT 

(Military UAV) 

97.8% 

[20] Specification-based IDS 

The authors applied specification-based approach in 

Patient-Controlled Analgesia (PCA) Device. Derived 

behavior-rules are specific to PCA. 

Medical IoT (Patient 

controlled analgesia)
>99.0%

 

data that are transmitted by the monitored devices were 

not considered in both works. Motivated by this, we 

adopt the specification-based approach wherein we 

derive the behavior-rules for APS and supplement it 

with outlier detection algorithm to validate the integrity 

of the operational data (blood glucose). In addition, we 

initially benchmark our current work against the SVM 

and kNN algorithms, with the intent to show its 

effectiveness. These algorithms were selected because 

of its relatively smaller memory and computation 

requisite compared to DL. 

4 Specification-based Misbehavior Detection 

System 

In embedded software development, the functional 

operation of specific system or device is usually 

documented extensively in the embedded system 

requirements specification. Accordingly, it can serve a 

purpose of not only as reference for the embedded 

software developers but also as a guide for a more 

systematic derivation of behavior-rules. This section 

presents the steps taken for the development of 

SMDAps.  

4.1 APS Behavior-Rule Derivation 

Behavior-rules are the foundation of the software 

agent to determine the state of the trusted components 

in a system. In this paper, derivation of behavior-rules 

is based on the model of APS illustrated in Figure 1 

together with their assumed embedded system 

requirements.  

Prior to the derivation of the behavior-rules, we 

enforce a security context to each system requirement 

to lay-out a strict sense as to how a component in the 

APS should behave or operate during its lifetime from 

the viewpoint of the misbehavior detection agent. 

Consequently, the enforcement of such context results 

to the formulation of the APS’ security requirements. 

Furthermore, while forming each security requirements, 

all possible threats that could prevent the system from 

achieving a corresponding requirement are identified 

regardless of the criticality and whether such a threat is 

exploitable or not. Identifying the threats helps in the 

derivation of a more realistic and meaningful behavior-

rules together with the guidance of the CIA triad of 

confidentiality, integrity, and availability. Accordingly, 

the behavior-rules serve as the basis for the 

development of SMDAPs software agent while 

following the general software development cycle. 

Figure 2 illustrates the sequential steps leading to the 

derivation of the APS’ behavior-rules. 

4.2 SMDAps Software Design 

In our proposed approach, we take the behavior-

rules as the embodiment of a software requirement for 

the SMDAps software agent. However, a preceding 

question arises as to where the software agent is going 

to operation considering that the APS comprises of 

embedded devices that are theoretically capable of 

running a detection agent. In this paper, after studying 

the operation of the adopted APS model, it was 

observed that the entire operation is centralized on the 

control platform. For clarity, Figure 1, shows the 

sequence of events (highlighted numbers in red color) 

in APS. Accordingly, in this current work, the 

development of SMDAps software agent is limited to 

the perspective of the control platform with regards to 

the APS operations. Nevertheless, we believe that it  
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Comp- � Security Requirements � Threats � Behavior Rules � 
Security 

Aspect 

Does not report at all 

Does not follow 

reporting periodicity 

Packets must be sent every t 

minutes 
Availability 

Sends packets to 
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Packet’s destination must only be 
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platform every t minutes. 

Sends incorrect blood 

glucose level 
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Proceed injection 
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command received. Shall continue waiting command 

before injecting until it receives one 

only from associated control 

platform 

Proceed injection when 

received a command 

from unassociated 

source 

Device must be in halt mode if 

received command is from invalid 
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Shall inject insulin dosage correctly 

as specified in the command 

message. 

Does not inject correct 

dosage. 

Device must deliver correct amount 

to insulin dose 

Integrity 
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Does not report timely. 

Packets must be sent within a 

specified interval after the 

transmission of injection command. 

Availability 

Sends report to 

unassociated control 

platform. 

Packets’ destination must only be 

sent to associated control platform. 
Confidentiality 

Insulin 

Pump 

Shall report correct status of insulin 

reservoir every after all injection 

event only to associated control 

platform 

Sends incorrect insulin 

reservoir status 

Available insulin in reservoir must 

be within a specified range. 
Integrity 

Integrity Shall provide insulin dosage only 

when blood glucose reading is 

received from associated CGM. 

Sends command packet 

even without receiving 

glucose report from 

CGM. 

Command packet must be available 

after receiving blood glucose level 

from associated CGM. Availability 

Sends command packet 

to unassociated insulin 

pump. 

Command packet must be sent to 

associated insulin pump 
Confidentiality 

MD 

Agent 

Control 

Platform 
Shall timely transmit command 

packet only to associated insulin 

pump. 
Command packet is not 

sent timely. 

Packets must be sent within a 

specified interval after reception of 

CGM report 

Availability  

 

Figure 2. An illustration of the adopted workflow leading to the derivation of the behavior-rules specific to the 

APS model 

would have a safer environment if all three 

components can monitor each other. This would be one 

of our future works. Additionally, the deployment of 

SMDAps agent is limited to platform that does not 

require connection over the internet. Otherwise, if this 

requirement cannot be avoided, the monitoring code 

can be embedded and executed in a trusted platform 

(e.g. [21-23]) of the controller device. In this way, the 

monitoring agent will not be compromised even if the 

main operating kernel is affected by malicious software. 

Software models are ways expressing a software 

design. A commonly used expression is the Unified 

Modeling Language (UML). As such, this paper 

employs the UML state diagrams to represent the 

SMDAps software design. In this case, the drawn 

UML state diagram technically describe the actions 

taken by the monitor device in tracking the APS’ finite 

state sequences as mechanism in determining a 

misbehaving component. Furthermore, this expression 

is particularly important on the proceeding stage where 

the functional correctness and completeness of 

behavior-rules evaluation are verified. AS show in 

Figure 3(a), the agent enters in 6 states when 

monitoring the APS condition. The transitions are 

basically triggered by the corresponding events as well 

as expiration of time parameter. After modeling the 

states and transition of the APS’ normal operation, 

supplemental functions, e.g., glucose outlier detection 

algorithm, are appended on the relevant state. 

Subsequently, the attack state indicators (ASI) are 

inserted on the appropriate location and assigned with 

a coded value, that represents which behavior-rules are 

violated when an anomalous event occurs. This mean 

that a value of ASI greater than zero indicates that the 

system is misbehaving. 
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Msg1 Validation

entry / 

   curTime = GetTime()

     msg1_arr = curTime - lastTimeDo1

   valid = Algorithm1(BGL, estimate)

   tvalid = Algorithm2(t_arr, 5)

   dvalid = CheckDestId(destId)

exit /
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  tvalid = Algorithm2(msg3_arr)
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  dosePrime = oldLevel - newLevel

  valid = CheckDose(dosePrime, compDose)

exit /

  if(!tvalid) ASI = ASI | 0x040

  if(!dValid) ASI = ASI | 0x080

  if(!valid) ASI = ASI | 0x100

  oldLevel = oldLevel - compDose

  lastTimeDo3 = curTime

Sent_msg3 && srcId == InsId

Done_Msg3_Validation && dvalid

Wait Msg1
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   tmExpire = CheckTime(5)

lastTimeDo(n) = 0

Sent_msg2/

ASI = ASI | 0x200

Send_msg1 /

ASI = ASI | 0x001

Wait Msg 3

do / 

   tmExpire = CheckTime(αT)

(b) UML state diagram

Wait Msg 2

do / 

   tmExpire = CheckTime(αT) 

Time_Expired/

ASI = ASI | 0x200

Done_Msg1_Validation && !dvalid

Time_Expired /

ASI = ASI | 0x020

ASI = ASI | 0x040

Sent_msg2 && srcId == capId

 

 
Summary of queries to the requirement specification (legend: S = safety; R = reachability; N = normal; M = malicious) 

ID Property Type Query (CTL) Satisfied? (N) Satisfied? (M) 

P1=12 
The behavior-rules 1 (P1) to 12 (P12) are 

eventually violated. 
R 

E <> Checker(n).Error 

where n = 1 to 12 
No Yes 

P2=14 The system is deadlock free S A[] not deadlock Yes Yes 

Figure 3. UML State Diagram and UPPAAL model of the MD software agent with summary of queries to the 

requirement specification 

4.3 SMDAps Software Design Verification 

While the complete state diagram is formed based 

on the sequence of APS events and the derived 

behavior-rules, it is also essential to formally verify the 

model’s functional correctness prior to software 

(c) ASI Checker 

(b) Misbehavior Detection Agent Model 

(a) UML state diagram 
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development. Such action adds confidence that the 

derived behavior-rules are completely covered, 

otherwise, it will result to high false negative detection 

rate. In this work, we formally verify the formulated 

state diagram using an integrated environment tool for 

system modeling, simulation and verification called 

UPPAAL [24]. This model check performs state-space 

exploration which enable the users to assess required 

specifications by defining it as a computation tree logic 

(CTL). For more details of this tool, we refer the 

readers to the most cited tutorial document in [25]. 

Figure 3(b) shows the equivalent UPPAAL model of 

our formulated UML diagram. Additionally, it 

summarizes the verification results of our target 

properties. From the result, it indicates that the process 

is safe from deadlocked during runtime. In addition, 

the reachability property P1 

to P12 

are also satisfied 

when misbehaving components are simulated. These 

results can be an indicative proof of functional 

correctness for the monitoring tasks and the 

completeness of behavior-rule assessment.  

4.4 Supplemental Algorithms 

CGM device periodically transmits glucose reading 

to the control platform and use it to compute the 

optimum insulin dosage to be injected by the insulin 

pump. The CGM device, as demonstrated by [9] and 

[10], suffers from tampering or impersonation attacks 

where an adversary provides a malicious glucose level, 

which consequently lead the control platform to 

provide an incorrect dosage that can cause an adverse 

effect to patient’s health. To validate these data, we 

supplement the monitoring task with anomaly 

detection algorithm, described in Table 2, to detect 

glucose outlier (Algorithm 1 and Algorithm 2) as well 

as anomalous transmission time (Algorithm 2). 

Algorithm 1 utilizes Kalman-filter estimation, 

Mahalanobis distance method, and sigmoid function to 

estimate the instantaneous glucose value and followed 

by Algorithm 2 to classify received data as outlier or 

not. This estimation method is utilized because it uses 

a relatively simple operation and does not require high 

computation power [26]. Note that the Kalman-filter 

equations are customized to fit the adopted glucose-

insulin model. The proposed Kalman-filter based 

glucose estimation for outlier detection is limited to the 

glucose-response model of virtual patient under test. 

This means that the control parameter of Kalman-filter 

must be replace with the measurable factors pertaining 

to the physiological sensitivity of patient. Additionally, 

the adaptation of this method relies on a sensible 

presumption that APS operates normally at early stage 

of operation and malicious event exhibit at a later time.  

Meanwhile, Algorithm 2 basically provides statistical 

inference of the underlying distribution of the 

parameter-of-interest, i.e., Mahalanobis distance error 

or inter-arrival time of messages, as basis for the 

classification of events as anomalous or normal. 

Table 2. Supplement algorithms for monitoring task 

Algorithm 1. Glucose Outlier Detection 

Input: glucose reading, previous estimate, previous 

mahalanobis distance 
1i=

ME  

Output: current estimate, updated co-variance and 

measurement noise parameters Rv, and 
i

ME  

(1) Prediction phase of Kalman-Filter method. 

(2) Compute 
i

ME between current reading and predicted 

estimate from step 1. 

(3) Update Rv based on sigmoid function of 
i

ME  

(4) Compute the rate of mahalanobis error change 
i

MEΔ  

(5) Perform Algorithm 2 while passing 
i

MEΔ  

(6) If valid: Assign Rv_temp to Rv 

      Else: Assign Rv_temp to 
i

ME . 

              Do step 6 then recompute 
i

ME  using estimated  

                  Value from step 1 and step 6. 

(7) Correction phase of Kalman-Filter method using 

Rv_temp  

      value for measurement noise parameter in Kalman gain  

      computation. 

Algorithm 2. Statistical analysis of subject’s data 

distribution 

Input: the number of data 
1i=

Nd , sum of data 
1i=

Td  and 

mean squared error 
1i=

TEd , and current data 
i

d  

Output: Validity (True or False), , ,
i

Nd Td TEd  

(1) Compute mean 
i

µ  and standard deviation σ
i
 

(2) Compute limiting criterion μ σ
i i

LM = + + pt where 

pt  is called performance control parameter. 

(3) If 
i

d  <= LM: Update , ,Nd Td TEd  

                             return True 

       Else: Retain , ,Nd Td TEd  

                return False 

 

5 Experimentation and Evaluation 

5.1 Experiment Setup 

To demonstrate the effectiveness of our proposed 

approach, we emulate the behavior of the three 

components using Raspberry-Pis. In addition, we 

adopted the glucose-insulin model of an FD-approved 

Type-1 Diabetes simulator called UVa/Padova 

Simulator (2008 version). In reference to the open-

source python version in [27], we extended the tool in 

such a way that it will allow us to simulate glucose 

response to insulin injection and meal in-take of 

available 30 virtual model patients as well as emulate 

the actual message exchange between the different 

components. During the experiment, we also simulate 

five attacking modes as extremely reckless, reckless, 

random, cautious, and extremely cautious. The 

decision when to act maliciously is based on whether a 

randomly generated number in [0, 1] is less than a 

threshold value of 0.9, 0.7, 0.5, 0.3, and 0.1, 
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respectively. This means that the corresponding 

compromised components behave maliciously at 90%, 

70%, 50%, 30%, and 10% of the simulation time. Note 

that the attack actions include sending anomalous data 

and violation of message transmission periodicity.  

To have a fair comparison between the proposed 

work with SVM and kNN, the physical variables from 

the virtual patient, such as the glucose reading from 

CGM (X1), estimated glucose value (X2), the compute 

Mahalanobis distance error (X3) and rate of change (X4), 

inter-arrival time of messages (X5) and its error with 

expected time arrival (X6), and insulin level status (X7), 

were collected at every evaluation cycle during runtime. 

The collected data comes from both normal state and 

malicious state in a 90% attack mode. These data serve 

as the feature vector, in a form of (X1, X2, X3, X4, X5, X6, 

X7, y) where y is the classification, for the training of 

the SVM and kNN classifiers. In the testing phase, 

another set of data from different virtual patient, which 

was also collected at runtime, were used. The 

classification output to each sample is treated as an 

instance for the computation of the system’s 

compliance degree. 

5.2 Effectiveness of Outlier Algorithm 

We first evaluate the effectiveness of the proposed 

outlier algorithms in detecting anomalous glucose data. 

In real world, anomalous data are effect of data 

tampering, CGM impersonation or sensor faults. In 

doing this, we deliberately manipulate at random 

points the glucose data within 1% to 10% deviation 

from the true value. 

Figure 4(a) shows an example of glucose response 

from one virtual patient. The graph constitutes of the 

real data points (red-star markers), manipulated data at 

random locations (blue-triangle and pink-square 

markers) and the estimated glucose value from 

Kalman-filter method (light blue line). Moreover, 

Figure 4(b) illustrates the distribution of the rate of 

Mahalanobis error change (ΔMEt) between adjacent 

data points. ΔMEt corresponds to dt parameter in 

Algorithm 2. We can see in the figure that the ΔMEt of 

manipulated data points falls in the area beyond the 

limiting criterion. Consequently, the algorithm 

classifies it as an outlier. Furthermore, based on our 

investigation, the accuracy of correctly classifying an 

 

Figure 4. Experiment results; (a) Received glucose level and estimate; (b) Mahalanobis error distribution; (c) Inter-

arrival periodicity and error distribution; (d) Deviation vs Accuracy; (e-f) ROC of the different attack mode 
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outlier, known as sensitivity, increases as the deviation 

of manipulated data with respect to the true value 

increases and maintain a low false alarm (1 – 

specificity) close to zero as depicted in Figure 4(c). The 

algorithm can classify outlier with accuracy of greater 

than 94% when the deviation is greater than 5% from 

the true value. 

In addition, Figure 4(d) illustrates the inter-arrival 

periodicity of normal and abnormal message 

transmission time. Abnormal message transmission 

time relates to the incorrect reception interval between 

adjacent messages. This malicious event can also be 

associated to flooding attacks, tampering, and 

impersonation. When a message transmission deviates 

from the specified periodicity, the inter-arrival time 

value falls beyond the limiting criterion, hence it can 

also accurately detect that malicious transmission time 

occur. 

5.3 Performance of Misbehavior Detection 

In our approach, we set the detection agent to probe 

the value of the ASI at a uniform discrete-time interval 

within an aggregation period Ap. At the end of every 

aggregation time space Ap, the agent computes the 

compliance degree of the system by tracking the 

number of times that the system is in well-behave state, 

i.e., ASI is equal to zero, and dividing it by the number 

of probing instances Consequently, at the end of mth 

aggregation period, a compliance degree history c1, c2, 

c3, …, cm is collected and will be used for final 

classification of the system’s state. We adopt the 

classification approach from [20] which is based on 

binary grading of the average compliance degree 

against a minimum threshold value CT. The average 

compliance degree is computed based on beta 

probability distribution function with alpha parameter 

equal to 1 and parameterized beta using the compliance 

history and maximum likelihood estimation.  

We measure the performance of our approach based 

on (a) detection rate (1 – Pfn): the probability of 

correctly detecting malicious event; (b) false negative 

probability (Pfn); (c) false positive probability (Pfp); 

and (d) Area under a receiver operating characteristic 

curve (AUROC) with detection rate vs false positive 

probability. Figure 4(e) and Figure 4(f) show the effect 

of different attacking mode on detection accuracy of 

malicious event in APS. The attackers in Figure 4€ are 

considered as an aggressive adversary that intend to 

adversely affect the health of the target patients. Thus, 

it is imperative that such attackers are accurately 

detected for immediate mitigation. According, by 

setting the optimum compliance threshold CT, we see 

in Figure 4(e) the ROC curves for attacker, that 

exposes itself at 90%, 70%, or 50% of the simulation 

period, has an AUROC close to 100%, Pfn and Pfp less 

the 1% probability. Specifically, SMDAps achieved an 

AUROC (solid lines) of 99.98%, 99.94%, and 99.90%, 

respectively. This indicates that the SMDAps can 

achieve high detection for these aggressive attackers.  

On the other hand, a poor performance can be 

observed in Figure 4(f) when malicious events 

happened at most 30% of the simulation time. In this 

case, the attacker exposes itself carefully to avoid 

detection. Consequently, the AUROC is not more than 

56.59% which indicate the weakness of SMDAps in 

detecting such smarter attackers. Although these 

adversaries initiate attacks for only a short period of 

time, their effects cannot be ignored in the context of 

APS. Hence, it will be considered as another area for 

improvement in the future works.  

Moreover, the Figure 4(e) and Figure 4(f) also 

display the ROC curves for kNN (dash lines) and SVM 

(dash-dot lines). These two machine-learning-based 

detection techniques also achieved high accuracy in 

detecting the aggressive type. kNN achieved and 

AUROC of 99.96%, 99.93%, and 99.87% while SVM 

obtained 99.5%, 99.91%, and 99.87%. Additionally, 

both are also weak in detecting smarter attackers 

achieving an AUROC of not more than 56.0% in kNN 

and 5476% in SVM. Despite the similarity in the 

accuracy trendline, AUROC of SMDAps prevails at 

considerable degree that of kNN and SVM. This is due 

to inherent imprecision of SVM to learn the optimal 

hyperplane and finding the optimal k value for kNN. 

Table 3 summarizes the AUROC comparison of 

SMDAps, SVM, and kNN. Moreover, we also attribute 

the edge of SMDAps against SVM and kNN in terms 

of pre-deployment processes. While SMDAps only 

requires the derivation of rules, the SVM and kNN 

must go through collection of necessary features and 

learn from them the behavioral pattern of the system. 

Table 3. Summary of AUROC 

Method Attack

Mode SVM kNN Our Approach

90% 99.95% 99.96% 99.98% 

70% 99.91% 99.92% 99.94% 

50% 99.87% 99.88% 99.90% 

30% 54.76% 56.05% 56.59% 

10% 51.14% 51.32% 51.59% 

 

5 Conclusion 

In this paper, we first study the operations of the 

artificial pancreas system and discuss the security 

challenges of each component starting with the device 

that poses highest risk to patient’s safety. To mitigate 

the security and safety threats, we propose a 

specification-based misbehavior detection system 

called SMDAps. The misbehavior detection mechanism 

of SMDAps is based on a systematically derived 

behavior-rules of APS environment and assisted with 

glucose outlier detection method. We demonstrate the 

feasibility and effectiveness of SMDAps by extending 
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the FDA-approved UVa/Padova simulator to include 

actual message exchange while maintaining the quality 

of the glucose response model. Based on the simulation 

results, our proposed approach can dominate detection 

accuracy against SVM and kNN machine learning 

classifiers.  

In the future, we plan to extend our work by adding 

appropriate weights on the behavior-rules according to 

criticality and explore the use of fuzzy logic to come-

up with a crisp classification of the system’s state, e.g., 

malicious, suspicious, and benign. In this way, the 

patients or medical professionals can act appropriately 

to mitigate the situation. 
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