
Efficient MQTT Platform Facilitating Secure Group Communication 1929

Efficient MQTT Platform Facilitating Secure Group

Communication

Hung-Yu Chien1, Pei-Chih Lin2, Mao-Lun Chiang2

1 Department of Information Management, National Chi Nan University, Taiwan
2 Department of Information and Communication Engineering, Chaoyang University of Technology, Taiwan

hychien@ncnu.edu.tw, s10730621@gm.cyut.edu.tw, mlchiang@cyut.edu.tw*

*Corresponding Author: Hung-Yu Chien; E-mail: hychien@ncnu.edu.tw

DOI: 10.3966/160792642020122107007

Abstract

Message Queue Telemetry Transport (MQTT) has

become one of the most popular Internet-of-Things (IoT)

communication protocols, owing to its high efficiency

and simplicity. However, it does not support the desirable

security functions; instead, it assumes the use of Secure

Sockets Layer (SSL)/Transport Layer Security (TLS) in the

lower layer. Unfortunately, it is too costly to support

SSL/TLS for many low-end IoT devices, and SSL/TLS does

not support secure group communications. Group

communications are popular in many IoT application

scenarios [1-2, 28] and in many MQTT scenarios; for

example, a message generator needs to share its data to

many interested receivers. In this paper, we propose and

implement a secure MQTT group communications, based on

our previous secure MQTT key agreement scheme [26].

Comprehensive experiments have been performed and

evaluated. The results confirm that the proposed scheme and

implementation greatly improves the communication

latencies of MQTT applications.

Keywords: Internet of Things, Security, Authentication,

MQTT, SSL

1 Introduction

The technologies of Internet-of-Things (IoT) boom

many new applications by facilitating easy data and

control message transmissions among various devices.

These applications include smart cities, smart

agricultures, smart transportations, industrial IoTs, and

so on. Among these applications, group communication

(or multicasting) is quite common and popular: the

data need to being sent to many potential receivers. It

is desirable that the adopted IoT communication

protocols support group communications.

IoT communication protocols like Message Queue

Telemetry Transport (MQTT) [8], Advance Message

Queuing Protocol (AMQP) [10], Constrained Application

Protocol (CoAP) [11], Extensible Messaging and

Presence Protocol (XMPP) [13], and Data Distribution

Service (DDS) [13] facilitate the data transmissions.

Among them, MQTT is one of the most popular ones,

owing to its high efficiency and easiness to use. MQTT

gains its efficiency at the cost of not supporting

security capacities by itself. Instead, it assumes the

systems should enable SSL/TLS in the lower layer to

secure the transmissions. Unfortunately, supporting

SSL/TLS is costly in terms of computation,

communication, and energy for many low-end IoT

devices. Furthermore, SSL/TLS does not support group

communications by itself, and it is clumsy to extend

SSL/TLS to support group communications. One

possible extension of SSL to support group

communication is described here. In Mektoubi et al.’s

design [18], each topic is assigned a certificate and all

the members of the group have to be distributed the

private key of the certificate; when a sender

multicasting a public-key-based encryption, all the

members can decrypt the encryption using the private

key; this approach is very costly in terms of the

distribution of the private key and the management of

the topic-level certificates.

The mechanisms of MQTT message encryptions can

be classified as two approaches, according to how and

where the messages are encrypted and decrypted. The

first approach is the session-based encryption: a

publisher encrypts its messages using the session keys

shared with the broker, the broker decrypts the

messages, and then the broker re-encrypts the

messages several times, using the individual session

keys with each subscriber. This approach would incur

lots of computational efforts and communication delay,

when there are large number of subscribers for a

message. The second approach is the end-to-end

approach: a publisher encrypts the messages, the

broker forwards the messages without decrypting them,

and then the subscribers decrypt the encryptions. In

this approach, the broker does not decrypt then re-

encrypt; it, therefore, saves lots of computational

efforts and shortens the communication latency

accordingly. The merits of the performance

improvement from the second approach would be

greatly amplified, when the number of subscribers

1930 Journal of Internet Technology Volume 21 (2020) No.7

become very large. MQTT group communication with

group key distribution is one potential mechanism to

facilitate the second approach. Figure 1 shows the

scenarios of the two approaches.

Figure 1. The end-to-end encryption

There are many researches and implementations

aiming at enhancing the security support of MQTT

systems. Unfortunately, none of them provide secure

and efficient group communications. Here, we extend a

secure MQTT platform [26] to support secure group

communication framework; [26] proposed a two-phase

key authentication approach for MQTT and

implemented it using the classic Challenge-Response

key agreement mechanism; but it did not support

secure group communications. The implementation

and experiments confirm that the proposed MQTT

group communication framework greatly improves the

communication performance.

This paper is organized as follows. In the rest of this

section, we discuss the related works. Section 2

introduces our secure MQTT group communication

system. Section 3 analyzes the security properties.

Section 4 introduces our implementation and evaluates

the performance. Finally, Section 5 states our

conclusions.

1.1 Related Work

A MQTT system consists of a set of clients and a

broker who acts as an intermediary among the clients,

where clients play the role of publishers, the role of

subscribers, or both. A publisher generates data to be

subscribed by subscribers. The data sharing from

publishers to subscribers is via a broker. The message

exchange among clients is based on the concept of

“topic”. A client publishes messages for a specified

topic, and a client can receive the messages of that

topic by subscribing the topic. MQTT itself does not

provide security protections like encryption,

authentication, and integrity on the transmissions;

instead, it assumes SSL/TLS being supported in the

underlying layer. However, several works like [4, 6-7]

have shown that SSL/TLS demands lots of

computations and communications, which is too costly

to many low-end IoT devices. Andy et al. [14] and

Firdous et al. [3] respectively demonstrated several

attacks scenarios on the MQTT platforms and

evaluated the vulnerabilities of MQTT systems. The

security vulnerabilities of several Arduino products

acting as MQTT clients were evaluated in Chien-

Chen’s study [13].

There are several research works aiming at

enhancing the security of MQTT systems [3, 15-27].

These works can be classified into three categories,

according to which level of authentication and secure

transmission they focus on. The first category focuses

on the topic-level authentication [9-12], where those

clients accessing the same topic all share the same keys.

The second category like [4-5, 8, 14-15, 17-24, 26-27]

focuses on both topic-level authentication and device-

level authentication: the broker verifies whether the

client is authorized to access a topic and authenticate

the device individually. The third category, in addition

to individual device authentication and topic-level

authentication, provides additional secure group key

distribution to enhance the security and performance of

group communications. Chien et al. [25] proposed a

group communication design for MQTT systems, but

only few functions have been implemented and only

very few experiments have been considered.

For the first category, there are several open

source/commercial MQTT platforms [9-12] providing

the basic security support, where only a topic-level

secret is created for each specific topic so that all the

devices authorized to access that topic would share the

same topic-level secret. It is obvious that a single

device compromise would endanger the security of all

other devices that share the same topic key. Amazon’s

IoT security solution [8] supports TLS/SSL client

authentication, but it does not support MQTT-level

Efficient MQTT Platform Facilitating Secure Group Communication 1931

encryption, multicast, and dynamic multicast. It

supports customized authentication, but there is no

enough information to tell whether it is compatible

with MQTT Application Interfaces (APIs). Chien et al.

[26] proposed an efficient two-phase authentication

mechanism to be compatible with existent MQTT APIs,

and designed a function-and-security-enhanced MQTT

platform. In their scheme, both topic-level and device-

level authentication are considered; the experiments

confirmed that it greatly improves the computational

performance and communication, compared to the

SSL/TLS approach. But, for a simple multicast from a

publisher to many subscribers, it requires a broker

perform one decryption and many re-encryptions for

those subscribers. It would seriously downgrade the

overall performance, when there are millions or even

billions of devices accessing the system.

For the second category, some works aim at

designing special hardware to facilitate individual

secure authentication and transmission. Espinosa-

Aranda et al. [19] and Lesjak et al. [21] respectively

designed a specialized hardware to help IoT devices

facilitate their SSL/TLS connections. This extra

hardware solution imposes high cost for many IoT

deployments. Bhawiyuga et al. [17] proposed a token-

based authentication solution for MQTT device

authentication; unfortunately, the token is not properly

protected (an attacker can easily derive the passwords),

and no session key generation is specified for the

connections. Shin et al. [15], based on their previous

AugPAKE protocol [16], designed the AugMQTT

platform to provides device authentication and to

establish session keys. Neisse et al. [23] and Rizzardi

et al. [20] respectively designed function-enhanced

MQTT platforms that facilitate flexible policy

management and enforcement mechanisms. Niruntasukrat

et al. [24] applied OAuth1.0a [31] as the authorization

mechanism for MQTT systems to facilitate device

authentication; but their scheme requires the devices to

get an authorization permission from the users during

the authentication process. This requirement of

interactive user involvement not only increases the

communication delay but also significantly increases

the inconvenience of IoT applications. All the above

works only focus on secure unicast communications in

IoT applications and do not consider secure group key

distribution.

Some existent works related to the third category

seem all applied some kinds of public-key

cryptosystems. Mektoubi et al. [18], based on the

Public-Key-Infrastructure (PKI) system and the

symmetric key encryption, implemented the client

authentication and the topic-related message

encryptions; each topic has one corresponding

certificate, and the messages for that topic are

encrypted using the public key of the certificate; only

those authorized clients having the corresponding

private key can decrypt the encryptions. This design

enables a broker simply forwards the public-key-based

encryptions to all subscribers without decrypting the

encryptions; however, it incurs several weaknesses

and drawbacks: (1) it demands costly public-key

computations; (2) the management of topic-level

certificates and the distribution of the private keys

incur lots of overhead. Singh et al. [22] augmented

existent MQTT protocols with Key/Ciphertext Policy-

Attribute Based Encryption (KP/CP-ABE) [29-30] for

securing MQTT applications in sensor network

environments. This attribute-based-encryption-based

approach has the potential advantage of providing

group communication in IoT applications. However,

one of the key weaknesses is that the computation cost

is too high to be applied in the current IoT practical

scenarios; one attribute-based decryption could

demand 3~6 ms, even if the number of attributes is

only three in their experiments. In a normal IoT

application scenario, the number of attributes would be

much larger than three, and that would significantly

increase the encryption/decryption time and the

communication time. That is, these schemes demand

high cost for implementing their group communications

in MQTT systems.

Regarding various improvements on the authentication

and the secure communication support of MQTT

systems, we sort out a simplified conclusion here. The

first category supports only the topic-level

authentication and secure pairwise communication [9-

12]; this category does not authenticate each device

individually, and a single device compromise would

endanger the security of the whole system of the same

topic. The second category like [4-5, 8, 14-15, 17-24,

26-27] authenticates each device individually, and can

resist the single-device–compromise attack; however,

it cannot efficiently support secure group

communication or multicasting. The third category

additionally supports secure group communication and

multicasting; however, both Mektoubi et al.’s

extended-certificate-based scheme [18] and Singh et

al.’s KP/CP-ABE-based scheme [22] are very

computationally expensive; Chien et al.’s preliminary

MQTT group communication [25] only supports few

functions and only very few experiments have been

considered. In a short summary, to the best of our

knowledge, there is no efficient secure MQTT group

communication has been proposed, been implemented,

and been evaluated.

2 The Proposed MQTT Group Comm-

unication Framework

We extend Chien et al.’s secure Challenge-Response

(CR) MQTT platform [26] into our MQTT group

communication framework as Figure 2. In [26], they

designed and implemented a secure MQTT platform

that provides user/device/policy management web

1932 Journal of Internet Technology Volume 21 (2020) No.7

portal, a broker, and a CR-based key agreement

scheme. In the system, each device should be

individually authenticated and it shares one session key

with the broker; the MQTT messages between the

device and the broker are encrypted, using the session

keys. In the following, we will introduce our MQTT

group communication framework, and Table 1 lists the

notations used in this paper.

Figure 2. The MQTT group communication framework and flows

Table 1. The notation

TDMS; MGT
Topic and Device Management System

(TDMS); ManaGemenT (MGT).

Daemon; DB

Daemon: a software thread takes care of

interactions between broker and MGT;

DB (DataBase).

Kgroup; Ksess
Kgroup: the group key; Ksess: the session

key between a broker and a device.

EKgroup(), EKsess()
The encryption using the group key and

the session key respectively.

IDtopic/IDdevice The identities of a topic/a device.

Ktopic/Kdevice The master key of a topic/a device.

C1, C2, R1, R2 Challenges and Responses.

The system consists two main subsystems: one is the

security-enhanced MQTT broker and the other is the

Topic and Device Management System (TDMS) which

is responsible for the user/device/policy management

functions. In TDMS, the ManaGement (MGT) takes

care of the interactions with the daemon thread, and a

web portal provides the interfaces for accessing the

system. A user can login the web portal to register his

devices, to create MQTT topics, and to specify the

policies for a specific topic in Step 1 and 2. Then the

portal will notify, via the MGT, the enhanced MQTT

broker the new created records or any updated records

in Step 3 and 4. The user-system interactions are

conducted on SSL connections. Our new system

extends this subsystem an extra capacity to notify the

broker a new request “Create group key update”; this

event will trigger the broker create a “group key

update” for each topic in Step 8 and 9. The broker will

monitor the access status for that topic. As long as

there is any device active for that topic, the broker will

regularly update and distribute group keys for those

active devices.

The enhanced MQTT broker authenticates each

device and generates a session key, using the CR-based

key agreement scheme [26]. Additionally, the broker

periodically generates group keys for those active topic.

The group keys are encrypted, using each active

device’s session key. The frequency of updating the

group keys depends on two main factors: the security

level of the topic and the overhead of updating the

group keys. The more frequently the system updates

the group keys, the more robust of the system; however,

it incurs more overhead. These steps are specified as

Step 5, 6, 7, 8, 9, 10, and 11 in Figure 2.

In our system design, once a client (either a

publisher or a subscriber) registers in a topic, it is also

automatically registered in a special topic of the form

Efficient MQTT Platform Facilitating Secure Group Communication 1933

“updategroup/IDtopic/IDdevice”; this special topic is for

automatically sending group key updates to this device.

When a publisher or a subscriber being authenticated

by the broker, it will receive one session key and

periodically receives a series of group keys. The

publisher encrypts its MQTT messages, using the

active group key; the broker just forwards the

encryptions without decrypting them; the subscribers

then decrypt the encryptions, using the group keys.

Figure 3 shows the system sequence diagram of our

security-enhanced MQTT platform performing the

user/device/policy management functions, and the

MQTT CONNECT/ publish/subscribe functions. The

user-system interactions and the interactions between

the system modules and the database are conducted via

secure SSL channels (“ ” in Figure 3). The

interactions with the symbol “↑” in Figure 3 are for the

MQTT connections. Please note that the MQTT

connections do not require the SSL support. The

system authenticates users before they can access the

policy management module and register their devices.

Each device is required to be registered. Once a device

is registered, the administrator validates the data, and

confirms the registration request by issuing a device

identity and a device key to that device. The policy

management module is responsible for the

management of topics. Each topic is associated with an

identity and a corresponding key. A user who creates a

topic is responsible for authorizing other users’

requests for that topic. Once a user has been authorized

to access a topic and his advice registration has been

authorized, he gets two sets of (identity, key) pairs: one

is that for the device and the other is for the topic. Now

a legitimate device, based on the two key pairs, can

connect the MQTT broker and requests for accessing

the topic. Before granting a device the access

connection, the MQTT broker will initiate the device

authenticator to authenticate the device, using the CR-

based key agreement scheme. When this process is

done, the authenticated device and the broker will

share a session key.

Figure 4 shows the interactions when a client (a

publisher or a subscriber) and the broker perform the

CR-based key agreement scheme [26]. In Step 1, the

client chooses a random nonce, and sends the identity

of device ()
device

ID , the identity of the topic ()
topic

ID ,

and the nonce C1 to the broker. Then the broker

chooses a random nonce C2, and responds with (C2,

R1) in Step 2, where 1 (|| , 1)topic deviceR h K K C= . The

client verifies the broker’s response R1; if the

verification succeeds, then the client computes

2 (, || , 2)topic deviceR h K K C= and responds with R2 in

Step 3. Upon receiving R2, the broker verifies R2. If all

the verifications succeed, then the client and the broker

share the session key (, , ,sess topic topic deviceK h ID K ID=

, 1, 2)

device
K C C . Please notice that, in Figure 4, the client,

after the CR-based key agreement, further invokes the

MQTT CONNECT API as [CONNECT

“ ,device topicID ID ”,

()]
sess

h K , where h(Ksess) is the hash of the session key.

This arrangement of h(Ksess) is because (1) MQTT

Figure 3. The system sequence diagram of the security-enhanced MQTT platform performing user/device/policy

management and the MQTT connect/publish/subscribe functions

1934 Journal of Internet Technology Volume 21 (2020) No.7

Figure 4. The CR-based key agreement of the enhanced MQTT platform

standard CONNECT API only offers only two

parameters for specifying client’s authentication

parameters, and (2) using h(Ksess) can ensure the

authentication while preserving the secrecy of the

session key Ksess, even if SSL/TLS is not supported.

The interested readers are referred to [26] for the

details.

Once a device being authenticated, it will get the

session key and the group keys. Then publishers and

subscribers use the group keys to encrypt and to

decrypt the MQTT messages respectively, as being

depicted in Figure 1(b). To enhance the security

robustness, our system regularly updates and

distributes the group keys to those active clients. The

sequence diagram of the group key updating and

distribution process is shown in Figure 5. First, the

MGT creates a group key updating timer for each topic,

according to the policy. When a timer of a topic

expires, the MGT notifies the daemon the event. Then

the daemon inquires whether there is any active device

for that topic; if so, then the MGT randomly generates

a new group key and stores the key in the broker’s

database. The daemon looks up all the session keys of

those active clients of that topic, and then generates the

encrypted group key [,]
Ksess

E timestamp group key for

each active client. It then sends, via the broker, the

group key updating message [,
Ksess

E timestamp

]group key to the devices.

Figure 5. Group key updating process

3 Security Analysis

Now we examine the security of the proposed

framework. The security functions of the framework

mainly consist of four components: (1) the SSL

protection for user accessing the web portal (Step1 in

Figure 2), (2) the SSL protection of the interactions

Efficient MQTT Platform Facilitating Secure Group Communication 1935

among the system components, (3) the two-phase CR-

based key agreement for establishing secure session

keys, and (4) the group key distribution scheme.

3.1 The SSL Protection for User Accessing the

Web Portal

Users use computers, notebooks, or smart phones to

access the web portal. Because these devices have

abundant resources to run the SSL protocol, we adopt

SSL to protect the access and the transmissions when

users access the web portal.

3.2 The SSL Protection of System Component

Interactions

For the interactions among system components like

the daemon, the web pages, and the MGT in Figure 2,

the SSL protection is activated to ensure the

authenticity and the privacy of the interactions. These

components are implemented on our server which has

enough resources to support SSL.

3.3 The Two-phase CR-based Key Agreement

for Establishing Secure Session Keys

(Figure 4)

The current MQTT CONNECT API standards [32-

33] support only two parameters, identity and

password, for clients to initiate connection with a

broker. If a device does not afford SSL/TLS to protect

the transmission of the two parameters, then the

parameters would be disclosed to attackers. To be

compatible with the current API standards and to

eliminate the burden of supporting SSL/TLS for these

devices, Chien et al. [26] have designed and

implemented a two-phase CR-based key agreement

scheme for authentication and session key generation;

The scheme runs a challenge-response protocol on

network sockets to authenticate each other and

establish a session key (, ,
sess topic topic

K h ID K=

, , 1, 2)

device device
ID K C C in Phase 1, and provides the

hash of the session key ()
sess

h K as the second

parameter in the CONNECT API as

[CONNECT “ ,
device

ID topic
ID ”, ()]

sess
h K . In this

arrangement, even if we assume there in no SSL/TLS

protection in the lower layer, the attacker can only

eavesdrop ()
sess

h K but not the session key Ksess. Owing

to the freshness and randomness of the session key,

this ensures the authentication and the privacy of the

following MQTT transmissions.

3.4 The Group Key Distribution Scheme

In the proposed group communication framework,

each publisher uses the active group key to encrypt its

messages. The group keys are periodically updated and

distributed to all the authorized and active clients for

that topic. This ensures the freshness and randomness

of the group keys. The group key is encrypted as

[,]
Ksess

E timestamp group key , using the receiver’s

session key. This ensures the secure delivery of the

group keys to only authorized clients.

The above four main security components ensure the

security of the whole system. We now discuss the

impact of device-compromise on our system as follows.

3.5 The Impact of Device-compromise

In our design, each device would be authenticated,

based on its knowledge of a topic key and its device

key; so when a device is compromised, both the topic

key and its device key are disclosed. However, the

attacker who compromises the device cannot

impersonate any other devices using the keys. So our

design cooperating with a sound intrusion detection

system can effectively enhance the robustness of

MQTT system security.

4 Performance Evaluation

Chien at al.’s work [26] has compared the

communication latency of MQTT connection requests

between the CR-based scheme and the SSL-based

scheme. The experiments confirmed that the CR-based

authentication can greatly improve the communication

latency. In this session, we will compare the

performance of message transmissions in three

mechanisms: our group-key-based end-to-end encryption

(group-key-E2E for short), the session-based encryption

using CR-authentication (session-encryption-CR for

short), the session-based encryption using SSL

authentication (session-encryption-SSL for short).

Among them, end-to-end encryption refers to the

approach of which publishers encrypt messages, the

broker forwards the encryptions, and subscribers

decrypt the encryptions (as specified in Figure 1(b));

session-based encryption refers to the approach of

which publishers encrypt messages using session keys,

the broker decrypts and then re-encrypt the messages

using session keys shared with subscribers, and finally

subscribers decrypt the encryptions (as specified in

Figure 1(a)). The session-encryption-CR refers to

Chien et al.’s scheme [26] in which clients and the

broker apply the CR-based key agreement to generate

the session keys. The session-encryption-SSL refers to

those cases in which they apply SSL to authenticate

each other and share the session keys.

Regarding session-encryption-SSL, there are two

points worthy being noticed:

(1) Because we target resource-limited IoT devices,

we only activate the server authentication using SSL

but not the client’s SSL authentication in our current

experiments; even so, we still find that the average

communication latency of the session-encryption-SSL

is still the longest one among the above three

mechanisms.

1936 Journal of Internet Technology Volume 21 (2020) No.7

(2) SSL handshake protocol in the SSL protocol

suite is the most computation-and-communication

demanding protocol. Before two parties establishing a

SSL channel, they should perform SSL handshake

protocol. To reduce the overhead of SSL handshake

protocol, SSL standards and implementations supports

SSL session re-use. A SSL session re-use is a

simplified SSL authentication process in which the

participants reduce the cost by re-using the previous

connection’s parameters and keying material without

sending certificates and exchanging keying parameters

[34].

Due to the limited resources we have, we use one

notebook to host many MQTT clients in our

experiments, instead of using 30~50 standalone IoT

devices. The comparisons of the performance

evaluations are still valid, as we concern the

communication latency improvement of our proposed

scheme. For all the three mechanisms, we use one

desktop computer as the broker and one notebook

hosting several clients. Table 2 lists the hardware

specifications. Table 3 lists the software specifications.

The parameters of the experiments of the three

mechanisms are listed in Table 4. For each mechanism,

we evaluate several metrics: the average

communication latency between a publisher and a

subscriber, the CPU utilization of the broker, the

memory utilization of the broker, the received message

overhead at the broker, and the accumulated message

overhead of a publisher.

Table 2. The hardware for the experiments

 client Broker

Operation

system

Windows10

professional 64-bit

Windows10

professional 64-bit

CPU

Intel(R) Core(TM)

i7-8750H CPU @

2.20GHz

Intel(R) Core(TM)

i7-3770 CPU @

3.40GHz

Memory 16GB 32GB

GPU
NVDIA GeForce

GTX 1060

NVDIA GeForce

GT610

Network

interface

Qualcomm Atheros

AR8121/8175 PCI-E

Gigabit

Intel(R) 82579LM

Gigabit Network

Connection

Table 3. The software for the experiments

 client Broker

SSoftware Node 12.4.1,

mqtt 2.15.1,

sha1 1.1.1,

crypto-js 3.1.9

Node 12.4.1,

mongoose 5.4.1,

mosca 2.8.3,

passport-local 1.0.0,

OpenSSL 1.1.1c,

sha1 1.1.1,

crypto-js 3.1.9

Table 4. The parameters of the experiments

mechanisms

Group-key-E2E,

session-encryption-CR,

session-encryption-SSL

Message frequency

at publisher

1Message/sec,

1Message/5sec, 1Message/10sec.

Number of

Subscribers
10, 30, 50.

Duration of each

experiment
30 minutes

metrics

‧ Communication latency between a

publisher and a subscriber,

‧ CPU utilization of broker, memory

utilization of a broker, received

message overhead of broker,

‧ accumulated message overhead of a

publisher.

Table 5 summarizes the average communication

latency between a publisher and a subscriber, the

standard derivation of the latency, and the number of

runs of the three approaches. From the table, we can

see that the average latency increases as the number of

nodes (subscribers) increases, especially for the

session-encryption-CR and for the session-encryption-

SSL; the reason for this is quite obvious that the broker

needs to decrypt once and re-encrypt the messages

many times; the number of re-encryptions increases

linearly as the number of nodes increases; it also

explains why the group-key-E2E’s latency is the least

among the three approaches: the broker in the group-

key-E2E does not decrypt and does not re-encrypt

messages. In Table 5, we also notice that the relation

between the average latency and the frequency of

messages sent is not so obvious for the three

approaches with the parameters we tried. We also

notice that the standard derivation of the session-

encryption-SSL approach is quite large; we check the

log files and find that it is because SSL will run a

complete SSL handshake after several times of SSL-re-

use sessions.

Figure 6 shows the average latency trend as the

numbers of subscribers increases for the case of

frequency being 1 message per second. Here, we

highlight two points. First, the latencies of the session-

encryption-CR and the session-encryption-SSL are

significantly larger than that of the group-key-E2E.

Second, the trend of the increasing of latency as the

number of nodes increases in the group-key-E2E

approach is not so obvious as that of the other two

approaches. This is because the broker in the group-

key-E2E does not decrypt and re-encrypt the messages.

Figure 7 depicts the average latency and the standard

derivation of the latency of the three approaches when

Efficient MQTT Platform Facilitating Secure Group Communication 1937

Table 5. The average communication latency between a publisher and a subscriber, the standard derivation, and the

number of runs in the experiments

Number of

nodes
Message/sec.

Group-key-E2E

Avg(ms)/Run/Std(ms)

Session-encryption-CR

Avg(ms)/Run/Std(ms)

Session-encryption-SSL

Avg(ms)/Run/Std(ms)

1Message/s 15.76/2236/15.75 38.39/2179/ 38.52 82.59/1806/456.85

1Message/5s 16.52/450/8.87 38.31/429/10.38 86.14/356 /191.1 10

1Message/10s 15.89/234/8.4 38.32/200 /11.0 63.55/188/54.74

1Message/s 17.24/1896/12.38 61.42/1829/31.62 100.56/1697/105.73

1Message/5s 17.62/480/3.44 62.70/443/28.2 107.49/355/170.4 30

1Message/10s 16.98/200/3.36 65.38/196/13.11 113.10/177/115.64

1Message/s 25.35/1860/19.05 109.73/1800/66.02 137.95/1652/86.45

1Message/5s 25.55/410/12.03 105.12/378/50.95 163.21/358/403.6 50

1Message/10s 25.08/200/10.13 91.69/190/32.93 151.91/181/103.47

Note. Avg stands for average latency; Run stands for the number of runs in the experiments; Std stands for the standard

derivation.

Figure 6. The average latency of three approaches when the publisher publishes 1 message/sec

Figure 7. The average latency and the standard deviation when a publisher publishes 1 message/sec

a publisher publishes 1 message per second. Here, we

notice that the standard derivations of the latencies of

the Session-Encryption-SSL is obviously larger than

the other two approaches; this is because SSL will run

a complete SSL handshake after several runs of the

SSL re-use sessions. This phenomenon is specifically

obvious when the publisher sends more messages per

second.

Table 6 summarizes some performance metrics of

the three approaches for the case where a publisher

publishes 1 message/sec. Regarding the received

message overhead at the broker, the session-

encryption-SSL’s overhead is the largest, because it

needs to send certificates; Figure 8 shows the message

overhead sent to the broker of the three approaches.

We can see that the group-key-E2E generates the least

message overhead at the broker, and the broker of the

session-encryption-SSL receives the largest amount of

messages overhead. Figure 9 shows the message overhead

trend at a publisher of the three approaches; among them,

the session-encryption-SSL demands the most message

overhead; but the differences are not so significant.

1938 Journal of Internet Technology Volume 21 (2020) No.7

Table 6. Performance summary for 1Messages/sec

Node Group-key-E2E Session-encryption-CR Session-encryption-SSL

CPU utilization at broker 0.981% 2.938% 1.424%

Messages at broker (bytes/sec) 5807.43 5663.86 7215.43

Messages at publisher (bytes/sec) 1254.95 1957.37 3906.78
10

Memory at broker (MB) 3411 3823 2971

CPU utilization at broker 1.130% 2.604% 1.258%

Messages at broker (bytes/sec) 7015.81 6977.80 8664.23

Messages at publisher (bytes/sec) 3456.57 5438.29 6460.08
30

Memory at broker (MB) 3512 3853 3100

CPU utilization at broker 1.224% 2.539% 3.828%

Messages at broker (bytes/sec) 8055.76 8667.11 10127.05

Messages at publisher (bytes/sec) 5593.34 8967.03 9038.37
50

Memory at broker (MB) 3497 3907 3160

Figure 8. The received message overhead (bytes/sec) at the broker

Figure 9. The message overhead (byte/sec) at a publisher

Regarding the broker’s CPU utilization and the

broker’s memory overhead, we expected, before the

experiments, that the session-encryption-SSL should

have the largest CPU utilization and the largest

memory usage; but the results show that its utilization

and its memory usage are smaller than that of the

Session-encryption-CR (except for its CPU utilization

at broker when there are 50 clients); we speculate that

it is because the provider’s implementation of the

session-encryption-SSL has been optimized while our

implementations of both the session-encryption-CR

and the group-key-E2E could be further improved.

Nonetheless, the group-key-E2E still shows the best

performance in terms of communication latency.

In a short summary, our group-key-E2E has the least

communication delay, because it generates the least

message overhead and it does not decrypt-and-then-re-

encrypt at the broker. The latency improvement

becomes much larger as the number of clients

increases. The session-encryption-SSL has the largest

delay, and the message overhead at its broker is the

largest.

Efficient MQTT Platform Facilitating Secure Group Communication 1939

5 Conclusions

In this paper, we have proposed and implemented

the MQTT group communication framework. This

framework supports group key distribution and

facilitates secure group communication of MQTT

messages. The experiments confirm that (1) the

session-encryption-SSL generates the largest message

overhead at the broker and has the largest

communication delay; (2) our group-key-E2E generates

the least message overhead at the broker and has the

least delay; (3) the elimination of the decrypt-and-re-

encrypt at the broker is the main reason of the

performance improvement from our group-key-E2E; (4)

the improvements become more significantly as the

number of clients increases. The implementation and

the experiments confirm that the proposed MQTT

group communication framework can greatly improve

the communication latency of MQTT systems; and this

latency improvement is very important for many

MQTT IoT scenarios.

Acknowledgements

This project is partially supported by the Ministry of

Science and Technology, Taiwan, R.O.C., under grant

No. MOST 108-2221-E-260-009-MY3.

References

[1] Y. Yang, L. Wu, G. Yin, L. Li, H. Zhao, A Survey on

Security and Privacy Issues in Internet-of-Things, IEEE

Internet of Things Journal, Vol. 4, No. 5, pp. 1250-1258,

October, 2017.

[2] S. Y. Moon, J. H. Park, J. H. Park, Authentications for

Internet of Things Security: Threats, Challenges and Studies,

Journal of Internet Technology, Vol. 19, No. 2, pp. 349-358,

March, 2018.

[3] S. N. Firdous, Z. Baig, C. Valli, A. Ibrahim, Modelling and

Evaluation of Malicious Attacks against the IoT MQTT

Protocol, 2017 IEEE International Conference on Internet of

Things (iThings) and IEEE Green Computing and

Communications (GreenCom) and IEEE Cyber, Physical and

Social Computing (CPSCom) and IEEE Smart Data

(SmartData), Exeter, UK, 2017, pp. 748-755.

[4] The HiveMQ Team, TLS BENCHMARKS, HiveMQ 3.1.0

on AWS, https://www.hivemq.com/downloads/hivemq_tls_

benchmarks.pdf.

[5] T. Dierks, The Transport Layer Security (TLS) Protocol

Version 1.2, IETF RFC 5246, August, 2008.

[6] The HiveMQ Team, TLS and MQTT: How is the performance

affected?, https://www.hivemq.com/blog/how-does-tls-affect-

mqtt-performance/.

[7] T. Yokotani, Y. Sasaki, Comparison with HTTP and MQTT

on Required Network Resources for IoT, 2016 International

Conference on Control, Electronics, Renewable Energy and

Communications (ICCEREC), Bandung, Indonesia, 2016, pp.

1-6.

[8] Amazon Web Services, Security and Identity for AWS IoT,

https://docs.aws.amazon.com/iot/latest/developerguide/iot-

security-identity.

[9] Mosquitto, http://projects.eclipse.org/projects/technology.

mosquitto, 2018/11/07 access.

[10] Arduino Cloud, https://cloud.arduino.cc/, 2018/11/07 access.

[11] Shiftr.io, https://shiftr.io/, 2018/11/07 access.

[12] Mosca, https://github.com/mcollina/mosca/, 2018/11/07 access.

[13] H. Y. Chien, Y. J. Chen, Security Evaluation on Various

Arduino-Compatible IoT Devices, Cryptology and Information

Security Conference 2018 (CISC 2018), Taipei, Taiwan, 2018.

[14] S. Andy, B. Rahardjo, B. Hanindhito, Attack Scenarios and

Security Analysis of MQTT Communication Protocol in IoT

System, Proc. of 4th International Conference on Electrical

Engineering, Computer Science and Informatics (EECSI

2017), Yogyakarta, Indonesia, 2017, pp. 1-5.

[15] S. H. Shin, K. Kobara, C. C. Chuang, W. C. Huang, A

Security Framework for MQTT, 2016 IEEE Conference on

Communications and Network Security (CNS): International

Workshop on Cyber-Physical Systems Security (CPS-Sec),

Philadelphia, PA, USA, 2016, pp. 432-436.

[16] S. H. Shin, K. Kobara, Efficient Augmented Password-Only

Authentication and Key Exchange for IKEv2, IETF RFC 6628,

June, 2012.

[17] A. Bhawiyuga, M. Data, A. Warda, Architectural Design of

Token based Authentication of MQTT Protocol in

Constrained IoT Device, 2017 11th International Conference

on Telecommunication Systems Services and Applications

(TSSA), Lombok, Indonesia, 2017, pp. 1-4.

[18] A. Mektoubi, H. L. Hassani, H. Belhadaoui, M. Rifi, A.

Zakari, New Approach for Securing Communication over

MQTT Protocol A Comparison between RSA and Elliptic

Curve, 2016 Third International Conference on Systems of

Collaboration (SysCo), Casablanca, Morocco, 2016, pp. 1-6.

[19] J. L. Espinosa-Aranda, N. Vallez, C. Sanchez-Bueno, D.

Aguado-Araujo, G. Bueno, O. Deniz, Pulga, A Tiny Open-

source MQTT Broker for Flexible and Secure IoT

Deployments, 2015 IEEE Conference on Communications

and Network Security (CNS), Florence, Italy, 2015, pp. 690-

694.

[20] A. Rizzardi, S. Sicari, D. Miorandi, A. Coen-Porisini, AUPS:

An Open Source Authenticated Publish/Subscribe System for

the Internet of Things, Information Systems, Vol. 62, pp. 29-

41, December, 2016.

[21] C. Lesjak, D. Hein, M. Hofmann, M. Maritsch, A. Aldrian, P.

Priller, T. Ebner, T. Ruprechter, G. Pregartner, Securing

Smart Maintenance Services: Hardware-Security and TLS for

MQTT, 2015 IEEE 13th International Conference on

Industrial Informatics (INDIN), Cambridge, UK, 2015, pp.

1243-1250.

[22] M. Singh, M. A. Rajan, V. L. Shivraj, P. Balamuralidhar,

Secure MQTT for Internet of Things (IoT), 2015 Fifth

International Conference on Communication Systems and

Network Technologies, Gwalior, India, 2015, pp. 746-751.

1940 Journal of Internet Technology Volume 21 (2020) No.7

[23] R. Neisse, G. Steri, G. Baldini, Enforcement of Security

Policy Rules for the Internet of Things, 2014 IEEE 10th

International Conference on Wireless and Mobile Computing,

Networking and Communications (WiMob), Larnaca, Cyprus,

2014, pp. 165-172.

[24] A. Niruntasukrat, C. Issariyapat, P. Pongpaibool, K.

Meesublak, P. Aiumsupucgul, A. Panya, Authorization

mechanism for MQTT-based Internet of Things, 2016 IEEE

International Conference on Communications Workshops

(ICC), Kuala Lumpur, Malaysia, 2016, pp. 290-295.

[25] H. Y. Chien, X. A. Kou, M. L. Chiang, C. H. Su, Secure and

Efficient MQTT Group Communication Design, 20th

IEEE/ACIS International Conference on Software Engineering,

Artificial Intelligence, Networking and Parallel/Distributed

Computing (SNPD 2019), Toyama, Japan, 2019.

[26] H. Y. Chien, Y. J. Chen, G. H. Qiu, J. F. Liao, R. W. Hung, X.

A. Kou, P. C. Lin, M. L. Chiang, C. H. Su, A MQTT-API-

Compatible IoT Security-Enhanced Platform, International

Journal of Sensor Networks, Vol. 32, No. 1, pp. 54-68,

January, 2020.

[27] H. Y. Chien, G. H. Qiu, R. W. Hung, A. T. Shih, C. H. Su,

Hierarchical MQTT with Edge Computation, 2019 IEEE 10th

International Conference on Awareness Science and Technology

(iCAST), Morioka, Japan, 2019, pp. 1-5.

[28] H. Y. Chien, Novel Attacks and Novel Efficient Three-Party

Authenticated Key Agreement Schemes for Resource-Limited

Devices, Journal of Internet Technology, Vol. 20, No. 7, pp.

2177-2188, December, 2019.

[29] V. Goyal, O. Pandey, A. Sahai, B. Waters, Attribute-based

Encryption for Fine-grained Access Control of Encrypted

Data, 13th ACM Conference on Computer and Communications

Security (CCS ’06), Alexandria, VA, USA, 2006, pp. 89-98.

[30] J. Bethencourt, A. Sahai, B. Waters, Ciphertext-Policy

Attribute-Based Encryption, 2007 IEEE Symposium on

Security and Privacy (SP ’07), Berkeley, CA, USA, 2007, pp.

321-334.

[31] E. Hammer-Lahav, The OAuth 1.0 Protocol, IETF RFC 5849,

April, 2010.

[32] MQTT, http://mqtt.org/, 2018/04/07 access.

[33] OASIS, OASIS Message Queuing Telemetry Transport

(MQTT) TC, https://www.oasis-open.org/committees/mqtt/,

2018/11/07 access.

[34] E. Rescorla, The Transport Layer Security (TLS) Protocol

Version 1.3, IETF RFC 8446, August, 2018.

Biographies

Hung-Yu Chien received the B.S.

degree from NCTU, Taiwan, 1988,

the M.S. degree from NTU, Taiwan,

1990, and the doctoral degree in

applied mathematics at NCHU 2002.

He is a professor of National Chi Nan

University since 199808. His research

interests include cryptography,

networking, network security, ontology, and Internet-

of-Things.

Pei-Chih Lin is currently studying a

master’s degree in the Department of

Information and Communication at

the Chaoyang University of

Technology in Taiwan. His research

topic is Message Queuing Telemetry

Transport and network security.

Mao-Lun Chiang received the Ph.D. degree in

Department of Computer Science

from National Chung-Hsing

University, Taiwan. He is a professor

in the Department of Information and

Communication Engineering at the

Chaoyang University of Technology,

Taiwan. His current research interests

include mobile computing, IoT, fault tolerant

computing, and cloud computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

