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Abstract 

Internet of Vehicles (IoV) generates large amounts of 

data at the network edge. Machine learning models are 

often built on these data, to enable the detection, 

classification, and prediction of traffic events. Due to 

network bandwidth, storage, and especially privacy 

concerns, it is often impossible to send all the IoV data to 

the edge server for centralized model training. Federated 

learning is a promising paradigm for distributed machine 

learning, which enables edge nodes to train models 

locally. As vehicle usually has unreliable and relatively 

slow network connection, reducing the communication 

overhead is importance. In this paper, we propose a 

secure federated learning with efficient communication 

(SFLEC) scheme in vehicle network. To protect the 

privacy of local update, we upload the updated 

parameters of the model with local differential privacy. 

We further propose a client selection approach that 

identifies relevant updates trained by vehicles and 

prevents irrelevant updates from being uploaded for 

reduced network footprint to achieve efficient 

communication. Then we prove the loss function of the 

trained FL in our scheme exits a theoretical convergence. 

Finally, we evaluate our scheme on two datasets and 

compare with basic FL. Our proposed scheme improves 

the communication efficiency, while preserves the data 

privacy. 

Keyword: Edge computing, Federated learning, Privacy 

preservation, Client selection 

1 Introduction 

The development of 5G and edge computing has 

brought new vitality into smart city, resulting in an 

exponential growth of data generated by the internet of 

vehicles. In the vehicle networks, it is a challenge for 

vehicle to use the massive data for providing better 

services, such as autonomous driving and traffic 

prediction, due to computing resource and the 

bandwidth of wireless networks constraints [1]. To 

solve this problem, Mobile Edge Computing (MEC) is 

envisioned as a potential solution. Mobile Edge 

Computing make it possible for vehicles, which are 

equipped with computing and storage capability, to 

store and process data locally. In [2], the authors 

propose a new VEC offloading scheme, which 

consider the sharing of the backup server resources 

between the VEC servers. In [3], the authors studied a 

multi-user multi edge-node computation offloading 

problem and proposed a model-free reinforcement 

learning offloading mechanism to maximize the long-

term utilities. In [4], the authors addressed the resource 

allocation problem using convex and quasi-convex 

optimization techniques, and proposed a novel 

heuristic algorithm to the task offloading problem.  

Generally, MEC framework suppose that all data are 

transferred from clients (vehicles, wireless sensors and 

IoT devices) to cloud computing servers through 

cellular networks to process their data. However, when 

the data contains personal privacy, such as health 

information, website visit history and phone calls 

record, the clients are unwilling to upload data to the 

cloud server. To address this privacy concern, as a 

decentralized machine learning technique, Federated 

Learning (FL) has recently been presented by ML 

community [5]. Instead of training model with the 

dataset of clients in central server, Federated Learning 

assigns the training work to distributed users. In order 

to protect the data privacy, each client trains their local 

model based on local training dataset which is never 

uploaded to the central server. Instead, each client 

computes an update to the current global model 

maintained by the server, and only this update is 

communicated. 

In this paper, we focus on the Implementation of 

federated learning in practical MEC frameworks of 

vehicle network and propose a Secure Federated 

Learning with Efficient Communication scheme in 

vehicle edge network. Our main contributions are as 

follow: 

We add artificial noise into gradient descent training 
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process in order to prevent the parameters of updated 

model leakage in federated learning. And we propose a 

client selection approach that identifies relevant 

updates trained by vehicles and prevents irrelevant 

updates from being uploaded for reduced network 

footprint to achieve efficient communication for 

federated learning. Specifically, our scheme provides 

vehicles with the feedback information regarding the 

global tendency of model updating. Each vehicle 

checks if its update aligns with this global tendency 

and is similar enough to global update, which makes 

the whole training process efficient and reduces the 

communication costs. This is a client selection problem 

that determines which vehicles participate. Then, we 

put forward a convergence bound on the loss function 

of the trained FL model in our scheme with Gaussian 

noise. Finally, compared with basic Federated 

Learning, we evaluate our scheme on two datasets and 

evaluation results demonstrate that our scheme reduces 

communication overhead, outperforming the basic FL 

by 4.0x.  

The remaining of this paper is organized as follows. 

In Section II, we present the related work. In Section 

III, we introduce the federated learning and formulate 

our problem. In Section IV, our Secure Federated 

Learning with Efficient Communication scheme is 

provided in detail and analyze the convergence 

property of SFLEC. In Section V, we present the 

numerical results of our proposed scheme on MNIST 

and CIFAR-10 datasets. Finally, we summarize this 

paper in Section VI. 

2 Related Work 

The concept of federated learning was first proposed 

in [5], which showed its effectiveness through 

experiments on various datasets. Based on the 

comparison of synchronous and asynchronous methods 

of distributed gradient descent in [6], it is proposed that 

federated learning should use the synchronous 

approach because it is more efficient than 

asynchronous approaches..  

In order to prevent information leakage, a popular 

approach is differential privacy (DP) [7] which adding 

artificial noise to the privacy information. Local 

differential privacy (LDP) [8] is a recently proposed 

approach which can provide strong guarantees of 

privacy to the users. Different from traditional 

differential privacy [7] which provides guarantee in 

data analysis part, LDP focuses on the privacy in data 

collection process. The authors in [9] considered 

distributed estimation at the server over uploaded data 

from clients while providing protections on these data 

with LDP. An algorithm for user-level differentially 

private training of large neural networks was proposed 

in [10]. The authors in [11] improved the 

computational efficiency of DP based SGD by tracking 

detailed information about the privacy loss. A novel 

DP based SGD algorithms was proposed in [12] and 

the authors also analyzed their performance bounds 

which were shown to be related to privacy levels and 

the sizes of datasets. The work in [13] proposed an FL 

algorithm with the consideration on preserving clients’ 

privacy which can achieve good training performance 

at a given privacy level, especially when there is a 

sufficiently large number of participating clients. 

Due to the limited edge device resources, it is a 

challenge to perform distributed machine learning on 

each client. To reduce the communication overhead, 

the work in [14] proposed Deep Gradient Compression 

(DGC) to greatly reduce the communication bandwidth. 

which explored model compression techniques for 

efficient communications However, data compression 

results in information loss of training updates, which 

may harm the learning accuracy and usually come with 

no convergence guarantees. The work in [15] proposed 

two ways to reduce the uplink communication costs. 

One is structured updates, where they directly learn an 

update from a restricted space parametrized using a 

smaller number of variables, the other is sketched 

updates, where they learn a full model update and then 

compress it using a combination of quantization, 

random rotations, and subsampling before sending it to 

the server. The work in [16] a client selection problem 

that determines which clients participate in the training 

process and when each client has to complete the 

process while considering the computation and 

communication resource constraints imposed by the 

client. 

3 Federated Learning 

In this section, we briefly introduce the original FL 

framework [5] in vehicle edge network. Then, we 

present the problems formulation that will be discussed 

in our following analysis. 

3.1 Federated Learning 

In the vehicle edge network, the amounts of mobile 

vehicles individually have data that they want to keep 

as a secret, such as the privacy information of vehicles 

for traffic prediction and cityscape images captured by 

autonomous vehicles. If a vehicle edge computing 

server collects all the distributed data, a high-

performance machine learning model can be trained on 

these data. However, it is not acceptable for vehicles to 

reveal their data due to privacy issues. 

Federated learning is a decentralized approach for 

training Machine Learning model that intent to solve 

the abovementioned problem. The training process of a 

FL system which is shown in Figure 1 contains the 

following four steps: 
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Figure 1. Federated learning in vehicle edge network

(1) Distribute global model. The edge server 

distributes the parameters of global model to the K 

vehicles. 

(2) Update the model with own data. All the 

vehicles train the ML model with their own data 

locally. 

(3) Upload local update. Each vehicle adds 

artificial noise into the updated parameters of the 

model and then upload to the edge server. 

(4) Aggregate vehicle updates. The edge server 

performs secure aggregation over the uploaded 

parameters from K vehicles to obtain the global model 

and tests the performance of the model. 

3.2 Problem Formulation 

We consider applying federated learning in vehicle 

edge networks, while solving the security and privacy 

concerns. The set of vehicles is described as 

1 2 3
{ , , , , },

K
V v v v v= …  and the set of whole training 

dataset is denoted as 
1 2 3

{ , , , , }.
K

D D D D D= …  Each 

vehicle 
k
v  has its own dataset 

1 1 2 2
{( , ), ( , ),

K
D x y x y=  

, ( , )},
n n
x y…  where 

1
x  is the input for models and 

i
y  

is the labels of 
i
x . The vehicle communicates with the 

vehicle edge server when it locals in the coverage area. 

The goal is to learn a global model over the training set 

D. Formally, let | |
k k
n D=  be the number of the sample 

in dataset 
k

D . For each vehicle 
k
v , its loss function is 

 
1

min ( ) ( ),
k

d

n

k i
R

ik

F f
nω

ω ω

∈

= ∑  (1) 

where ( )
i
f ω  is the loss function for i-th data sample 

( , )
i i
x y  with the model parameters ω . 

The objective function ( )F ω  is defined as follow: 

 ( ) ( ).
K

k

k

k

n
F f

n
ω ω=∑  (2) 

where ( )F ω  is the total loss function for the K dataset, 

| |n D=  is the number of the training set D. 

In the vehicle edge network, the goal of the 

federated learning is to train a global model, which is 

an optimization problem to minimize ( )F ω . That is, 

 
{ }

( ) argmin ( ),
t

h F
ω ω

ω ω
∈

=  (3) 

where 
t

ω  is the parameter set of the aggregated model 

at round t, and 
t

ω  is defined as follow: 

 
1 ,

1

K

k

t t k t

k

n

u

n

ω ω
+

=

= −∑  (4) 

where 
,k t

u  is the local update from vehicle 
k
v  in the t-

th round. 

4 Secure Federated Learning with Efficient 

Communication Scheme 

The goal of our federated learning is to obtain a set 

of optimal parameters for the model which minimizes 

the loss function with efficient communication. In this 

section, we introduce our proposed SFLEC in details 

and analyze the convergence property of SFLEC. 

4.1 Add Gaussian Noise in Local Update  

We establish the federated optimization in Eq. (1) 

through Stochastic Gradient Descent (SGD) [17], 

which is an effective optimization to minimizes the 

objective function ( )F ω  by iterating the local update. 

For a vehicle 
k
v , the goal of local training is to obtain 

the parameters 
k

ω  of the model. In iteration t, a local 

model parameter 
,k t

ω  is computing according to Eq. 

(5): 

 
, , 1 , , 1 ,

( )
k t k t t k k t k t k t

F uω ω η ω ω
− −

= − ⋅∇ = +  (5) 

where 
k

F∇  and 
t

η  denote the gradient function and the 

learning rate, and 
,k t

u  denotes the local update of 

vehicle k in the th

t  iteration given by 
, ,

( )
k t t k k t
u Fη ω= − ⋅∇ . 

We adopt local differential privacy to protect the 
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privacy of the local update by adding noise to perturb 

the parameters, which is described as follow: 

 
, ,

,
k t k t t

u u n= +�  (6) 

 
, , 1 ,

,
k t k t k t

uω ω
−

= +� �  (7) 

where 
t
n  is the additive noise. In iteration t, before 

uploading the local update to edge computing server, 

vehicle 
k
v  adds Gaussian noise in 

,k t
u  locally. To 

ensure that the noise distribution 2~ (0, )n N σ  

preserves ( , )ε δ -DP, where N represents the Gaussian 

distribution, we set the noise scale, represented by the 

standard deviation of the additive Gaussian noise, as 

/c sσ ε= Δ  where (0,1)ε ∈  and the constant 

21 (1.25/ )c n δ= . And sΔ  is the sensitivity the 

function given by 

 
,

min || ( ) ( ) ||,
k k

k k
D D

s s D s D
′

′Δ = −  (8) 

In order to measure the sensitivity sΔ , we assume 

that the batch size in the local training is equal to the 

number of the local dataset and then define the local 

training process in the k-th vehicle by  

 

0

0

1

( ) argmin ( , )

1
argmin ( , ),

k

k k k k

n

k k

i

s D u F D

F D
n

ω

ω

ω ω

ω ω

=

= −

= − ∑

�

 (9) 

where | |
k k
n D=  is number of the sample in the dataset 

k
D  and 

,k i
D  is the i-th sample in 

k
D . For the upload 

process, using a clipping technique, we ensure that 

|| ||
k

u U<  where 
k

u  describes the local parameters 

update from the t k-th vehicle without perturbation and 

U is a clipping threshold for bounding 
k

u . Thus, the 

sensitivity sΔ  can be calculated by 

,

0 ,
,

1

0 ,

1

( ) max || ( ) ( ) ||

1
max || argmin ( , ) ||

1 2
( argmin ( , ))

k k

k

k k

k

k k k
D D

n

k k i
D D

ik

n

k k i

ik k

s D s D s D

F D
n

U
F D

n n

ω

ω

ω ω

ω ω

′

′

=

=

′Δ = −

= −

′− − =

∑

∑

 (10) 

where compared with 
k

D , 
k

D′  has the same size but 

only differ by one sample, 
,k i

D′  is the i-th sample in 

,k i
D′ . From the above result, the sensitivity for all 

vehicles can be defined by  

 max{ ( )},
k

s s DΔ Δ�  (11) 

To obtain the sensitivity, we define the minimum 

size of the local datasets by 

 m min{ },
k
n=  (12) 

Thus, we obtain the sensitivity 
min

2U
s

n
Δ =  and then 

the noise scale 
2cU

m
σ

ε

= . 

4.2 Communication-Efficient Federated Learning 

In order to improve communication efficiency for 

federated learning, we consider reducing the irrelevant 

local updates uploaded to edge computing server. 

Following this idea, each vehicle need to know the 

total optimization tendency in the global aggregation. 

To solve this problem, in each iteration, vehicles 

should compare their local updates with the aggregated 

global update to know whether their updates are 

relevant. However, it is a challenge that the global 

update cannot be known before all of local updates 

have been uploaded and aggregated in the current 

iteration. 

To address this problem, Wang [18] proposes that 

the global update in the current iteration can be 

estimated by that in the previous iteration. Specifically, 

given two global updates 
t

Update  and 
1t

Update
+

, they 

describe that normalized difference as  

 1
||| |

,
|| ||

t t

t

t

Update Update
Update

Update

+
−

Δ =  (13) 

where || ||⋅  is the Euclidean norm of a given vector. 

This means that the smaller the normalized difference 

is, the less the two updates diverge from each other. 

They have verified their insight that the global update 

aggregated in the current iteration can be estimation for 

that to be aggregated in previous iteration. 

Given the global update in the current iteration, we 

propose an efficient metric to measure the relevance of 

global update to local update. First, as a model update 

is actually a gradient vector of model parameter, we 

compute the total number of parameters of the same 

symbol in the two updates, which describes the 

percentage of same-sign parameters in the two updates. 

Then, we compute the sum of the relative ratio and 

normalize the result by the total number of parameters, 

which we will use to measure the relevance between 

the global update and the local update. Specifically, let 
1 2{ , , ..., }N

k k k k
u u u u=  be the update of vehicle k over N 

model parameters. Let u describe the global update. 

We compute the relevance of local update 
k

u  to global 

update u  as 

 
1

( , ) (sgn( ) sgn( )),
N

i i

d k k k

I

r u u I u u
N

= =∑  (14) 

 
1

( , ) (sgn( ) sgn( )),
iN

i ik

s k ki

I

u
r u u I u u

N u
= ⋅ =∑  (15) 
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where (sgn( ) sgn( )) 1i i

k
I u u= =  describes the sign of i

k
u  

and ω  are same, and 
i

k

i

u

u

 describes the relative ratio 

between the update of vehicle k and the global update. 

Intuitively, the sign of a parameter in the update 

describes the direction to which the model should be 

trained along the dimension of that parameter. And the 

relative ratio between the local update and the global 

update determines the speed of parameter change in 

one iteration for a model. 

Based on this idea, our approach can find relevant 

local update and excludes those irrelevant local updates. 

An update is considered relevant if relevance measure 

(14) is more than a predefined threshold. On the 

meantime, in order to ensure the stability of the model, 

the relative ratio (15) should smaller than a predefined 

threshold. 

Algorithm 1 describes the process of Communication-

Efficient Federated Learning with Client Selection. 

 

Algorithm 1. Secure Federated Learning with 

Efficient Communication 

1. Global Aggregate: 

2. Input: Vehicle set 
1 2 3

{ , , , , }
K

V v v v v= …  

3. Initialize the global model 
0

ω  and the global 

update 
0

u  

4. for each iteration 1, 2, ...,t T=  do 

5. for all vehicle 
k
v V∈  do in parallel 

6. 
,k t

u ←LocalUpdate 
1

( , )
t

k u
−

 

7. 
,

{ }
t k t

S u←  

8. 
,

,

1

| | k tt u k t

t

u u
S

= Σ  

9. 
1t t t

uω ω
−

= +  

10. Local Update: 

11. Input Vehicle index k, Global Model 
1t

ω
−

 and 

Global Update 
1t

u
−

 

12. Execute the local training and update the local    

13. parameters 
,k t

ω  as 

14. 2

, 1
argmin ( ( ) || || )

2kk t k t k t
F

ω

μ
ω ω ω ω

−

= + −  

15. Calculate the local update 
,k t

u  as 

16. 
, 1 ,k t t k t

u ω ω
−

= −  

17. Calculate 
, 1

( , )
d k t t
r u u

−

 and 
, 1

( , )
s k t t
r u u

−

  

18. Follow Eq.(8) and Eq.(9) 

19. if 
, 1

( , ) ( )
d k t t
r u u tα

−

<  then 

20. if 
, 1

( , ) ( )
s k t t
r u u tβ

−

<  then 

21. Add noise 
, , ,k t k t k t

u u n= +�  

22. return 
,k t

u�  to server 

 

4.3 Convergence Analysis on SFLEC 

In this section, we focus on deriving the 

convergence property of out method under the ( , )ε δ -

DP requirement and show that the proposed SFLEC 

convergence to a global optimum.  

We make the following assumptions on the function 

1 2
, , ,

K
F F F…  where | |K S=  and S is a set of vehicles 

which would upload the local update to the edge server. 

And we defined the global loss function ( )F ω  by 

( )
( ) .K k

k

F
F

K

ω

ω = Σ  

Assumption 1: ( )
k

F ω  is convex and satisfies the 

Polyak-Lojasiewicz condition with positive parameter l: 

for all ω , * 2
1

( ) ( ) || ( ) || ,
2

F F F
l

ω ω ω− ≤ ∇  and 
0

( )F ω −  

*( ) ,F Cω =  where *

ω  is the optimal result. 

Assumption 2: ( )
k

F ω  is γ -Lipschitz: for any , ,ω ω′  

|| ( ) ( ) || || || .
k k

F Fω ω γ ω ω′ ′− ≤ −  

Assumption 3: ( )
k

F ω  is ρ -Lipschitz: for any , ,ω ω′  

|| ( ) ( ) || || ||;
k k

F Fω ω ρ ω ω′ ′∇ −∇ ≤ −  where ρ  is a 

constant determined by practical loss function. 

Assumption 4: For any k and ,ω  || ( ) ( ) ||
k

F Fω ω∇ −∇  

,
k

ε≤  where 
k

ε  is the divergence metric. 

According to assumption 1, 2, 3 and 4, we put 

forward the following lemma. 

Lemma 1 (C-dissimilarity of various Clients): for any 

ω , there exits C satisfying 

 
2

2

2

{|| ( ) || }
,

{|| ( ) || }

k
F

C
F

ω

ω

∇
≤

∇

E

E
 (16) 

According to the assumption 4 of divergence metric, 

we proposed the Lemma 1 which shows the statistical 

heterogeneity of all vehicles. To analyze the convergence 

property of our scheme, we first use the Lemma 2 

which has been proved in [19] to obtain that the 

expected difference in the loss function between 

adjacent global aggregation has an upper bound. 

Lemma 2 (Expected Increment in the Loss Function): 

In the (t+1)-th iteration, after receiving updates, the 

expected difference in the loss function can be upper-

bounded by  

 

2

1 2

2

1 1 0 1

{ ( ( )} {|| ( ) || }

{|| |||| ( ) ||} {|| || }

t t t

t t t

F F F

n F n

ω ω λ ω

λ ω λ

+

+ +

− ≤ ∇

+ ∇ +

� � �

�

E E

E E
 (17) 

where 
0

,
2

ρ
λ =  

1

1
,

cρ
λ

μ μ
= +  

2

2 2 2

1
, ,
2

c cρ ρ
λ

μ μ μ
= +  and 

t
n  is the noise term imposed on the parameters given 

by 
,

1
K

t i t

i

n n
K

=∑  in the t-th iteration. 
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In lemma 2, the additive noise 
t
n  satisfies the 

following Gaussian distribution 2~ (0, ),n N σ  and we 

can obtain 
2cU

m
σ

ε

=  from Section A. Next, we will 

analyze the convergence property of our proposed 

SFLEC. 

Theorem 1: In the t-th iteration, the convergence upper 

bound of our scheme with the protection level ε  is 

defined by  

 c (18) 

where 
2

1 2R lλ= +  and 
2 2

01

2 2

2
.

c UrcU
Q

m Km

λλ

ε π ε
= +  

As we can see from the theorem 1, the convergence 

of Algorithm 1 relies on the setting of the privacy 

protection level ε . By increasing the ε , which means 

that relaxing the privacy level, the performance of 

SFLEC algorithm will improve. 

5 Evaluation 

In order to show how our scheme works effectively, 

we simulate a MEC environment and conduct 

experiments of Machine Learning tasks using public 

datasets. We evaluate the reduced communication 

overhead by applying our approach to basic FL [5] via 

simulations. And we compare SFLEC against baseline: 

basic FL. In order to provide comparability with basic 

FL, we choose a machine learning model and adopt 

two realistic object classification tasks using publicly 

available large-scale image datasets which are MNIST 

and CIFAR-10. 

In out simulation, we adopt pytorch to build model 

and use a 40-client to simulate edge vehicles in 

practiced FL. In order to do a thorough analysis for 

SFLEC and basic FL despite of the influence of the 

threshold, we test various threshold values to identify 

the relevance and relative ratio of local updates and 

choose the threshold values with the best performance 

for training model. Specifically, as shown in Figure 2 

and Figure 3, we test a set of 13 relevance threshold 

values for SFLEC: {0.1, 0.2, 0.3, 0.4, 0.5, 0.55, 0.6, 

0.65, 0.7, 0.75, 0.8, 0.85, 0.9}, and another set of 13 

relative ratio threshold values: {0.05, 0.1, 0.2, 0.3, 0.4, 

0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.8, 0.9} in both two 

datasets. For MNIST, in the 800 rounds, the best 

performance is obtained when setting the relevance 

threshold value as 0.8 and the relative ratio threshold 

value as 0.65. And, these two values are tuned as 0.7 

and 0.5 for the CIFAR-10 dataset to get the best 

performance.  

 

Figure 2. Comparison of accuracy under different 

relevance threshold on MNIST and CIFAR-10 

 

Figure 3. Comparison of accuracy under different 

relative ratio on MNIST and CIFAR-10 

We first compare the learning accuracy of both basic 

FL and SFLEC on MNIST datasets. Specifically, In 

Figure 4, we observe that the accuracy of SFLEC is 

more than the basic FL in the same accumulated 

communication rounds，and when the rounds reach 

800, the accuracy of our scheme is statistically good 

with an average value of 0.938, but the accuracy of 

basic FL only raises to 0.809 which means this model 

still needs training. Further, we measure the accuracy 

of both basic FL and SFLEC on CIFAR-10 datasets. In 

Figure 5, the result also shows that the accuracy of 

basic FL is less than our scheme under the same 

accumulated communication rounds. 

In particular, for MNIST, when the learning 

accuracy raises to 60%, the basic FL costs 400 

communication rounds as shown in Table 1. On the 

other hand, our scheme substantially reduces the 

required communication rounds to 110, providing a 

saving of 3.63. Furthermore, when the learning 

accuracy reaches nearly the highest value, i.e., 80%,  
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Figure 4. The learning accuracy of SFLEC compared 

to basic FL on MNIST 

 

Figure 5. The learning accuracy of SFLEC compared 

to basic FL on CIFAR-10 

Table 1. Summary of the rounds for different learning 

accuracies in MNIST and CIFAR-10 

 Basic FL SFLEC 

MNIST 60% accuracy 400 110 

MNIST 80% accuracy 800 225 

CIFAR-10 60% accuracy 584 144 

CIFAR-10 80% accuracy 952 232 

 

the basic FL take 800 rounds, respectively. Our SFLEC 

costs only 225 rounds, reducing the network footprints 

by 3.55x. For the CIFAR-10 datasets, the communication 

overhead increases in basic FL and SFLEC. The basic 

FL uses 584 rounds to obtain a training model with the 

accuracy 60%. However, SFLEC provides the saving 

4.05 with the relevance threshold tuned as 0.7 and the 

relative ratio threshold tuned as 0.5, reducing the 

required number of communication rounds to 144. 

Moreover, our scheme reduces the communication 

rounds from 952 to 238 when requiring the learning 

accuracy as 80% with the saving of 4.11. 

In summary, our scheme consistently outperforms 

basic FL in improving the communication efficiency 

for FL under various learning accuracies. As we see in 

Table 1, SECFL keeps outperforms basic FL by more 

than 3.5x in MNIST and more than 4.0x in CIFAR-10. 

6 Conclusion 

In this article, we proposed a Secure Federated 

Learning with Efficient Communication scheme for 

edge computing in vehicular networks. To protect the 

updated models of each vehicle, we added artificial 

noise in local training process with local differential 

privacy. Due to uploading the local updates of each 

vehicle will cause excessive communication overhead, 

we proposed a client selection approach that identifies 

relevant updates trained by vehicles and prevents 

irrelevant updates from being uploaded for reduced 

network footprint to achieve efficient communication 

for federated learning. We have shown in theory that 

our scheme is guaranteed to converge. Evaluations 

demonstrate that our scheme reduces the network 

footprint compared with the basic FL. 
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Appendix A 

Proof of Lemma 1 

According to the assumption 4, we have 

 
2 2{|| ( ) ( ) || } { }

k k k
F Fω ω ε∇ −∇ ≤E E  (19) 

and 
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2 2 2

2 2

{|| ( ) ( ) || }
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 (20) 

Substituting (20) into (19) and ( ) { ( )},
k

F Fω ω∇ = ∇E  

we obtain 

 2 2 2{|| ( ) || } || ( ) || { }.
k k

F Fω ω ε∇ ≤ ∇ +E E  (21) 

When || ( ) || 0,F ω∇ ≠  we have 
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where we set 

 
2
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ω

= +
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 (23) 

Observing (23), we can notice that when ( )C ω  

approach 1, 
2{ }

k
εE  will approach 0, which means that 

the local loss functions are similar with the global loss 

function. When all the local loss functions are the same, 

then ( ) 1.C ω = . Therefore, we can obtain 

 
2

2

2

{|| ( ) || }
,

{|| ( ) || }
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k

F
C

F

ω

ω

∇
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∇

E

E
 (24) 

where 2 2{|| ( ) || } || ( ) ||F Fω ω∇ = ∇E  and C is the upper 

bound of ( )C ω . Hence, the Lemma 1 has been proved. 
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Appendix B 

Proof of Theorem 1 

We assume that F satisfies the Polyak-Lojasiewicz 

inequality with positive l, which means that 

 * 2
1

{ ( ) ( )} || ( ) || ,
2

t t
F F F

l
ω ω ω∇ − ≤ ∇� �E  (25) 

where *( )F ω  is the loss function corresponding to the 

optimal parameters *

ω . Then, subtract *{ ( )}F ωE  in 

both sides of (17), we obtain  
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Considering || ( ) ||
t

F ω γ∇ ≤  and (18), we know 
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Due to the same and independent distribution of 

additive noise terms, we define {|| ||} {|| ||}
t
n n=E E  

and 
2 2{|| || } {|| || },

t
n n=E E  for 0 .t T≤ ≤  Applying 

recursion to (19), we obtain 

 

*

*

2 0

1

2

1 0 2

0

*

2 0

2 2

1 0

2

{ ( ) ( )}

(1 2 ) { ( ) ( )}

( {|| ||| {|| || }) (1 2 )

(1 2 ) { ( ) ( )}

(1 2 ) 1
( {|| ||| {|| || }) .

2

T k

T

T

t

t

t

T

F F

l F F

n n l

l F F

l
n n

l

ω ω

λ ω ω

λ γ λ λ

λ ω ω

λ
λ γ λ

λ

−

=

−

+ −≤

+ + +

= + −

+ −
+ +

∑

�E

E

E E

E

E E

 (28) 

Considering 
2cU

m
σ

ε

= , we can obtain  
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Substituting (21) into (20), setting 
*

0
( ) ( )F F Cω ω− = , we have  
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where 
2

1 2 ,R lλ= +

2 2

01

2 2

2
.

c UrcU
Q

m km

λλ
σ

ε π ε
= + =  Hence, 

the Theorem 1 has been proved. 
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