
Image Uploading for Safe Driving Applications in Vehicular Networks Based on Mobile Edge Computing Technologies 1905

Image Uploading for Safe Driving Applications in Vehicular

Networks Based on Mobile Edge Computing Technologies

Ming-Fong Tsai1, Chia-Yuen Lin2

1 Department of Electronic Engineering, National United University, Taiwan
2 Department Information Engineering and Computer Science, Feng Chia University, Taiwan

mingfongtsai@gmail.com, lo6615@yahoo.com.tw *

*Corresponding Author: Ming-Fong Tsai; E-mail: mingfongtsai@gmail.com

DOI: 10.3966/160792642020122107005

Abstract

This paper proposes an image uploading system for

vehicle safety monitoring applications based on mobile

edge computing technologies. In this system, numerous

camera nodes are placed within vehicles to collect vehicle

journey data, and when emergency events such as

accidents are detected, a camera with a view in the

direction of the accident can upload more data than those

in other directions. In addition, other vehicles within the

area of the accident will also upload image data about the

event, meaning that a greater amount of useful data on the

accident will be collected for analysis and assistance to

drivers. We propose to use mobile edge computing

because of its many advantages, such as fast service

response, low end-to-end delay and suitability for large

data storage systems. We also propose solutions to

minimize the uploading of redundant, repetitive and

similar image data, a problem that has been encountered

in previous systems. The results of both experiments and

simulations showed that our system achieves better

performance than those proposed in related studies.

Keywords: Vehicle safety monitoring, Mobile edge

computing, Image uploading

1 Introduction

Traffic accidents occur at a high rate, and there is a

lack of effective systems to store evidence of these

accidents and to provide assistance for timely treatment

for the victims. Motivated by this idea, we propose an

image uploading system for vehicle safety monitoring

applications. In traditional vehicular networks, data

recorded during driving are normally stored in the

memory card of the driving recorder. However, storing

data in memory card has several disadvantages: First,

the memory card of the driving recorder has the limits

in storage capacity when the driving journey is longer

than expected. Recorded data are often replaced by

data recorded later, resulting in incomplete

preservation of driving data and even worse, the failure

to restore the car accident scene; second, the use of

offline data storage makes users more passive in

detecting possible risks during driving and factors that

affect their driving safety. At present, the solution to

the above-mentioned problems is to increase the

memory capacity in the driving recorder and the

mandatory storage combined with non-deletable

mechanisms after detecting abnormal signals from

moving vehicles so that the driver can be secure in

retaining the evidence for accidents. However, this

mechanism only solves part of the problem, but it still

cannot solve the problem of offline data storage. It will

make it hard for drivers to adopt driving data to protect

themselves when accidents occur. Thanks to the

development of Internet of Things technologies,

driving data now can not only be stored on memory

cards, but it can also be stored on servers for backing

up driving data for later use. In large systems, mobile

edge computing technology is now often used to

replace traditional servers for the storage and

deployment of services, due to its various advantages

such as low end-to-end delay, fast response times,

security and flexibility. To upload the driving

information in real time directly to a server through

internet connection, there are many solutions including

satellite communication systems, mobile communication

systems (3G/4G), vehicle communication networks,

Vehicle-to-Base Station communications [1-5]. Once

uploaded, the data will be analyzed and classified to at

user’s service so that users can access to these data

anytime and anywhere they want via their smart

devices [6-8]. This online solution makes the access of

driving data easier and more to users. Uploading

driving data to servers is crucial. However, vehicles

move constantly, so their channel conditions, that is,

the available bandwidth also changes over time.

Therefore, transmitting data in good quality and in real

time to cloud servers confront challenges.

This paper proposes a vehicle image uploading

system with cameras installed around the vehicle.

These cameras will collect continuous images along

the driving route and will upload these images to a

mobile edge computing layer via 4G mobile networks.

1906 Journal of Internet Technology Volume 21 (2020) No.7

A base station is constructed as the edge node in the

mobile edge network. This is feasible with a software-

defined networking solution. Vehicles will upload and

retrieve driving journey data within range of these edge

nodes. In addition, an important issue in an image

uploading system is to find effective solutions to

minimize the uploading of redundant, repetitive and

similar image data, an issue that has been identified in

previous systems [9-10]. The image uploading systems

in the vehicle network also often encounter the

problem that the bandwidth of the transmission channel

is constantly changing. In this study, we therefore

focus on analyzing the relationship between the

available channel bandwidth, the vehicle speed and the

shooting rate of the camera nodes. A further important

factor affecting safety driving is danger signals, which

means signals that will be triggered while making turns.

In a situation such as this, the device captures more

images on this side than on the other sides. We also

describe the selection of parameters and a method that

can predict the available channel bandwidth to adjust

the number of images taken by each camera to provide

a high quality of service and to ensure the performance

of the driving safety awareness information system.

This study considered that the memory is limited in

capacity that it can only memorize part of moving

process and might not be sufficient for preserving

evidence. When there are major accidents, cars and

driving recorders might both be severely damaged, this

system can still obtain all related information from

cloud server.

The remainder of this paper is organized as follows:

Section 2 presents some related works. Section 3

describes the architecture and components of the

proposed system. Section 4 presents our adaptive

control algorithms. Section 5 provides analysis of the

system and its performance parameters. Section VI

reports the experimental results of the system and

presents a comparison of the proposed system with

other related systems. The final section offers our

conclusions.

2 Related Works

In view of the development of mobile

communication networks and the increase in speed and

bandwidth of mobile network, there are a variety of

papers researching on proposing using mobile

communication network to exchange data on driving

safety awareness information system. However, when

there are too many users share the mobile

communication network at the same time, the available

bandwidth allocated for each user will be limited. That

is, each user’s throughput will decrease as the number

of users increase. The more users use the mobile

communications network at the same time, the more

end-to-end delay will occur for users to transmit data

[11]. In addition, we also evaluate the impact of speed

of moving vehicles on end-to-end delay of the user’s

data transmission. The experimental results show that

the user’s throughput is reduced by only the number of

users. Since the number of mobile communication

network users is not a controllable factor, avoiding

unnecessary data uploading will be crucial. Therefore,

we explore the development of adaptive methods for

uploading driving data to reduce the waste of the

network available bandwidth.

The most typical application of transmission of

driving data over mobile communication networks is

uploading driving data to cloud servers. The authors in

[12] proposed to dynamically adjust images uploaded

to cloud servers according to the vehicle movement

speed. Its main contribution is that it proposed the

minimum number of images required for building the

streetscape when vehicles move. It refers to vehicle

speed to determine single image shot and adaptively

control the number of uploaded images via image

overlay technology. To restore continuous streetscape

images, the adaptive image uploading is adjusted

according to vehicle speed to obtain the minimum

number of images required for restoring the continuous

streetscape image. If the vehicle moves slowly or

remains still, the image of the same block will be over-

photographed and the device will store a large number

of repetitive images. On the contrary, if the vehicle

moves at a high speed, it will cause continuous

overlaying of images, that is, continuous gaps between

the moving streetscape images. In view of the fact that

the available bandwidth of the mobile communication

network is insufficient, even when the number of

images to be uploaded is controlled in accordance with

the vehicle speed, it is urgent to propose a mechanism

which can adjust the quality of uploaded images

adapting to the moving of vehicles.

Previous studies [9-10] proposed that a dynamic

adjustment mechanism on the number of uploaded

images and the quality of uploaded videos according to

vehicle speed and available bandwidth. Today, driving

safety sensing components such as video cameras and

radar devices have gradually become the standard

equipment for automobiles. Authors in [13] proposed

neural-like algorithms to implement a real-time

detection of surrounding vehicles and judgment of

relative distances. As shown in related work [14],

multi-image stitching is used to form vehicle peripheral

images for drivers. Authors in [15] proposed a method

to analyze the vibration information through the built-

in triaxial sensing element of the smart handheld

device. Check the degree of jolt of the road when the

vehicle is driving. Therefore, this paper discusses

information such as vehicle speed, network available

bandwidth and driving safety perception to optimize

the adaptability and dynamically adjust the number and

quality of the images before uploading them to cloud

server.

Image Uploading for Safe Driving Applications in Vehicular Networks Based on Mobile Edge Computing Technologies 1907

3 The Proposed System

Figure 1 shows the architecture of our proposed

system, including cloud server, cam node, and

information system. The simulated on-board

information system is mainly utilized to simulate the

danger signal perception on the vehicle. Since the

vehicle used in this study does not contain equipment

that can obtain driving safety awareness information, it

is possible to simulate the condition of the vehicle by

the simulator. We also simulate the on-board system

and real-time switching of the vehicle condition

through road test to achieve the same effect as directly

obtained danger signals from the on-board system. The

cloud server primarily receives driving data from cam

nodes and stores these data. The data are uploaded via

4G networks and history information of the data

images are managed by cloud database management.

Users can access to this data through RESTful Web

services. The cam node is mainly composed of a

Raspberry Pi and a webcam. Raspberry Pi and the

webcam can implement a network to receive on-board

signals and capture streetscapes at the same time.

Figure 1. System architecture

3.1 Cloud Server

The cloud server uses Ubuntu Linux as an operating

system to construct the full cloud-based driving safety

awareness information system. The mobile edge

computing server is divided into three parts. The first is

the cloud database, which uses MySQL as the database

system, while the library management system uses the

cloud API to upload and organize vehicle information.

In addition, it also provides logs with the amount of

images successfully uploaded of received data for Cam

Node to use. The second part is the cloud file system,

which uses a server-side file management system to

classify image files. The third is the cloud platform,

which is mainly composed of three technologies: (i) a

web server called Tomcat that provides Java Server

Page and Servlet support, and includes a management

and control platform to manage projects safely; (ii)

HTML/JS, which is used to construct the entire cloud

webpage platform, and which provides a web UI

interface to search for and browse vehicle information

uploaded in the past; (iii) a socket server, which is used

to control the network connection of the camera node,

and to provide a window for simulating the on-board

information system and for uploading traffic

information and images from the camera node. Drivers

can access the cloud server database to view their

driving data or other statistical analysis data.

3.2 Cam Node

It’s a Raspberry Pi 3 hardware module running

Ubuntu Linux operating system. Raspberry Pi is a very

popular hardware control module suitable for today’s

Internet of Things applications. The Raspberry Pi 3

contains its own network Bluetooth communication

module and a small easy-to-carry rack mounted on the

vehicle. In the deployment of the system, we used six

Raspberry Pi modules as network nodes, and each is

connected to a camera webcam to control the process

of images collecting along the driving route as well as

transfer images to the Fog server. The cam node is

further divided into three parts. The first part is the

image acquisition. Images taken from the webcam are

processed through OpenCV image pre-processing, and

then the second part is used to classify and store the

images taken by the camera. The third part is a Socket

Client writing in Python programming language. This

client is responsible for exchanging data with the cloud

server through the 4G mobile network and the TCP/IP

communications protocol.

3.3 Driving Safety Awareness Information

System

In order to implement the driving safety awareness

information system and strengthen retention of driving

data in cloud server, this study uses Android smart

devices as repeater devices. In addition to providing

global satellite positioning information, the cloud

storage platform can record the movement trajectory.

Vehicle speed is estimated via GPS signals. Events of

vehicle making turns are also indicators. When there

are emergencies, the camera on that side will be told to

increase the shooting rate and the quality of captured

images than cameras on other sides. This helps drivers

to spot and handle risks earlier.

4 Adaptive Control and Algorithms

4.1 Adaptive Parameters

In fact, the process of uploading driving data in

mobile network is affected by the number of users in

the same base station. This is an important issue. To

ensure the quality of the recovery image on the

database server, we proposed methods to automatically

adjust the number of uploaded images according to

network available bandwidth. Our proposal optimized

1908 Journal of Internet Technology Volume 21 (2020) No.7

the number of uploaded images and quality parameters

by using three factors including vehicle movement

speed, driving safety awareness and network available

bandwidth.

4.1.1 Vehicle Speed

The driving data is stored and used to recover the

accident scenes. In order to complete continuous image

streaming on moving vehicles, the minimum number

of shots required per second of cameras installed on

vehicles must be automatically adjusted according to

current vehicle speed. In our study, for a vehicle

moving at a speed of 90 kilometers per hour, that is 25

meters per second, if the shooting distance from the

camera to the road surface was 3 m, it requires a

shooting rate of at least 9 images per second to ensure

continuous streaming of images. Complete driving data

can thus be achieved. If the vehicle speed is less than

30 kilometers per hour and its moving path per second

is about 9 m, only 3 images per second are needed to

achieve complete image retention. If the shooting rate

exceeds three images per second at speed of 30 km/h, it

will cause the cloud server to store a large number of

repetitive images. The relationship between the

minimum numbers of shots required for different

vehicle movement speeds is shown in Table 1. In our

system, six cameras are placed around the vehicle to

collect images that cover the entire space surrounding

vehicle. Therefore, in order to preserve the driving data

of car accident, six shots are required to be installed on

the vehicle.

Table 1. Relationship between the minimum numbers

of shots required for various vehicle speeds (Taking

3m Shooting Range as Example)

Car Speed

Minimum number

of shots per

second

Total of shots per

second

(distance = 3 m)

< 30 km/h < 8.33 m 3 18

30 km/h 8.33 m 3 18

45 km/h 12.5 m 5 30

60 km/h 16.66 m 6 36

75 km/h 20.83 m 7 42

90 km/h 25 m 9 54

> 90 km/h > 25 m 10 60

In addition to increasing the quality of shooting

images, we can increase the resolution and shooting

ranges of images to preserve better driving data as the

evidence of car accidents. In Table 1, the images are

captured at distance of 3 m and image quality of 240p.

If we use quality image of 480p, we will achieve a

wider image that covers the street. The relationship

between the minimum numbers of required shooting

images for different image quality is shown in Table 2.

As the image quality is higher, the network traffic for

uploading videos will also increase, and a set of

considerations must be devised to optimize the three-

parameter algorithm of vehicle movement speed,

driving safety perception and network available

bandwidth.

Table 2. Relationship between the minimum numbers of shots required at various vehicle speeds and various

shooting ranges

Car Speed

Minimum number of shots

per second

(distance = 3 m)

Minimum number of shots

per second

(distance = 3.5 m)

Minimum number of shots

per second

(distance = 4 <m)

< 30 km/h < 8.33 m 3 (240p) 3 (480p) 3 (720p)

30 km/h 8.33 m 3 (240p) 3 (480p) 3 (720p)

45 km/h 12.5 m 5 (240p) 4 (480p) 4 (720p)

60 km/h 16.66 m 6 (240p) 5 (480p) 5 (720p)

75 km/h 20.83 m 7 (240p) 6 (480p) 6 (720p)

90 km/h 25 m 9 (240p) 8 (480p) 7 (720p)

> 90 km/h > 25 m 10 (240p) 9 (480p) 8 (720p)

4.1.2 Driving Safety Awareness Information

System

When the driver needs to turn left or right while

driving on the road, he will give a left-right turning

signal to remind the nearby moving vehicles. In this

situation, left- and right-rear sides belong to dangerous

sides. Therefore, in order to have images which are

continuous of good quality in dangers sides, it is very

important to increase the number and quality of

uploaded images in these areas where danger may

more easily to occur. This dangerous area is depicted

in Figure 2. At present, many safety driving systems

have been developed and commercialized, for example,

lane departure warning systems, rear-end collision

warning systems and traffic flow information system.

The above-mentioned driving safety awareness

information is for specific side of the driver’s vehicle.

Due to the possibility of danger occurrence, the

number and the quality of uploaded images from

specific sides need to be dynamically adjusted in order

to preserve this driving data for later evidence. The

design concept of danger signals is it exchanges

information from OBD-II message from its own car or

Internet of Vehicle. This study takes simulation signals

to verify the applicability of the technology and tests

experimental data.

Image Uploading for Safe Driving Applications in Vehicular Networks Based on Mobile Edge Computing Technologies 1909

Figure 2. Illustrate danger areas when the driver turns

left

4.1.3 Available Bandwidth

The channel’s available bandwidth is always

changing as the vehicle passes through different areas

of the mobile network. In view of the fact that the

number of users in mobile communication network is

not controllable, and the available bandwidth of the

network changes over time, problems emerge will be

how to match the number and required quality of

uploaded images at the above-mentioned vehicle speed

and how to gain driving danger perception. The

bandwidth is dynamically adjusted and utilized in real-

time to avoid unnecessary repetitive data transmission

to occupy network available bandwidth.

4.1.4 Predict the Available Bandwidth

The proposed image uploading mechanism adopts

TCP protocol which uses sliding window method to

control traffic and congestion. Available Bandwidth

Estimation utilizes sending end with uploaded images

in specific unit of time (for example per second).

Because TCP protocol has resending mechanism to

ensure image reception in receiving end, it can estimate

available bandwidth through correctly received

uploaded images in specific unit of time in sending end.

Available Bandwidth Estimation in this study is based

on TCP protocol because it has been widely applied in

mobile network. In our study, we aim at achieving the

best image quality for safety driving applications. We

propose an algorithm that can adjust the number of

images sent to the server to be greater than or equal to

available bandwidth of the channel. This algorithm will

adjust the number of uploaded images to help the

system accommodate the change in bandwidth. Our

algorithm was described in Figure 3. For example, in

initial process, each camera uploads one image to the

cloud server, so there will be six images uploaded in

first transmission. On the cloud server (receiver), when

all six images are successfully transmitted in the first

transmission, the system will attempt to transmit a

larger number of images in the next transmission. The

server will send back the transmission log including

the number of images (1) successfully uploaded to cam

nodes in order to predict and adjust both shooting rate

and bandwidth level. Therefore, in the second

transmission, the total number of images sent to the

server will be 12 images. Assume in the second

transmission, only 11 images are successfully received

in the first attempt, the available bandwidth of the

transmission channel is not enough compared to the

amount of data uploaded. The server will still send

back the transmission log. However, because this

difference is not significant, (2) the cam node will

maintain the same both shooting rate and bandwidth

level as previous transmission. In third transmission,

assume all 12 images are successfully uploaded at the

first try, the server will send back the transmission log

(3) to cam nodes, and then the cam nodes will increase

both their shooting rate and bandwidth level. Therefore,

the total number of images uploaded in the next

transmission will be 18 and our algorithm will repeat

this cycle for the following transmission.

Figure 3. Adjust the number of uploaded images with

available bandwidth

4.2 Flow Chart and Adaptive Control

Algorithms

Figure 4 is a systematic flowchart of the proposed

method. In the beginning, the system checks the

connection between cam nodes. Once successfully

connected to nodes, the cam nodes begin to collect data

and transmit the data to the cloud server. When

receiving data from cloud server, cam nodes will begin

to predict bandwidth and provide adaptive control. The

prediction of available bandwidth and provided

adaptive control are based on method described above.

Here we further take danger signals into consideration.

The system will check whether the data from the

vehicle contain danger signals. When not detecting

danger signals, cam nodes will adaptively control the

data by the algorithm described above and determine

the number of images collected at each camera by

included factors such as vehicle speed and image

quality. When detecting danger signals, cam nodes will

proceed to adaptive control with the driving safety

awareness information system. This means that there

will be a cam node on the side with danger signals

receiving messages to gain shooting rate (larger than

cams on other sides). The gained shooting rate will

vary with current vehicle speed, and it will be

presented in detail in the following sections. The

1910 Journal of Internet Technology Volume 21 (2020) No.7

comparisons between the proposed method and related

work are shown below.

Figure 4. Algorithm flowchart

4.2.1 Vehicle Moves at Speed of 30 Kilometers Per

Hour without Driving Safety Awareness

Information

The selection of parameters is shown in Table 3.

Assume that a vehicle is moving at 30 km/h and the

available network bandwidth is 3.6 Mbps. The data

size under image quality of 240p, 480p and 720p

images is 36kB, 120kB and 360kB, respectively. The

selection of number of shots parameters corresponding

to this speed is 3.

Table 3. Environmental assumptions

 Picture Quality

Number of

shots 240 p 480 p 720 p

Bandwidth: 3.6

Mbps

3 108 kB 360 kB 1080 kB

240p image: 36

kB

5 180 kB 600 kB 1800 kB

480p image: 120

kB

6 216 kB 720 kB 2160 kB

720p image: 360

kB

7 252 kB 840 kB 2520 kB

 8 288 kB 960 kB 2880 kB

Danger signal

condition

9 324 kB 1080 kB 3240 kB

requires the

shotting rate at

least 15

10 360 kB 1200 kB

images/second 15 540 kB 1800 kB

 20 720 kB 2400 kB

 25 900 kB 3000 kB

 30 1080 kB

4.2.2 Vehicles Moves at a Speed of 30 Kilometers

Per Hour with Driving Safety Awareness

Information

In this section, we examined the operation of

adaptive control algorithm in the presence of driving

safety awareness information. The minimum number

of shots required in the case of driving safety

awareness is at least 15. This requirement is only for

one cam node, which in the direction of the warning

signal occurs. Because available bandwidth of the

network is 3.6 Mbps, selecting cases in 15 shots is the

optimal solution. For good image quality, the image

quality of selected by the system will be 480p.

4.2.3 Vehicles Moves at a Speed of 60 Kilometers

Per Hour with Driving Safety Awareness

Information

If the speed of the vehicle is increased to 60

kilometers per hour, and there are two cam nodes to

capture images and upload them to the server. One cam

node needs to increase the number and the quality of

uploaded images as driving safety awareness

information when the vehicle moves. The other cam

node will select parameters depending on the cam node

in the direction of the danger signal and the available

channel bandwidth. Finally, the final result needs to be

determined based on the available bandwidth of the

network at 3.6Mbps. Therefore, the final optimization

of adaptive control the number and the quality of

uploaded images will be selected as six 480p images in

size of 720kB and 15 480p images in size of 1800kB.

5 Implementation and Experimental Results

5.1 Data Upload Module

While the system is in operation, the Data Upload

Module will continuously mount to the server waiting

for connecting to socket client. Once the module

attempts to connect to sever, it will first request user

identification from socket client. After the verification

is passed, the module will wait for a JSON type data

packet in order to know content of the following

packets is driving images or information before next

packet is sent. Content in socket client package is

designed as JSON type for transmission except for the

driving images socket. Driving images will be

transformed into image file from byte type and saved

in fog sever after the server receives them. By getting

Cam Node information from cam node key, the data

upload module is capable to identify and save the

entire driving information from on-board system. After

the packets are broken, the driving information will be

sent to Database Management System for further usage.

The system is responsible to deal with the needs from

different module to database. The Data Upload Module

Image Uploading for Safe Driving Applications in Vehicular Networks Based on Mobile Edge Computing Technologies 1911

mainly requests for user identification from on-board

information system and saves the uploaded data into

database. The other request is in charge of Bandwidth

recording and reading. The bandwidth will be saved

into database while the server receives data, and the

data will be send back to on-board information system

for prediction of next bandwidth.

5.2 On-Board Information System

The on-board information system is divided in two

parts. Part one is Cam Node with socket client

interface and function of taking frames written in

Python and running on Raspberry Pi is one, and part

two is the Simulated On-Board Information System

written in Java and running on the following version of

Android 5.0 in order to deal with the circumstance

when driving information is unreachable on some

kinds of vehicles. Simulated on-board information

system transmits driving information data to cam nodes

through sockets, and thus cam nodes are able to control

the number of photos should be taken per second in

current driving condition and packet data for uploading.

When the system boots, it continuously takes frame

and control the number of frames to be taken. Figure 5

is the flowchart of on-board information system. At

first, the system will garb the vehicle speed and danger

signals from the simulated on-board information

system via GPS module and the button implemented

on it. As these two driving information is sent to cam

nodes, the system will proceed to check if there are

temporary driving images and information inside the

local MySQL database. Then, it will check the

connection status between socket servers. The driving

data will be temporarily stored in the local MySQL

database if the system fails to connect to the server,

and these data will be uploaded to the server once the

system reconnects to the server and be deleted from the

local MySQL database. If the connection between

system and server is normal, the system will check the

records of successfully uploaded images downloaded

from the server, and then use the history records to

predict and adjust how many frames is adequate to be

sent currently. Finally, the predicted results will be sent

to Cam Node for adaptively controlling the number of

images to upload.

Figure 5. On-board information system flowchart

5.3 Adaptive Calculate Module

Figure 6 is the flowchart of Adaptive Calculate

Module. As shown in the figure, when the module is

initialized, the module will grab the vehicle speed,

danger signals and the condition of local temporary

data at first and obtain data from Bandwidth Prediction

Module to proceed adaptive calculation. Because of the

data from Bandwidth Prediction Module includes the

prediction results of available bandwidth and the

information used for prediction from Cam Nodes, it is

necessary to provide parameters which control the

amount of frames under conditions of various vehicle

speed, danger signals and local status while adaptive

control parameters are initialized. When there are

danger signals detected in any cam nodes, adaptive

control parameters will be set to 10 frames per second

which meets the maximum needs. On the contrary,

adaptive control parameters of those cam nodes

without containing any danger signals will be set by

the calculation result of three parameters (available

bandwidth, danger signals and vehicle speed) grabbed

from the initiation process. And these adaptive control

parameters are calculated during estimate adaptive

1912 Journal of Internet Technology Volume 21 (2020) No.7

control process. After the procedure of adaptive control

is initialized and after it estimates adaptive control

parameters, it will then check whether the summary of

adaptive control parameters of all cam nodes exceed

the predicted value from Bandwidth Prediction Module.

When the summary of adaptive control parameters of

all cam nodes is lower than the predicted bandwidth,

these parameters will be sent to On-Board Information

System for adaptive uploading and pictures taking

control. On the contrary, when the summary of

adaptive control parameters of all cam nodes is higher

than the predicted bandwidth, the module will decrease

the number of pictures taken by cam nodes without

containing danger signals so that those containing

danger signals can preserve more pictures and upload

to the database.

Figure 6. Adaptive calculate module flowchart

If adaptive control parameters of the cam nodes

without danger signals are already decreased to 3

frames per second, the module will start to adjust

adaptive control parameters of the cam node with

danger signals.

5.4 Bandwidth Prediction Module

Figure 7 is the flowchart of bandwidth prediction

module. In the beginning, the module will garb the

number of cam nodes from Data Upload Module,

transmission logs from server and the bandwidth level

of the last transmission saved in local database in order

to estimate bandwidth next time. The predicted

bandwidth in our proposed method is the quotient of

the amount of cam node and bandwidth level. If the

last prediction result is same as the transmission log,

the module will adjust the level higher for the

following transmission, and vice versa. The predicted

results provide Adaptive Calculate Module for further

usage.

Figure 7. Bandwidth prediction module flowchart

5.5 Experimental Environment

The experimental environment chosen in this study

is a route from Feng Chia University to National

United University Ba Jia Campus as the left figure in

Figure 9 involving 48.1 kilometers in one trip. The

experiments were conducted for 6 times on the same

route containing highway and general road taken 2

hours for each experiment. The smart mobile device

used in the experiment is Sony Xperia Z5 which

provides Wi-Fi connection for cam nodes to transmit

data and was taken as the simulated on-board

information system. There were six cam nodes and

each of them were composed of a raspberry pi 3 model

B and Logitech C920R webcam implemented on the

roof of vehicle. Every cam node took pictures of 60

degrees in order to achieve round view recording as

shown in the right figure in Figure 8.

Figure 8. Testing route (From Feng-Chia University to

National Untied University Ba-Jia Campus) and

schematic diagram of cam node implementation

Image Uploading for Safe Driving Applications in Vehicular Networks Based on Mobile Edge Computing Technologies 1913

5.6 Dynamically Adjusts the Number and

Quality of Uploaded Images Based on the

Proposed Methods

The number of uploaded images is dynamically

adjusted to adapt to vehicle speed. In this

implementation, we use cam nodes and placed on six

corners of the vehicle to capture images. We then

proceeded to compare the proposed method with other

related methods under the same deployment scenario.

In Figure 9, we compared the proposed adaptive

method with Tsai’s method [10] which without

considering driving safety awareness information

system. The values of vehicle speed curve are shown in

right vertical axis, while values on curves of the

proposed method and Tsai method are shown in left

vertical axis. Our proposed algorithm has less uploaded

image than Tsai’s method under the same conditions.

According to Figure 9 (a), the system will make sure to

upload the minimal images when vehicle speed is low

even it stops. As Figure 9 (b) shows, the amount of the

uploaded images changes with current vehicle speed.

The actual tested speed is shown in grey curve

(coordinate value on the right side). And the jitter of

the chart is caused by unstable bandwidth of mobile

network. The bandwidth usage of our proposed method

decrease by approximately 20% compared to Tsai’s.

Due to the prediction of available network bandwidth

in Tsai’s method takes average of the summary value

in previous 5 seconds, the accuracy of bandwidth

prediction is not high under the circumstance in which

the available network bandwidth varies in a wide range.

This shows that our method is the most efficient

method to save bandwidth yet maintain the same

quality of service comparing with other related

methods.

(a) Low speed

(b) High speed

Figure 9. Comparison the total uploaded image/s between Tsai’s method and the proposed method

In Figure 10, we evaluated the proposed method on

driving safety awareness information system. The

values of vehicle speed curve are shown in right

vertical axis, while values on curves of the proposed

method and Tsai method are shown in left vertical axis.

We conducted a comparison of the proposed method

with methods in related studies at high risk driving

condition such as making turns. The proposed method

not only adjusts the amount of uploaded frames

adaptively by vehicle speed on the basis of Table 1 but

also increases amount of the uploaded images in order

to preserve more detailed driving images while

detecting danger signals. However, Tsai’s method can

only adjust the number of uploaded frames by vehicle

speed. As a result, the proposed method is more

capable to conserve significant driving images. There

are some situations such as driving through the tunnel

or some area with poor signal which make the network

unreachable. In the proposed method, there is a

resending mechanism to deal with this situation. The

system is able to save images temporarily in the

Raspberry Pi while the internet connection is not

available. It then will resend the temporary data to Fog

server as the system reconnects to the internet. In

Figure 11, it shows the operation of resending

mechanism in the proposed method. The values of

vehicle speed curve are shown in right vertical axis,

while values on curves of uploaded amounts and local

temporary file are shown in left vertical axis. In the

boxed area, the chart of temporary file rises while the

internet connection is unreachable and vice versa. In

order to verify the dynamically adjusted shooting and

uploading in dangerous circumstance in the proposed

method, a road test was conducted. It is obvious that

the cam node image of boxed area is clearer than

others in the figure below. To verify the proposed

method, making turns will be considered as dangerous

condition by our algorithm. As shown in Figure 12,

only cam in the red marked place uploads more

pictures when the vehicle turns right.

1914 Journal of Internet Technology Volume 21 (2020) No.7

Figure 10. Comparison between Tsai’s method and the proposed method in driving safety awereness information

system

Figure 11. Resending mechanism in the proposed method

Figure 12. Road test results of the proposed method

6 Conclusion

This paper proposes an adaptive image uploading

control system for vehicle safety driving monitoring

applications based on mobile edge computing

technologies. In this study, we propose an architecture

for an image uploading system based on mobile edge

computing technologies. Our system achieves high

efficiency, with low end-to-end latency and fast

response. Our study also evaluates parameters such as

the vehicle speed, danger alert signals and available

bandwidth of network. We then use these parameters to

adjust the number of images taken per second, and then

automatically controls the quality and amounts of

image uploaded. We also calculate the minimum

number of images required to restore continuous

driving scenes based on the speed of the vehicle. We

explore the relationship between factors affecting data

transmission to the server, and this helps our system to

provide better service to road users driving than other

related studies, especially in dangerous situations.

When combined with a driving safety awareness

information system, our system can offer the most

complete and timely information to drivers in

emergency situations. It is hoped to propose solutions

Image Uploading for Safe Driving Applications in Vehicular Networks Based on Mobile Edge Computing Technologies 1915

for the current complex mobile networks in our future

works.

Acknowledgements

We thank the Ministry of Science and Technology

of Taiwan for supports of this project under grant

number MOST 109-2622-E-239-002-CC3, MOST

108-2622-E-239-004-CC3, MOST 107-2218-E-167-

004 and MOST 106-2221-E-239-036. We thank co-

authors and reviewers for their valuable opinions.

References

[1] C. Xu, S. Hu, W. Zheng, T. Abdelzaher, P. Hui, Z. Xie, H.

Liu, J. Stankovic, Efficient 3G/4G Budget Utilization in

Mobile Sensing Applications, IEEE Transactions on Mobile

Computing, Vol. 16, No. 6, pp. 1601-1614, June, 2017.

[2] M. Brahim, Z. Mir, W. Znaidi, F. Filali, N. Hamdi, QoS-

Aware Video Transmission Over Hybrid Wireless Network

for Connected Vehicles, IEEE Access, Vol. 5, pp. 8313-8323,

March, 2017.

[3] M. Tsai, 3CV3S: Cloud-Enabled Cooperative Car Video

Share and Search System, Journal of Internet Technology,

Vol. 19, No. 4, pp. 995-1002, July, 2018.

[4] B. Letswamotse, R. Malekian, C. Chen, K. Modieginyane,

Software Defined Wireless Sensor Networks (SDWSN): A

Review on Efficient Resources, Applications and

Technologies, Journal of Internet Technology, Vol. 19, No. 5,

pp. 1303-1313, September, 2018.

[5] N. Sathishkumar, K. Rajakumar, A Study on Vehicle to

Vehicle Collision Prevention Using Fog, Cloud, Big Data and

Elliptic Curve Security Based on Threshold Energy Efficient

Protocol in Wireless Sensor Network, IEEE International

Conference on Recent Trends and Challenges in

Computational Models, Tindivanam, India, 2017, pp. 275-

280.

[6] S. Zheng, X. Zhang, J. Chen, Y. Kuo, A High-Efficiency

Compressed Sensing-Based Terminal-to-Cloud Video

Transmission System, IEEE Transactions on Multimedia, Vol.

21, No. 8, pp. 1905-1920, August, 2019.

[7] Z. Deng, Y. Zhou, D. Wu, G. Ye, M. Chen, L. Xiao, Utility

Maximization of Cloud-Based In-Car Video Recording Over

Vehicular Access Networks, IEEE Internet of Things Journal,

Vol. 5, No. 6, pp. 5213-5226, December, 2018.

[8] Y. Zhang, M. Chen, N. Guizani, D. Wu, C. Leung, SOVCAN:

Safety-Oriented Vehicular Controller Area Network, IEEE

Communications Magazine, Vol. 55, No. 8, pp. 94-99,

August, 2017.

[9] M. Tsai, T. Pham, F. Ching, L. Chen, An Adaptive Solution

for Images Streaming in Vehicle Networks Using MQTT

Protocol, EAI International Conference on IoT as a Service,

Taichung, Taiwan, 2017, pp. 1-6.

[10] M. Tsai, T. Pham, C. Hsiang, L. Chen, Evaluation of the

Effect of Variations in Vehicle Velocity and Channel

Bandwidth on an Image-Streaming System in Vehicular

Networks, Springer Mobile Networks and Applications

Journal, Vol. 24, No. 3, pp. 810-828, June, 2019.

[11] Z. H. Mir, F. Filali, LTE and IEEE 802.11p for Vehicular

Networking: A Performance Evaluation, Journal on Wireless

Communications and Networking, Vol. 2014, Article No. 89,

pp. 1-15, May, 2014.

[12] H. Chen, D. Eddy, R. Chen, C. Chou, Speed-adaptive Street

View Image Generation Using Driving Video Recorder, IEEE

International Conference on Multimedia and Expo, Seattle,

WA, USA, 2016, pp. 1-6.

[13] K. Lee, K. Bong, C. Kim, J. Jang, K. Lee, J. Lee, G. Kim, H.

Yoo, A 502-GOPS and 0.984-mW Dual-Mode Intelligent

ADAS SoC With Real-Time Semiglobal Matching and

Intention Prediction for Smart Automotive Black Box System,

IEEE Journal of Solid-state Circuits, Vo. 52, No. 1, pp. 139-

150, January, 2017.

[14] K. Nobori, N. Ukita, N. Hagita, A Surround View Image

Generation Method with Low Distortion for Vehicle Camera

Systems Using a Composite Projection, IEEE International

Conference on Machine Vision Applications, Nagoya, Japan,

2017, pp. 386-389.

[15] A. Allouch, A. Koubaa, T. Abbes, A. Ammar, RoadSense:

Smartphone Application to Estimate Road Conditions Using

Accelerometer and Gyroscope, IEEE Sensors Journal, Vol.

17, No. 13, pp. 4231-4238, July, 2017.

Biographies

Ming-Fong Tsai received the Ph.D.

degree from the Department of

Electrical Engineering, Institute of

Computer and Communication

Engineering, National Cheng Kung

University, Taiwan. He is currently an

Associate Professor with the Department of Electronic

Engineering, National United University, Taiwan. His

current research interests include Internet of Things

and Vehicular Communications.

Chia-Yuen Lin received the B.S. and

M.S. degrees from the Information

Engineering from the Feng Chia

University, Taiwan. His current

research interests include Internet of

Things and Vehicular Communications.

1916 Journal of Internet Technology Volume 21 (2020) No.7

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

