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Abstract 

The Electro-Magnetic (EM) waves with Orbital 

Angular Momentum (OAM) can achieve the high 

spectral efficiency by multiplexing different OAM modes. 

In order to effectively identify the OAM modes received 

in the partial phase plane, different modes are mapped to 

the frequency shifts in the secondary frequency domain. 

The high-speed acquisition equipment is necessary for 

the traditional method in the process of receiving Radio 

Frequency (RF) or Intermediate Frequency (IF) signals, 

which suffers from a high cost. However, Compressive 

Sensing (CS) can break the Nyquist sampling restriction 

by random observation and is expected to build the 

relationship between the received signal and the 

frequency shift in the secondary frequency domain at a 

lower sampling rate, so that the cost is low. Moreover, 

due to the existence of the multipath effect, the transfer 

learning is employed to establish the spectrum-mode 

mapping, which further improves the Bit Error Rate 

(BER) performance and the transmission distance. 

Therefore, this paper proposes an intelligent OAM mode 

identification method based on CS and transfer learning. 

Meanwhile, the random sampling is carried out based on 

the Analog-to-Information Converter (AIC) to realize the 

OAM mode identification with the low sampling rate. 

The simulation results can verify the validity and 

efficiency of this method. 

Keywords: Orbital angular momentum, Secondary 

frequency domain, Compressive sensing, 

Analog-to-information converter, Intelligent 

mode identification 

1 Introduction 

As an intrinsic property of the Electro-Magnetic 

(EM) waves, Orbital Angular Momentum (OAM) is 

considered as the new dimension of wireless 

transmission, especially in future mobile communications. 

Due to the orthogonality between different OAM 

modes, they can be multiplexed to achieve the higher 

spectral efficiency and transmission rate, which makes 

OAM an important development direction of Beyond 

5th Generation (B5G) and 6th Generation (6G) mobile 

communications in the future [1-2]. Furthermore, OAM 

can not only increase the capacity by multiplexing, but 

also improve the transmission performance by Index 

Modulation (IM) [3]. However, the non-zero 

divergence angle is caused by the inverted cone shaped 

beams and the spiral phase distribution. When 

propagating in the free space, the divergence of the 

non-zero beam angle results in the increasing of the 

circular energy ring radius in the transverse plane, 

which makes it difficult to receive the all-phase plane 

in a long-distance transmission [4]. Therefore, the 

partial phase plane reception for OAM must be 

considered. 

For the partial phase plane receiving method [5], 

when different non-degenerate OAM modes are used 

to multiplex EM waves, the one-to-one frequency shift 

can be mapped to the secondary frequency domain by 

Virtual Rotating Antenna (VRA) [4, 6], so as to realize 

the accurate identification of OAM modes. In Dec. 

2016, the 27.5 km EM wave OAM transmission 

experiment was successfully completed [7-8]. In Apr. 

2018, the same research team also completed a 172 km 

ground-to-air transmission experiment from Beijing to 

Xiongan New Area in the north of Hebei Province, 

China [9]. However, with the coming of big data and 

internet of things [10-12], in the future B5G and 6G, 

due to the limited sampling capability of our existing 

hardware devices, it is difficult to meet the requirement 

of the high transmission rate, e.g. Tbps. Even if the 

high sampling rate can be achieved, the cost is huge. 

Therefore, in order to reduce the sampling rate, how to 

build the relationship between the received signal and 

the frequency shift in the secondary frequency domain 

so as to identify the OAM mode? It has become a 

difficult problem confronting us. 

As a new sampling theory, the Compressive Sensing 

(CS) takes advantage of the sparse characteristics of 

the signal and uses the random sampling to obtain the 

discrete samples of the signal under the condition of 

the far less than Nyquist sampling rate [13-14]. 

Moreover, It can realize the perfect recovery of the 

signal through the non-linear reconstruction algorithm 
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[15-16]. In recent years, CS theory has been applied to 

the detection of Generalized Space Shift Keying 

(GSSK) symbols in the uncertain Multiple-Input 

Multiple-Output (MIMO) transmission systems with 

the better performance [17], such as Orthogonal 

Matching Pursuit (OMP) [18] and the Basis Pursuit 

(BP) [19]. In addition, in the wake of the related 

research of the Analog-to-Information Converter (AIC) 

with Limited Random Sequence (LRS) modulation 

[20], the required sampling rate may be further reduced.  

In addition, even if the relationship between the 

received signal and the frequency shift in the 

secondary frequency domain can be established, due to 

the multipath effect in the transmission channel, the 

position and amplitude of the frequency shift in the 

secondary frequency domain are indirectly affected. 

That will make the mapping relationship between the 

frequency shift and the OAM mode unknown, which in 

turn affects the identification of OAM modes. The 

Convolution Neural Network (CNN) method has 

already been proposed as the effective method to 

achieve task learning [21], target recognition [22-23], 

channel estimation [24], signal detection [25], which 

can be used to determine the active OAM modes in the 

transmitted signal [26-28]. Nevertheless, in the process 

of identification, the problems of over-fitting and low 

detection accuracy often arise because of the limited 

number of datasets. Therefore, the CNN method cannot 

be directly used for training and it is necessary to 

migrate the pre-trained CNN model, share the 

parameters of the corresponding convolution layer and 

the pool layer, and adjust the hyperparameters [29], 

which obtains good performance. Thus, the transfer 

learning has emerged as a new learning framework that 

may achieve this goal [29]. 

In this paper, the CS and the transfer learning are 

applied to nondegenerate OAM multiplexing 

transmissions. Using AIC with LRS modulation as a 

detector through random sampling [20], the low 

sampling rate with CS can be used to build the model 

of the received signal and the frequency shift in the 

secondary frequency domain. Besides, the transfer 

learning is employed to establish the spectrum-mode 

mapping, thus accurately identifying OAM modes, and 

then the high-speed transmission will be achieved. 

Notably, the method proposed in this paper can 

effectively solve the major problems, i.e., the 

innovations can be highlighted as: (1) When sampling 

Radio Frequency (RF) signals directly, the sampling 

rate is very high, which makes the hardware equipment 

expensive. Besides, if analog devices are utilized to 

down-convert the RF signals received by antennas and 

then sample them at Intermediate Frequency (IF), the 

phase error and attenuation will be caused, which 

seriously affects our identification accuracy of OAM 

modes. Simultaneously, the sampling rate of the 

employed data acquisition card limits the data rate of 

the high-speed transmission; (2) At low sampling rates, 

the relationship between the received signal and the 

frequency shift in the secondary frequency domain is 

unknown; (3) The existence of multipath channel puts 

a negative effect on the identification of OAM mode, 

which limits the Bit Error Rate (BER) performance and 

the transmission distance. 

The rest of the paper is organized as the following. 

Section 2 provides an overview of the traditional 

methods. Compared with the shortcomings of the 

traditional methods, the system architecture of the 

method proposed in this paper is given in Section 3. 

Section 4 establishes the mapping relationship between 

the received signal, the spectrum and the OAM mode 

in the secondary frequency domain. Moreover, Section 

5 gives some simulation results to verify the validity 

and efficiency. Finally, Section 6 concludes the paper 

and further looks forward to the development in the 

future. 

2 Preliminary Knowledge 

In the previous work, a method of detecting OAM 

by the partial phase plane reception using VRA 

interpolation was proposed [7]. Receiving OAM wave 

using the VRA can generate the rotational Doppler 

frequency shift, and the frequency shift in the 

corresponding transform domain will arise by the 

interpolated signals received by the antennas. In this 

transformation domain, different index keying sets 

bring the different OAM modes combinations, and 

different OAM modes combinations will produce the 

different frequency shifts, but only one spectrum line 

will be obtained. Because it has the same physical 

dimension as the traditional frequency domain, the 

transformation domain that produces the frequency 

shifts is named as the secondary frequency domain [6]. 

Generally, the “first” frequency domain can be 

considered as the traditional frequency domain. 

In this process, the multiple combinations of 

different non-degenerate OAM modes are converted 

into the same frequency signal but with different 

frequency shift combinations, which realizes the 

demodulation and identification of multiplexed OAM 

modes. Based on VRA, there are two commonly used 

receiver structures based on RF and IF sampling, as 

shown in Figure 1. Specifically, in Figure 1(a), the 

high-speed sampling oscilloscope at the receiving end 

oversamples directly the RF signal, and then different 

OAM modes are converted into the frequency shifts by 

VRA, which can be used for the offline detection of 

OAM modes. Because of the high sampling rate 

requirement, the cost of this method is very high. 

In contrast, in Figure 1(b), the RF signal obtained by 

the receiver is down-converted to IF. Then, the OAM 

mode can be identified in real time by the low-rate data 

acquisition card. However, due to the low sampling 

rate hardware limitation, this method will restrict the 

bandwidth of the IF frequency, thus reducing the 
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amount of data carried by the IF bandwidth. 

Interpolation processingSpectrum observation

Oscilloscope 

RF sampling directly

Offline data processing 
 

(a) Receiver with oscilloscope 

Down-conversion

IF sampling 

Data acquisition card

Real-time data processing 

Interpolation processingSpectrum observation

Low-pass filter

 

(b) Receiver with down-conversion 

Figure 1. The comparison of receiver structures based 

on RF and IF sampling 

In summary, the traditional RF and IF receiver of 

OAM waves are based on the Nyquist sampling 

theorem. At present, there is no research on the use of 

CS in the identification of OAM mode under the 

premise of the low sampling rate. Besides, due to the 

multipath effect, the model between the frequency shift 

in the secondary frequency domain and the OAM 

mode is unknown, which brings the direct difficulty to 

identify the OAM modes. 

3 System Architecture 

3.1 System Structure 

As we know, CS algorithm can break the Nyquist 

sampling rate. Because of the limitation of hardware 

resources, CS algorithm combined with the low 

sampling rate AIC is used to effectively replace the 

high-speed sampling oscilloscope, which greatly 

reduces hardware cost. On the other hand, when 

reducing the sampling rate required by the hardware, a 

model of the received signal and the frequency shift in 

the secondary frequency domain should be established. 

Specifically, the RF signals received by antennas are 

randomly sampled by AIC, and the spectrum line 

mapped to OAM mode is separated and recovered in 

the secondary frequency domain by CS, which greatly 

improves the data transmission rate and avoids the cost 

of the high-speed sampling device.  

In addition, the transfer learning is helpful to 

establish the spectrum-mode mapping and realize the 

OAM mode identification within the multipath 

environment, which can be employed instead of the 

traditional method, such as Maximum Likelihood 

Estimation (MLE). Figure 2 illustrates the receiver 

with AIC, CS algorithm and transfer learning modules. 

AIC 

CS algorithm

Spectrum observation

Random sampling with low rate

Real-time data processing

Transfer learning

 

Figure 2. The receiver structure with AIC, CS 

algorithm and transfer learning modules 

3.2 Analog-to-Information Converter 

In this subsection, a promising symbol detector with 

the random sampling is reviewed. AIC with LRS 

modulation is adopted at the receiving end, and the 

structure of AIC with LRS modulation is shown in 

Figure 3. It consists of the limited random sequence, 

integrator and low-power Analog-to-Digital Converter 

(ADC). Unlike the traditional ADC, AIC can sample 

signals randomly. The LRS elements are composed of 

“1” and “0”. By mixing the sequence of “0” and “1” 

and integrating the mixed signal, the physical process 

of the random sampling is completed well by the 

sampler. Assume the sequence is in length N and 

consists of M frames, and each frame is in length L. 

The elements are composed of N - 1 “0” and only one 

“1”, and the location of “1” is random [20]. Assume 

that the position of “1” is q, where q is a random 

integer between 0 and L – 1, and the generation of 

random integer follows a distribution, such as a 

uniform distribution. 
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Generator

ADC

 

Figure 3. The structure of AIC with LRS modulation 

The input signal s(t) and the signal p(t) generated by 

the periodic transmission of a finite length random 

sequence are mixed, and the mixing results are fed into 

the integrator, where the period of the integrator is the 

reciprocal of the average sampling rate of the random 

sampler, and then the integrator is connected to the 

traditional ADC. In the sampling process, only when 

the integrator and ADC are synchronized with the 

finite length sequence generator, can the random 

sampling of the analog signal be realized. The output 

s(n) is a discrete signal, which will be sent to the 

successive real-time data processing module by CS 

algorithm for recovery. 

Overall, if the number of the original sampling 

points is N, then after the AIC with LRS modulation, 

the ADC can use the sampling points number of M for 

sampling, and M is generally much smaller than N. 

3.3 Compressive Sensing Algorithm 

The CS technology breaks through the limitation of 

the uniform sampling rate in the traditional Nyquist 

sampling theorem. For sparse signals, the random 

sampling is used to recover the complete signal with 

the sampling rate far less than the Nyquist sampling 

rate [15-16]. 

Since the random sampling of AIC at the receiver 

can meet the requirement of CS, the OAM modes with 

a known sparsity can be identified by CS algorithm. 

For CS algorithm, there are two kinds of widely used 

greedy algorithms: Matching Pursuit (MP) algorithm 

and Orthogonal Matching Pursuit (OMP) algorithm. 

When the measurement matrix is not easy to obtain, 

MP algorithm can use the greedy iteration algorithm to 

construct a matching dictionary and obtain sparse 

vectors. Compared with MP algorithm, the 

improvement of OMP algorithm is based on the 

Schmidt orthogonalization of the selected columns in 

each iteration to accelerate the convergence of the 

algorithm. For OAM mode identification, the 

measurement matrix is known and the real-time 

demodulation needs to be guaranteed. Thereby, this 

paper considers and employs the OMP algorithm [30]. 

3.4 Transfer Learning 

It is well known that Artificial Intelligence (AI) 

extracts features from training data, summarizes, 

integrates and adjusts the accuracy of the model 

gradually [31], but the process is based on the 

assumption that: the same distribution of the training 

data and the test data. When the distribution changes, 

most statistical models need to be rebuilt with the 

newly collected training data, but this is not realistic. In 

such case, the transfer learning between task domains 

is desirable. 

Concerning the multipath channel in the actual 

transmission, the channel model is difficult to be 

estimated, and the transfer learning as a new AI 

method is proposed. It mainly includes the pre-training 

process of CNN into the source domain datasets and 

the later learning process of the target domain datasets 

with the mode migration, in which the target domain is 

set to identify OAM modes. In the case of the high 

SNR, the two-dimensional line image is mapped to 

OAM mode in the secondary frequency domain after 

VRA interpolation algorithm, which needs to be 

transferred for learning training. Ideal secondary 

frequency spectrum is a single line in the time invariant 

location. However, due to the multipath transmission, 

the spectrum line is time variant for the same OAM 

mode. For OAM mode datasets, the input is the 

position and amplitude of the spectrum line in the 

secondary frequency domain and the output is OAM 

mode number. In the actual OAM mode multiplexing 

long distance transmission, the OAM mode needs to be 

determined first, so that the demodulation can be 

achieved. When the data at the low sampling rate are 

received, the spectral lines in the secondary frequency 

domain need to be reconstructed through the CS 

algorithm. However, if the receiving terminal has 

mobility, such as an on-board mobile receiving station, 

the channel simultaneously shows time varying 

characteristics. Then according to the position and 

amplitude information of the spectral lines after CS, 

the OAM mode must be identified through transfer 

learning. 

Since the ImageNet datasets cover 1.2 million 

images, it has been widely used for the training of 

universal models. Therefore, due to the few OAM 

mode datasets in the target domain, for the migration 

pre-training process, the CNN model AlexNet after the 

training of ImageNet datasets is adopted [32]. 

Firstly, the original AlexNet model is a classification 

task for 1000 categories, so the last three layers must 

be emphasized and re-adjusted, i.e., a connection layer, 

a softmax layer, and a classification layer should be 

replaced. Secondly, adjust the parameters of the fully 

connected layer. In order to accelerate the training 

process, the value of the weight coefficient and offset 

bias can be increased. Thirdly, set hyperparameters, i.e., 

reduce the initial learning rate, slow down the learning 

of the transfer layer, and speed up the training of the 

last three layers. Finally, modify the output layer to the 

size of the OAM mode number, and initialize the 

output layer weight. Notably, the transfer learning 

hyperparameters are listed in Table 1. 
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Table 1. Transfer learning parameters 

Training parameters Value 

Learning rate 0.01 

Learning attenuation 0.001 

Momentum 0.5 

Weight attenuation 0.005 

Batch size 64 

 

The detailed process of the fine tuning is shown in 

Figure 4. Initially, all weights are initialized. Afterwards, 

some parameters are fine tuned to reduce the learning 

rate, and then the training is carried out according to 

the new datasets of OAM mode. Consequently, OAM 

modes can be identified with the high precision, and 

the index key combination of the corresponding modes 

can be obtained.  

Original 

ImageNet datasets

CNN training

Weight of AlexNet 

model after pre-training

Fine tune parameters 

and reduce learning rate

New OAM 

mode datasets

Target domain

Adjust the weight 

of AlexNet model 

after training

Initialization

Source domain

 

Figure 4. Fine tuning process 

It should be emphasized that the fine tuning process 

is based on the AlexNet model weight after CNN 

training of the original ImageNet datasets in the source 

domain [32]. In the target domain, some training 

parameters are fine tuned according to the new OAM 

mode datasets, mainly including the learning rate and 

the batch size. 

4 Mathematical Model 

According to Figure 3, the signal through AIC with 

LRS modulation can be denoted as follows 

 ( ) ( ) ( )d .
T

s n s t p t t= ∫  (1) 

It is well known that the recovery process of OMP is 

to reconstruct the P-dimensional original signal z from 

the known Q-dimensional measurement signal s and 

the measurement matrix Φ . Assuming that the length 

of the signal z is P, it is sparse under a projection array 

Ψ , Ψ  is the P P×  matrix, only K elements are 

greater than the threshold ε , where K is far less than P, 

the measured value can be obtained by observing the 

signal z on the basis Φ , Φ  is the Q P×  matrix, then 

we can get 

 ,= = =s Φz ΦΨf Θf  (2) 

where, =Θ ΦΨ , Θ  is the sparse representation of the 

signal, f is the spectrum in the secondary frequency 

domain. The dimension Q of the measured value in the 

above Equation (2) is less than the dimension P of the 

signal. There are infinite solutions to the equation. It 

needs exhaustive time to search the correct result. 

However, this problem can be efficiently solved in the 

method with minimum norm problem.  

Since LRS sequence can satisfy the random 

sampling requirement of OMP algorithm, OMP 

algorithm is considered to recover the spectrum line in 

the secondary frequency domain according to the 

signal after AIC with LRS. Thus, according to [7], 

receiving an OAM wave using the VRA can generate 

the interpolated signals, and rotational Doppler 

frequency shift can be detected from the interpolated 

signals. Based on that, the measurement matrix Φ  can 

be defined as 

 T T T
,

−

= =Φ w P R  (3) 

where w is the matrix of the weighting coefficient for 

the received signal after AIC, ( )
T

⋅  denotes the 

transpose of the matrix, P is the cross-correlation 

matrix between the received signal and the interpolated 

signal, and R is the autocorrelation matrix of the 

received signal. 

Then, according to the measurement matrix Φ  and 

the received signal s , the frequency shift of the 

interpolation signal can be obtained, which is the 

spectrum f in the secondary frequency domain. 

The spectrum lines in the second frequency domain 

can be obtained by OMP algorithm based on the 

measurement matrix, and the channel matrix from the 

transmitter to the receiver in the free space can be 

obtained easily [33-35]. Considering that the channel 

model is multipath in the actual transmission, the 

position and amplitude of the spectrum lines in the 

second frequency domain are affected, which 

subsequently changes the ways of the OAM mode 

identification. The position and amplitude of the 

spectrum f can be defined  

 
OAM

( , ) ( ),A fω= =f H  (4) 

where, A, ω indicate the amplitude and position of the 

secondary frequency spectrum respectively, 
OAM

H  

represents the multipath model of OAM channel, ( )f ⋅  

is a mapping relation function. 

Due to the time variant property of the spectrum line 

in the secondary frequency domain, it’s necessary to 

introduce intelligent method to help us realize the 

mapping relation between the spectrum line and the 

OAM mode. 

Compared with L2 norm, L1 norm makes the transfer 

learning converge faster, therefore L1 norm is used as 

the criterion [24]. Then, the final model needs to 
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minimize the L1 norm of the source AlexNet model and 

the target spectrum-mode mapping model. 

 
1 1

,
t s

L = −ΓΩ Ω  (5) 

where, 
1
 denotes the one norm for the vector, 

s
Ω is 

the source AlexNet model, 
t

Ω is the target spectrum-

mode mapping model, Γ  controls the transfer 

regularization amount. Moreover, in order to regularize 

the distance between the target spectrum-mode 

mapping model and the learned AlexNet model [36], 

the target spectrum-mode mapping domain weight 

parameters must be trained again. Thus, the objective 

function used in this paper can be expressed as 

 
1

1

min [ ( )],
t

N

t s i t i

i

J C l

=

= −Γ + −∑
Ω

Ω Ω Ω f  (6) 

where, C controls the weight of the loss function, 
i
l  

denotes the i-th OAM mode output, 
i
f is the i-th 

spectrum in the secondary frequency domain, N is total 

number of OAM training datasets. 

5 Performance Evaluation 

5.1 The Comparison of Receiver Structure 

According to the description in Section 3 and 

Section 4, an example is proposed to show the validity 

of the proposed method. Additionally, in order to 

further analyze the efficiency, we compare the 

identification probability, the Bit Error Rate (BER) 

performance and the capacities in three cases, i.e., the 

cases of RF sampling directly, IF sampling and OMP 

with AIC. 

5.1.1 Example 

The main simulation parameters are listed in Table 2 

and results are all conducted with MATLAB R2016a 

programming platform. Assuming that the separated 

OAM Mode 1 and OAM Mode 2 are generated for 

index keying transmission at the transmitter 

respectively, and the 100 MHz IF signal is up-

converted to 10 GHz RF, fed to the Uniform Circular 

Array (UCA) composed of 16 array elements, then 

received by two antennas placed at the receiving 

energy ring through the partial phase plane method at 

the receiver. The receiver will restore the spectrum 

lines according to the index keying set of the different 

OAM mode combinations. Figure 5 illustrates the 

signals received by Antenna 1 and Antenna 2 for OAM 

Mode 1, and Figure 6 shows the signals received by 

Antenna 1 and Antenna 2 for Mode 2. 

The limited random sequence p(t) designed is shown 

in Figure 7. The length of the signal is 128, and 

consists of 16 frames, each frame is in length 8. Then, 

the measurement signals utilized by CS for OAM 

Mode 1 after AIC with LRS can be shown in Figure 8, 

and the measurement signals used by CS for OAM  

Table 2. Simulation parameters 

Parameters Value 

Carrier frequency 10 GHz 

Signal length 128 

Modulation scheme QPSK 

Beam divergence angle 2° 

UCA radius 9 cm 

Array element number 16 

Receiver ring radius 3.49 m 

Receiving antennas space 1 m 

Transmission distance 100 km 

OAM modes 1, 2 

Sampling rate 1.25 GHz 

 

 

Figure 5. Received signals of Antenna 1 and Antenna 

2 for Mode 1 

 

Figure 6. Received signals of Antenna 1 and Antenna 

2 for Mode 2 

 

Figure 7. Typical figure of the LRS p(t) 
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Figure 8. Typical measurement signals used by CS for 

Mode 1 after AIC 

Mode 2 after AIC with LRS can be shown in Figure 9. 

Both low-rate measurement signals will be applied to 

recover the spectrum line in the secondary frequency 

domain. 

 

Figure 9. Typical measurement signals used by CS for 

Mode 2 after AIC 

According to the known sparsity of “1” and the 

measurement signals, the reconstruction is carried out 

by combining the OMP algorithm. Finally, the 

recovered signal can be converted to a spectrum line in 

the secondary frequency domain, so that the separated 

Mode 1 and Mode 2 are converted to the frequency 

shift in the secondary frequency domain respectively. 

As shown in Figure 10, the index of the different OAM 

modes will be obtained based on the different 

frequency shifts. Moreover, it should be noted that this 

example covers only two cases in the index keying 

combination of OAM Mode 1 and Mode 2. Certainly, 

there are also cases where neither two OAM modes are 

sent and both OAM modes are sent, and the process is 

similar. Besides, if the mixed multiple OAM modes are 

sent at the same time, the spectrum is only a single line.  

 

Figure 10. Spectrum in the secondary frequency 

domain 

As we know, if the Nyquist sampling is used, two 

sampling points at least are required for each signal 

period. Then, for this example, there are at least 26 

sampling points. However, 16 sampling points have 

been used to realize the low-rate sampling of 10 GHz 

RF signal and reconstruct the spectrum line in the 

secondary frequency domain, so that OAM mode 

identification is achieved. Thus, the method of AIC 

with CS proposed in this paper has been verified. 

5.1.2 Analysis 

Comparison of analog devices. Traditional RF 

receiver of OAM waves is based on the Nyquist 

sampling theorem. For example, if 10 GHz RF signal is 

sampled, a sampling rate of at least 20 GHz is required. 

In practice, more than 2 points need to be taken in a 

sampling period in order to recover the signal well. 

The cost of such a high sampling oscilloscope is 

extremely higher than the method of IF sampling and 

OMP with AIC. What’s more, if the down-conversion 

is adopted, the sampling rate of the data acquisition 

card is up to 1.25 GHz, which limits the bandwidth of 

IF. However, due to the requirement of the low 

sampling rate, the higher bandwidth can be obtained 

through OMP with AIC compared with IF sampling, 

and then the higher data transmission rate can also be 

achieved. 

Simulation results. Figure 11 demonstrates that when 

SNR increases, the identification probability 
I
P  

increases quickly. It can be noted that when the SNR 

reaches about 19 dB, the identification probability of 

the proposed method in this paper will approach 1, 

which is superior to the traditional IF sampling. The 

lower the out-of-band interference ratio 
B
I  is, the 

higher the identification probability of OAM is. 

Besides, if 
B
I  is as low as 0.001, the identification 

probability of IF sampling is very close to that of RF 

sampling and OMP with AIC. Especially, when 
I
P  is 

greater than the threshold probability 
0

0.89P = , this 

method will work well. 

 

Figure 11. Identification probability varying with SNR 

According to the identification probability 
I
P , the 

BER denoted by 
BER
P can be obtained as 
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BER I

1P P= −  (7) 

Therefore, the BER simulation is shown in Figure 

12, the highest BER performance of IF sampling can 

be found under certain SNR, and the BER performance 

of OMP with AIC is fairly better than IF sampling. 

 

Figure 12. BER simulation result 

For a communication system, the transmission 

capacity is also an extremely important evaluation 

indicator. Consequently, Figure 13 illustrates the 

capacity curve as BER changes according to the 

Shannon formula and BER curve. The capacity curve 

of OMP with AIC is close to the RF sampling directly. 

 

Figure 13. Capacity comparison 

Overall, OMP with AIC is able to be used for 

random sampling at a fairly low sampling rate, which 

is of great benefit to replace the high-speed sampling 

scheme. However, the sampling equipment with AIC 

increases the difficulty. Then, the trade-off should be 

considered in the practical application. 

5.2 The Comparison of Establishing Spectrum-

Mode Mapping after CS 

5.2.1 Generation of Training Datasets 

Multipath effect is that when EM wave is 

transmitted in free space, multiple paths signals are 

generated due to the reflection or scattering, and 

different paths arrive at the receiving end at different 

times. If they are superimposed, the interference or 

even fading will occur, which affects the original 

signal receiving and even makes errors.  

We will artificially build the training datasets. 

Suppose that a sinusoidal signal with a single 

frequency of 10 GHz and an amplitude of 1 is 

generated. This sinusoidal signal carries different 

initial phases that correspond to different OAM modes, 

and the amplitude fading is set to 0.8. The time delay is 

20 random numbers. Then, the 20 paths can be 

superimposed, and Additive Gaussian White Noise 

(AWGN) is added to generate an array of length 1000 

and 1000 groups. After VRA, the positions and the 

amplitudes of the different spectrum lines in the 

secondary frequency domain are obtained respectively, 

but the corresponding mode is the same. The process 

for other modes is similar. Notably, OAM Mode 1 is 

used as an example. Through a large number of 

repeated tests, if the single identified mode is between 

0.5 and 1.5, the experimental test is believed to identify 

the OAM mode correctly. 

Due to the existence of the multipath channel in the 

actual transmission, some intelligent methods must be 

considered.  

The multipath effect transmission scenario is shown 

in Figure 14, the ellipsis indicates multiple paths. 

 

Figure 14. OAM transmission scenario under the 

multipath effect 

Hence, in order to analyze the validity and 

efficiency of the transfer learning method used in 

channel estimation, the identification probability, Bit 

Error Rate (BER) and capacity are compared with 

three cases, i.e., Back Propagation (BP) neural network, 

CNN and the traditional MLE method. The 

experimental environment configuration is based on 

Matlab development environment equipped with i7 

(main frequency 3.2 GHz, quad-core) with 8GB 

memory. Besides, the number of datasets generated 

under different SNR is 15,000 in total, and the training 

time required is nearly 2 hours and depends on 

machine configuration. The detailed simulation 

parameters are shown in Table 3.  

Table 3. Simulation parameters 

Parameters Value 

Carrier frequency 10 GHz 

Signal bandwidth 70 MHz 

Modulation QPSK 

Receiving antenna spacing 1 m 

Transmission distance 100 km 

Learning rate 0.002 
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5.2.2 Identification Probability 

Because the transfer learning is aimed to make full 

use of the trained AlexNet model of million datasets to 

fine tune some parameters, the model has achieved 

good results on limited number of OAM datasets. As 

shown in Figure 15, when SNR increases, the 

identification probability 
I
P  increases. It can be seen 

that when the SNR is in the range of 5-15 dB, the 

identification probability of the transfer learning is far 

greater than that of BP neural network, CNN and the 

traditional MLE method, which greatly improves the 

performance of OAM mode identification. 

 

Figure 15. Identification probability varying with SNR 

5.2.3 BER  

According to the identification probability and 

Equation (7), the BER curve is shown in Figure 16. It 

can be found that the traditional MLE has similar BER 

with BP neural network and CNN, but the BER curve 

of the transfer learning is far lower than those three 

methods. Under the same BER, the best SNR gain can 

be increased by 4 dB, which leads to that the 

transmission distance can be extended from 100 km to 

158.4 km. Otherwise, in the case of the same distance, 

the sensitivity is improved, i.e., the minimum required 

SNR in the receiver is reduced. 

 

Figure 16. BER simulation results 

6 Conclusion 

The proposed intelligent method in this paper, which 

combines CS algorithm with the low sampling rate 

AIC, has been effectively applied to the accurate 

identification of OAM modes. Furthermore, the 

validity and efficiency of this method are confirmed 

through an example and some simulations analysis, 

such as the comparison of analog devices, the 

identification probability, BER and the capacity. The 

simulation results also show that the BER performance 

of this method can be improved by 4 dB and the 

transmission distance can be extended, e.g., from 100 

km to 158.4 km. Moreover, with the incoming of the 

next generation mobile communications (B5G and 6G), 

aimed at the problem of OAM mode identification in 

the long distance and low SNR transmission, the 

wireless high-speed transmission even to 1 Tbps with 

the low sampling rate becomes a promising topic. 

Evidently, it can be predicted that the proposed method 

is significant to promote the transmission distance and 

the transmission capacity with the intelligent low 

sampling rate AIC hardware equipment in the future. 

Furthermore, it has to be admitted that, although a 

scenario in the multipath effect transmission channel 

with the constant attenuation and randomly varying 

delays within a certain range can be established by 

transfer learning, the actual multipath environment 

may be more complicated, and the current neural 

network datasets are very limited and can only be 

regarded as small sample datasets. In order to ensure 

the high accuracy and satisfy the actual scenarios, more 

diverse datasets need to be trained and a large number 

of practical field tests to get more data in different real 

transmission scenarios for training should be carried 

out. Moreover, in the actual transmission multipath 

environment, the network structure has to be 

continuously optimized, and there is still amount of 

work to be done later. 
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