Strong Spanning Laceability of Mesh 2055

Strong Spanning Laceability of Mesh

Sheng-Lung Peng!, Lili Zhang?, Jianxi Fan?, Cheng-Kuan Lin?, Hong Chen*

" Department of Creative Technologies and Product Design, National Taipei University of Business, Taiwan

2School of Computer Science and Technology, Soochow University, China

3 College of Mathematics and Computer Science, Fuzhou University, China

4Teaching Sector of Public Education, Fuzhou University of International Studies and Trade, China
slpeng@ntub.edu.tw, zdlzglzll@163.com, jxfan@suda.edu.cn, cklin@fzu.edu.cn, chon19e@163.com

Abstract

A bipartite graph G is strong & -laceability if there is a
" -container between any two distinct nodes x and y

form different partite sets of G with »<min
{deg(x),deg(y),k}. The strong spanning laceability of

G, SK'Z (G), is the maximal value of G such that G is
strong sk, (G) -connected and sk, (G)<A(G) where
A(G) is the maximal degree of G . Let M, be the

mesh with m rows and » columns. In this paper, we
show that sk’ (MW)=3 if mnis even and min{m,n}

> 4; otherwise sk’ (Mm’” ) <2.

Strong
spanning

Keywords: One-to-one disjoint path cover,
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1 Introduction

The system performance of multi-processor
networks, such as reliability and operating efficiency,
has attracted widespread attention. The topological
structure of a multi-processor network, such as
diameter, connectivity, and disjoint paths, are all
important indicators that affect system performance.
Many scholars have done a lot of research in this area
[3, 5-6, 14, 19].

Model this multi-processor interconnection network
as a graph, where vertices and edges represent
processors and communication channels, respectively.
Routing is the process of transferring messages
between vertices. The efficiency and reliability of
routing plays a vital role in system performance.
Obviously, when the amount of transmitted data is
large, the internal vertex disjoint path can not only
avoid congestion and speed up the transmission rate,
but also provide optional transmission paths [7-8, 10].
When the vertex of the network fails, the vertex
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disjoint path can enhance the robustness of the system.
All these advantages of disjoint paths are highlighted
in the research of routing, reliability and fault tolerance
in parallel and distributed systems [7-9, 11, 14].

A k -container of a graph G is a set of £ disjoint

paths between nodes « and v [6]. It is a k -container
if it contains all nodes of G [2]. The k" -container

problem can be applied in many ways such as full
utilization of network nodes, software testing, database

design, and code optimization [1]. A graph G is k -
connected if there exists a k -container between any
two distinct nodes of G . The spanning connectivity of
G, k' (G), is the maximal value satisfies that G is

k™ -connected for every 1<k <x (G). A graph G is
super spanning connected if & (G)=x(G) where
x(G) is the connectivity of G .

A hamaltonian path is a path that contains all nodes,
and a hamiltonian cychle is a cycle that contains all
nodes. A graph G is hamiltonian graph if it contains a
hamiltonian cycle. A bipartite graph G with partite
sets X and Y is hamiltonian laceable if for any node x
in X and for any node y in Y, there is a hamiltonian

path of G between x and y.

A bipartite graph G is k -laceable if there exists a
k" -container between any two nodes from different
partite sets of G . Obviously, a 2" -container {F,P,} of
graph G between x and y can combine to a
hamiltonian cycle, and vice versa. Thus, a non-bipartite
graph is a 2" -connected if it is a hamiltonian graph,

and a bipartite graph is 2' -laceable if it is a
hamiltonian graph. The spanning laceability of a

bipartite graph G , «, (G) , is the maximal value
satisfies that G is k-laceable for every 1<k <k, (G).
A bipartite graph G is super spanning laceable if
x(G)=6(G).

L

There have been many research on the problem of
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super spanning connectivity and super spanning for
many well-known networks [12-13, 17-18].

Let H be the graph with V(H)z{i|1£i£6} and
E(H)={{j.k}I1<j<k<6}-{{2,3}.{5.6}} (see
Figure 1). It is easy to see that deg(l) = deg(4) =5and
deg(j)=4 for each je{2,3,5,6} . According to the
symmetry of H , Table 1 shows that " (H)=4 since

xK(H)=4. It also shows that there is no 5" -container
between node 1 and node 2 since min{deg(l),

deg(2)} =4. And there is 5" -container between node 1

Table 1. k" -container of H between node x and y

and node 4. That is {(14),(124),(154),(13,4).(L6,4)}.
So, the definition of the spanning connectivity cannot
describe the characteristics of k" -container of H well.

A graph G is strong k" -connected if there is a ' -
container between any two distinct nodes x and y of

G for each r<min{deg(x),deg(y),k}. The strong
(G), is the
maximal value of G such that G is strong connected
and SK*(G)SA(G) where A(G) is the maximal
degree of G . Thus, we have sk (H)=5..

spanning connectivity of graph G, sx

{x,»} k=1 k=2 k= k=
{1,2} {(1,4,6,3,5,2)} {(14,6,2),(1,3,5,2)}  {(L4.6, 2),(1,2),(1 3,52)) {(1.3,5.2),(1.2), (1,6 2),(1,4,2)}
(1,3} {(1,2,6,4,5,3)} {(12,6,3).(1,4.5.3)}  {(1.2,6,3),(1,3),(1,4,5.3)}  {(1.5,2.3).(1,3).(1.6,3),(1,4,3)}
{1,4} {(1,2,5,4,6,4)} {(12,6,4),(1,3.5,4)}  {(1,2,6,4),(1,4).(1,3,5,4)}  {(1,2,6,4),(1,4).(1,3,4).(1,5,4)}
{2,3} {(25.4.613)}  {(2163).(2543)] {(2.1,6,3).(2.5.3).(2.4 3)} {(2.1,3),(2,6,3).(2.5, 3),(2 4,3)}
{2,5) {(2,4,3,6,1,5)} {(2,6.,1,5),(2,4,3,5)} 2,6,1,5),(2,4,3,5).(2,5)} {(2.6.3,5).(2.5).(2,4,5).(2.1,5)}
{2.6} {(2,41,53,6)}  {(2.5.1,6),(2,4,3,6)}  {(2,5,1,6).(2,6 2436)} {(2,5,1,6),(2.6).(2.3.6),(2.4,6)}
. " of G such that G is strong sk, (G) -laceable and
sk, (G)<A(G) where A(G) is the maximal degree
of G . Thus, we have sk, (Q)=3.
1 4 1 2
2 3 3 4
Figure 1. Graph H
Let O be the bipartite graph with ¥ (Q)={i|1<i<6} 5 6
and  E(Q)={{i.j}|ie{1,3,5},/j€{2.4,6}}-{{12}}.
(see Figure 2). It is easy to see that Q
deg(l)=deg(2)=2 and deg(j)=3 for each

je{3,4,5,6}. Table 2 shows that K: (Q)=2 since
A(Q)=3. So, the definition of the spanning laceability
cannot describe the characteristics of k" -container of
O well. A graph G is strong k" -laceable if there is a

" -container between any two distinct nodes x and y

of G for -each
strong  spanning

from different partite sets
r <min{deg(x),deg(y),k}. The

laceability of graph G, s, (G) , is the maximal value

Figure 2. Graph Q

In this paper, we discuss the k" -container problem
of mesh. The rest of this paper is organized as follows.
In Section 2, we introduce the definitions and notations
for graph theory. In Section 3, we show that

sk’ (M,,)=3 if mn is even and min{m,n}>4;
otherwise sx’ (Mm,n)s 2. Conclusion and future work

are in the final section.



Table 2. k" -container of Q between x and y
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3,4 {(3.2,5.6,1,4)}

{x,} k=1 k=2 k=3
{1,2} {(1,4,3,6,5,2)} {<1,4,3,2>,<1,6,5,2>} none
(1,4} {(1,6,3,2,5,4)} {<1,4>,<1,6, 3,2,5,4)| none
{

{(3.2,5,4),(3,6,1,4)}

{(3.2,5.4),(3,4),(3,6,1,4)}

2 Definitions and Notations

For the definitions and notations of graph theory, we
follow [4]. For any positive integer 7, we set [¢] being

the set {0,1,..,r—1}. A mesh M, with m rows and
n columns, is a graph with V(Mmyn):{(i,j)“e[m],

je[n]} and E(Mm):{{(il,jl),(iz,jz)}|z'l,i2 e[m]
and j,j, €[n] such that either i =i, and |j, - j,|=1
or j =j,, and |i1—i2|=1}. Then M,

m,n?>

is a bipartite

mn mn

graph with partite sets X ={(i, J)ev(M,,)li+j iseven}
and Y :{(i,j)eV(Mm,n)|i+j is odd}. We have

m,n

|Xm,n|=|Ym,n|+l if both m and »n are odd integers;
otherwise, |Xm|=|Ym| We set C, ={(0,0),(0,n-1),
(m=1,0),(m=1,n-1)}, and set X =Xx,-C,, and
vy =Y, -C,.

Let (a,c) and (b,d) be any two distinct nodes of
M, . We set Q(a,b;c,d) being the path of M,

joining (a,c) to (b,d) as follows:

<(a,c),(a+1,c),...,(b,c)> if a<b and c=d

_ ~ <(a,c),(a—1,c),..,(b,c)> if a>b and c=d
Oabred)= (acc)(act)),mn(ad)) if a=b and c<d
((ac).(ac1)...(ad)) if a=b and c>d

3 Strong Spanning Laceability

3.1 1 -container and 2 -container

In this section, we will discuss 1 -container and 2" -
container of mesh. Chen and Quimpo [15], and Itali [6]
discusses the hamiltonian path properties of mesh as
follows.

Theorem 3.1 [15] Let x=(x,,x,) be any node in X, ,
and let y= ( Vs yz) be any node in Y, . If mn is even

and {x,y}NC, #, then there is a 1"-container in
M, between xand y.
Theorem 3.2 [6] Let x=(x,,x,) be any node in X, ,
and let y=(y,y,) be any node in Y, . (a) If
min{m,n} >4 and mn is even, then there is a
hamiltonian path in M,, between x and y. (b) If
m >3, then there is a 1 -container in M,  between x
and y except 1<x, =y <m-2, and x, =y, —1.
Obviously, M

2,2

is hamiltonian laceable. According

to Theorem 3.1 and Theorem 3.2, we have the
following result.

Corollary 3.3 Let m be any integer with m>2 and
let » be any even positive integer. For any node

x=(x,x,) in X, and for any node y:(yl,yz) in
Y, ., there is a 1 -container in M,  between x and y
except m>3,n=2,1<x, =y, <m-2,and x, =y, —1.
According to the definition of hamiltonian cycle and
2" -container, a hamiltonian cycle of graph G and

decompose to a 2" -container between any two distinct
nodes x and yin G Chen et al. [16] show that M

is hamiltonian if and only if mn is even and
min {m,n} > 2. Thus, we have the following theorem.

Theorem 3.4 Let m and » be any two integer with mn
being even and min{m,n}>2. There is a 2" -container

in M between any two distinct nodes x and y.

3.2 3 -container

Here, we we discuss the 3' -container of M, , for

m24 and n>2.
Lemma 35 For wm=>24 and n2=>2, let

B={(i,j)|ie{0,m—1} and je[2n]}u{(a,b)|ae[m]
and be{0,2n-1}}. Let x=(x,x,) be any node in
X' NB and y=(y,y,) be any node in ¥, , N B.
There is a 3" -container in M, , between x and y.

Proof. For any node z=(z,,z,) in B, we set p(z) as
(1,22) if z =0, (m—Z,zz) if z =m—1, (zl,l) if
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z =n—1. We set

z 2

,=0, and (Zl,n—2) if
C={(0,0),(0,1),...,(0,21~1),(1,21~1),...,(m~1,2n-1)
(m=1,2n-2),....(m=1,0),(m -2,0)....(0,0)).
Obviously, {x,y} =¥ (C). Then we can decompose
C into two disjoint paths P and P, between x and
y. Note that M, , —V(C) is isomprphic to M, ,, .

We have the following cases.
Casel. n=2.

Case L1 x #y, |v,-y|#3or {x.y}<{{(10),(13)},
{(m—2,0),(m—2,3)}}. By Corollary 3.3, there is a
hamiltonian path R in M,,-V(C) joining p(x) to
p(»). Then {P,,PZ,F; :<x,p(x), R,p(y),y)} forms a
3" -container in M, , between x and y.

Case 12 x =y, |x,-y|=3, and {x,y}cz{{(l,O),
(1L3)},{(m=2,0),(m=2,3)}}. We set u=(x,0) and
v=(x,,3). Note that {u,v}={x,y}. Then we set
R =(u,(x.1).(x.2),v), R, =(u,0(x,~1,0:0,0),0(0,
% —1:1,1),0(x =1,0:2,2),0(0,x, —1:3,3),), and R,
= (,0(x, +1,m~1:0,0),0(m~1,x, +11:1),0(x, +Lm—1,
2:2), O(m—1,x,+1,:3,3),v). Then {R,R,R} forms

3" -container in M, , between x and y.

Case 2. n>3. We have m—22>2 and 2n—-22>4. By
Corollary 3.3, there is a hamiltonian path R in M,
-V (C) joining p(x) to p(y). Then {P,P,P, = (x,
p(x),R,p(y),y)} , forms a 3" -container in M,
between x and y.

Lemma 3.6 For m>4 and n>2, let x=(x,x,) be
any node in X and y=(y,»,) be any node in Y~

with x, =y, or x, =y,. There is a 3" -container in
between x and y.

Proof. We have the following cases.

Case 1. x, = y,. By Lemma 3.5, there is a 3" -container

of M, between x and y if x, €{0,m—1}. Thus, we

m2n

consider that x, ¢{0,m—1}. We set {p:(pl,pz),qz

(4,9 )}z{x,y} such that p, <g,. Note that p, =gq,.
We have the following cases.
Case 1.1 x, +1#m—1. By Corollary 3.4, there is 2 -

container {£,P} in M, , between p and g. By

1272
Corollary 3.3, there is a hamiltonian path R in
M,, -M_,, between (x +1x,)and (y +1,). Thus

m2n x +1,2n

19425

{P.,P,P, :< p,R,q)} forms a 3 -container between x
and y.

Case 1.2 x, +1=m—1. By Corollary 3.3, there is a

hamiltonian path R in M_, between (x,—1,x,) and

(» —1y,). By Corollary 3.4, there is 2" -container
{P,R} in M,, -M

1272 x; 2n

between p and ¢q. Thus

{P],PZ,P3 =<p,R,q>} forms a 3 -container between x
and y.

Case 2. x, = y,. By Lemma 3.5, there is a 3" -container
of M

m,2n

consider that x, ¢ {0,2n—1}. Note that either x, +1 is

between x and y if x, € {0,2n—1}. Thus, we

even or 2n—x, is even. We set {p:(pl,pz),q:(ql,
q, )} ={x,y} such that p <g,. Note that p, =g,.
Case 2.1 x,+1 is even. Since x, #{0,2n—1} and
x,+1 is even, x,#2n—-2 and 2n—-x,—-122. By

Corollary 3.4, there is 2 -container {P,P,} in M,

1272
between p and g. Note that M, , —(V(B)u V(B)) is
isomorphic to M,

2+l

By Corollary 3.3, there is a

2n—x,-1°

hamiltonian path R in M, , —(V(B)uUV (P,)) between
(p],p2 +1) and (g,.9, +1). Thus {P],PZ,P3 =<p,R,q>}

forms a 3" -container between x and y.
Case 2.2 2n—x, is even. Since x, #{0,2n—1} and

2n—x, is even, x, #1 and x, —1>2. By Theorem 3.2
and Theorem 3.3, there is hamiltonian path R in M

m,xy—1

and (g,,q,—1). Note that

M —V(R) is isomorphic to M

m,2n m,2n—x;

3.4, there is a 2" -container {P,P,} in M,, —V(R)

1272 m,2n

between p and g. Thus {B,P,,P, = <p,R,q>} forms a

12722

between (p,,p, —1)
. By Corollary

3" -container between x and y.
Theorem 3.7 Let m be any positive integer with
m>4. Let x=(x,x,) be any node in X  and let

y=(».»,) be any node in Y, ,. If there is a 3 -

container of M

,, between any node in X and
m=2, m-2.4

any node in ¥, then there is a 3"-container in M, ,
between x and y.

Proof. By Lemma 3.6, there is a 3 -container in M, ,
between x and y if x, =y,. Thus, we consider that
x, #y,. Without loss of generality, we assume that
x, <,. We have the following cases.

Casel. y, <m-3.

Case 1.1 yi(m—3,0). Since there is a 3" -container in

M, ,, between any node X = and any node in ¥,

m—

there is a 3 -container {P,P,,P,} of M,

1545515 4 between x and

2



y. Since degMWu ((m—3,0))=2, we assume that

((m -3,0),(m-3,1))e E(P,). Thus, we write
P = <x,Rl,u 12 Rz,y> where {uz(u],uz) v= (vl,v2)}

{(m=3,0),(m=3,1)}. Let S be the subgraph induced by
{(i.))lie{m=2,m=1} and je[4]}. Obviously, § is
there is a
(v +1,v2).
Then {P,P,(x,R.,u,Z,v,R,,y)} forms a 3" -container of

isomorphic to M,,. By Corollary 3.3,

hamiltonian path Z of S' joining (ul +1,u2) to

M, , between x and y.
Case 1.2 y :(m—3,0). Since there is a 3" -container of
M

.24 Detween any node in X

,, and any node in

Y' ., there is a 3" -container {P,P,P} of M

1272573 m-2,4

between x and (m-3,2). Since deg,, | ((m=3,0))=2
and deg,, ((m—3,3))=2, we assume that ((m—3,0),

(m=3,1))e E(R) and ((m-3,2),(m-3,3)) e E(R).
Without loss of generality, we assume that
P =<x,R,(m—3,3),(m—3,2)>. Obviously, combining
P and P, forms a cycle C which contains x and y.
Then we can decompose C into two disjoint paths Z,
and Z, between x and y such that V(Z )u
V(z,)=V(P) WV (P,). By Corollary 3.3, there is a

hamiltonian path Z of M, —M

m-2,4

to (m—-2,0). Then{Z],Zz,<x,R,(m—3,3),Z,y>} forms

joining (m—2,3)

a 3"-container in M, , between x and y.

Case 2. y e{m—-2,m—1} and x <m—4. We have
ye{(m—2,0),(m—1,1),(m—2,2)} if m is even, and
ye{(m=2,1),(m=1,2),(m=2,3)} if m is odd.

Case 2.1 m is even. There is a 3" -container {R,Pz,lg}
of M, _,, between x and (m—3 1) Without loss of
= (xR .(m—3,0),(m-3.1)),
132=<x,R2,(m—4,1),(m—3,1)>, and P, = <x,R3,(m—3,
2),(m—3,1)>. If y=(m—-2,0), then we set Z =
(x.R.(m=3,0),(m=2,0)), Z,=(x.R,,(m=41),(m=3,1),
(m—2.1),(m=2,0)), and Z, =(x,R,(m-3,2),(m-2,

—1,3),(m

generality, we write P

2),(m=-2,3),(m

(m=2,0)). If y=(m-11), then we set Z =(x,R,
(m=3,0),(m=2,0),(m=1,0),(m-11)), Z,=(x.R,
(m—4.1),(m-3.1),(m-2,1),(m-11)), and Z, =(x,

-1,2),(m-11),(m-10),

Strong Spanning Laceability of Mesh 2059

R,(m-3,2),(m-2,2),(m-2,3),(m-1,3),(m-1,2),
(m—1,1)>. If y=(m—-2,2), then we set ZI=<x,Rl,
(m=3,0),(m—2,0),(m-1,0),(m—-11),(m—-1,2),(m—1,
3).(m=2.3),(m=-2.2)), Z =(x.R,,(m—41),(m-3,1),
(m—2,1).,(m-2.2)), and Z, =(x,R,(m—32),(m-2,
2)). Then {Z,,Z,,Z,} forms a 3" -container in M,

between x and y.
Case 2.2 m is odd. There is a 3"-container {F,P,,P,}

1272273
of M

. between x and (m—3,2). Without loss of
generality, we write P

= (x,R.(m=31),(m-32)),
P,=(x,R,(m-42),(m-32)), and B =(x,R,(m-3,
3),(m—3,2)>. If y=(m—21) then we set Z =
(x.R,(m=3,1),(m=2.1)), Z, =(x,R,,(m=42),(m-3,2),
(m=3,1),(m=-2,1)), and Z =(x,R,(m—3,3).,(m-2.3),
(m=1,3).(m=1,2),(m=11),(m=1,0),(m=2,0),(m—-2,1)).
If y=(m-12), then we set Z = <x,Rl,(m 3,1),
(m—2,1),(m—2,0),(m—1,0) ( >
Z,= (x.R,.(m-42),(m-32),(m-2,2),(m- 12)
and Z, =(x,R,(m=3,3),(m-2.3),(m~13),(m-1.2)).
If y=(m-23), then we set Z = <, R.(m-3,1),
(m-2,1),(m-2,0),(m-1,0),(m—-1,1),(m-1,2),
(m—13),(m=2.3)). Z,=(x.R,.(m-4.2).,(m-32),
(m—3.3)), and Z, = (x,R,,(m—3.3),(m—2,3)). Then

{2,,Z,,Z,} forms a 3" -container in M, , between x
and y.
Case 3. y, e{m-2,m-1} and x, >m-3. Let {P,B,P}

2973

being a 3" -container in M, , — M,, between x and y.
Since deg,, . ((2,0)):2, we assume that ((2,0),(2,1))
€ E(P,). Thus, we write P,

3
{u (ul,uz) V= (vl,vz)}z{(2,0),(2,l)}. By Corollary
3.3, there is a hamiltonian path Z of M,, joining
(4,~Lu,) and (v,—Lv,). Then {P P (x R.,u,Z,

19420 s LYy

= <x,Rl,u,v,R2,y> where

V,R,, y>} forms a 3" -container in M, , between x and
V.

Lemma 3.8 For me{4,5}, let x=(x,,x,) be any node
in X* and y=(y,,y,) be any node in ¥, ,. There is a
3"-container in M, , between x and y.

Proof. By Lemma 3.6, there is a 3" -container in M, ,

between x and y if x, =y orx,=y,. Thus, we
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consider that x, #y, and x, #y,. Let B, = {(i,j) lie

{0,3} and je[4]}u{(a,b)|ae[4] and be{0,3}} and
B, ={(i,j)|ie{0,4} and je[4]} U{(a.b)|ae[5]and
be{O,S}}. By Lemma 3.5, there is a 3" -container of

M,, between x and y if {x,y} < B,, and there is a
3"-container of M, between x and y if {x,y}c B..
Thus, we consider that {x, y} B, if m=4, and
{x,y} B, if m=5.

Note that xeX,, and yeV,, if m=4, and

Table 3. 3" -container of M, , for me{4,5}

xeX,, and yeY,, if m=5. According to the
symmetric of M,, and M,,, we consider that
x€{(0,2),(11),(2.0),(2.2),(1,3)} if m=5. Table 3
shows that there is a 3"-container in M, , between x
and y for me{4,5}.

Hence there is a 3" -container in M, , between x

and y for me{4,5}.

x y 3" -container between x and y
R =((0.2),(1,2),(2.2).(2.1)),
(0.2)  (21) P ={(0,2),(0,1),(0,0),(1,0),(L1),(2.1
Y P =((0,2),(0,3),(1,3),(2,3),(3.3),(3,2),(3,1):(3,0),(2,0),(2.1))
B =((11).(12).(2.2),(2.3)),
(L) (2.3) B =((1.1),(0.1),(0,0),(0.1).(0,2).(0.3).(1.3).(2.3))
P = {(L1),(2.1),(2,0),(3.0),(3,1).(3.2),(3,3).(2.3
£ =((0.2),(,2).(2.2),(3.2),(3.1).(2.1))
(0.2)  (21) B =((0,2),(0.1),(0,0),(1,0).(L1).(2.1
P =((0,2),(0.3),(1.3),(2,3),(3.3),(4.3),(4,2),(4.1),(4.0),(3,0),(2.0),(2.1))
B =((11).(21),(3.1).(30),
(L) (3.0) B =((11),(12).(0,2).(0,3).(13).(2.3).(2.2).(3.2).(3.3).(4.3).(4.2).(4.1).(4.0).(3.0))
P, =((1,1),(0,1),(0,0),(1,0),(2,0).(3,0))
R=((11).(12).(2.2).(2.3)).
(L) (23) B =((11),(2.1),(2.0).(3,0).(4.0),(4.1),(3.1).(3.2).(4.2).(4.3).(3.3).(2.3)).
P, =((1,1),(1,0),(0,0),(0.1),(0,2),(0,3),(1,3).(2.3))
M B =((1.1),(2.1),(2.0).(3,0),(4.0).(4.1).(3.1).(3.2)).
(L) (32) B={11).0.2).22).6.2),
P =((1,1),(1,0),(0,0),(0,1),(0,2),(0,3),(1,3),(2.3),(3,3)-(4:3)-(4:2),(3,2))
R =((2.0).(2.1).(2.2).(1.2).
(20)  (1L2) P =((2.0).(3,0),(4.0).(4.1).(3.1).(3.2).(4.2).(4.3).(3.3).(2.3).(1.3).(0.3).(0.2).(1.2)).
P, =((2,0),(1,0),(0,0),(0.1),(1.1),(1.2)
P :<(2,2),(1,2),(1,1),(0,1)),
(22) (01) P =((2.2),(3,2),(3,3):(43),(4.2),(4:1),(4,0),(3.0),(3.1),(2.1),(2.0)(1,0),(0.0),(0.1))
B =((2.2),(2.3),(1,3).(0.3)..(0.2),(0.1)




Table 3. 3" -container of M, , for me {4,5} (continue)
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X y 3" -container between x and y
R =((2.2),(12),(11),(1.0)),
(22)  (1L0) P =((2.2).(2.3).(1.3).(0.3).(0,2).(0.1),(0,0).(1,0)),
P, =((2.2).(3.2).(1.3).(3.3).(4.3).(4.2).(4.1).(4.0),(3.0).(3.1).(2.1).(2,0).(1,0))
B =((1,3),(1,2),(1,1),(2.1)),
M, (1L,3) (2,1) 3),(2.2).(3.2).(3.3).(4.3).(4,2).(4.1),(4.0).(3,0).(3.1),(2.1)).

B
Il

al
Il

(L3) (32) P=

o

I
/\/\/\/\/\/\/\/\/\
o = T T TS o

SN

)
.2)),
)

)

,(0,3),(0,2),(0,1 ,(0,0),(1,0),(1,1),(2,1),(2,0),(3,0),(4,0),(4,1),(3,1),(3,2)),
2,3),(3 4,2

3).(43).(4.2).(3.2)).

Theorem 3.9 Letm be any integer with m > 4. For any
node x=(x,x,) in X' and any node y=(y,y,) in
Y, thereis a 3"-container in M, , between x and y.
Proof. We proof this theorem by induction hypothesis
on m. By Lemma 3.8, this theorem holds on M, , for

me {4,5}. Thus, we suppose that this theorem holds in
M, , for each 4<k<m-1 and m=4. By Theorem

3.7, there is a 3" -container in M, , between x and y.

Theorem 3.10 Let m be any integer with m >4, and
let » be any integer with n>2. For any node
x=(x,x,) in X' and for any node y=(».»,) in

Y

m,,2n3
V.

Proof- We proof this theorem by induction hypothesis
on n. By Lemma 3.9, this theorem holds on M, for

*

there is a 3"-container in M, , between x and

n=2. Thus, we suppose that this theorem holds on
M, , foreach 2<k<n-1. By Lemma 3.6, there is a

3" -container of M, , between x and y. if x,=y,.
Thus, we consider that x, #y,. Without loss of

generality, we assume that x, <y,. We have the

following cases.
Casel. y, <2n-3.

Case 1.1 y¢{(0,27-3),(m~1,2n-3)}. By induction
hypothesis, there is a 3" -container {P,P,P} of
M

m,2n-2

=2, we assume that ((0,2n—3),(1,2n—3)) €E(PR).

between x and y. Since deg, ~ ((0,27-3))

Thus, we write P, =<x,R1,u,v,R2,y> where {u:(ul,uz),
v=(v,v,)}={(0,22-3),(1,22-3)}. By Corollary 3.3,

1272

there is a hamiltonian path Z of M , - M

m,2n-2

joining (u u +1) to (v v +1). Then {P P <x,Rl,

12772 1272 12722

u,Z,v,R,, y>} forms a 3"-container in M, , between
x and y.

Case 1.2 y=(0,2n—3). By induction hypothesis,
there is a 3" -container {P,P,,P,} of M,

172573 m,2n-2

between
x and (2,2n-3). Without loss of generality, we
assume that P=(x,Rl,(1,2n—3),(2,2n—3)>, P =

i
(x.R,,(2,2n-4),(2,2n-3)), and P, =(x,R,,(3,21-3),
(2,2n—3)>. Since deg,, (y)=2 and (1,2n—3)e
V(R),yeV(R). Thus, combining F, and P, forms a
cycle C which contains x and y. Then we can
decompose C into two disjoint paths Z and Z,
between x and y such that V(Z )uV(Z,)=
V(R)uV(P). By Corollary 3.3,

hamiltonian path Z of M , - M

m,2n m,2n-2

(3.2n-2) to (0,2n-2). Then {Z,Z,.(x,R,,(3,22-3),

there 1s a

joining

Z, y>} forms a 3" -container in M, , , between x and
V.
Case 13 y ={m—1,2n—3}. Similarly as Case 1.2,

there is a 3" -container in M between x and y.

m,2n-2
Case 2. y, €{2n-2,2n-1} and x, <2n—4.
Case 2.1 y,=2n-2

hypothesis, there is a 3" -container {R,P,,B} of M, ,

and y =1. By induction

between x and (2,2n-3). Without loss of generally,
we write B, =(x,R,(1,2n-3),(2,2n-3)), P, =(x.R,,
(2.2n-4),(2.2n-3)), and P, =(x,R.(3,2n-3).(2,
2n-3)). Then we set Z =(x,R,,(1,2n-3),(1,2n-2)
=y), Z,=(x,R,,(2,2n-4),(2,2n-3),(2,2n-2),
(1,2n-2)=y), and Z, =(x,R,(3,2n-3),(3,2n-2),
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...,(m—l,Zn—2), (m—1,2n—1),(m—2,2n—1)...,(0,2n—1),
(0,2n-2),(1,2n-2)=y)
Then {Z,,Z,,Z,} forms a 3" -container in M, , ,

between x and y.
Case 2.2 y,=2n-2 and y, >1. We have y, >3 and
y, is odd. By induction hypothesis, there is a 3" -
container {B,P,P} of M

1272273 m,2n-2

between x and
( Y, —1,2n—3). Without loss of generality, we write
P =(x.R.(y-22n-3).(y —12n-3)), P,=(x.R,,
(yl—1,2n—4),(y1—1,2n—3)> and Ez(x,&,(yl,2n—3),
(»-1.2n-3))

Then we set Z, =(x,R,,(y, —2,2n-3),(», —2,2n-2),
(0,2n-2),(0,2n-1),...,(m—1,2n-1),(m-1,2n-2),
...,(y],2n—2):y>, Z, :<x,R2,(y] -1,2n-4),(» -1,
2n—-3),(», -1,2n-2),(».,2n-2)=y), and Z =
(x,R,(y,,2n=3),(,,2n=2)=y). Then {Z,.Z,,Z,}
forms a 3"-container in M, , , between x and y.
Case 2.3 y, =2n—1. By induction hypothesis, there is
a 3’ -container {F,P,P} of M, , , between x and

1272273

( yl,2n—3). Without loss of generality, we write
Rz(x,R],(y]—1,2n—3),(y1,2n—3)>, P2=<x,R2,(y],
2n-4),(y.2n-3)) and P =(x,R,.(y +1,2n-3),
(yl,2n—3)>. Then we set Zl=<x,Rl,(yl—1,2n—3),
(3 -1.2n-2),..,(0,2n-2),(1,2n - 2),....(»,,2n-2)
=y>, Z, =<x,R2,(yl,2n—4),(y],2n—3),(y],2n—2)
=y), and Z =(x,R.(y +1.2n-3),(y, +1,2n-2),
...,(m—1,2n—2), (m—1,2n—1),(m—2,2n—1),...,
(y],2n—2)=y>.

Then {Z,Z,,Z,} forms a 3" -container in M, ,

12772573 2

between x and y.
Case 3. y,€{2n—2,2n—1} and x, >2n-3. There is
a 3" -container {P,P,,P} of M,, —M,, between x

1272273

and y. Since deg, , ((0,2))=2, we assume that
((0,2),(1,2))e E(R). Thus, we write P, =(x,Ru,
v,Rz,y> {uz(ul,uz),vz(v],vz)}={(0,2),
(1,2)}. By Corollary 3.3, there is a hamiltonian
path Z of M, , joining (u,,u,—1)to (v,,v,—1). Then

1272

where

19420

M

m,2

{P P <x,R],u,Z,v,R2,y>} forms a 3" -container in
, between x and y.

32 sx,(M,,)

In this subsection, we discuss the strong spanning

laceability of mesh. First, we discuss the 1" -container
of M if mn is odd.

Lemnia 3.11 For any node x€ X, and for any node
yeY, , there is no 1" -container in M, , between x
and y if mn is odd.

Proof. 1t is easy to see that |V(P)K\XW|=|V(P)(\
Y | for any path P of M between x and y. Since

|Xmm|:|Yw|+l, there is no 1" -container in M,
between x and y.

According to the definition of the mesh and the

definition of 1" -container, we can obtain the following
lemma.

Lemma 3.12 For n>1, s« (M, )=0 if n#2 and
sk’ (M,,)=1if n=2.

Lemma 3.13 For m>1, s« (M,,)=1if m=1,

sk’ (M,,)=2 if m=2, and s« (M, ,)=0 if m=3.
Proof. By Lemma 3.12, sk (Mlyz)zl. Since M,, is
isomorphic to a cycle of length 4, it is easy to see that
K (Mm)z 2. Thus, we consider that m>3. Since

x(M,,)=2 and {(1,0),(L1)} is a cut of set of M, ,,
there is no hamiltonian path of M, , between (1,0)

and (1,1). Thus, SK (M 2)=O if m>3.

m,

Theorem 3.14 If mn is odd, then szcz (M )= 0. If n

m,n

is even, then
I, if m=1 and n=2
. 2, i =2 and n=2
SK (Mw)z i m ana. n .
L ’ 0, if m=3, or m<2 and n>4
3, if m24 and n>4

Proof. By Lemma 3.11, s« (M ):0 if mn is odd.

Thus, we consideer that mn is even. Without loss of
generality, we assume that » is even. By Lemma 3.12,

sk’ (M,,,)=0 if n#2 and SKj(M )=1if n=2.

1n
Thus, we assume that m > 2.
Case 1. m=2. Since M,, is isomorphic to a cycle of

length 4, it is easy to see that sk’ (Mz’z) =2. Thus, we
assume that n>4. Since M, is isomorphic to M ,,
by Lemma 3.13, s« (M,,)=0 if n>4.

Case 2. m=3. Let P be a path of M, between (1,0)
and (1,1). Obviously, (0,0)eV (P) or (2,0)gV (P).



That is there is no hamiltonian path of M, between
(1,0) and (1,1). Thus, SK‘Z (MM):O
Case 3. m>4. By Lemma 3.13, sk (M )=0 if

m,2

m2>4. Thus, we assume that n>4. Let P,P,,P,,P, be

12722732

four path of M, between x=(11) and y=(1,2).
Obviously, (0,0)¢U! ¥ (P). That is there is not a
4" -container in M, between x and y. Thus,

SKZ (Mm )<4. By Corollary 3.3, Theorem 3.4, and

N

Theorem 3.10, sk’ (Mm) =3.

4 Conclusion

In this paper, we propose the definition of strong
spanning connectivity and strong spanning laceability
which can describe the spanning connectivity or
spanning laceability of general graphs more completely.

Mesh is a non-regular graph. We show SK: (Mm,n): 3

if mnis even, and min{m,n}>4; otherwise K (Mm)

< 2. Next, we can study this topic on other non-regular
graphs or regular graphs with fault elements.
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