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Abstract 

A stroke is the most common, very dangerous single-

organ disease and aggravates social burden in the aging 

society. The stroke can be tested through a variety of 

imaging methods, among which a test method using CT 

imaging is known to deal promptly with an emergency 

patient in the early stage of stroke. Diagnosing ischemic 

stroke using CT images has advantages such as fewer 

spatial constrains and quick shooting time. However, 

diagnosis through images is very difficult, which is a 

major disadvantage of this method. This study proposed a 

deep learning system that can conduct learning and 

classification for ischemic stroke, which is a small dataset 

and hard to conduct image data learning. This study also 

proposed a pre-processing algorithm optimized for 

ischemic stroke based on the non-contrast CT data from 

the middle cerebral artery (MCA) region. Additionally, 

this study suggested adopting the adaptive transfer 

learning algorithm that optimizes the transfer learning 

module to overcome the problem of insufficient data 

while training neural networks. When stroke was 

diagnosed using the proposed system, the performance of 

it was 18.72% better than the existing system. 

Keywords: Stroke, Transfer learning, Deep learning, 

Brain CT 

1 Introduction 

Stroke is the most common single-organ disease 

which claims 6.2 million lives globally each year. 

Stroke occurs above the age of 65 at a rapid pace, 

therefore, advanced countries where population ageing 

is taking place are gradually taking more social burden 

due to stroke [1-2]. Moreover, this disease is likely to 

happen commonly in people in their 30s and 40s, 

therefore, it occurs extensively almost in all age groups 

and is considered very dangerous. Stroke is divided 

into an ischemic stroke that occurs when an artery in 

the brain becomes blocked and cerebral hemorrhage 

which is caused when an artery in the brain bursts. 

Figure 1 shows a case in which ischemic stroke and 

hemorrhagic stroke are evident in non-contrast CT 

imaging. 

 

Figure 1. Examples of ischemic-hemorrhagic stroke in 

brain non-contrast CT 

A variety of tests used to diagnose stroke - such as 

clinical diagnosis, CT (Computed Tomography), MRI 

(Magnetic Resonance Imaging), and Catheter 

Angiography - have been developed, of all these, the 

CT scan has an advantage of bringing fast results. This 

testing method is regarded as suitable for the 

characteristics of stroke that requires a prompt 

response following the occurrence of the disease [3-4]. 

In particular, now that the use of CT can help 

determine whether a stroke patient has suffered 

cerebral hemorrhage, a decision can be made as to 

whether to use a clot buster provided to patients with 

cerebral hemorrhage. On top of this, CT is also 

significantly used in observing the development of 

stroke following the use of the clot buster. 

Studies conducted indicate that when carrying out a 

test using CT as shown above, excluding the area 

where a cerebral infarction has rapidly developed may 

increase the effectiveness of stroke diagnosis and 

treatment [5-6]. This is implemented with more detail 

in so-called ASPECTS (Alberta Stroke Program Early 

CT Score) [7-8].  

But, the determination of early signs of ischemia and 

their translation into the ASPECTS have a considerable 

inter-rater variability, which is, among other factors, 
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influenced by rater’s experience [9]. Hence, inter-rater 

variability depending on rater’s experience has a very 

negative impact on decision making about the patient’s 

stroke identification. One solution to improve 

ASPECTS readings is to train doctors to be aware of 

these issues and provide strategies that enhance the 

reliability and validity of these readings. Another 

solution is to develop an automated solution for 

interpreting ASPECTS using new technologies such as 

machine learning and feature extraction. 

This study developed a CAD system that could 

automatically classify strokes based on machine 

learning and image processing techniques. Two 

neurosurgeons diagnosed stoker using the same NCCT 

data to compare the performance by comparing it with 

the results of a deep learning system. The stroke 

ground-truth (label) was generated by conducting 

cross-examination and feedback. 

2 Materials and Methods 

2.1 Problems and Limitations of Previous 

Studies 

This study proposed a classification neural network 

model that was effective for diagnosing stroke by 

analyzing and improving the problems of the existing 

studies on stroke. The main problems of the existing 

stroke research are as follows. 

(1) Lack of medical image data 

It is hard to construct a large medical image dataset 

for a specific disease because of issues such as 

patients’ privacy protection and the independent data 

management of each hospital [10]. An insufficient 

dataset causes an overfitting problem. Moreover, the 

estimated weight of a neural network is not sufficient 

to show sufficient performance. Therefore, it is 

difficult to accurately classify disease through a deep 

learning system. 

(2) Voxel CT data learning 

Brain NCCT imaging continuously scans from the 

top of the patient’s head at approximately 25mm slice 

thickness, including the MCA region. It produces 2D 

slices (40-50) per patient, and each image is obtained 

in the form of a Dicom. Consequently, it has metadata 

information such as the coordinate values for the x, y, 

and z axes. The 2D image data of the same patient is 

serial data, and it is possible to know the sequence 

information based on the metadata of the 

corresponding coordinate values [11]. However, since 

a CNN model using a 2D single image has a problem 

of not learning the relationship between continuous 

images, a neural network system considering Voxel CT 

data is required. 

(3) Performance limitations of a single CNN model 

This study aimed to classify and diagnose stroke 

diseases by training the neural network. It is very 

difficult to construct a large dataset due to problems 

such as insufficient previous data [12]. When the 

volume of a dataset is small like this case and model 

learning is conducted only with the given training data, 

it may cause problems such as impossible to learn 

feature and overfitting. The performance of the neural 

network shall be improved by applying an algorithm 

such as data augmentation to overcome these problems. 

These algorithms are methods for improving 

performance in individual models, and performance 

improvement in individual models has a clear 

limitation. Consequently, it is necessary to improve the 

performance of the entire system by creating a model 

that is more generalized and can avoid overfitting, 

which can be achieved by diversifying training and 

prediction neural network models based on the same 

dataset and combining training weights and predictions 

from multiple models.  

(4) Medical image classification deep learning 

model feedback problem 

Large-capacity public data, such as ImageNet and 

CIFAR-10, is composed of images that contain 

information about common subjects, such as an object 

that can be easily understood by the general public. For 

these images, a system developer can determine the 

label of each image and annotate the label even if each 

data does not contain a label.  

Most commercial deep learning systems perform 

learning and prediction based on supervised learning, 

and this process requires a large dataset. Therefore, 

most AI companies and multinational companies invest 

a lot of manpower and capital in securing data and 

constructing label data for the data [13-14]. 

On the other hand, it is impossible to diagnose a 

disease using imaging data and to compose label data 

unless someone has professional knowledge in 

diagnostic radiology. Due to this issue, it is greatly 

difficult to construct label data for medical imaging 

[15-16]. Therefore, it is hard to use a system utilizing 

object detection and semantic segmentation models, 

which require a lot of time and labor to construct label 

data among deep learning classification models for 

images. Consequently, it mainly uses simple 

classification models that are relatively simple to 

prepare label data. However, in the classification 

model, it is difficult to find out what region of the input 

image is used to generate the prediction result [17-18]. 

Considering that the objective of the deep learning 

system application to medical imaging is to explore 

special regions in images and diagnose, verification 

and feedback of neural network’s prediction results are 

essential and it is possible to improve the performance 

of the entire system through this. 

2.2 Overview of the Suggested Algorithm 

This study proposed a deep learning CAD system 

that provides a basis for judgment prior to diagnosis by 

medical personnel. The proposed system classifies the 
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stroke of patients based on image processing and deep 

learning technology using NCCT images obtained 

from patients with suspected stroke symptoms and 

suggests appropriate medical treatments according to 

the patient’s stroke type and stage.  

The proposed deep learning-based stroke 

classification CAD system aims to resolve the 

problems and limitations described in Section 2.1 by 

using the following methods.  

It was induced to detect and learn the cerebral 

infarction that occurred locally only in a part of the 

brain through the concatenation of sequential slices to 

take into account the continuous 2D data of CT images 

for the MCA region. 

This study pre-processed the data entered into the 

neural network by optimizing the windowing algorithm, 

which converts data from HounsField Units(HU), CT 

raw data, by acquiring data distribution for each stroke 

type through analyzing the histogram of ischemic 

stroke patients’ cerebral infarction regions. It improves 

the performance of neural network learning for 

ischemic stroke’s cerebral infarction region. 

The optimal initial weight was explored through the 

transfer learning algorithm to overcome the lack of 

ischemic stroke data. It made a small amount of 

ischemic stroke data converge to the optimal 

performance. The source data required for transfer 

learning was based on publicly available hemorrhagic 

stroke data similar to ischemic stroke. Moreover, this 

study proposed adaptive transfer learning to overcome 

the increase in the complexity of transfer learning and 

operation quantity according to the depth of the neural 

network. 

The deep learning-based stroke classification system 

consists of four stages: (1) hemorrhagic stroke data 

pre-processing; (2) hemorrhagic stroke classification 

neural network; (3) ischemic stroke data pre-

processing; and (4) ischemic stroke classification 

neural network. Figure 2 depicts the overall process of 

the deep learning-based stroke classification system. 

 

Figure 2. A structure of deep learning-based stroke 

classification CAD system 

The system quantifies the degree of ischemic stroke 

by performing primary classification for hemorrhagic 

stroke based on NCCT images, diagnosing the 

presence of the disease in the ischemic stroke 

classification neural network after carrying out an 

ischemic stroke specialized pre-process for diagnosing 

ischemic stroke for patients whose hemorrhagic stroke 

is negative in the hemorrhagic stroke classification 

neural network, and calculating the ASPECT score 

based on the presence of cerebral infarction for each 

brain region. 

It is much more difficult to construct the ischemic 

stroke data due to insufficient data compared to 

hemorrhagic stroke. Therefore, this study mainly tried 

to improve this issue and this study derived the best 

performance by optimizing the pre-processing and 

neural network structure by using the previously 

proposed improvement algorithm. Figure 3 shows the 

schematic structure of the ischemic stroke classification 

system. 

 

Figure 3. A structure of ischemic stroke classification CAD system 
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2.3 Lesion Concatenation 

Data pre-processing includes the template 

conversion of CT raw data for normalizing inter-

datasets, data augmentation, lesion concatenation 

between multi slices, and windowing. The proposed 

system constructs data with multiple slices per patient 

by reconstructing and normalizing brain NCCT images. 

The neural network trains the model by receiving each 

target slice data and classifies whether it is a stroke or 

not. Although the target slice entered into the neural 

network is based on a 2D image, the actual brain 

NCCT image is composed of sequence data from the 

top of the head to the MCA region. 

Moreover, the proposed system segments each 

region of the bran and classifies the cerebral infarction 

of each region. A specific region is composed of three 

sequential slices, up to three slices, based on a slice 

thickness of 3mm. Therefore, when infarction occurs in 

at least one slice out of multiple slices, the neural 

network must determine the region of a patient as 

cerebral infarction. Figure 4 shows an example of old 

infarction occurring only in the last slice among three 

sequential slices in the insula region. Since infarction 

occurred in slice #3, although infarction did not occur 

in slices #1 and #2, the region should be classified as 

old infarction. 

 

Figure 4. Examples of infarction occurrence in 

sequential slices of a region 

This study explores the before-after slices of the 

target slice based on the relative position meta-data and 

enters multiple sequential slice images for one region 

into the neural system to apply this clinical know-how 

for stroke diagnosis to the deep learning system. The 

neural network performs concatenation for the entered 

sequential slices and converts it into one image to 

perform model learning and prediction.  

Figure 5 shows a single target slice and the data that 

applies lesion concatenation to a single target slice. 

The image to which lesion concatenation is applied is 

calculated using the before and after images of the 

target slice. 

2.4 Optimal Windowing 

CT data has a CT numerical value for each pixel, 

which is called HounsField Units (HU) after the name 

of Godfrey N. Hounsfield, a UK inventor who 

developed the CT technique. The value presents the  

 

(a) a single target slice and (b) a lesion concatenated 

slice 

Figure 5. Slices before and after lesion concatenation  

relative absorption by the density of each part when X-

rays penetrate the body: 0 for water, 1000 for bone, 

and -1000 for air. The range of HU is from –1000 to 

3000, a wide range. Diagnostic radiology does not 

consider the full range of HU and restructures it to a 

certain range of HU to visualize a certain region. This 

process is called windowing or window leveling. The 

windowing method displays only the value of a 

specific window width around the HU value of interest 

(window center). The values outside the window width, 

among HU values, are converted to 0 or 255, and the 

values within the window width are expressed as a 

distribution ranging from 0 to 255. The conversion 

formula is usually a linear function and Recale slope 

and intercept are often used as the parameters of this. It 

can be formulated like the following equation (1). 

( )
2

( )
2

( *Re )

WindowWidth
WindowCenter

WindowWidth
WindowCenter

HU scaleSlope RescaleIntercept

⎧
= −⎪

⎪
⎨ = −⎪
⎪

= +⎩

Lowest Value

Lowest Value

Value

 (1) 

In the case of ischemic stroke, the HU distribution of 

the normal group and that of the infarction group are 

little different. Figure 6 presents the mean histogram of 

each class of data. It shows that the distribution of the 

data is similar and the difference between the mean 

values is very small. The results indicate that it is very 

important to limit the range of HU data by applying 

appropriate windowing. 

This study proposes optimal windowing parameters 

that can classify the early ischemic sign class (Frank 

Hypodensity, Territorial Infarction), which is the main 

target infarction of ischemic stroke, with high 

performance, and each value is window width 20-30 

and window center 40. Figure 7 shows the histogram 

of the left and right brain HU. One side is an infarction 

corresponding to the early ischemic sign class. When 

the opposite brain is normal, the difference between the 

HU can be found in a certain pattern when the 

difference between the two histograms is calculated. 

By setting each parameter based on the pattern, the  



A Deep Learning System for Diagnosing Ischemic Stroke by Applying Adaptive Transfer Learning 1961 

 

 

Figure 6. Mean histograms of datasets by normal and infarction 

 

Figure 7. Histograms in the infarction and normal ranges and the difference between them 

image is restructured by only using HU values between 

25 and 55 within the HU range of -1,000 and 3,000. 

When it goes through the proposed windowing, 

optimal learning can be expected by using only pixel 

information corresponding to the features of ischemic 

stroke in the image. 

2.5 Adaptive Transfer Learning 

The biggest problems in classifying ischemic stroke 

are the small differences in features between the 

normal group and the infarction group and insufficient 

data volume. Among them, this study tried to 

overcome the insufficient data volume issue using data 

augmentation. The proposed study intended to improve 

the performance of neural network learning through 

transfer learning as well as data manipulation such as 

direct data volume increase. Transfer learning is a 

concept of learning the model ex-post by transferring a 

deep learning model learned for a specific source task 

to a target task. In general, when applying transfer 

learning for learning a specific target task, it can show 

better performance with a smaller amount of learning 

data than simply using a randomly initialized weighted 

deep learning model to learn that task.  

Figure 8 presents traditional machine learning, and 

different tasks train independent models based on each 

data. 
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Figure 8. Traditional machine learning training 

Transfer learning generates weights optimized for 

the source task data by learning a model with data 

corresponding to the source task. The knowledge of the 

source task is utilized later when learning a deep 

learning model by using the data of the target task to be 

solved. Figure 9 presents the concept of transfer 

learning. 

 

Figure 9. Conceptual diagram of transfer learning 

Since the transfer learning conducts learning based 

on the weight of the existing source task, as shown 

above, it has higher initial and final performance 

expectations. Moreover, it can overcome the 

insufficient data issue of the target task and has the 

advantage of improving the speed of learning and 

optimization. However, transfer learning does not 

always guarantee good performance, and factors 

determining the performance of transfer learning must 

be optimized. Factors determining the performance of 

transfer learning include the similarity of a source task 

and a target task, the volume and consistency of task 

datasets, layer freeze due to task characteristics and 

neural network structure, and a fine-tuning strategy 

[19]. Figure 10 shows the transfer learning strategy 

theory according to the size of a source task and the 

similarity between tasks. 

 

Figure 10. Transfer Learning Strategy 

Transfer learning freezes the neural network layer 

shallower – starting from the part near to the output 

layer toward the input layer- and conducts fine tuning 

for weight about unfrozen layer when the size of a 

source task is larger and the similarity between tasks is 

smaller. Fine tuning of the weight is performed based 

on the data of the target task, and the frozen layer does 

not perform the weight update through fine tuning. 

The problem of transfer learning is to require a lot of 

time and computer resources to explore layer freeze-

fine tuning that yields optimal performance while 

applying the transfer learning strategy. The transfer 

learning strategy is determined by the amount of the 

source task dataset and the similarity between tasks. 

These parameters cannot be quantified and it is based 

on the subjective judgment of experts. Moreover, the 

ResNet neural network used as the top model in 

ILSVRC2015 consists of 152 layers. In such a complex 

neural network, it is impossible to determine the 

optimal layer freezing depth, and it is necessary to 

compare and analyze each performance while adjusting 

the depth. Figure 11 shows the problem of determining 

the optimal layer freeze depth when applying transfer 

learning to ResNet-152 neural networks with 152 

layers. 

 

Figure 11. Problems in optimizing transfer learning for 

ResNet-152 
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Therefore, this study proposed adaptive transfer 

learning that optimizes transfer learning so that can 

explore the target task neural network model that 

shows optimal performance by inputting the target task 

dataset and the neural network model of each task. 

The proposed adaptive transfer learning, while 

conducting transfer learning, automatically explores 

the optimal layer freezing depth, proposes a transfer 

learning performance index according to the layer 

freezing depth, and proposes an automated algorithm 

based on this. The transfer learning performance index 

is calculated based on binary cross entropy losses, and 

optimization is performed by calculating a performance 

index for each transfer learning step. The conceptual 

diagram of the proposed adaptive transfer learning is 

shown in Figure 12. 

 

Figure 12. A conceptual diagram of adaptive transfer 

learning 

It calculates a transfer learning model based on the 

optimized by exploring the optimal layer freezing 

depth after applying the adaptive transfer learning 

algorithm described in equation (2) by receiving the 

knowledge model learned through the data of the 

source task and the data and model of the target task. 

The algorithm sequentially freezes the layer from the 

input layer of the neural network to the output layer 

and calculates the binary cross entropy loss (BCE Loss) 

of each step. The function f is defined by adding the 

initial BCE Loss value and the minimum BCE Loss 

value of each step, and the variable θ  that minimizes 

the function f is calculated. 
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3 Results and Discussion 

3.1 Experimental Environment 

An AMD Ryzen9 3900X 12-Core Processor desktop 

was used for the experiment, and the operating system 

was Windows 10 Home. One Geforce RTX 2080 Ti 

was used as a GPU. Python 3.7 was used for 

implementing the algorithm, and Python-OpenCV 3.0 

was used for the development of the pre-processing 

algorithm. Pytorch 1.4.0 was used for learning and 

testing the deep learning algorithm. 

This study utilized the data of 356 stroke patients, 

which was accumulated over 8 years in a hospital to 

evaluate the algorithm proposed in this study. The data 

of each patient was composed of 40-50 pieces of 2D 

images according to the slice thickness, when CT is 

taken. Eight pieces per patient were used among 2D 

images reconstructed through template normalization. 

Moreover, in the eight 2D images, 46 2D images were 

obtained by dividing them by the side of the brain for 

14 regions of an ASPECTS target. Learning and testing 

were carried out using 16,376 2D images: 13,064 

images were used for learning, and 3,312 images were 

used for testing. All images were entered into the 

neural network after they were converted into 512 × 

512 images. The batch size was fixed at 16. The test 

was performed by selecting a model showing the 

lowest cross entropy loss value after performing epoch 

100 times.  

Each image had ground-truth data and it was 

recorded in the form of a csv file. Ground-truth was 

recorded in one of six categories for the 14 regions of 

each patient: intact, old infarction, recent infarction, 

frank hypodensity, territorial infarction, and scattered 

infarction 

3.2 Lesion Concatenation Application and 

Performance Evaluation 

This study learned and tested a neural network by 

applying inter-image concatenation to effectively 

classify cerebral infarction by using before-after slice 

information for the region composed of sequential 

slices among cerebral infarction candidate regions. The 

performance of each learned neural network was 

compared through the neural network, which learned 

only single slices without using lesion concatenation, 

and the data that was applied by lesion concatenation 

for sequential slices (Table 1). The neural network 

evaluated the classification performance for the intact 

group and the old infarction group and the 

classification performance for the intact group and the 

early ischemic sign group [20]. 
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Table 1. Performance evaluation before and after applying lesion concatenation 

Evaluation Index Case #1 Case #2 Case #3 Case #4 

Number of Train Image 5,210 5,210 8,234 8,234 

Precision 0.7784 0.7841 0.6244 0.6201 

Recall (Sensitivity) 0.7390 0.7407 0.5740 0.5679 

F-1 Score 0.8088 0.8260 0.6883 0.6619 

AP* 0.6810 0.6994 0.5363 0.5318 

Accuracy 0.8048 0.8269 0.6891 0.6857 

AUC** 0.8592 0.8634 0.7195 0.7098 

Note. *: Average Precision; **: Area Under the Curve (ROC Curve); Case #1: Without Lesion Concatenation (Classify Old 

Infarction); Case #2: With Lesion Concatenation (Classify Old Infarction); Case #3: Without Lesion Concatenation (Classify 

Early Ischemic Sign); Case #4: With Lesion Concatenation (Classify Early Ischemic Sign). 

 

Old infarction is a class that is easier to classify 

because it has a more pronounced difference in HU. 

When lesion concatenation was applied, it showed a 

2.02% performance increase. However, the early 

ischemic sign group, which was hard to be classified 

due to a small difference with an intact group, did not 

show significant performance change owing to lesion 

concatenation. 

3.3 Optimal Windowing Application and 

Performance Evaluation 

The images of the intact group and that of the 

cerebral infarction class have very little difference in 

the distribution of HU, CT raw data. Therefore, the 

performance of feature learning of the neural network 

is determined according to preprocessing that limits the 

range of HU values. This transfer algorithm is called 

windowing. This study explored the optimized 

parameters by setting windowing parameters suitable 

for learning neural network features based on the HU 

distribution by the intact group and cerebral infarction 

classification and comparing the neural network 

performance according to it.  

Table 2 shows the classification performance for the 

intact group and the old infarction group according to 

the windowing parameter setting. Table 3 presents the 

results of evaluating the classification performance for 

the intact group and the early ischemic sign group. 

Table 2. Performance evaluation according to windowing parameters (Old infarction classification) 

Evaluation Index 
WC: 40, WW: 40 

(Classify Old Infarction) 

WC: 40, WW: 30 

(Classify Old Infarction) 

WC: 40, WW: 20 

(Classify Old Infarction) 

Number of Train Image 5,210 5,210 5,210 

Precision 0.7784 0.7924 0.6426 

Recall (Sensitivity) 0.7390 0.7497 0.6071 

F-1 Score 0.8088 0.8308 0.7098 

AP* 0.6810 0.7073 0.5900 

Accuracy 0.8048 0.8307 0.6912 

AUC** 0.8592 0.8691 0.7207 

Note. *: Average Precision; **: Area Under the Curve (ROC Curve). 

Table 3. Performance evaluation according to windowing parameters (Early ischemic sign classification) 

Evaluation Index 
WC: 40, WW: 40 

(Classify Early Ischemic Infarction)

WC: 40, WW: 30 

(Classify Early Ischemic Infarction)

WC: 40, WW: 20 

(Classify Early Ischemic Infarction)

Number of Train Image 8,234 8,234 8,234 

Precision 0.6244 0.6047 0.6381 

Recall (Sensitivity) 0.5740 0.5843 0.6445 

F-1 Score 0.6883 0.6892 0.7198 

AP* 0.5363 0.5380 0.5706 

Accuracy 0.6891 0.6921 0.7013 

AUC** 0.7195 0.7141 0.7401 

Note. *: Average Precision; **: Area Under the Curve (ROC Curve). 

 

The classification of the intact group and the old 

infarction group showed the highest performance under 

Window Center 40 and Window Width 30, when the 

windowing range was [25, 55]. On the other hand, the 

classification of the intact group and the early ischemic 

sign group under Window Center 40 and Window 

Width 30, when the windowing range was [30, 50]. 

The HU distribution of old infarction had 

characteristics of a lower mean (4.11 lower) and 

standard deviation than that of the intact group. 

Moreover, that of the early ischemic sign group had 

approximately 1.74 lower values and a similar standard 
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deviation compared to that of the intact group. 

Therefore, it is possible to confirm the possibility of 

learning the features composing the old infarction only 

after performing windowing with including a wider 

range of HU compared to the classification of the early 

ischemic sign group. 

Therefore, when classifying ischemic stroke, it is 

necessary to apply individual windowing parameters 

according to the type of stroke. This study proposed 

windowing parameters optimized for each cerebral 

infarction classification. They are Window Center 40 

and Window Width 30 when classifying old infarction 

and Window Center 40 and Window Width 20 when 

classifying early ischemic sign. 

3.4 Adaptive Transfer Learning Application 

and Performance Evaluation 

This study overcame the performance issue due to 

the insufficient dataset by conducting transfer learning 

based on the hemorrhagic stroke dataset of the 

Radiological Society of North America, which had 

relatively large data and something in common that the 

data was the NCCT imaging for the brain MCA region.  

This study proposed adaptive transfer learning to 

overcome the problems of neural network layer 

freezing, fine tuning depth determination strategy 

selection, and transfer learning velocity. Moreover, this 

study verified the superiority of the proposed algorithm 

by comparing before and after the proposed adaptive 

transfer learning application.  

In the experiment, the adaptive transfer learning 

calculated the performance indicators by automating 

the layer freezing and fine tuning of the SEResNext 

neural network model to calculate performance 

comparison indicators. Table 4 shows the classification 

performance of the intact group and the early ischemic 

sign group by the freezing step. A neural network 

model (not transfer) that learned using only ischemic 

stroke data without adaptive transfer learning was set 

as the control group. The control group used the 

SEResNext neural network model as in the 

experimental group. The control group’s neural 

network trained ischemic stroke data using the weights 

pre-trained with ImageNet as initial values. 

Table 4. Performance comparison by adaptive transfer learning step 

Evaluation Index Not Freeze 

Freeze Layer 

#0 

Freeze Layer 

#0~1 

Freeze Layer 

#0~2 

Freeze Layer 

#0~3 

Freeze Layer 

#0~4 

Freeze All  

Conv-Pooling Layer 

Not  

Transfer 

Number of Train Image 8,234 8,234 8,234 8,234 8,234 8,234 8,234 8,234 

Precision 0.6364 0.6667 0.6244 0.5794 0.5778 0.4799 0.6244 0.6267

Recall (Sensitivity) 0.6278 0.6278 0.5740 0.6547 0.6996 0.8027 0.5740 0.6323

F-1 Score 0.6963 0.7110 0.6745 0.6606 0.6614 0.5489 0.6745 0.6883

AP* 0.5549 0.5740 0.5363 0.5235 0.5297 0.4676 0.5363 0.5498

Accuracy 0.6948 0.7135 0.6742 0.6554 0.6610 0.5674 0.6742 0.6891

AUC** 0.7176 0.7374 0.6901 0.6995 0.7166 0.6538 0.6901 0.7195

Note. *: Average Precision; **: Area Under the Curve (ROC Curve). 

 

A model with a deepened neural network layer 

freezing depth (Freeze Layer #0~4, Freeze All Conv-

Pooling Layer) did not learn normally because it either 

did not conduct learning for the ischemic stroke data, 

the target task, or learned only a very few features. 

Figure 13 shows the predicted value of each image 

when predicting a test dataset using the “Freeze Layer 

#0-4” learning neural network. Although it was a 

binary classification, it only generated prediction 

values between 0.4 and 0.65, indicating that normal 

learning was not performed. 

When the neural network layer freezing (reducing 

the fine-tuning layer) was deepened, the recall tended 

to increase. In all performance indicators except the 

recall, the model, which froze up to the layer #0 

corresponding to the front end of the neural network 

layer and fine-tuned other layers through the ischemic 

stroke, showed the highest performance. Figure 14 

shows the ROC Curve and Area Under the Curve of 

the model frozen up to Layer #0. 

 

Figure 13. The distribution of predicted value with 

deep neural network layer freezing (Freeze Layer #0~4 

– SeResNext Model) 

Figure 15 compares performance indicators according 

to the neural network freezing through adaptive 

transfer learning and fine-tuning depth. 

The neural network model optimized through 

adaptive transfer learning improved performance by 

approximately 3.43% compared to the model without it.  
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Figure 14. ROC Curve and Area Under the Curve of 

the model frozen up to Layer #0 

It can be concluded that, compared to a single training 

model using ischemic stroke data, conducting adaptive 

transfer learning by using hemorrhagic stroke data as a 

source task significantly improved the performance.  

Moreover, when performing general transfer 

learning, a source task and a target task are similar, and 

the target task has relatively little data, fine tuning only 

the neural network layers at the back end and freezing 

many layers are accepted as a general strategy. 

However, the results of the experiment showed the 

opposite result. This proves that the strategy selection 

of transfer learning according to unquantifiable values 

is very lacking and it is necessary to directly compare 

the performance according to the neural network layer 

freezing through adaptive transfer learning. 

 

Figure 15. Performance indicators by adaptive transfer learning step 

4 Conclusion 

The importance of medical imaging recognition 

technology based on artificial intelligence is increasing 

due to the aging of the population and the lack of 

chronic medical personnel. Along with the development 

of deep learning technology, many studies have been 

conducted on various diseases and the accuracy of it 

has also improved to a considerable level. 

However, medical images suffer from an insufficient 

data issue for establishing a reliable deep learning 

system because they have a large variation in data 

according to imaging devices, an issue of patients’ 

privacy protection, and the independent data 

management issue of each medical service provider. 

Moreover, the deep learning system utilizing CT and 

X-ray medical images has been studied much less than 

the MRI imaging-based deep learning system 

providing highly reliable diverse information. 
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Additionally, it is difficult to secure performance for 

marketability [21]. Therefore, there is a high demand 

for a deep learning system based on X-ray and CT 

images, which can be taken quickly, for diseases that 

require rapid medical treatment such as stroke.  

This study proposed a deep learning-based stroke 

classification model using non-contrast CT medical 

images to overcome these problems. This study 

conducted neural network learning through lesion 

concatenation to consider the serial data of CT images 

in the form of a voxel. Furthermore, this study 

presented windowing parameters optimal for detecting 

ischemic cerebral infarction. Additionally, to overcome 

the issue of insufficient ischemic stroke data, this study 

tried to achieve the best performance using a small 

amount of ischemic stroke data by exploring the 

optimal initial weight through the adaptive transfer 

learning algorithm. The source data required for the 

adaptive transfer learning algorithm was performed 

based on public data of hemorrhagic stroke, which is 

similar to ischemic stroke, and transfer learning 

optimization was carried out by resolving the transfer 

learning complexity and computation amount increase 

issues through the proposed adaptive transfer learning.  

The proposed method trained and evaluated the 

presence and type of stroke by using non-contrast CT 

images of 356 stroke patients, obtained for 8 years in 

the medical field. The experimental data were 

classified into intact, old infarction, and early ischemic 

sign (frank hypodensity, territorial infarction) classes 

to apply and evaluate each proposed algorithm. The 

performance was compared with the performance of 

the existing SEResNext neural network, which did not 

apply the proposed algorithm under the same condition. 

Based on the data which was pre-processed by 

applying the proposed algorithm and the improved 

neural network system, cerebral infarction CT data was 

learned and classified. The results showed that the 

performance improved by approximately 18.72% 

compared to the existing neural network learning and 

test on the original NCCT images. The performance 

evaluation produced four performance indicators 

(average precision, F-1 score, accuracy, and the AUC 

of the ROC curve) by determining the class with the 

highest prediction value as the prediction class based 

on the prediction value of a cerebral infarction class.  

This study proposed a deep learning-based 

automated stroke classification system that could 

calculate an aspect score, an objective indicator for 

diagnosing the condition of a stroke patient, using only 

CT images. It is expected that the stroke classification 

program can be used as a reliable indicator that can 

prevent the issue of inter-expert scoring variability 

issue and can aid medical personnel to make medical 

decisions easier considering the nature of stroke 

disease requiring rapid treatment. The system proposed 

by this study can not only aid people to determine the 

initial treatment through ischemic stroke diagnosis but 

also help the initial response to cerebral diseases, for 

which first aid is critical, because it can be used as a 

parameter in judging emergent large vessel occlusion 

(ELVO) to decide the application of a thrombolytic 

agent to an acute stroke patient by obtaining ASPECTS, 

a quantified score. Moreover, the system can be 

actively used to observe the prognosis of stroke by 

tracking changes in the cerebral infarction of the 

patient over time after treatment as well as the 

diagnosis of the initial ischemic stroke. It is expected 

that it can be used as an index for additional treatment 

and medication prescription. 

Future studies are needed to improve the current 

system classification, which classifies only the 

presence of stroke in the medical image, to a semantic 

segmentation form neural network. When the system is 

improved to a semantic segmentation neural network, 

it will be possible to overcome the performance 

degradation of neural network learning according to 

the pre-processing accuracy, which is a shortfall 

caused by replacing the ROI process for the region in 

the medical image with the brain region segmentation 

pre-processing. Moreover, it is believed that it will be 

able to secure the marketability because it can have a 

clinical advantage of clear lesion detection. 

It is also expected that all modules can be utilized as 

a neural network learning improvement module by 

utilizing limited data in the medical imaging deep 

learning field, including the pre-processing module for 

the NCCT data in the arteriae mesencephalic region 

and neural network performance improvement through 

adaptive transfer learning, which were tested and 

evaluated in this study. 

Acknowledgements 

This research was supported by the MSIT (Ministry 

of Science and ICT), Korea, under the ITRC 

(Information Technology Research Center) support 

program (IITP-2020-2017-0-01630) supervised by the 

IITP (Institute for Information) & Communications 

Technology Promotion. 

References 

[1] S. Mendis, P. Puska, B. Norrving, Global Atlas on 

Cardiovascular Disease Prevention and Control, World 

Health Organization, 2011. 

[2] G. A. Roth, D. Abate, K. H. Abate, S. M. Abay, C. Abbafati, 

N. Abbasi, I. Abdollahpour, Global, Regional, and National 

Age-sex-specific Mortality for 282 Causes of Death in 195 

Countries and Territories, 1980-2017: A Systematic Analysis 

for the Global Burden of Disease Study 2017, The Lancet, 

Vol. 392, No. 10159, pp. 1736-1788, November, 2018. 

[3] J. Aoki, K. Kimura, K. Shibazaki, Y. Sakamoto, DWI-

ASPECTS as a Predictor of Dramatic Recovery after 

Intravenous Recombinant Tissue Plasminogen Activator 



1968 Journal of Internet Technology Volume 21 (2020) No.7 

 

Administration in Patients with Middle Cerebral Artery 

Occlusion, Stroke, Vol. 44, No. 2, pp. 534-537, February, 

2013. 

[4] T. Nezu, M. Koga, K. Kimura, Y. Shiokawa, J. Nakagawara, 

E. Furui, H. Yamagami, Y. Okada, Y. Hasegawa, K. Kario, S. 

Okuda, K. Nishiyama, M. Naganuma, K. Minematsu, K. 

Toyoda, Pretreatment ASPECTS on DWI predicts 3-month 

Outcome Following rt-PA: SAMURAI rt-PA Registry, 

Neurology, Vol. 75, No. 6, pp. 555-561, August, 2010. 

[5] R. Von Kummer, K. L. Allen, R. Holle, L. Bozzao, S. 

Bastianello, C. Manelfe, E. Bluhmki, P. Ringleb, D. H. Meier, 

W. Hacke, Acute Stroke: Usefulness of Early CT Findings 

before Thrombolytic Therapy, Radiology, Vol. 205, No. 2, pp. 

327-333, November, 1997. 

[6] R. Von Kummer, H. Bourquain, S. Bastianello, L. Bozzao, C. 

Manelfe, D. Meier, W. Hacke, Early Prediction of Irreversible 

Brain Damage after Ischemic Stroke at CT, Radiology, Vol. 

219, No. 1, pp. 95-100, April, 2001. 

[7] J. H. W. Pexman, P. A. Barber, M. D. Hill, R. J. Sevick, A. M. 

Demchuk, M. E. Hudon, W. Y. Hu, A. M. Buchan, Use of the 

Alberta Stroke Program Early CT Score (ASPECTS) for 

Assessing CT Scans in Patients with Acute Stroke, American 

Journal of Neuroradiology, Vol. 22, No. 8, pp. 1534-1542, 

September, 2001. 

[8] P. A. Barber, A. M. Demchuk, J. Zhang, A. M. Buchan, 

ASPECTS Study Group, Validity and Reliability of a 

Quantitative Computed Tomography Score in Predicting 

Outcome of Hyperacute Stroke before Thrombolytic Therapy, 

The Lancet, Vol. 355, No. 9216, pp. 1670-1674, May, 2000. 

[9] J. Pfaff, C. Herweh, S. Schieber, S. Schönenberger, J. Bösel, 

P. A. Ringleb, M. Möhlenbruch, M. Bendszus, S. Nagel, e-

ASPECTS Correlates with and Is Predictive of Outcome after 

Mechanical Thrombectomy, American Journal of Neuroradiology, 

Vol. 38, No. 8, pp. 1594-1599, August, 2017. 

[10] H. C. Park, Y. J. Kim, S. W. Lee, Adenocarcinoma 

Recognition in Endoscopy Images Using Optimized 

Convolutional Neural Networks, Applied Sciences, Vol. 10, 

No. 5, Article Number: 1650, March, 2020. 

[11] J. Lim, B. Wang, J. S. Lim, A Hierarchical Two-phase 

Framework for Selecting Genes in Cancer Datasets with a 

Neuro-fuzzy System, Technology and Health Care, Vol. 24, 

No. s2, pp. S601-S605, June, 2016. 

[12] R. K. Lama, S. W. Lee, White Matter Network Alterations in 

Alzheimer’s Disease Patients, Applied Sciences, Vol. 10, No. 

3, Article Number: 919, February, 2020. 

[13] J. Y. Li, J. H Li, Prompt Image Search with Deep 

Convolutional Neural Network via Efficient Hashing Code 

and Addictive Latent Semantic Layer, Journal of Internet 

Technology, Vol. 19, No. 3, pp. 949-957, May, 2018. 

[14] N. Q. Nguyen, D. M. Vo, S. W. Lee, Contour-aware Polyp 

Segmentation in Colonoscopy Images Using Detailed 

Upsamling Encoder-Decoder Networks, IEEE Access, Vol. 8, 

pp. 99495-99508, May, 2020. 

[15] D. Wang, J. Tian, T. K. Whangbo, Method for Real-time 

Automatic Setting of Ultrasonic Image Parameters Based on 

Deep Learning, Multimedia Tools and Applications, Vol. 78, 

No. 1, pp. 1067-1080, January, 2019. 

[16] S. Poudel, Y. J. Kim, D. M. Vo, S. W. Lee, Colorectal 

Disease Classification using Efficiently Scaled Dilation in 

Convolutional Neural Network, IEEE Access, Vol. 8, pp. 

99227-99238, May, 2020. 

[17] N. Q. Nguyen, S. W. Lee, Robust Boundary Segmentation in 

Medical Images Using a Consecutive Deep Encoder-decoder 

Network, IEEE Access, Vol. 7, pp. 33795-33808, March, 

2019. 

[18] D. M. Vo, N. Q. Nguyen, S. W. Lee, Classification of Breast 

Cancer Histology Images Using Incremental Boosting 

Convolution Networks, Information Sciences, Vol. 482, pp. 

123-138, May, 2019. 

[19] Q. Cui, Z. Zhou, C. Yuan, X. Sun, Q. J. Wu, Fast American 

Sign Language Image Recognition Using CNNs with Fine-

tuning, Journal of Internet Technology, Vol. 19, No. 7, pp. 

2207-2214, December, 2018. 

[20] M. Zhou, Z. Bai, T. Yi, X. Chen, W. Wei, Performance 

Predict Method Based on Neural Architecture Search, 

Journal of Internet Technology, Vol. 21, No. 2, pp. 385-392, 

March, 2020. 

[21] R. K. Lama, J. Gwak, J. S. Park, S. W. Lee, Diagnosis of 

Alzheimer’s Disease Based on Structural MRI Images Using 

a Regularized Extreme Learning Machine and PCA Features, 

Journal of Healthcare Engineering, Vol. 2017, Article ID 

5485080, June, 2017. 

Biographies 

Su-Min Jung received a bachelor's 

degree in 2013 from Gachon 

University, Korea, and a master’s 

degree in 2015 from Gachon 

University, Korea. Mr. Jung has been 

working as an algorithm developer for 

one year in a vision and image 

processing company in Korea. He is currently pursuing 

a Ph.D. in computer engineering from Gachon 

University, Korea. His research areas include image 

processing, deep learning, healthcare service, and 

AR/VR/MR. 

 

Taeg-Keun Whangbo received a M.S. 

degree in computer science from City 

University of New York, USA in 

1988 and a Ph.D. in computer science 

from Stevens Institute of Technology, 

USA in 1995. Currently, Mr. 

Whangbo is a professor in the 

Department of Interactive Media, Gachon University, 

Korea. He is also the Dean of Research Affairs at 

Gachon University. Before he joined Gachon 

University, Mr. Whangbo was a software developer at 

Q-Systems, Inc., New Jersey, USA from 1988 to 1993. 

He was also a researcher at Samsung Electronics, 

Korea from 2005 to 2007. From 2006 to 2008, Mr. 

Whangbo was the president of the Association of 

Korea Cultural Technology. His research areas include 

computer graphics, HCI, and AR/VR/MR. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9.354330
      /MarksWeight 0.141730
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


