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Abstract 

The augmented cube, denoted by ,
n

AQ  is an important 

variant of the hypercube. It retains many favorable 

properties of the hypercube and possesses several 

embeddable properties that the hypercube and its other 

variations do not possess. Connectivity is one of the most 

important indicators used to evaluate a network’s fault 

tolerance performance. Structure and substructure 

connectivity are the two novel generalizations of the 

connectivity, which provide a new way to evaluate fault-

tolerant ability of a network. In this paper, the structure 

connectivity and substructure connectivity of the 

augmented cube for 1,{ , , }
M L N

H K P C∈  is investigated, 

where 1 6,1 2 1M L n≤ ≤ ≤ ≤ −  and 3 2 1.N n≤ ≤ −  

Keywords: Structure connectivity, Substructure 

connectivity, Fault-tolerant ability, 

Augmented cube, Interconnection network 

1 Introduction 

Fault-tolerant ability is a very important aspect for 

evaluating the performance of an interconnection 

network. An interconnection network with good fault-

tolerant ability can run well and achieve ideal results 

even if some parts of the network fail or are damaged. 

Therefore, we hope the fault-tolerant ability of an 

interconnection network can be assessed by some 

indicators. Connectivity is one of the most important 

indicators we use to evaluate a network’s fault-tolerant 

ability. A graph G with n vertices, after removing any 

1k −  vertices (1 )k n≤ < , the resulting subgraph is still 

connected. After removing some k vertices, the graph 

G becomes a disconnected graph or a trivial graph. 

Then G is a k-connected graph, and k is called the 

connectivity of graph G, denoted by k(G). Generally, 

the larger the connectivity of a graph, the more stable 

the network it represents. Although the connectivity 

can correctly reflect the fault-tolerant performance of 

the system, it has an obvious drawback. That is, it 

assumes that all vertices adjacent to the same vertex 

will become faulty at the same time, and the 

probability of this case happening in real environment 

is very low. Hence, it does not accurately reflect the 

robust performance of large-scale networks. The 

conditional connectivity proposed by Harary [1] 

overcomes this shortcoming by attaching some 

requirements to each component when the entire 

network becomes disconnected due to failure of some 

vertices. Then, Fàbrega et al. [15] proposed the concept 

of g-extra connectivity. Given a graph G and a non-

negative integer g, if there is a set of vertices in the 

graph G such that the graph G is disconnected after the 

vertex set is deleted and the number of vertices of each 

component is greater than g, then we call it a vertex cut. 

The minimum cardinality of all vertex cuts is referred 

to as the g-extra commectivity of graph G, denoted by 

( )
g
k G . g-extra connectivity is a generalization of the 

superconnectivity. The superconnectivity of a graph G 

actually corresponds to 
1
( )k G  [15, 26]. More information 

on connectivity can be found in [4-14, 16, 18, 22-25]. 

However, both the connectivity and the improved 

conditional connectivity discussed above are based on 

the assumption that a single vertex failure is an 

independent event. Under such connectivities, when 

any vertex in the network fails, there is no effect on the 

vertices that are directly connected to this vertex. 

However, in fact, when a vertex in the network 

becomes faulty, the probability of vertices around this 

vertex will becoming faulty is greatly increased, which 

may form a faulty structure centered on this faulty 

vertex. Therefore, Lin et al. [2] proposed the concept 

of structure connectivity ( , )
g n
k Q H  and sub-structure 

connectivity ( , )s

n
k Q H  of the hypercube 

n
Q  in [2] for 

1 1,1 1,2 1,3 4{ , , , , }.H K K K K C∈  They actually generalized 

the faulty element from a single faulty vertex to a 

faulty structure (substructure). More results on 

structure and substructure connectivity can be found in 

[17, 19-21, 27]. 

The augmented cube, proposed by Choudum and 

Sunitha [3], as an important variant of the hypercube, 

not only retains some of the superior properties of the 
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hypercube, but also has many properties that are not 

available in hypercubes and other variants [28-29]. For 

example, the connectivity of the augmented cube is 

2 1n − , which is almost twice that of a hypercube, This 

means that the fault tolerance ability of the augmented 

cube is somewhat higher than that of the hypercube. In 

this paper, we focus on the structure and substructure 

connectivity of augmented cube. We establish H-

structure and H-substructure connectivity of 
n

AQ  for 

1,{ , , }.
M L N

H K P C∈  (shown in Figure 1), respectively, 

where 1 6,k≤ <  1 2 1,L n≤ < −  and 3 2 1.N n≤ < −  

 

Figure 1. 1, ,
M L

K P  and 
N

C  

The rest of the paper is structured as follows. In 

Section 2, the definition of the augmented cube and 

some useful properties of it are presented. Then, 

Section 3 presents the main results on ( , )
n

k AQ h  and 

( , )s

n
k AQ h  of augmented cube for each 1,{ , , }

M L N
H K P C∈  

in this paper. Conclusions are presented in Section 4. 

2 Preliminaries 

In order to better study the nature of the 

interconnection network, we generally model the 

interconnection network as an undirected graph, where 

each vertex in the graph represents a server, and each 

edge in the graph represents a communication link 

connecting two servers. A graph can be defined as a 

binary group: ( ( ), ( ))G V G E G= , where: (1) ( )V G  is a 

finite and nonempty set of vertices. (2) ( )E G  is a finite 

set of edges connecting two different vertices (vertex 

pairs) in ( )V G . In this paper, all graphs are referred to 

simple graphs. We use ( )N u  to denote all vertices 

adjacent to the same vertex u for ( )u V G∈ . 

For graphs G and H, if ( ) ( )V H V G⊆  and 

( ) ( )E H E G⊆ , then H is called the subgraph of G, G is 

called the supergraph of H. If H is a subgraph of G 

with ( ) ( )V H V G= , then H is called the spanning 

subgraph of G, and G is called the spanning supergraph 

of H. For the non-empty vertex subset ( )V V G′∈  of 

graph G, if G’s subgraph H has V ′  as its vertex set, 

and the two end vertices of each edge of H lie in V ′ , 

then subgraph H is called the induced subgraph of G. 

Two graphs G and H are isomorphic if there exists a 

bijection : ( ) ( )f V G V H→  such that ( , ) ( )u v E G∈  if 

and only if ( ( ), ( )) ( )f u f v E H∈ . Let H be a subgraph 

in graph G and F be a set of elements and each element 

is a vertex subset of graph G. Let ( ) .
s F

W F s
∈

= ∪  If the 

set F satisfies that ( )G W F−  is a disconnected graph 

or a trivial graph and the induced subgraph of each 

element in F is isomorphic to one of the spanning 

supergraphs of H, then F is called a H-structure cut of 

G. The H-structure connectivity of graph, denoted by 

( , )k G H , is the minimum cardinality of all H-structure 

cuts of G. If the induced subgraph of each element in F 

is isomorphic to one of the spanning supergraphs of a 

subgraph of H, then F is called a H-substructure cut of 

G. The H-substructure connectivity of graph G, 

denoted by ( , )s

k G H , is the minimum cardinality of 

all H-substructure cuts of G. If H  is just an isolated 

vertex. Then H-structure connectivity and H-

substructure connectivity are exactly the traditional 

connectivity. 

If the set of vertices of a graph G can be divided into 

two disjoint subsets X and Y, where | |S m=  and 

| |Y n= , such that any vertex in X has a unique edge 

with each vertex in Y and there is no edge has two end 

vertices in the same subset. Then G is called a 

complete bipartite graph, denoted by 
,m n

K . We use 
1

K  

to represent an independent vertex. A path 
k
P =  

1 2
, , ,

k
v v v< >…  is a finite non-empty sequence with 

different vertices such that 
1

( , ) ( )
i i
v v E G

+
∈  for 

1 1i k≤ ≤ − . A cycle 
1 2
, , ,

k k
C v v v= < >…  for 3k ≥  is 

a path where ( , ) ( )
i k
v v E G∈ . 

In the following, we shall introduce the definition of 

the augmented cube and some properties of it. 

Definition 1. [3] Let an integer 1n ≥ , an n-

dimensional augmented cube 
n

AQ  consists of  

vertices, each vertex in 
n

AQ  is labeled by a unique -

bit binary string 
1 2 1n n

u u u u
−

… , where {0,1}
i
u ∈  for 

1, 2, ,i n= … . The augmented cube 
1

AQ  is a complete 

graph 
2

K  with two vertices 0 and 1. For 2n ≥ , 
n

AQ  

is build from two disjoint copies of 
1n

AQ
−

 according to 

the following steps: Let 
1n

AQ
−

 denote the graph 

obtained from one copy of 
1n

AQ
−

 by prefixing the label 

of each vertex with 0. Let 
1

1
n

AQ
−

 denote the graph 

obtained from the other copy of 
1n

AQ
−

 by prefixing the 

label of each vertex with 1. A vertex 
1 2 1

0
n

u u a a
−

= …  

of 
1

0
n

Q
−

 is adjacent to a vertex 
1 2 1

1
n

v b b b
−

= …  of 

1
1

n
AQ

−

 if and only if, for 1, , 1i n= −…  either (1) 

i i
a b= , in this case, ( , )u v  is called a hypercube edge 

or (2) 
i i
a b= , in this case, ( , )u v  is called a 

complement edge. 
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For any vertex 
1 1n n

u a a a
−

= …  in augmented cube. 

we use i
u  (respectively, i

u ) to denote the binary 

string 
1 1 1n i i i

a a a a a
+ −

…  (respectively, 
1 1 1n i i i

a a a a a
+ −

… ). 

It is clear that 1 1
u u= , we may mix these two notations 

whenever it is convenient. For example, if 011001,u =  

then 1 1
011000,u u= =  2

011011,u =  4
010001,u =  

4
010110,u =

4 2( ) 010011,u =

4 3( ) 010010,u =  4 2( ) 010010,u =  

and 4 2( ) 010101.u =  

The definition of augmented cube above is recursive. 

As with hypercube or other graphs, augmented cube 

also has several definitions. An alternative definition of 

n
AQ  is as follows: 

Definition 2. [3] An n-dimensional augmented cube 

with 1n ≥  contains 2n  vertices, each vertex of which is 

labeled by a unique n-bit binary string 
1 2 1n n

u u u u
−

… , 

where {0,1}
i
u  for 1, 2, ,i n= … . For any two vertices 

1 2 1n n
a a a a a

−

= …  and 
1 2 1n n

b b b b b
−

= … , a is adjacent 

to b, if and only if, there exists an integer k, 1 k n≤ ≤ , 

such that either (1) 
k k
a b=  and 

i i
a b=  for 1 i n≤ ≤ , 

i k≠  or (2) 
i i
a b=  for 1 i k≤ ≤  and 

i i
a b=  for 

1k i n+ ≤ ≤ . 

The augmented cubes 
1 2
,AQ AQ  and 

3
AQ  are 

shown in Figure 2. 

Then, we give some properties of 
n

AQ . 

 

Figure 2. Augmented cubes 
1 2
,AQ AQ  and 

3
AQ  of 

dimension 1, 2, and 3 

Theorem 1. [3] 
1

( ) 1,k AQ =  
2

( ) 3,k AQ =  
3

( ) 4,k AQ =  

and for n≥ 4, 
1

( ) 2 1k AQ n= − . 

According to Theorem 1, we have the following 

result. 

Theorem 2. For n ≥ 4, 
1 1 1

( , ) ( , )s

n
k AQ K k AQ K= =  

2 1n −  

Lemma 1. [26] For n≥ 6, 
1
( ) 4 8

n
k AQ n= − . 

Property 1. [26] If ( , )iu u  is a hypercube edge of 

dimension (1 )i i n≤ ≤ , then 

 

1

2 2

{ , } 2 ,
( ) ( )

{ , } 1.
n n

i i

i
AQ AQ

u u i n
N u N u

u u i

−⎧ ≤ <⎪
= ⎨

=⎪⎩
∩   

That is, u and i
u  have exactly two common 

neighbors in 
n

AQ  and | ({ , }) | 4 6
n

i
AQN u u n= − . 

Property 2. [26] If (u, iu )  is a complement edge of 

dimension i (2 )i n≤ ≤ , then 

1 1 1

1

( ) ( )

{ , , , } 2 1,

{ , } .

n n

i

AQ AQ

i i i i

n n

N u N u

u u u u i n

u u i n

− + +

−

⎧ ≤ < −⎪
= ⎨

=⎪⎩

∩

 

That is, u and i
u  have exactly four common 

neighbors in 
n

AQ  for 2 1i n≤ ≤ −  and | ({ , }) |
n

i
AQN u u =  

4 8n − . Similarly, u and n

u  have exactly two common 

neighbors in 
n

AQ  and | ({ , }) | 4 6
n

n
AQN u u n= − . 

Property 3. [26] Any two vertices in 
n

AQ  have at 

most four common neighbors for n≥ 3. 

According to the Definition 1, we can easily obtain 

the following properties of augmented cube. 

Property 4. If ( , )iu u  and ( , )ju u  are two hypercube 

edges of dimensions i and (1 )j i j n≤ ≠ ≤ . Without loss 

of generality, we set i j< , then 

 

1 2

( ) ( )

{ , ( ) , , ( ) } 1 1,

{ , ( ) } 1,

{ , ( ) } 1 2.

n n

i j

AQ AQ

i j i j i

i j

N u N u

u u u u j i and i

u u j i

u u i and j

⎧ = + >
⎪

= > +⎨
⎪

= =⎩

∩

 

Property 5. If ( , )iu u  and ( , )ju u  are two 

complement edges of dimensions i and (1 )j i j n≤ ≠ ≤ . 

Without loss of generality, we set I < j, then 

1 1 1

( ) ( )

{ , , ( ) , ( ) } 2,

{ , ( ) } 1 2.

n n

i j

AQ AQ

i j j j j

j i

N u N u

u u u u j i

u u j i or j i

+ − −⎧ = +⎪
= ⎨

= + > +⎪⎩

∩

 

Property 6. If ( , )iu u  is a hypercube edge of 

dimension i and ( , )ju u  is a complement edge of 

dimension (1 , )j i j n≤ ≤ , then 

 

1 1 1

1 1

1

1 1 1

2

( ) ( )

{ , ( ) , ( ) , ( ) }, 1,

{ , , ( ) , ( ) }, 1 ,

{ , ) }, 1,

{ , ( ) , ( ) , }, 2,

{ , }, | | 2,

{ , ( ) , ( ) , }, 1 1,

{ , ( )

n n

i j
AQ AQ

i i i i i i i

i j i i i

i i

i i i i i i

j

j i j i i

N u N u

u u u u i j and i

u u u u i j and i n

u u i n and j n

u u u u i j

u u i j

u u u u j i and i

u u

− − −

+ +

−

− − −

= >

= + >

= > −

= +

= − >

= + >

∩

2 3 1 1 3

}, 1 2,

{ , ( )} , 2 1,

{ , , ( ) , ( ) , 1 3.

j i

i and j

u u j i and i

u u u u i and j

⎧
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪ = =
⎪
⎪ = + >
⎪

= =⎪⎩
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3 H-structure Connectivity and H-

substructure Connectivity 

In this section, we study the H-structure connectivity 

and H-substructure connectivity of 
n

AQ  for each 

1,{ , , }
M L N

H K P C∈ , where 1 6M≤ < , 1 2 1L n≤ < − , 

and 3 2 1N n≤ < − . Let u be an arbitrary vertex in 

n
AQ . In order to make the representation of our proof 

more convenient, we introduce a set of tokens 
[1] [2] [2 1]
, , ,

n

v v v
−

… , where [1] [2] [2 1]
, , ,

n

v v v
−

…  and all 

the adjacent vertices of u: 1 2 2
, , , , ,

n n

u u u u u…  form a 

one-to-one correspondence. The correspondence of j
u  

and [ ]i
v  is: (1) if i is even, then 1

2

i
j = +  and [ ]j i

u v= . 

(2) if i is odd, then 1
2

i
j

⎢ ⎥
= +⎢ ⎥⎣ ⎦

 and [ ]j i
u v= . The 

definition of [ ]( )i l
v  and [ ]( )i l

v  is the same as that of l
u  

and l
u . For example, if 000000u =  is a vertex of 

6
AQ , then 4 [6]

001000u v= = , 5 [9]
011111u v= =  

[6] 2( ) 001010v =  and [9] 3( ) 011000v = . In this paper, 

we may mix these two notations whenever it is 

convenient. 

3.1 1,( , )
n M

k AQ K  and 1,( , )
s

n M
k AQ K  

According to the definition of 
n

AQ , Property 1, and 

Property 2, if u is an arbitrary vertex of 
n

AQ  and ( , )iu u  

is a complement edge of dimension (2 1)i i n≤ ≤ − , 

then 1 1 1( ) ( ) { , , , }.
n n

i i i i i
AQ AQN u N u u u u u

− + +

=∩  The 

subgra-ph induced by 1 1 1{ , , , , }i i i i i
u u u u u

− + + (2 1)i n≤ ≤ −  

is isomorphic to 1,4K . If ( , )nu u  is a complement edge 

of dimension n, then 1( ) ( ) { , }
n n

n n n
AQ AQN u N u u u

−

=∩  

and the subgraph induced by 1{ , , }n n n

u u u
−  is 

isomorphic to 1,2K . Similarly, if ( , )iu u  is a hypercube 

edge of dimension (1 ),i i n≤ ≤  then ( ) ( )
n n

i

AQ AQN u N u∩  

1{ , }i i
u u

−

= (2 )i n≤ ≤  and 1 2 2( ) ( ) { , }
n n

AQ AQN u N u u u=∩ . 

The subgraph induced by 1{ , , }i i i
u u u

− (2 )i n≤ ≤  is 

isomorphic to 1,2K . 

Here, we will discuss 1,( , )
n M

k AQ K  1,( , )s

n M
k AQ K  

for the cases of 1 3M≤ ≤  and 4 6M≤ ≤ . 

3.1.1 ≤ ≤1 3M  

Lemma 2. For n ≥ 4 and 1 3M≤ ≤ , 1,( , )
n M

k AQ K ≤  

2 1

1

n

M

−⎡ ⎤
⎢ ⎥+⎢ ⎥

 and 1,

2 1
( , )

1

s

n M

n
k AQ K

M

−⎡ ⎤
≤ ⎢ ⎥+⎢ ⎥

. 

 

(a) A 1,1K -structure-cut in 
5

AQ  

 

(b) A 1,2K -structure-cut in 
6

AQ  

Figure 3. A 1,1K -structure-cut in 
5

AQ  and a 1,2K -

structure-cut in 
6

AQ  

Proof. Let u be an any vertex in 
n

AQ . In the following, 

we distinguish cases for the values of M and n. 

Case 1. 1M = . We set 

( 1) 1 ( 1) 2
1

2 1
{{ , ( )} | 0 }

1

M i M i n
S v v i

M

+ + + +
−⎢ ⎥

= ≤ < ⎢ ⎥+⎣ ⎦
 and  

[2 1] [2 1] 1

2 {{ , ( )} }n n

S v v
− −

= . 

Case 2. 2M = . 

Case 2.1. 0n ≡  (mod 3). We set 

[( 1) 1] [( 1) 2] [( 1) 3]
1

2 1
{{ , , } | 0 }

1

M i M i M i n
S v v v i

M

+ + + + + +
−⎢ ⎥

= ≤ < ⎢ ⎥+⎣ ⎦
 

Case 2.2. 1n ≡  (mod 3). We set 

[( 1)] 1] [( 1) 2] [( 1) 3]
1

2 1
{{ , , } | 0 }

1

M i M i M i n
S v v v i

M

+ + + + + +
−⎢ ⎥

= ≤ < ⎢ ⎥+⎣ ⎦

and [2 1] [2 1] 1 [2 1] 2

2 {{ , ( ) , ( ) }}n n n

S v v v
− − −

= . 

Case 2.3. 2n ≡  (mod 3). We set 

[( 1) 1] [( 1) 2] [( 1) 3]
1

2 1
{{ , , } | 0 }

1

M i M i M i n
S v v v i

M

+ + + + + +
−⎢ ⎥

= ≤ < ⎢ ⎥+⎣ ⎦
 

and [2 2] [2 2] [2 1] 2

2 {{ , , ( ) }}n n n

S v v v
− − −

= . 



Structure Fault-tolerance of the Augmented Cube 1737 

 

Case 3. 3M = . 

Case 3.1. 1n ≡  (mod 4). We set 

[( 1) 1] [( 1) 2] [( 1) 3] [( 1) 4]
1 {{ , , , } | 0M i M i M i M i
S v v v v i

+ + + + + + + +

= ≤ <

2 1
}

1

n

M

−⎢ ⎥
⎢ ⎥+⎣ ⎦

and 
[(2 1] [(2 1] 1 [(2 1] 2 [(2 1] 3

2 {{ , ( ) , ( ) ,( ) }}.n n n n

S v v v v
− − − −

=  

Case 3.2. 3n ≡  (mod 4). We set 

[( 1) 1] [( 1) 2] [( 1) 3] [( 1) 4]
1 {{ , , , } | 0M i M i M i M i
S v v v v i

+ + + + + + + +

= ≤ <

2 1
}

1

n

M

−⎢ ⎥
⎢ ⎥+⎣ ⎦

 and [(2 3] [(2 2] [(2 1] [(2 1] 1
2 {{ , , , ( ) }}n n n n

S v v v v
− − − −

= . 

Suppose that 
1

S S=  when 2M =  and 0n ≡  (mod 3) 

1 2
( ,S S S= ∪  otherwise). Clearly, if 1,M =  the 

induced subgraph of each element in 
1 2
S S∪  is 

isomorphic to 1,1K ; If 2M = , vertex [( 1) 2]M i
v

+ +  is 

adjacent to vertices [( 1) 1]M i
v

+ +  and [( 1) 3]M i
v

+ +  for 

2 1
0

1

n
i M

M

−⎢ ⎥
≤ < ⎢ ⎥+⎣ ⎦

, vertex [2 1]n
v

−  is adjacent to vertices 

[2 2]
,

n

v
−  [2 1] 1( ) ,n

v
−  and [2 1] 2( ) .n

v
−  Therefore, the 

subgraph induced by each element in S is isomorphic 

to 1,2 ;K  If 3,M =  vertex [( 1) 3]M i
v

+ +  is adjacent to 

vertices [( 1) 1]
,

M i
v

+ +  [( 1) 2]
,

M i
v

+ +  and [( 1) 4]M i
v

+ +  for 

2 1
0

1

n
i

M

−⎢ ⎥
≤ <⎢ ⎥+⎣ ⎦

, vertex [2 1]n

v
−  is adjacent to vertices 

[2 3]
,

n

v
−

 

[2 2]
,

n

v
−

 

[2 1]( ),n

v
−

 

[2 1] 1( ) ,n

v
−  [2 1] 2( ) ,n

v
−  and 

[2 1] 3( )n

v
− . Thus, the subgraph induced by each element 

in S is isomorphic to 1,3.K  It is obvious that | |S = 

2 1

1

n

M

−⎡ ⎤
⎢ ⎥+⎢ ⎥

. Let ( ) .f SW S f
∈

= ∪  Since ( )
n

AQ W S−  is 

disconnected and one component of it is {u}, 

1,

2 1
( , )

1
n M

n
k AQ K

M

−⎡ ⎤
≤ ⎢ ⎥+⎢ ⎥

 and 1,

2 1
( , ) .

1

s

n M

n
k AQ K

M

−⎡ ⎤
≤ ⎢ ⎥+⎢ ⎥

 

Figure 3 shows a 1,1K -structure-cut in 
5

AQ  and a 1,2K -

structure-cut in 
6

AQ . 

Lemma 3. For 4n ≥  and 1 3,M≤ ≤  1,( , )s

n M
k AQ K ≥  

2 1
.

1

n

M

−⎡ ⎤
⎢ ⎥+⎢ ⎥

 

Proof. Let *

n
F  be a set of connected subgraphs in 

n
AQ , 

every element in the set is isomorphic to 1,MK  with 

*
2 1

1.
1

n

n
F

M

−⎡ ⎤
−⎢ ⎥+⎢ ⎥

 Hence 
*

2 1
| ( ) | (1 ) ( 1)

1
n

n
V F M

M

−⎡ ⎤
≤ + × −⎢ ⎥+⎢ ⎥

 

2 1n< − . Since ( ) 2 1,
n

k AQ n= −  
*

n n
AQ F−  is connected. 

The lemma holds. 

Since 1, 1,( , ) ( , ),s

n M n M
k AQ K k AQ K≥  1,( , )

n M
k Q K  

2 1
.

1

n

M

−⎡ ⎤
≥ ⎢ ⎥+⎢ ⎥

 By Lemma 2 and Lemma 3, we have the 

following theorem. 

Theorem 3. For n≥ 4 and 1 3M≤ ≤ , 1,( , )
n M

k AQ K =  

2 1

1

n

M

−⎡ ⎤
⎢ ⎥+⎢ ⎥

 and 1,

2 1
( , ) .

1

s

n M

n
k AQ K

M

−⎡ ⎤
= ⎢ ⎥+⎢ ⎥

  

3.1.2 ≤ ≤4 6M  

Lemma 4. For n ≥ 6 and 4 6M≤ ≤ , 1,( , )
n M

k AQ K ≤  

1

2

n −⎡ ⎤
⎢ ⎥⎢ ⎥

 and 1,

1
( , ) .

2

s

n M

n
k AQ K

−⎡ ⎤
≤ ⎢ ⎥⎢ ⎥

 

Proof. Let u be an any vertex in 
n

AQ . In the following, 

we distinguish cases for the values of M and n. 

Case 1. 4M = . 

Case 1.1. n is odd. We set 
[1] [2] [3] [4] [5]

1 {{ , , , , }}S v v v v v=  and  

[5 4 1] [5 4 2] [5 4 3] [5 4 4] [5 4 2] 1

2 {{ , , , , ( ) },i i i i i
S v v v v v

+ + + + + + + + + +

=

1
| 0 1}

2

n
i

−⎡ ⎤
≤ < −⎢ ⎥⎢ ⎥

  

Case 1.2. n is even. We set 
[1] [2] [3] [4] [5]

1 {{ , , , , }}S v v v v v= , 

[5 4 1] [5 4 2] [5 4 3] [5 4 4] [5 4 2] 1

2 {{ , , , , ( ) },i i i i i
S v v v v v

+ + + + + + + + + +

=

1
| 0 1}

2

n
i

−⎡ ⎤
≤ < −⎢ ⎥⎢ ⎥

, and  

[2 2] [2 1] [2 1] 1 [2 1] 2 [2 1] 3

3 {{ , , ( ) , ( ) , ( ) }}.n n n n n

S v v v v v
− − − − −

=  

Case 2. 5M = . 

Case 2.1. n is odd. We set 
[1] [2] [3] [4] [5] [3]

1 {{ , , , , , ( ) }}n

S v v v v v v=  and 

[5 4 1] [5 4 2] [5 4 3] [5 4 4] [5 4 2] 1

2 {{ , , , , ( ) },i i i i i
S v v v v v

+ + + + + + + + + +

=

[5 4 2] 2 1
( ) } | 0 1}.

2

i n
v i

+ +
−⎡ ⎤

≤ < −⎢ ⎥⎢ ⎥
 

Case 2.2. n is even. We set 
[1] [2] [3] [4] [5] [3]

1 {{ , , , , , ( ) }},n

S v v v v v v=  

[5 4 1] [5 4 2] [5 4 3] [5 4 4] [5 4 2] 1

2 {{ , , , , ( ) },i i i i i
S v v v v v

+ + + + + + + + + +

=

[5 4 2] 2 1
( ) } | 0 1},

2

i n
v i

+ +
−⎡ ⎤

≤ < −⎢ ⎥⎢ ⎥
and 

[2 2] [2 1] [2 1] 1 [2 1] 2 [2 1] 3

3 {{ , , ( ) , ( ) , ( ) },n n n n n

S v v v v v
− − − − −

=  

[2 1] 4( ) }}.n

v
−

 

Case 3. 6M = . 

Case 3.1. n is odd. We set 
[1] [2] [3] [4] [5] [3] [3]

1 {{ , , , , , ( ) , ( ) }}n n

S v v v v v v v=  and 

[5 4 1] [5 4 2] [5 4 3] [5 4 4] [5 4 2] 1

2 {{ , , , , ( ) },i i i i i
S v v v v v

+ + + + + + + + + +

=

[5 4 2] 2 [5 4 2] 3 1
( ) , ( ) } | 0 1}.

2

i i n
v v i

+ + + +
−⎡ ⎤

≤ < −⎢ ⎥⎢ ⎥
 

Case 3.2. n is even. We set 
[1] [2] [3] [4] [5] [3] [3]

1 {{ , , , , , ( ) , ( ) }},n n

S v v v v v v v=  
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[5 4 1] [5 4 2] [5 4 3] [5 4 4] [5 4 2] 1

2 {{ , , , , ( ) },i i i i i
S v v v v v

+ + + + + + + + + +

=

[5 4 2] 2 [5 4 2] 3 1
( ) , ( ) }| 0 1},

2

i i n
v v i

+ + + +
−⎡ ⎤

≤ < −⎢ ⎥⎢ ⎥
 and 

[2 2] [2 1] [2 1] 1 [2 1] 2 [2 1] 3

3 {{ , , ( ) , ( ) , ( ) },n n n n n

S v v v v v
− − − − −

=  

[2 1] 4 [2 1] 5( ) }, ( ) }}.n n

v v
− −  

Obviously, the subgraph induced by the element in 

1
S  is isomorphic to 1, .

M
K  For 

1
0 1,

2

n
i

−⎢ ⎥
≤ < −⎢ ⎥⎣ ⎦

 

vertex [5 4 2]i
v

+ +  is adjacent to vertices [5 4 ]
.

i j
v

+ +  with 

1, 3j =  or 4 and [5 4 2]( )i p
v

+ +  for 1 1 4p M≤ ≤ + − . 

Thus, the subgraph induced by each element in 
2

S  is 

isomorphic to 1, .

M
K  Vertex [2 1]n

v
−  is adjacent to 

vertices [2 2]n

v
−  and [2 1]( )n q

v
−  for 1 1p M≤ ≤ + −  

1
(2 2 4 )

2

n

n

−⎢ ⎥
− − × ⎢ ⎥⎣ ⎦

. Therefore, the subgraph induced 

by the element in 
3

S  is isomorphic to 1, .

M
K  Suppose 

that 
1 2

S S S= ∪  when n is odd (
1 2 3

S S S S= ∪ ∪ , 

otherwise). Note that 
1

| | .
2

n
S

−⎢ ⎥
= ⎢ ⎥⎣ ⎦

 Let ( ) f sW S f
∈

= ∪ . 

Since ( )
n

AQ W S−  is disconnected and one component 

of it is { },u  1,

2 1
( , )

2
n M

n
k AQ K

−⎡ ⎤
≤ ⎢ ⎥⎢ ⎥

 and 1,( , )s

n M
k AQ K ≤  

2 1

2

n −⎡ ⎤
⎢ ⎥⎢ ⎥

 with 4 6.M≤ ≤  Figure 4 shows a 1,5K -

structure-cut of 
6

AQ . 

Lemma 5. Let 
N

F  be a 1,MK -substructure set of 
n

AQ  

with n ≥ 6 and 4 6.M≤ ≤  If there exists an isolated 

vertex in ( ),
n n

AQ V F−  then 
1

.
2

n

n
F

−⎡ ⎤
≥ ⎢ ⎥⎢ ⎥

 

Proof. Let u be an any vertex in .

n
AQ  We set 

{ | ( , )}W x x u=  is a hypercube edge, ( )}x V G∈  and 

{ | ( , )Z y y u=  is a complement edge, ( )}.y V G∈  

Clearly, | |W n=  and | | 1.Z n= −  By Property 2 and 

Property 3, each element in 
N

F  contains at most five 

distinct vertices in ( )N u , namely, 1 1
, , , ,

i i i i
u u u u

− +  

and 1i
u

+  with 2 1.i n≤ ≤ −  Since 1{( , ), ( , ),i i i i
u u u u

−  

1 1( , ), ( , )}i i i i
u u u u

+ + ( ),
n

E AQ⊆  the subgraph induced 

by 1 1 1{ , , , , }i i i i i
u u u u u

− + +  is isomorphic to 1,4K . We 

set { |
i i n

B b b F= ∈  and 
1 1 1{ , , , , } ( ) ( )}.i i i i i

i
u u u u u V b N u

− + +

⊆ ∩  

Since each ( )
i

V b  contains three vertices in Z and two 

vertices in W, 
2 1

| | .
5

n
B

−⎢ ⎥
< ⎢ ⎥⎣ ⎦

 In the following, we 

distinguish cases for the value of | |B . 

Case 1. | | 0B = . Since each element in 
N

F  contains at 

most four distinct vertices in ( )N u , 
2 1

.
4

n

n
F

−⎡ ⎤
≥ ⎢ ⎥⎢ ⎥

 

Case 2. | | 1.B =  Suppose that 
1 1{ , , , } ( )i i i i

i
u u u u V b

− +

⊆  

with 2 1.i n≤ ≤ −  Since each element in 
N

F B−  

contains at most four distinct vertices in ( ) ( ),N u V B−  

2 6 1
1 .

4 2
n

n n
F

− −⎡ ⎤ ⎡ ⎤
≥ + =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

 

Case 3. | | 2.B =  Suppose that 
1 1 1{ , , , , }i i i i i

u u u u u
− + +

⊆  

1 1 1( ),{( , , , , } ( )j j j j j

i jV b u u u u u V b
− + +

⊆  with 

2 , 1,i j n≤ ≤ −  and | , | 3.i j ≥  Without loss of generality, 

we set | .j i≥  

Case 3.1. 3.j i− =  Then 1 1 1{ , , , , }j j j j j
u u u u u

− + +

=  

2 3 3 4 4{ , , , , }.i i i i i
u u u u u

+ + + + +

 Suppose that 
1 2
, ( )w w N u∈ −  

2( ) { }i
V B u

+

−  and 
1 2

w w≠ . By Properties 4, 5 and 6, 

2

1 2
( ) ( ) ( ) .i

N u N w N w φ+

=∩ ∩  In addition, vertex 2i
u

+  

is not adjacent to the vertices in ( ) ( ).N u V B−  

Therefore, there is an element 
N

a F B∈ −  such that 

2 ( )i
u V a

+

∈  and ( ) {( ) ( )} 2.V a u V B− ≤∩  Since each 

element in { }
N

F B a− −  contains at most four distinct 

vertices in ( ) ( ) ( ),N u V B V a− −  
2 13

| | 2 1
4

n

n
F

−⎡ ⎤
≥ + + ⎢ ⎥⎢ ⎥

 

2 1
.

4

n −⎡ ⎤
= ⎢ ⎥⎢ ⎥

 

Case 3.2. 4.j i− =  Then 1 1 1{ , , , , }j j j j j
u u u u u

− + +

=  
3 4 5 5 5{ , , , , }.i i i i i

u u u u u
+ + + + +  In the following, we 

distinguish cases for the number of elements 

containing three vertices 2 2
,

i i
u u

+ +  and 3i
u

+  in 
n

F B− . 

We use S to denote the number of elements further deal 

with the following cases. 

Case 3.2.1. 3.S =  Then there are three distinct 

elements in ( ) ( )N u V B−  that contain one of three 

vertices 2 2
,

i i
u u

+ + , and 3i
u

+ , respectively. Suppose that 

2 2 3

1 2
, ( ) ( ) { , , }i i i

w w N u V B u u u
+ + +

∈ − −  and 
1 2

w w≠ . By 

Properties 4, 5 and 6, 2

1 2
( ) ( ) ( ) .i

N u N w N w φ+

=∩ ∩  In 

addition, vertex 2i
u

+  is not adjacent to the vertices in 
2 3( ) ( ) { , }.i i

N u V B u u
+ +

− −  Therefore, there is an 

element 
1 n
a F B∈ −  such that 2

1
( )i

u V a
+

∈  and 

2 3

1
( ) { ( ) ( ) { , }} 2.i i

V a N u V B u u
+ +

− − ≤∩   For the cases 

of vertices 2i
u

+  and 3i
u

+ , the discussions are similar to 

that of vertex 2i
u

+  and we set 2

2
,

i
u a

+

∈  3

3
.

i
u a

+

∈  

Since each element in 
1 2 3

{ , , }
N

F B a a a− −  contains at 

most four distinct vertices in 
1

( ) ( ) ( )N u V B V a− −  

2 3
( ) ( ),V a V a− −  

2 17 2 3
2 3 .

4 4
n

n n
F

− +⎡ ⎤ ⎡ ⎤
≥ + + =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
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Case 3.2.2. . Then there are two distinct elements 

in ( ) ( )N u V B− , one of which contains one vertex in 

2 2
,

i i
u u

+ + , and 3i
u

+  and another element contains the 

other two vertices. We assume that 
1
a  contains one 

vertex in 2 2
,

i i
u u

+ +  and 3i
u

+  and 
2
a  contains the other 

two vertices. 

Case 3.2.2.1. 2

1
( )i

u V a
+

∈  and 2 3

2
{ , } ( ).i i
u u V a

+ +

∈  

Similar to the discussion of Case 3.2.1, we have 
2 3

1
( ) { ( ) ( ) { , }} 2.i i

V a N u V B u u
+ +

− − ≤∩  Since 2( )i
N u

+

∩  

3 3 2 4 3 4( ) { , } {( ) , ( ) },i i i i i i
N u u u u u

+ + + + + +

− =  each element 

in 2 4 3 4{( ) , ( ) }i i i i
u u

+ + + +  is not adjacent to the vertices 

in 2 2 3( ) ( ) { , , }i i i
N u V B u u u

+ + +

− −  and each element in 

2 3{ , }i i
u u

+ +  is not adjacent to the vertices in 

2( ) ( ) { },i
N u V B u

+

− −  
2

2
( ) { ( ) ( ) { }} 2i

V a N u V B u
+

− − =∩  

and 2 3

2
{ , } ( ).i i
u u V a

+ +

∈  Since each element in 

1 2
{ , }

N
F B a a−  contains at most four distinct vertices 

in 
1 2

( ) ( ) ( ) ( ),N u V B V a V a− − −  
2 15

| | 2 1 1
4

n

n
F

−⎡ ⎤
≥ + + + ⎢ ⎥⎢ ⎥

 

2 1
.

4

n +⎡ ⎤
= ⎢ ⎥⎢ ⎥

 For the case of vertices 3

1
( )i

u V a
+

∈  and 

2 2

2
{ , } ( ),i i
u u V a

+ +

∈  the discussion is similar. 

Case 3.2.2.2. 2

1
( )i

u V a
+

∈  and 2 3

2
{ , } ( ).i i
u u V a

+ +

∈  

Similar to the discussion of Case 3.2.1, we have 
2 3

1
( ) { ( ) ( ) { , }} 2.i i

V a N u V B u u
+ +

− − ≤∩ Since 2( )i
N u

+

∩  

3 2 2 3 3 3( ) { , } {( ) , ( ) },i i i i i i
N u u u u u

+ + + + + +

− =  each element 

in 2 3 3 2{( ) , ( ) }i i i i
u u

+ + + +  is not adjacent to the vertices in 

2( ) ( ) { }i
N u V B u

+

− −  and 
2 3( , ) ( ),i i

n
u u E AQ

+ +

∉  
2

( )V a ∩  

2{ ( ) ( ) { }} 2i
N u V B u

+

− − ≤  and 2 3

2
{ , } ( ).i i
u u V a

+ +

⊆  

Since each element in 
1 2

{ , }
n

F B a a− −  contains at 

most four distinct vertices in 
1

( ) ( ) ( )N u V B V a− − −  

2
( )V a , 

2 15 2 1
| | 2 1 1 .

4 4
n

n n
F

− +⎡ ⎤ ⎡ ⎤
≥ + + + =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

 

Case 3.2.3. 1S = . According to the discussions of 

Case 3.2.1 and Case 3.2.2, there is an element 

1 n
a F B∈ −  such that ( ) { ( ) ( ) 3V a N u V B− =∩  and 

2 2 3{ , , , } ( ).i i i
u u u V a

+ + +

⊆  Since each element in 

{ }
n

F B a− −  contains at most four distinct vertices in 

( ) ( ) ( ),N u V B V a− −  
2 14 1

| | 2 1 .
4 2

n

n n
F

− −⎡ ⎤ ⎡ ⎤
≥ + + =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

 

Case 3.3. 5.j i− ≥  We set 2 2 1{ , , ..., }.i i j

ijU u u u
+ + −

=  

In the following, we will calculate the number of 

elements containing ijU  in .

n
F B−  Since 5 | |ijU≤  

2 11n≤ −  and each element contains at most four 

distinct vertices of ( ) ( )N u V B−  in ,
n

F B−  we will 

distinguish cases for the value of | |ijU . 

Case 3.3.1. | | 1ijU ≡  (mod 4). Similar to the discussion 

in Case 3.1, we have 
2 13 2 1

| | 2 1 .
4 4

n

n n
F

− −⎡ ⎤ ⎡ ⎤
≥ + + =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

 

Case 3.3.2. | | 3ijU ≡  (mod 4). Similar to the discussion 

in Case 3.2 we have 
2 14 1

| | 2 1 .
4 2

n

n n
F

− −⎡ ⎤ ⎡ ⎤
≥ + + =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

 

Case 4. | | 3B ≥ . If ,i jb b B∈  and there is no 
k
b B∈  

with ,i k j< <  we set 2 2 1{ , , ..., }.i i i

ijU u u u
+ + −

=  

According to the discussion of Case 3, if | | 3ijU ≡  

(mod 4), then the value of 
n

F  will be the smallest. 

Thus, 
2 1 5 | | 3 (| | 1)

| | | | (| | 1)
4

n

n B B
F B B

− − × − × −⎡ ⎤
≥ + − + ⎢ ⎥⎢ ⎥

 

1
.

2

n −⎡ ⎤
= ⎢ ⎥⎢ ⎥

 

In summary, the lemma holds. 

Lemma 6. For n≥ 6 and 4 6,M≤ ≤  1,( , )
n M

k AQ K ≥  

1

2

n −⎡ ⎤
⎢ ⎥⎢ ⎥

 and 1,

1
( , ) .

2

s

n M

n
k AQ K

−⎡ ⎤
≥ ⎢ ⎥⎢ ⎥

 

Proof. We will prove this lemma by contradiction. Let 
*

n
F  be a 1,MK -substructure set of 

n
AQ  and 

*
1

| | 1.
2

n

n
F

−⎡ ⎤
≤ −⎢ ⎥⎢ ⎥

 If *( )
n n

AQ V F−  is disconnected, 

then we let R be the smallest component of 

*( ).
n n

AQ V F−  Note that *
1

| ( ) | (1 ) ( 1)
2

n

n
V F M

−⎡ ⎤
≤ + × −⎢ ⎥⎢ ⎥

 

1
7 ( 1).

2

n−⎡ ⎤
≤ × −⎢ ⎥⎢ ⎥

 By Lemma 1, we have 
1

7 ( 1
2

n−⎡ ⎤
× − <⎢ ⎥⎢ ⎥

 

4 8n −  for 6n ≥ . Hence | ( ) | 1V R = . Furthermore, we 

assume that vertex ( ).u V R∈  By Lemma 5, 
*| ( ) ( )|
n

N u V F∩  

2 1 2 1,n n≤ − < −  which means that there exists at least 

one neighbor of u in *( )
n n

AQ V F− . Therefore, we have 

| ( ) | 2,V R ≥  a contradiction. Thus, *( )
n n

AQ V F−  is 

connected. The lemma holds. 

Combining Lemma 4, we have 1,( , )s

n M
k AQ K =  

1
.

2

n −⎡ ⎤
⎢ ⎥⎢ ⎥

 Since 1, 1,( , ) ( , ),s

n M n M
k Q K k Q K≥  1,( , )

n M
k Q K  

2 1
.

1

n

M

−⎡ ⎤
≥ ⎢ ⎥+⎢ ⎥

 By Lemma 4 and Lemma 6, we have the 

following theorem. 

Theorem 4. For n≥ 6 and 4 6,M≤ ≤  1,( , )
n M

k AQ K =  

1

2

n −⎡ ⎤
⎢ ⎥⎢ ⎥

 and 1,

1
( , ) .

2

s

n M

n
k AQ K

−⎡ ⎤
= ⎢ ⎥⎢ ⎥

 

3.2 ( , )
n L

k AQ P  and ( , )
s

n L
k AQ P  

Let u be an arbitrary vertex in 
n

AQ , according to the 
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definition of ,
n

AQ  
1( , ) ( )i i

u u E AQ
−

∈  and ( , )i i
u u ∈  

( )E AQ  (2 ).i n≤ ≤  Thus 1 2 2( , , , ..., , )n n

u u u u u<  can 

form a path with length of 2 2n − . 

Since 
2 3
( )P P  is isomorphic to 1,1 1,2( )K K  and we 

have given 1,1 1,2( , )( ( , ))
n n

k AQ K k AQ K  and 1,1( , )s

n
k AQ K  

1,2( ( , ))s

n
k AQ K  in section 3.1, we assume 4L ≥  in the 

following. 

Lemma 7. For 3n ≥  and 4 2 1,L n≤ ≤ −  ( , )
n L

k AQ P  

2 1n

L

−⎡ ⎤
≤ ⎢ ⎥⎢ ⎥

 and ( , )s

n L
k AQ P ≤

2 1
.

n

L

−⎡ ⎤
⎢ ⎥⎢ ⎥

 

Proof. Let u be an arbitrary vertex in .

n
AQ  We set 

[ 1] [ 2] [ ]

1

2 1
{{ , , ..., } | 0 }.i L i L i L L n

S v v v i
L

× + × + × +
−⎢ ⎥

= ≤ < ⎢ ⎥⎣ ⎦
 

If (2 1) 0n − ≡  (mod L), then we set 
2

S φ= . 

Otherwise, according to the values of L and 

2 1
2 1,

n
L n

L

−⎡ ⎤
× − +⎢ ⎥⎢ ⎥

 we will divide into the following 

cases, 

Case 1. L is odd and 2 3.L n≤ −  

Case 1.1. 
2 1

2 1
n

L n
L

−⎡ ⎤
× − +⎢ ⎥⎢ ⎥

 is even. We set 
2

S =  

2 1
[ 1 ]

[2 1] [2 1] 1 [2 1] 2 [2 1] 1{{ , ..., , ( ) , ( ) , ( ) ,

n
L

n n n nL
v v v v v

−⎢ ⎥
× +⎢ ⎥ − − − −⎣ ⎦  

2 1
2 1]

1
[2 1] 3 [2 1] 3 [2 1] 2( ) , ( ) ,... , ( ) }}.

n
L n

L

n n n
v v v

−⎡ ⎤
× − +⎢ ⎥⎢ ⎥ +

− − −  

Case 1.2. 
2 1

2 1
n

L n
L

−⎡ ⎤
× − +⎢ ⎥⎢ ⎥

 is odd. We set 
2

S =  

2 1
[ 1 ]

[2 1] [2 1] 1 [2 1] 2 [2 1] 1{{ , ..., , ( ) , ( ) , ( ) ,

n
L

n n n nL
v v v v v

−⎢ ⎥
× +⎢ ⎥ − − − −⎣ ⎦

2 1
2 ]

1
[2 1] 3 [2 1] 3 [2 1] 3 [2 1] 2( ) , ( ) , ( ) ,... , ( ) }}.

n
L n

L

n n n n
v v v v

−⎡ ⎤
× −⎢ ⎥⎢ ⎥ +

− − − −

Case 2. L is even and 2 4.L n≤ −  We set 
2

S =  

2 1
[ 1 ]

[2 1] [2 1] 1 [2 1] 2 [2 1] 2{{ , ..., , ( ) , ( ) , ( ) ,

n
L

n n n nL
v v v v v

−⎢ ⎥
× +⎢ ⎥ − − − −⎣ ⎦

2 1
2

1
[2 1] 3 [2 1] 3 [2 1] 2( ) , ( ) ,... , ( ) }}.

n
L n

L

n n n

v v v

−⎡ ⎤
× −⎢ ⎥⎢ ⎥

+
− − −  

Case 3. 2 2L n= − . We set [2 1] [2 1] 1

2 {{ , ( ) ,n n

S v v
− −

=  

[2 1] 2 [2 1] 2 [2 1] 3 [2 1] 3 [2 1] 1( ) , ( ) , ) , ( ) , ... .( ) ,n n n n n n

v v v v v
− − − − − −

[2 1] 1 1(( ) ) }}.n n

v
− −  

 

Suppose that 
1

S S=  when (2 1) 0n − ≡  (mod L) 

(
1 2

,S S S= ∪ , otherwise). Obviously, the subgraph 

induced by each element in S is isomorphic to 
L
P  and 

1
| | .

n
S

L

−⎡ ⎤
= ⎢ ⎥⎢ ⎥

 Let ( ) f sW S f
∈

= ∪ . Since ( )
n

AQ W S−  

is disconnected and one component of it is {u}, 

2 1
( , )

n L

n
k AQ P

L

−⎡ ⎤
≤ ⎢ ⎥⎢ ⎥

 and 
2 1

( , ) .s

n L

n
k AQ P

L

−⎡ ⎤
≤ ⎢ ⎥⎢ ⎥

 

Lemma 8. For n≥ 3 and 4 2 1L n≤ ≤ − , ( , )s

n L
k AQ P  

2 1
.

n

L

−⎡ ⎤
≥ ⎢ ⎥⎢ ⎥

 

Proof. Let *

n
F  be a set of connected subgraphs in 

n
AQ , 

every element in the set is isomorphic to a connected 

subgraph of 
L
P  and 

2 1
| | 1.

n

n
F

L

−⎡ ⎤
≤ −⎢ ⎥⎢ ⎥

 Thus *| ( ) |
n

V F  

2 1
( 1) 2 1.

n
L n

L

−⎡ ⎤
≤ × − < −⎢ ⎥⎢ ⎥

 Since ( ) 2 1,
n

k AQ n= −  

n
AQ −

*

n
F  is connected. Hence, the lemma holds. 

By Lemma 7 and Lemma 8, we have the following 

theorem. 

Theorem 5. For n ≥  3 and and 4 2 1L n≤ ≤ − , 

2 1
( , ) ( , ) .s

n L n L

n
k AQ P k AQ P

L

−⎡ ⎤
= = ⎢ ⎥⎢ ⎥

 

3.3 ( , )
n N

k AQ C  and ( , )
s

n N
k AQ C  

At first, we discuss ( , )s

n N
k AQ C . Then we discuss 

( , ).
n N

k AQ C  

3.3.1 ( , )
s

n N
k AQ C  with ≤ ≤ −3 2 1N n  

Since 
N
P  is a connected subgraph of 

N
C , we have 

the following lemmas. 

Lemma 9. For n≥ 3 and 3 2 1N n≤ ≤ − , ( , )s

n N
k AQ C  

2 1
.

n

N

−⎡ ⎤
≤ ⎢ ⎥⎢ ⎥

 

Lemma 10. For n≥ 3 and 3 2 1N n≤ ≤ − , ( , )s

n N
k AQ C  

2 1
.

n

N

−⎡ ⎤
≥ ⎢ ⎥⎢ ⎥

 

Proof. Let *

n
F  be a set of connected subgraphs in 

n
AQ , 

every element in the set is isomorphic to a connected 

subgraph of 
N

C  with *
2 1

| | 1.
n

n
F

N

−⎡ ⎤
≤ −⎢ ⎥⎢ ⎥

 Thus *( )
n

V F  

2 1
1 2 1.

n
N n

N

−⎡ ⎤
≤ × − < −⎢ ⎥⎢ ⎥

 Since ( ) 2 1,
n

k AQ n= −  
n

AQ −  

*

n
F  is connected. Hence, the lemma holds. 

By Lemma 9 and Lemma 10, we have the following 

theorem. 

Theorem 6. For n ≥ 3 and 3 2 1N n≤ ≤ − , 

2 1
( , ) .s

n N

n
k AQ C

N

−⎡ ⎤
= ⎢ ⎥⎢ ⎥

 

Now, we discuss 
3

( , )
n

k AQ C  and ( , )
n

k AQ C
N

 with 

4 2 1N n≤ ≤ − . 
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3.3.2 
3

( , )
n

k AQ C  

We have the following lemma. 

Lemma 11. For n ≥ 6, 
3

( , ) 1.
n

k AQ C n≤ −  

Proof. Let u be an any vertex in .

n
AQ  We set 

1 2 2

1
{{ , , }}S u u u=  and 1

2
{{ , , ( ) }| 3 }.i i i i

S u u u i n
−

= ≤ ≤  

Obviously, the subgraph induced by the element 

in 
1
S  is isomorphic to 

3
.C  For 3 ,i n≤ ≤  

1 1{{ , },{{ , ( ) },{( ) , }}, ( ).i i i i i i i i

n
u u u u u u E AQ

− −

⊆   Thus, 

the subgraph induced by each element in 
1 2

S S S= ∪  is 

isomorphic to 
3

C  and | | 1.S n= −  Let ( ) f sW S f
∈

= ∪ . 

Since ( )
n

AQ W S−  is disconnected and one component 

of it is {u}, 
3

( , ) 1.
n

k AQ C n≤ −  

Lemma 12. Let 
n

F  be a 
3

C -structure set of 
n

AQ  with 

n≥ 6. If there exists an isolated vertex in ( ),
n n

AQ V F−  

then | | 1.
n

F n≥ −  

Proof. Let u be an any vertex in .

n
AQ  We set 

{ ( , ) , ( )}W x x u is a hypercube edge x V G= ∈  and Z =  

{ ( , ) , ( )}.y y u is a complement edge y V G∈  Clearly, 

| |W n=  and | | 1.Z n= −  By Property 1 and Property 2, 

each element in 
n

F  contains at most three distinct 

vertices in ( ),N u  namely, 1
,

i i
u u

+  and 1i
u

+  with 

1 1i n≤ ≤ −  and 1 1 1 1{( , ), ( , ), ( , )}i i i i i i
u u u u u u

+ + + +

⊆  

( ).
n

E AQ  Thus, the subgraph induced by 1 1{ , , }i i i
u u u

+ +  

is isomorphic to 
3
.C  We set { |

i i n
B b b F= ∈  and 

1 1{ , , } ( ) ( )}.i i i

i
u u u b N u

+ +

⊆ ∩  Since each ( )
i

V b  

contains two vertices in Z and one vertex in W, 

1
| | .

3

n
B

−⎢ ⎥
≥ ⎢ ⎥⎣ ⎦

 In the following, we distinguish cases 

for the value of | |B . 

Case 1. | | 0B = . Since each element in 
n

F  contains at 

most two distinct vertices in ( ),N u  
2 1

.
2

n

n
F

−⎡ ⎤
≥ ⎢ ⎥⎢ ⎥

 

Case 2. | | 1B = . Suppose that 1 1{ , , } ( )i i i

i
u u u V b

+ +

⊆  

with 1 1.i n≤ ≤ −  Since each element in 
n

F B−  

contains at most two distinct vertices in ( ) ( )N u V B− , 

2 4
| | 1 1.

2
n

n
F n

−⎡ ⎤
≥ + = −⎢ ⎥⎢ ⎥

 

Case 3. | | 2.B =  Suppose that 1 1{ , , } ( ),i i i

i
u u u V b

+ +

⊆  

1 1{ , , } ( )j j j

ju u u V b
+ +

⊆  with 1 , 1,i i j n≤ ≤ < −  and 

| | 2.i j− ≥  Without loss of generality, we set .j i>  

Case 3.1. 2.j i− =  Then 1 1 2 3 3{ , , } { , , }.j j j i i i
u u u u u u

+ + + + +

=  

According to the definition of 
n

AQ , vertex 2i
u

+  is not 

adjacent to the vertices in ( ) ( )N u V B− . As a result, 

there is an element 
n

a F B∈ −  such that 2 ( )i
u V a

+

∈  

and ( ) { ( ) ( )} 1.V a N u V B− =∩  Since the element in 

{ }F B a− −  contains at most two distinct vertices in 

( ) ( ) ( )N u V B V a− − , 
2 8

| | 2 1 1.
2

n

n
F n

−⎡ ⎤
≥ + + = −⎢ ⎥⎢ ⎥

 

Case 3.2. 3.j i− =  Then 1 1 3 4 4{ , , } { , , }.j j j i i i
u u u u u u

+ + + + +

=  

In the following, we distinguish cases for the number 

of elements containing three vertices 2 2
,

i i
u u

+ + , and 

3
,

i
u

+  in 
n

F B− . We use S denote the number of 

elements further deal with the following cases. 

Case 3.2.1. 3.S =  Then there are three distinct 

elements in ( ) ( )N u V B−  that contain one of three 

vertices 2 2
, ,

i i
u u

+ +  and 3
,

i
u

+  respectively. By the 

definition of 
n

AQ , vertex 2i
u

+  is not adjacent to the 

vertices in 2 3( ) ( ) { , }.i i
N u V B u u

+ +

− −  Then there is an 

element 
1 n
a F B∈ −  such that 1

1
( )i

u V a
+

∈  and 

2 3

1
( ) { ( ) ( ) { , }} 1.i i

V a N u V B u u
+ +

− − =∩  For the cases 

of vertices 2i
u

+  and 3i
u

+ , the discussions are similar to 

that of vertex 2i
u

+  and we set 2

2
,

i
u a

+

∈  3

3
.

i
u a

+

∈  

Since each element in 
1 2 3

{ , , }
N

F B a a a− −  contains at 

most two distinct vertices in 
1

( ) ( ) ( )N u V B V a− − −  

2 3
( ) ( ),V a V a−  

2 10
| | 2 3 .

2
n

n
F n

−⎡ ⎤
≥ + + =⎢ ⎥⎢ ⎥

 

Case 3.2.2. 2.S =  Then there are two distinct elements 

in ( ) ( )N u V B− , one of which contains one vertex in 

2 2
,

i i
u u

+ +  and 3i
u

+ , and the other contains the other 

two vertices. We assume that 
1
a  contains one vertex in 

2 2
,

i i
u u

+ +  and 3i
u

+  and 
2
a  contains the other two 

vertices. 

Case 3.2.2.1. 2

1
( )i

u V a
+

∈  and 2 3

2
{ , } ( ).i i
u u V a

+ +

⊆  

Similar to the discussion of Case 3.2.1, we have 
2 3

1
( ) { ( ) ( ) { , }} 1.i i

V a N u V B u u
+ +

− − =∩  Vertex 2i
u

+  

or 3i
u

+  is not adjacent to the vertices in ( ) ( )N u V B−  

2{ }i
u

+

−  and 2 3( , ) ( ).i i

n
u u E AQ

+ +

∈  Then 2 3

2
{ , }i i
u u a

+ +

⊆  

and 2

2
( ) { ( ) ( ) { }} 2.i

V a N u V B u
+

− − =∩  Since each 

element in 
1 2

{ , }
n

F B a a− −  contains at most two 

distinct vertices in 
1 2

( ) ( ) ( ) ( ),N u V B V a V a− − −  

2 10
| | 2 1 1 1.

2
n

n
F n

−⎡ ⎤
≥ + + + = −⎢ ⎥⎢ ⎥

 For the case of 

vertices 3

1
( )i

u V a
+

∈  and 2 2

2
{ , } ( ),i i
u u V a

+ +

⊄  the 

discussion is similar. 

Case 3.2.2.2. 2

1
( )i

u V a
+

∈  and 2 3

2
{ , } ( ).i i
u u V a

+ +

⊄  

Since 
2 3( , )} ( ),i i

n
u u E AQ

+ +

∈  this situation does not exist. 

Case 3.2.3. 1.S =  Since 
2 3{ , } ( ),i i

n
u u E AQ

+ +

∈  this 

situation does not exist. 
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Case 3.3. 4.j i− ≥  We set 2 2 1{ , , ..., }.i i j

ijU u u u
+ + −

=  

We will calculate the number of elements containing 

ijU  in 
n

F B− . Clearly, 5 | | 2 7.U n≤ ≤ −  Since each 

element contains at most two distinct vertices of 

( ) ( )N u V B−  in 
n

F B−  and 1U ≡  (mod 2), similar to 

the discussion in Case 3.2.1, we have | | 2 1
n

F ≥ + +  

2 8
1.

2

n

n

−⎡ ⎤
= −⎢ ⎥⎢ ⎥

 

Case 4. | | 3.B ≥  If ,i jb b B∈  and there is no 
k
b B∈  

with ,i k j< <  we set 2 2 1{ , , ..., }.i i j

ijU u u u
+ + −

=  

According to the discussion of Case 3, the minimum 

number of elements that contain all vertices of ijU  

in 
n

F B−  is .
2

ijU⎡ ⎤
⎢ ⎥
⎢ ⎥

 Thus, | | | | (| | 1)
n

F B B≥ + − +  

2 1 3 | | (| | 1)
1

2

n B B
n

− − × − −⎡ ⎤
= −⎢ ⎥⎢ ⎥

. 

In summary, the lemma holds. 

Lemma 13. For n≥ 6, 
3

( , ) 1.
n

k AQ C n≥ −   

Proof. We will prove this lemma by contradiction. Let 
*

n
F  be a 

3
C -structure set of 

n
AQ  and *| | 2.

n
F n≤ −  If 

*( ).
n n

AQ V F−  is disconnected, then we let R be the 

smallest component of *( ).
n n

AQ V F−  Note that *| ( ) |
n

V F  

3 ( 2) 3 6.n n≤ × − = −  By Lemma 1, we have 3 6n − <  

4 8n −  for 6.n ≥  Hence | ( ) | 1.V R =  Furthermore, we 

assume that vertex ( ).u V R∈  By Lemma 12, 

*| ( ) ( ) | 2 2 2 1,
n

N u V F n n≤ − < −∩  which means that 

there exists at least one neighbor of u in *( ).
n n

AQ V F−  

Therefore, we have | ( ) | 2,V R ≥  a contradiction. Thus, 

*( )
n n

AQ V F−  is connected. The lemma holds. 

By Lemma 11 and Lemma 13, we have the 

following theorem. 

Theorem 7. For n≥ 6, 
3

( , ) 1.
n

k AQ C n= −  

3.3.3 
3

( , )
n

k AQ C  with 4 2 1N N≤ ≤ −  

Lemma 14. For ≥ 6 and 4 2 1,N n≤ ≤ −  ( , )
n N

k AQ C  

2 1
.

1

n

N

−⎡ ⎤
≤ ⎢ ⎥−⎢ ⎥

 

Proof. Let u be an arbitrary vertex in 
n

AQ . According 

to the parity of N, we will discuss the following two 

cases. 

Case 1. N  is odd. We set 

[( 1) 1] [( 1) 2] [( 1)( 1)] [( 1)( 1)]
1 {{ , , ..., },( )N i N i i N i N
S v v v v

− + − + + − + −

=

( 1) 1
1

2
2 1

}| 0 }.
1

N i

n
i

N

− +⎢ ⎥
+⎢ ⎥⎣ ⎦ −⎢ ⎥

≤ < ⎢ ⎥−⎣ ⎦
 

Case 1.1. (2 1) 1n − ≡  (mod ( 1)N − ). 

Case 1.1.1. 2 3.N n≤ − . We set 

[2 1] [2 1] 1 [2 1] 2 [2 1] 2

2 {{ , ( ) , ( ) , ( ) , ...,n n n n

S v v v v
− − − −

=

[2 1] [2 1] [2 1]2 2 2( ) , ( ) , ( ) }}.

N N N

n n n
v v v

⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 
Case 1.1.2. 2 1.N n= −  We set 

[2 1] [2 1] 1 [2 1] 2 [2 1] 2

2 {{ , ( ) , ( ) , ( ) , ...,n n n n

S v v v v
− − − −

=

[2 1] 3 [2 1] 3 [2 1] 3 [2 1] 2 4( ) , ( ) , ( ) , (( ) ) ,n n n n n n n n n

v v v v
− − − − − − − − −

[2 1] 2 4 [2 1] 2 3 [2 1] 2 3(( ) ) , (( ) ) , (( ) ) }}.n n n n n n n n n

v v v
− − − − − − − − −  

Case 1.2. (2 1) 3.n − ≡  (mod ( 1)N − ). We set 

3
1

[2 1] [2 3] [2 2] [2 2] [2 2]2
2 {{ , , , ( ) , ( )

N
n

n n n n n
S v v v v v

−

− −

− − − − −

=

3 3
1 1

[2 2] [2 2] 22 2, ( ) , ..., ( ) ,

N N
n n

n n n
v v

− −

− − − −

− − − [2 2] 2( ) }}.n n

v
− −  

Case 1.3. (2 1) 3.n − >  (mod ( 1)N − ). We set 

2 1 2 1
[ ( 1) 1 ] [ ( 1) 2 ]

[2 3]1 1
2 {{ , , ..., ,

n n
N N

nN N
S v v v

− −⎢ ⎥ ⎢ ⎥
− + − +⎢ ⎥ ⎢ ⎥ −− −⎣ ⎦ ⎣ ⎦

=

2 1 2 1
( 1) 1 (2 1 ( 1))

1 1
2

[2 1] [2 2] [2 2] 2 2, , ( ) ,

n n
N N n N

N N

n n n
v v v

⎢ ⎥− −⎢ ⎥ ⎢ ⎥
− + − − −⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎢ ⎥+ −

− − − ⎣ ⎦

2 1 2 1
( 1) 1 (2 1 ( 1))

1 1
2

[2 2] 2 2( ) ,

n n
N N n N

N N

n
v

⎢ ⎥− −⎢ ⎥ ⎢ ⎥
− + − − − −⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎢ ⎥+ −

− ⎣ ⎦

2 1 2 1
( 1) 1 (2 1 ( 1))

1 1
3

[2 2] 2 2( ) ,

n n
N N n N

N N

n
v

⎢ ⎥− −⎢ ⎥ ⎢ ⎥
− + − − − −⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎢ ⎥+ −

− ⎣ ⎦

2 1 2 1
( 1) 1 (2 1 ( 1))

1 1
3

[2 2] 2 2( ) , ...,

n n
N N n N

N N

n
v

⎢ ⎥− −⎢ ⎥ ⎢ ⎥
− + − − − −⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎢ ⎥+ −

− ⎣ ⎦

2 1
( 1) 1

1
[2 2] 2( ) }}.

n
N

N

n
v

−⎢ ⎥
− +⎢ ⎥−⎣ ⎦

−  

Case 2. N is even. We set 

If 
2 1

0
1

n
i

N

−⎢ ⎥
≤ < ⎢ ⎥−⎣ ⎦

 and 0i ≡  (mod 2) and 4,N =  

then 
3 1

3
[3 1] [3 3] [3 2] [3 1] 2

1 { , , , ( ) };

i

i i i i
S v v v v

+⎢ ⎥
+⎢ ⎥+ + + + ⎣ ⎦

=  

If 
2 1

0
1

n
i

N

−⎢ ⎥
≤ < ⎢ ⎥−⎣ ⎦

 and 0i ≡  (mod 2) and 4,N ≠  

then 
[( 1) 1] [( 1) 2] [( 1)( 1) 1] [( 1)( 1)]

1 {{ , , ..., , ( )N N i N i N
S v v v v

− + − + + − + + −

=

( 1) 1
1

2 }.

N i− +⎢ ⎥
+⎢ ⎥⎣ ⎦  

[( 1) 1] [( 1) 2] [( 1)( 1) 1] [( 1)( 1) 1]
2 {{ , , ..., , ( )N N i N i N

S v v v v
− + − + + − + + − +

=

( 1) 1
1

2 2 1
}| 0

2

N i

n
i

− +⎢ ⎥
+⎢ ⎥⎣ ⎦ −⎢ ⎥

≤ < ⎢ ⎥⎣ ⎦
 and 1i =  (mod 2)}. 

If (2 1) 0n − ≡  (mod ( 1)N − ), then 
3

;S φ=  

otherwise, we will discuss the following several cases, 

Case 2.1. (2 1) 1n − ≡  (mod ( 1)N − ). We set 

[2 1] [2 1] 1 [2 1] 2 [2 1] 2 [2 1] 3

3 {{ , ( ) , ( ) , ( ) , ( ) ,n n n n n

S v v v v v
− − − − −

=

[2 1] 3 [2 1] [2 1]2 2( ) , ..., ( ) , ( ) }}.

N N

n n n
v v v

− − −
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Case 2.2. (2 1) 2.n − ≡  (mod ( 1)N − ). 

Case 2.2.1. .N n<  We set 
[2 1] [2 2] [2 2] 1 [2 2] 1 2

3 {{ , ( ), ( ) , (( ) ) ,n n n n n n n

S v v v v
− − − − − − −

=

[2 2] 1 ( 2)..., ((( ) )...) }}.n n n N
v

− − − −

 
Case 2.2.2. 2 2.N n= −  We set 

[2 1] [2 2] [2 2] 1 [2 2] 2 [2 2] 2

3 {{ , ( ), ( ) , ( ) , (( )) ,n n n n n

S v v v v v
− − − − −

=

[2 2] 3 [2 2] 3 [2 2] 2 [2 2] 2( ) , (( )) , ..., ( ) , (( )) ,n n n n n n

v v v v
− − − − − −

[2 2] 1( ) }}.n n

v
− −

 
Case 2.3. (2 1) 3.n − ≡  (mod ( 1)N − ). We set 

[2 2] [2 3] [2 1] [2 1] 2 [2 1]

3 {{ , ( ), ( ), ( ) , ( )n n n n n N n
S v v v v v

− − − − + − −

=

3 [2 1] 2, ..., ( ) }}.n N n n
v

+ − − −

 
Case 2.4. (2 1) 4.n − ≡  (mod ( 1)N − ). We set 

Case 2.4.1. .N n<  
[2 4] [2 3] [2 1] [2 2] [2 2] 4

3 {{ , , , , ( ) ,n n n n n n N
S v v v v v

− − − − − + −

=

[2 2] 5 [2 2]( ) , ..., ( ) 1}}.n n N n
v v n

− + − −

−  
Case 2.4.2. 2 4.N n= −  We set 

[2 4] [2 3] [2 1] [2 2] [2 2] 3 [2 2] 4

3 {{ , , , , ( ) ,( ) ,n n n n n n

S v v v v v v
− − − − − −

=

[2 2] 4 [2 2] 5 [2 2] 5 [2 2] 2 [2 2] 1( ) , ( ) , ( ) , ..., ( ) , ( ) }}.n n n n n n n

v v v v v
− − − − − − −

 
 

Case 2.5. (2 1)n −  is odd (mod ( 1)N − )(except 1 and 

3). We set 
2 1 2 1

[ ( 1) 1] [ ( 1) 2]
[2 3] [2 1]1 1

3 {{ , , ..., , ,

n n
N N

n nN N
S v v v v

− −⎢ ⎥ ⎢ ⎥
− + − +⎢ ⎥ ⎢ ⎥ − −− −⎣ ⎦ ⎣ ⎦

=

2 1
( 1) 1

2 11
[ 2 ( 1) 1]

[2 2] [2 2] [2 2]2 1, ( ) , ( )

n
N

nN
N n N

n n nN
v v v

−⎢ ⎥
− +⎢ ⎥ −⎢ ⎥−⎣ ⎦ − + − − +⎢ ⎥− − −−⎣ ⎦

2 1
( 1) 1

2 11
[ 2 ( 1) 2]

2 1
, ...,

n
N

nN
N n N

N

−⎢ ⎥
− +⎢ ⎥ −⎢ ⎥−⎣ ⎦ − + − − +⎢ ⎥−⎣ ⎦

2 1
( 1) 1

1
[ 1

[2 2] 2( ) }}.

n
N

N

n
v

−⎢ ⎥
− +⎢ ⎥−⎣ ⎦ +

−  

Case 2.6. (2 1)n −  is even(mod ( 1)N − )(except 0, 2 

and 4). 

Case 2.6.1. .N n− . We set 
2 1 2 1

[ ( 1) 1] [ ( 1) 2]
1 1

3 {{ , , ...,

n n
N N

N N
S v v

− −⎢ ⎥ ⎢ ⎥
− + − +⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

=

2 1
( 1) 1

1
1

[2 3] [2 1] [2 2] [2 2] 2, , , ( ) ,

n
N

N

n n n n
v v v v

⎢ ⎥−⎢ ⎥
− +⎢ ⎥⎢ ⎥−⎣ ⎦⎢ ⎥+

− − − − ⎣ ⎦

2 12 1
( 1) 1( 1) 1

2 111
1 2 ( 1) 11

[2 2] 2 12(( ) ) ,

nn
NN

nNN
N n N

n N
v

⎢ ⎥⎢ ⎥ −− ⎢ ⎥⎢ ⎥
− +− + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎢ ⎥−− ⎣ ⎦⎣ ⎦ ⎢ ⎥⎢ ⎥ + − + − − ++ ⎢ ⎥− −⎣ ⎦⎣ ⎦ ⎣ ⎦

2 12 1
( 1) 1( 1) 1

2 111
2 ( 1) 21

[2 2] 2 12(( ) ) , ...,

nn
NN

nNN
N n N

n N
v

⎢ ⎥⎢ ⎥ −− ⎢ ⎥⎢ ⎥
− +− + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎢ ⎥−− ⎣ ⎦⎣ ⎦ ⎢ ⎥⎢ ⎥ − + − − ++ ⎢ ⎥− −⎣ ⎦⎣ ⎦ ⎣ ⎦

2 1 2 1
( 1) 1 ( 1) 1

1 1
1

[2 2] 2 2(( ) ) }}.

n n
N N

N N

n
v

⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
− + − +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥+

− ⎣ ⎦ ⎣ ⎦
 

Case 2.6.2. 2 6.n N n≤ ≤ −  

Case 2.6.2.1. 1.n N= −  We set 
2 1 2 1

[ ( 1) 1] [ ( 1) 2]
[2 3] [2 1]1 1

3 {{ , , ..., , ,

n n
N N

n nN N
S v v v v

− −⎢ ⎥ ⎢ ⎥
− + − +⎢ ⎥ ⎢ ⎥ − −− −⎣ ⎦ ⎣ ⎦

=

2 1 2 1
( 1) 1 ( 1) 1

1 1
1 1

[2 2] [2 2] [2 2]2 2, ( ) , ( ) }}.

n n
N N

N N

n n n
v v v

⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
− + − +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥+ +

− − −⎣ ⎦ ⎣ ⎦  

Case 2.6.2.2. 1n N≠ −  We set 
2 1 2 1

[ ( 1) 1] [ ( 1) 2]
1 1

3 {{ , , ...,

n n
N N

N N
S v v

− −⎢ ⎥ ⎢ ⎥
− + − +⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

=

2 1
( 1) 1

1
1

[2 1] [2 2] [2 2] 2, , ( ) ,

n
N

N

n n n
v v v

⎢ ⎥−⎢ ⎥
− +⎢ ⎥⎢ ⎥−⎣ ⎦⎢ ⎥+

− − − ⎣ ⎦

2 1 2 1
( 1) 1 ( 1) 1

1 1
1 1

[2 2] 2 2(( ) ) ,

n n
N N

N N
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n
v

⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
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− ⎣ ⎦ ⎣ ⎦

2 1 2 1
( 1) 1 ( 1) 1

1 1
1 1

[2 2] 2 2(( ) ) ,

n n
N N

N N
N n

n
v

⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
− + − +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥+ − + +

− ⎣ ⎦ ⎣ ⎦

2 1 2 1
( 1) 1 ( 1) 1

1 1
1 2

[2 2] 2 2(( ) ) ,

n n
N N

N N
N n

n
v

⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
− + − +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥+ − + +

− ⎣ ⎦ ⎣ ⎦

2 1 2 1
( 1) 1 ( 1) 1

1 1
1 2

[2 2] 2 2(( ) ) , ...,

n n
N N

N N
N n

n
v

⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
− + − +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥+ − + +

− ⎣ ⎦ ⎣ ⎦

2 1 2 1
( 1) 1 ( 1) 1

1 1
1 1

[2 2] 2 2(( ) ) , .

n n
N N

N N

n
v

⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
− + − +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥+ −

− ⎣ ⎦ ⎣ ⎦

2 1 2 1
( 1) 1 ( 1) 1

1 1
1 1

[2 2] 2 2(( ) ) , .

n n
N N

N N

n
v

⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
− + − +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥+ −

− ⎣ ⎦ ⎣ ⎦

2 1
( 1) 1

1
1

[2 2] 2( ) }}.

n
N

N

n
v

⎢ ⎥−⎢ ⎥
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− ⎣ ⎦
 

We set 
1 2

S S S= ∪  when N is odd or (2 1) 0n − ≡  

(mod ( 1)N − ) (
1 2 3

,S S S S= ∪ ∪ otherwise). 

According to the definition of 
n

AQ , the subgraph 

induced by each element in S is isomorphic to 
N

C  and 

2 1
| | .

1

n
S

N

−⎡ ⎤
= ⎢ ⎥−⎢ ⎥

 Let ( ) .f sW S f
∈

= ∪  Since ( )
n

AQ W S−  

is disconnected and one component of it is {u}, 

( , )
n N

k AQ C ≤  
2 1

.
1

n

N

−⎡ ⎤
⎢ ⎥−⎢ ⎥

 Figure 5 shows a 
5

C -structure-

cut in 
6

AQ . 

Lemma 15. Let 
N

F  be a 
N

C -structure set of 
n

AQ  

with n ≥  and 4 2 1N n≤ ≤ − . If there exists an isolated 

vertex in ( ),
n n

AQ V F−  then 
2 1

| | .
1

n

n
F

N

−⎡ ⎤
≥ ⎢ ⎥−⎢ ⎥

 

Proof. Let u be an any vertex in 
n

AQ . According to 

the definition of 
n

AQ , Property 1 and Property 2, any 

N neighbors of u cannot form a 
N

C  and each element 

in F contains at most 1N −  distinct vertices in ( )N u . 

Thus, 
2 1

| | .
1

n

n
F

N

−⎡ ⎤
≥ ⎢ ⎥−⎢ ⎥

 

Lemma 16. For n ≥ 6 and 4 2 1,N n≤ ≤ −  ( , )
n N

k AQ C ≥  

2 1
.

1

n

N

−⎡ ⎤
⎢ ⎥−⎢ ⎥
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Proof. We will prove this lemma by contradiction. Let 
*

n
F  be a 

N
C -structure set of 

n
AQ  and *| |

n
F ≤  

2 1
1 1.

1

n

N

−⎡ ⎤
−⎢ ⎥−⎢ ⎥

 If *( )
n n

AQ V F−  is disconnected, then 

we let R be the smallest component of *( )
n n

AQ V F− . 

Not that *
2 1

| ( ) | 1 1).
1

n

n
V F N

N

−⎡ ⎤
≤ × −⎢ ⎥−⎢ ⎥

 By Lemma 1, 

we have 
2 1

1 1 4 8
1

n
N n

N

−⎡ ⎤
× − < −⎢ ⎥−⎢ ⎥

 for 6n ≥ . Hence 

| ( ) | 1.V R = . Furthermore, we assume that vertex 

( ).u V R∈  By Lemma 15, *| ( ) ( ) 2 2
n

N u V F n− ≤ −  

2 1,n< −  which means that there exists at least one 

neighbor of u in *( )
n n

AQ V F− . Therefore, we have 

| ( ) | 2,V R ≥  a contradiction. Thus, *( )
n n

AQ V F−  is 

connected. The lemma holds. 

By Lemma 14 and Lemma 16, we have the following 

theorem. 

Theorem 8. For n≥ 6 and 4 2 1,N n≤ ≤ −  ( , )
n N

k AQ C =  

2 1
.

1

n

N

−⎡ ⎤
⎢ ⎥−⎢ ⎥

 

 

Figure 5. A 
5

C -structure-cut in 
6

AQ  

4 Conclusion 

In this paper, we study the H-structure and H-

substructure connectivity of augmented cube. The 

results are summarized as follows. 

(1) 1, 1,( , ) ( , )s

n M n M
k AQ K k AQ K= =  

1, 12 1 4 ,

2 1
4 1 3,

1

1
6 4 6.

2

M
n for n and K K

n
for n and M

M

n
for n and M

− ≥ =⎧
⎪

−⎡ ⎤⎪ ≥ ≤ ≤⎪⎢ ⎥+⎨⎢ ⎥
⎪ −⎡ ⎤⎪ ≥ ≤ ≤⎢ ⎥⎪ ⎢ ⎥⎩

  

(2) 
2 1

( , ) ( , )s

n L n L

n
k AQ P k AQ P for

L

−⎡ ⎤
= = ⎢ ⎥⎢ ⎥

 3n ≥  

and 1 2 1.L n≤ ≤ −  

(3) 
2 1

( , ) 3 3 2 1.s

n N

n
k AQ C for n and N n

L

−⎡ ⎤
= ≥ ≤ ≤ −⎢ ⎥⎢ ⎥

  

(4) 

1 6 3,

( , ) 2 1
6 4 2 1.

1

s

n N

n for n and N

k AQ C n
for n and n n

N

− ≥ =⎧
⎪

= −⎨⎡ ⎤
≥ ≤ ≤ −⎪⎢ ⎥−⎢ ⎥⎩

 

We study 1,MK  when M is small (1 6)M≤ ≤  in this 

paper. In the case of ensuring reliable communication, 

the number of faulty vertices that can be tolerated in 

augmented cube is almost twice the traditional 

connectivity under ideal conditions. In the future, we 

may focus on 7M ≥ , which will make us more 

comprehensively realize the fault-tolerant ability of 

augmented cube. On the other hand, we may also study 

other properties of augmented cube with structure 

faults such as hamiltonian properties [30-31]. 
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