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Abstract

The augmented cube, denoted by AQ,, is an important

variant of the hypercube. It retains many favorable
properties of the hypercube and possesses several
embeddable properties that the hypercube and its other
variations do not possess. Connectivity is one of the most
important indicators used to evaluate a network’s fault
tolerance performance. Structure and substructure
connectivity are the two novel generalizations of the
connectivity, which provide a new way to evaluate fault-
tolerant ability of a network. In this paper, the structure
connectivity and substructure connectivity of the
augmented cube for H e {K;,,, F,Cy} is investigated,

where 1S M <6,1<L<2n-1and 3<N<2n-1.

Keywords: Structure connectivity, Substructure
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1 Introduction

Fault-tolerant ability is a very important aspect for
evaluating the performance of an interconnection
network. An interconnection network with good fault-
tolerant ability can run well and achieve ideal results
even if some parts of the network fail or are damaged.
Therefore, we hope the fault-tolerant ability of an
interconnection network can be assessed by some
indicators. Connectivity is one of the most important
indicators we use to evaluate a network’s fault-tolerant
ability. A graph G with n vertices, after removing any
k —1 vertices (1<k <n), the resulting subgraph is still

connected. After removing some k vertices, the graph
G becomes a disconnected graph or a trivial graph.
Then G is a k-connected graph, and % is called the
connectivity of graph G, denoted by k(G). Generally,
the larger the connectivity of a graph, the more stable
the network it represents. Although the connectivity
can correctly reflect the fault-tolerant performance of
the system, it has an obvious drawback. That is, it
assumes that all vertices adjacent to the same vertex
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will become faulty at the same time, and the
probability of this case happening in real environment
is very low. Hence, it does not accurately reflect the
robust performance of large-scale networks. The
conditional connectivity proposed by Harary [1]
overcomes this shortcoming by attaching some
requirements to each component when the entire
network becomes disconnected due to failure of some
vertices. Then, Fabrega et al. [15] proposed the concept
of g-extra connectivity. Given a graph G and a non-
negative integer g, if there is a set of vertices in the
graph G such that the graph G is disconnected after the
vertex set is deleted and the number of vertices of each
component is greater than g, then we call it a vertex cut.
The minimum cardinality of all vertex cuts is referred
to as the g-extra commectivity of graph G, denoted by
k,(G). g-extra connectivity is a generalization of the

superconnectivity. The superconnectivity of a graph G
actually corresponds to k,(G) [15, 26]. More information

on connectivity can be found in [4-14, 16, 18, 22-25].
However, both the connectivity and the improved
conditional connectivity discussed above are based on
the assumption that a single vertex failure is an
independent event. Under such connectivities, when
any vertex in the network fails, there is no effect on the
vertices that are directly connected to this vertex.
However, in fact, when a vertex in the network
becomes faulty, the probability of vertices around this
vertex will becoming faulty is greatly increased, which
may form a faulty structure centered on this faulty
vertex. Therefore, Lin et al. [2] proposed the concept
of structure connectivity k,(Q,, H) and sub-structure

connectivity k*(Q,, H) of the hypercube O, in [2] for
Hel{K,K,,K,,K;,C,}. They actually generalized

the faulty element from a single faulty vertex to a
faulty structure (substructure). More results on
structure and substructure connectivity can be found in
[17,19-21, 27].

The augmented cube, proposed by Choudum and
Sunitha [3], as an important variant of the hypercube,
not only retains some of the superior properties of the
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hypercube, but also has many properties that are not
available in hypercubes and other variants [28-29]. For
example, the connectivity of the augmented cube is
2n—1, which is almost twice that of a hypercube, This
means that the fault tolerance ability of the augmented
cube is somewhat higher than that of the hypercube. In
this paper, we focus on the structure and substructure
connectivity of augmented cube. We establish H-
structure and H-substructure connectivity of AQ, for

H e{K, ., P,Cy}. (shown in Figure 1), respectively,
where 1<k <6, 1<L<2n-1, and 3<N<2n-1.

K P, (-‘_\'

Figure 1. K, ,,, P, and Cy

The rest of the paper is structured as follows. In
Section 2, the definition of the augmented cube and
some useful properties of it are presented. Then,
Section 3 presents the main results on k(4Q,, ) and

k*(AQ,, h) of augmented cube for each He{K,,,, F;,Cy}
in this paper. Conclusions are presented in Section 4.

2 Preliminaries

In order to better study the nature of the
interconnection network, we generally model the
interconnection network as an undirected graph, where
each vertex in the graph represents a server, and each
edge in the graph represents a communication link
connecting two servers. A graph can be defined as a
binary group: G =V (G), E(G)), where: (1) V(G) is a
finite and nonempty set of vertices. (2) E(G) is a finite
set of edges connecting two different vertices (vertex
pairs) in V' (G). In this paper, all graphs are referred to

simple graphs. We use N(u) to denote all vertices
adjacent to the same vertex u for u € V(G).

For graphs G and H, if V(H)cV(G) and
E(H)c E(G), then H is called the subgraph of G, G is
called the supergraph of H. If H is a subgraph of G
with V(H)=V(G) , then H is called the spanning
subgraph of G, and G is called the spanning supergraph
of H. For the non-empty vertex subset V'€V (G) of
graph G, if G’s subgraph H has V' as its vertex set,
and the two end vertices of each edge of H lie in V',
then subgraph H is called the induced subgraph of G.

Two graphs G and H are isomorphic if there exists a
bijection f:V(G)—V(H) such that (u,v)e E(G) if
and only if (f(u), f(v)) e E(H). Let H be a subgraph
in graph G and F be a set of elements and each element
is a vertex subset of graph G. Let W (F)=U,_ps. If the
set F satisfies that G—W (F) is a disconnected graph
or a trivial graph and the induced subgraph of each
element in F is isomorphic to one of the spanning
supergraphs of H, then F'is called a H-structure cut of
G. The H-structure connectivity of graph, denoted by
k(G, H), is the minimum cardinality of all H-structure
cuts of G. If the induced subgraph of each element in F
is isomorphic to one of the spanning supergraphs of a
subgraph of H, then F is called a H-substructure cut of
G. The H-substructure connectivity of graph G,
denoted by £°(G, H), is the minimum cardinality of
all H-substructure cuts of G. If H is just an isolated
vertex. Then H-structure connectivity and H-
substructure connectivity are exactly the traditional
connectivity.

If the set of vertices of a graph G can be divided into
two disjoint subsets X and Y, where |S|=m and
|Y|=n, such that any vertex in X has a unique edge
with each vertex in Y and there is no edge has two end
vertices in the same subset. Then G is called a
complete bipartite graph, denoted by K, . We use K|

to represent an independent vertex. A path P, =
<V, V,,...,V, > 1is a finite non-empty sequence with
(v;,v,,)€ E(G) for
1<i<k-1.A cycle C, =<v,v,,...,v, > for k=3 is
a path where (v;,v,) € E(G).
In the following, we shall introduce the definition of

the augmented cube and some properties of it.
Definition 1. [3] Let an integer n>1 ,

dimensional augmented cube AQ, consists of 2"

different vertices such that

an n-

vertices, each vertex in AQ, is labeled by a unique n-
bit binary string uu,_, ...uu,, where u, €{0,1} for
i=1,2,...,n. The augmented cube AQ, is a complete
graph K, with two vertices 0 and 1. For n>22, AQ,
is build from two disjoint copies of AQ, | according to
the following steps: Let AQ, , denote the graph
obtained from one copy of AQ, , by prefixing the label
of each vertex with 0. Let 140, | denote the graph
obtained from the other copy of AQ,_, by prefixing the
label of each vertex with 1. A vertex u=0u,_, ...a,aq
of 00, , is adjacent to a vertex v=1b, ,...b,b, of
14Q, , if and only if, for i=1,...,n—1 either (1)
a; =b,, in this case, (u,v) is called a hypercube edge
or (2) a=b,
complement edge.

in this case, (u,v) is called a



For any vertex u=a, ,a, ...a, in augmented cube.

we use u' (respectively, #' ) to denote the binary

string a, a,,,a,a, , ...a, (respectively, a, a,,,aa_, ...q)).
It is clear that »' =#', we may mix these two notations

whenever it is convenient. For example, if # =011001,
then u'=u#'=011000, w»*=011011, u*=010001,
u*=010110, (*)* =010011, (") =010010, (u*)* =010010,

and (*)* =010101.

The definition of augmented cube above is recursive.
As with hypercube or other graphs, augmented cube
also has several definitions. An alternative definition of
AQ, is as follows:

Definition 2. [3] An n-dimensional augmented cube
with n>1 contains 2" vertices, each vertex of which is
labeled by a unique n-bit binary string uu, | ...uu,,
where u {0,1} fori=1,2,...,n. For any two vertices

a=a,a, .
to b, if and only if, there exists an integer k, 1<k <n,
such that either (1) a, =b, and a,=b, for 1<i<n,
ik or (2) a,=b for 1<i<k and a,=b, for
k+1<i<nm.

The augmented cubes AQ,, AQ, and AQ, are
shown in Figure 2.

Then, we give some properties of 40, .

..a,a, and b=bb, ,...b,b, a is adjacent

0 00 10

1 01 11

AD, AQ, AQ,

Figure 2. Augmented cubes AQ,, AQ, and AQ, of
dimension 1, 2, and 3

Theorem 1. /3] k(AQ)) =1, k(AQ,)=3, k(AQ,)=4,
and fornz4, k(AQ,)=2n-1.

According to Theorem 1, we have the following
result.

Theorem 2. For n>4, k(4AQ,,K,)=k’(40,,K,) =
2n—1
Lemma 1. [26] For n>6, k,(AQ,)=4n-8.
Property 1. [26] If (u,u') is a hypercube edge of
dimension i(1<i<n), then
', u™"y 2<i<n,
@ u?y  i=l.

That is, u and u' have exactly two common
neighbors in 40, and |NAQW({u,ui})|=4n—6.

NAQn (u)ﬂNAQn (ul) :{
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Property 2. [26] If (u, u') is a complement edge of
dimension i (2<i<n), then

NAQn @n NAQn (ﬁi)
_{{ﬁi",ui,ﬁi+',ﬁi+'} 2<i<n-—1l,

—n—1 n}

{u" ,u i=n.

That is, u and #' have exactly four common
neighbors in 4Q, for 2<i<n-—1 and [N, ({u, u'l)|=
4n—8. Similarly, # and #" have exactly two common
neighbors in AQ, and | N, ({u,u"})[=4n—-6.
Property 3. [26] Any two vertices in AQ, have at

most four common neighbors for n> 3.
According to the Definition 1, we can easily obtain
the following properties of augmented cube.

Property 4. If (u,u’) and (u,u’) are two hypercube
edges of dimensions i and j(1<i= j<n). Without loss
of generality, we set i < j, then
N, @NN,, @)
fw, W ,u', ')y j=i+landi>1,
= {u, ()'}
fu, ')’}
Property 5. If (u,u') and (u,u’) are two
complement edges of dimensions i and j(1<i# j<n).

Jj>i+l,
i=land j=2.

Without loss of generality, we set I <, then
N, @)NN 4 (@)
_{{u,w, @)™ @Y™
) . @)}

Property 6. If (u,u') is a hypercube edge of

Jj=i+2,

j=i+lor j>i+2.

dimension i and (u,u’) is a complement edge of
dimension j(1<i, j <n), then

Ny @)NN,, @)
', @™, @) @Y™, i=jandi>1,
fu, ', @), @™, i=j+1landi>n,
fu,u’ )™}, i=nand j>n-1,
', @) @y ay, =2,
= {w,u’}, |i-j|>2,
wu, /Y, @), uy, j=i+landi>1,
{u,()*}, i=land j=2,
(wu, @)y, j=i+2andi>1,
(7%, @), @'y, i=land j=3.
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3 H-structure Connectivity and H-

substructure Connectivity

In this section, we study the H-structure connectivity
and H-substructure connectivity of AQ, for each

He{K, ., P,Cy}, where 1I<M <6, 1<L<2n-1,

and 3<N<2n—-1. Let u be an arbitrary vertex in
AQ, . In order to make the representation of our proof

more convenient, we introduce a set of tokens
VW where W W v and all
the adjacent vertices of u: u',u*,u”,...,u", u" form a
one-to-one correspondence. The correspondence of u’
and V' is: (1) if i is even, then j =é+1 and u/ =v.
(2) if i is odd, then j:LéJ+1 and u/ =V, The

definition of (v\!)! and (\ﬁ)l is the same as that of '
and u' . For example, if u=000000 is a vertex of

AQ, , then u*=v17=001000 , «° =v"'=011111

()2 2001010 and (/”)* =011000 . In this paper,
we may mix these two notations whenever it is
convenient.

31 Kk(AQ,,K,,) and k*(40,,K, )

According to the definition of 4Q,, Property 1, and

Property 2, if u is an arbitrary vertex of 4Q, and (u,u")
is a complement edge of dimension i(2<i<n-1),

then N, @)\N,, @)=, u',u™",u"™"}. The
subgra-ph induced by &', u" ", i, ™, u™"} 2<i<n-1)
is isomorphic to K, ,. If (u,u") is a complement edge
of dimension n, then N ,, )N\ N ,, @")={u"",u"}
and the subgraph induced by {@”,u"",u"} is
isomorphic to K, ,. Similarly, if (u, u') is a hypercube

edge of dimension i(1<i<n), then N, (u)ﬂNAQn ')

={',uy (2<i<n) and N, )N, @')={’,u’}.

The subgraph induced by {u',u’,u’""} (2<i<n) is
isomorphic to K, ,.
Here, we will discuss k(40,,K, ,,) k*(40,.K, )

for the casesof 1< M <3 and 4<M<6.
311 1<M<3

Lemma 2. For n>4 and 1< M <3, k(4Q,,K, )<

2n—1 ) 2n—1
d k(40 ,K, )< .
[1+M—‘ and k*(A0,. K\.x) L+M—l

w (V) \ I t_f‘ o)

\ !
\\ \ i //
vy & NV e

w (W)
w (V™)

& ()

(a) A K, -structure-cut in AQs

! w (V)

|
T v by
w (V') \__:\\ vy T e (o)
~~Is M-
Ly A—

u (V')

ut (V")
(b) A K, ,-structure-cut in AQ;

Figure 3. A K, -structure-cut in 4Q; and a K, -

structure-cut in AQ,

Proof. Let u be an any vertex in A0, . In the following,

we distinguish cases for the values of M and ».
Casel. M =1. We set

. A 2n—1
S = V(M+1)z+1, V(M+1)z+2 0Si<\‘ J and
=1 ( )} Vil }
Sy ={ P, o
Case2. M =2.
Case 2.1. n=0 (mod 3). We set

; ; - 1 2n-1
Sl — {{v[(M+1)1+1]’ V[(MH)HZ], v[(M+1)z+3]} | 0 <i <[ J}
M +1

Case 2.2. n=1 (mod 3). We set

, : ; | 2n—1
Sl — {{V[(M+1)]l+1], V[(M+])l+2], v[(M+1)1+3]} | 0 <i< L J}
M+1

and S, = {{V[Zn—l]’ (V[Zn—l])1’ (V[Zn—l])z}}‘

Case 2.3. n=2 (mod 3). We set

) ) ) | 2n-1
S, = {{v[(M+1)1+1], v[(M+1)z+2]’ v[(M+1)1+3]} 10<i <L J}
M+1

and S, = {{V[Zn—Z], v[2n—2]’ (v[2n—1])2}} ‘



Case3. M =3.
Case 3.1. n=1 (mod 4). We set

Sl — {{v[(M+l)i+l] v[(M+1)i+2] v[(M+1)i+3]

b b b

BZ_:J} and 5, = {671, (1), RO, Iy,

YDA < o

Case 3.2. n=3 (mod 4). We set

S :{{v[(M+l)i+l] v[(M+1)i+2] v[(M+l)i+3]

b b b

WDy < o

2n—1
t ]\Z J} and S, = { (@3 Jr-2) yJen-n | f@ntlyiny

Suppose that =S5, when M =2 and n=0 (mod 3)
(S=5US,, ift M=1, the
induced subgraph of each element in S, US, is
isomorphic to K, ; If M =2, [(M+h)ie2]

otherwise). Clearly,

vertex Vv is

[(M+1)i+1] [(M+1)i+3]

adjacent to vertices v and Vv for

2n-1 . . .
OSi<M[—J, vertex v*"! is adjacent to vertices
M+1

W2 and ("), Therefore, the
subgraph induced by each element in S is isomorphic
to K ,; If M=3, vertex YD e adjacent to

p2n-2] ’

[(M+1)i+1] [(M+1)i+2]

vertices v , Vv , and MDA

for

+1
V[Zn—z], ( [2n—]])’ ( [2}1—1])1

. | 2n—1 T . .
OSK[M J, vertex " is adjacent to vertices

[2}'1—3] (V[Zn—l])z

1% , and

(V*"" 1) Thus, the subgraph induced by each element

in § is isomorphic to K,;. It is obvious that [S|=

IVIZZ;;—‘ . Let W(S):Ufesf Since AQH—W(S) is

disconnected and one component of it is {u},
2n—1 2n-1

k(AQ,,K, ,,)< d K°(40,,K, ,,)< .

(Q71M){+J;lm (40, LM)(HJ?

Figure 3 shows a K|, -structure-cut in 4Q; anda K, -

structure-cut in AQ;.
Lemma 3. Forn>4 and 1< M <3, k*(40,.K, )=

{2n—1w
1+M |

Proof- Let Fn* be a set of connected subgraphs in 40, ,

every element in the set is isomorphic to K, ,, with

Fﬁi’gﬂ 1. Hence |V(E))|<(1+M)x ([2” 1] 1)

<2n—1.Since k(4Q,)=2n—1, AQ, —F, is connected.
The lemma holds.

Since k(4Q,, K, ) 2k*(40,.K, ), kQ,. K, )
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2n—1
2{ " —l By Lemma 2 and Lemma 3, we have the
1+ M

following theorem.
Theorem 3. For n>4 and 1< M <3, k(40,,K, /)=

2n—1 ' 2n—1
d k' (40, ,K = .
|71+M—‘ an ( Qn 1,M) |71+M—‘

312 4<M<6

Lemma 4. For n>6 and 4<M <6, k(4Q,,K, )<
-1 , -1
e o]

Proof. Let u be an any vertex in AQ, . In the following,

we distinguish cases for the values of M and ».

Casel. M =4.

Case 1.1. n is odd. We set
S, = ({1 21 31 1l

S2 — {{v[5+4i+1] v[5+4i+2]

|O<z<[ 5 —‘ 1}

Case 1.2. n is even. We set

S, = {0 121 B0 sy

v[5+4i+3]

b b

By and

v[5+4i+3], v[5+4i+4]’ (V[S+4i+2])1}

b b

S _{{v[5+4i+1] v[5+4i+2] v[5+4i+4] (v[5+4i+2])1}
2 = B >

b

|0<z<[ 21—‘ 1}, and

S3 — {{v[zn—Z] v[2n—1] (v[2n71])1 (V[Zn—l])z (v[2n—1])3}}.
Case2. M =5.
Case 2.1. n is odd. We set

S, = { (A, V200

S2 — {{V[5+4H1], V[5+4i+2]

L o) and

v[5+4i+3]

b b

V[5+4i+4], (v[5+4i+2])1}

b

(v[5+4z+2) }|0<l<lr —l 1}

Case 2.2. n is even. We set
S, = {1 21 31 1

S2 — {{V[5+4H1], v[5+4i+2]

WL 0y,

v[5+4i+3] v[5+4i+4] , (v[5+4i+2] )1 }

b b

(v[5+41+2) }|0<l<lrn2 —l 1} and

S3 — {{V[ZI/I—Z]’ V[Zn—l]’ (V[Zn—l])l , (V[2n—1])2’ (v[zn—l]):;}’

(V[Zn—l])4} } .
Case3. M =6.
Case 3.1. n is odd. We set

S, = {1 12!

S2 — {{V[S+4i+1], v[5+4i+2]

SR 0P} and

v[5+4i+3], V[5+4i+4]’ (V[5+4i+2])1}

> B

(V[5+4i+2])2 i (v[5+4i+2])3} 10<i< [ ”2— 1—l ~1.
Case 3.2. nis even. We set

5, = {0t 6P )
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S, = {{V[5+4i+1], V[5+4i+2]’ JH43] v[5+4i+4]’ (v[5+4i+2])l}’

(N2 G 0 < < IVHT_I—I —1}, and

S, :{{v[znfz]’ v[2n71], (V[Zn—l])l’ (v[z;H])z, (V[anl])3},
(V[anl])4} (V[Zn—l])s}}'

Obviously, the subgraph induced by the element in
S, is isomorphic to K, ,. For 0<i< [nT_J_L

vertex v is adjacent to vertices v/l with

j=13 or 4 and (W for 1< p<1+M—4.
Thus, the subgraph induced by each element in §, is
isomorphic to K, ,. Vertex v is adjacent to
vertices Vv*"? and (V") for 1<p<1+ M-

n—1

(2n—2—4>{
2

J). Therefore, the subgraph induced

by the element in S, is isomorphic to K, ,,. Suppose
that S=S,US, when n is odd ( S=5US,US;,
”;J. Let W(S)=U,.,

Since AQ, —W (S) is disconnected and one component

2”_11 and k*(4Q,, K, ;) <

otherwise). Note that | S |=

of it is {u}, k(4Q,,K, )<

{2’72_1—‘ with 4<M <6. Figure 4 shows a K5 -

structure-cut of AQ;.
Lemma 5. Let F; be a K, -substructure set of AQ,

with n>6 and 4< M <6. If there exists an isolated

vertex in AQ, —V (F,), then F, ernz_l—l.

Proof. Let u be an any vertex in AQ,. We set
W ={x|(x,u)} is a hypercube edge, x €V (G)} and
Z={y|(y,u) is a complement edge, yeV(G)}.
Clearly, |W|=n and |Z|=n—1. By Property 2 and
Property 3, each element in F), contains at most five
distinct vertices in N(u), namely, u',u'",u’,u""",
and "' with 2<i<n—1. Since {(@',u' "), @', u"),
@', u™"), @', u"")} < E(AQ,), the subgraph induced

1 —itly o .
,u'""} is isomorphic to K;,. We

by {l/_li, 7/71'—1 , Ui, ui+
set B={h|bcF, and @', o', u',u",u™"y V(b)) N(w)}.
Since each V'(b,) contains three vertices in Z and two

2n—1

vertices in W, |B|<[ J In the following, we

distinguish cases for the value of | B|.

Case 1. | B|=0. Since each element in F), contains at

. . 2n-1
most four distinct vertices in N(u), F, 2{ n4 —l

Case 2. | B|=1. Suppose that {u'"",u’,u’,u"™"} V(b))
with 2<i<n-1. Since each element in F, -B
contains at most four distinct vertices in N(u)—V(B),

F 21+[2n—6—‘:{n—1—|‘
4 2
il —itl

Case 3. | B|=2. Suppose that {#'",u', u’,u™", u""}
V(b)) A@ ™ u u u ™ e V(b)) with
2<i,j<n-1, and |i, j|>3. Without loss of generality,

we set j|>1.

Case 3.1. j—i=3. Then {u/ ', u/,u’ u/",u/*"}=
@™, u™ ™, u™*y. Suppose that w, W, € N(u)—
V(B)—{u'"?} and w;, #w,. By Properties 4, 5 and 6,
N@™ )N N(w)NN(w,)=¢. In addition, vertex u'*>
is not adjacent to the wvertices in N(u)-V(B).
Therefore, there is an element a € F,, — B such that
u'? eV(a) and V(a)N{(u)-V(B)}<2. Since each
element in F,, — B —{a} contains at most four distinct
2n—13—‘

vertices in N(u)—-V(B)-V(a), |F, |22+1+{

_[Zn—lw
el
Case 3.2. j—i=4. Then {u’/", u’/,u’,u’™", u/*"}=

—i+3 i+4 —i+5 i+5 —i+5
@ u"u™ u™  u™

In the following, we

distinguish cases for the number of elements
containing three vertices #'**,u#""* and u'” in F,~B.
We use S to denote the number of elements further deal
with the following cases.

Case 3.2.1. S=3. Then there are three distinct

elements in N(u)—V(B) that contain one of three
verticesu'**, #"**, and u'* , respectively. Suppose that
w, w, € Nw) =V (B)—{u'™,u""*,u"™} and w, #w,. By
Properties 4, 5 and 6, N(u">) N N(w,) N N(w,) =¢. In

addition, vertex »'** is not adjacent to the vertices in

N@)-V(B)—{u'?,u™.
a,€F,—B such that u"eV(a) and

V(a)N{N@u)—V(B)—{u"*, u"}}<2. For the cases
2

Therefore, there is an

element

and u'"

2

of vertices u'"
that of vertex u'"
Since each element in F —B—{a,,a,,a;} contains at
most four distinct vertices in N(u)—-V(B)-V(a)

2n+ 3—1
ol

, the discussions are similar to

j+2 i+3
and we set u'"“e€a,, u'" ea,.

V(ay)-V(ay), F, 22+3+[2"’;171=[



Case 3.2.2. § = 2. Then there are two distinct elements
in N(u)-V(B), one of which contains one vertex in

42 —i+2

u, u"™?, and u'" and another element contains the

other two vertices. We assume that g, contains one

3

vertex in "2, %""* and »"*’ and a, contains the other

two vertices.

Case 3.2.2.1. v eV(a) and @, u"}eV(a,).
Similar to the discussion of Case 3.2.1, we have
V(a)N{N@)—V(B)—{u"?,u} 1 <2. Since N(@'*?)N
N@™Y = fu, 7Y = (@), @), each element
in {(@"?)**, @)} is not adjacent to the vertices
in N(u)-V(B)—{u""*,u"*,u""} and each element in
('™, 4™} is not adjacent to the vertices in
N(u) -V (B)~ "}, V(@) NIN@) -V (B~ ™}y =2
and {u'?,u"’}eV(a,). Since each element in
F\, —B{a,,a,} contains at most four distinct vertices
2n—15w

in Nw)-V(B)-V(a)-V(a,), |F, |22+1+1+[

=[2n+1—“ For the case of vertices u'" €V(a,) and
{u"?,u""*} eV (a,), the discussion is similar.

Case 3.2.2.2. u"? eV(a) and {u"*,u'"}eV(ay).
Similar to the discussion of Case 3.2.1, we have
V(a)N{N@)—V(B)—{u"*,u"}}<2. Since N(@u"*)N
N(ui+3)_ u, L—li+2} _ {(ui+2)i+3, (ui+3)i+3}’ each element
in {(u"*)™, (u"™?)™**} is not adjacent to the vertices in
N@)~V(B)~ @™} and ("2, u™) ¢ E(AQ,), V(ay)N
(Nw)-V(B)—{u"?}}<2 and W™, u™}cV(a,).
Since each element in F,-B-{a,,a,} contains at
most four distinct vertices in N(u)—V(B)—V(a))—

2n+1

4 1
Case 3.2.3. S=1. According to the discussions of
Case 3.2.1 and Case 3.2.2, there is an element
a, € F,—B such that V(a)(\{N(u)-V(B)=3 and
{ui+2, L—IHZ’ Z/ti+3, } c V(Cl)

F —B—{a} contains at most four distinct vertices in

V(a,), |Fn|22+1+1+{2”;1ﬂ=[

Since each element in

2
Case 3.3. j—i>5. We set U, ={u'?,u"?, ,u'™"}.
In the following, we will calculate the number of

elements containing U, in F,—B. Since 5<|Uj |

N@u)-V(B)-V(a), |5|22+1+[2”;141={"_1W.

<2n—11 and each element contains at most four
distinct vertices of N(u)-V(B) in F,—-B, we will
distinguish cases for the value of |U, |.
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Case 3.3.1. |U; [=1 (mod 4). Similar to the discussion

in Case 3.1, we have | F, |>2+1+ 2";13—‘:{2”4_1—‘.

Case 3.3.2. |U, |=3 (mod 4). Similar to the discussion

in Case 3.2 we have |F, |>2+1+ Zn;M—l:[nz_l—"

Case 4. |B[23. If b,b, € B and there is no b, € B

with i<k<j, we set U,={u"?u"* u"

According to the discussion of Case 3, if |U; |=3
(mod 4), then the value of F, will be the smallest.
2n—1—5><|B|—3><(|B|—1)—|

4

Thus, |Eq|2|B|+(|B|—1)+(

=

In summary, the lemma holds.
Lemma 6. For n>6 and 4<M <6, k(A4Q,,K, )=

~1 ~1
["2 w and kS(AQn,KLM)zV2 1

Proof. We will prove this lemma by contradiction. Let
F be a K, ) -substructure set of A4Q, and

n—1

|F, IS{
2
then we let R be the

—l—l. If A4Q, —V(F,) is disconnected,
smallest component of

AQ, -V (F,). Note that |V(F,,*>IS<1””)X(VT_1}D

£7><(VT_1—‘—1). By Lemma 1, we have 7><(VT_1—‘—1<

4n—-8 for n>6. Hence |V(R)|=1. Furthermore, we
assume that vertex « € ' (R). By Lemma 5, | Nw) W(F)|
<2n-1<2n-1, which means that there exists at least
one neighbor of u in 4AQ, — V(Fn*) . Therefore, we have
|V(R)|>2, a contradiction. Thus, 4Q,~V(F,) is
connected. The lemma holds.

Combining Lemma 4, we have k’(4Q0,,K, )=

[nz—ﬂ_ Since (0, K, 1) 2k*(0,, K, 1)s K(O,, Ky 1)

2(21/1_1—‘. By Lemma 4 and Lemma 6, we have the
1+M

following theorem.
Theorem 4. For n>6 and 4<M <6, k(A4Q,,K, /)=

n—1 P | n-1
l’ 5 —‘andk(AQn,Kl’M)—lr 5 —‘

3.2 k(A40Q,,P,) and k*(A40Q,,P,)

Let u be an arbitrary vertex in 40, , according to the
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definition of 4Q,, @', u')eE(AQ) and (u',u')e
E(AQ) (2<i<n). Thus <(u',u*,u*,..,u",u") can
form a path with length of 2n—2.

Since P (F) is isomorphic to K;(K;,) and we
have given k(4Q,, K, (k(40,,K,,)) and k*(40,,K,,)

(k’(A40,,K,,)) insection 3.1, we assume L >4 in the

following.
Lemma 7. For n>3 and 4<L<2n-1, k(40,,P,)

s[an_l] and k* (40, P,) < [2;1—1]‘

Proof. Let u be an arbitrary vertex in 40,. We set

S, = {{v[ixLH]’ v[ixL+2]’ . v[ixL+L]} 0<i< tan_lJ}'

If 2n-1)=0 (mod L), then we set S,=¢ .

Otherwise, according to the values of L and

( an_l—‘xL —2n+1, we will divide into the following

cases,

Casel.Lisodd and L <2n-3.

Case 1.1. {2n_1—‘xL—2n+l is even. We set S, =
2n-1

{{v[{ L XL“J] ol (V[anl])l (V[Zn—l])Z (V[anl])l

[2’171—‘><L—2n+1]
- L

2-1]\3 /. [2n—1]\3 2n-1 +1
Oy, Py L o 2 j3%

2n—1
L

Case 1.2. { —‘xL—2n+1 is odd. We set S, =

[{ - ><L+IJ] ~ B ) -
{{V 5 eees v[z" 1 R (V[2n 1])1 , (V[Z” 1])2 , (V[Zn 1])1 ,
(Zn_WXL—Zn]
| I
(v[2n—l])3, (V[Zn—l])3 , (v[2n—l])3,m , (v[2n—l]) 2 \

1)
Case 2. L is even and L<2n-4. We set §,=

+1

2n-1

{{V[{ L

><L+1J]
o, VI (P 2neTy2 g ane]y2

[ 2] -le—Z n
L

—+1

(V[Zn—l])3 (V[Zn—l])3 (v[Zn—l]) 2 }}
Case 3. L=2n-2. We set S, = {1, o2
(V[2n—1])2’ (V[Zn—l])Z’ v[2n—l])3, (V[2n—l])3, .(V[Zn—l])n—l

((V[Zn—l] )n—l )] } } .

2

Suppose that S=S§, when (2n—-1)=0 (mod L)
(S=5,US,,, otherwise). Obviously, the subgraph
induced by each element in S is isomorphic to £, and

|S|:VL_1—|. Let W(S)=U,., /. Since 4Q, ~W(S)

is disconnected and one component of it is {u},

2n—1

k(AQ,,,PL)s[ ]andkf(AQ,,,msP”Lﬂ.

Lemma 8. For n>3 and 4<L<2n-1, k*(40,,P,)

=)

Proof. Let Fn* be a set of connected subgraphs in 40, ,

every element in the set is isomorphic to a connected
2n—1

subgraph of P, and | F, |S{ —‘—1. Thus |V (F))]

2n—1

SLX([ —‘—1)<2n—1. Since k(4Q,)=2n-1,

AQ, — F, is connected. Hence, the lemma holds.

By Lemma 7 and Lemma 8, we have the following
theorem.
Theorem 5. For n> 3 and and 4<L<2n-1,

k(AQn,PL>=kS<AQn,PL)=P”L‘1].

3.3 k(40Q,,Cy) and k*(A4Q,,Cy)

At first, we discuss £ (AQ,, Cy). Then we discuss
k(AQ,,Cy).

33.1 £°(A40Q,,Cy) with 3< N <2n-1

Since P, is a connected subgraph of C, , we have
the following lemmas.
Lemma 9. For n>3 and 3< N<2n-1, k’'(40,,Cy)
[2n—1]

v |
Lemma 10. For n>3 and 3< N <2n-1, k*(4Q,,Cy)
[2n—1]

v |
Proof. Let F, be a set of connected subgraphs in 40, ,

<

2

every element in the set is isomorphic to a connected

2”_11—1. Thus V(F))

subgraph of C, with | F, |4

2”;\[_1—‘—1<2n—1. Since (40,)=2n-1, AQ, —

SNXIV

F, is connected. Hence, the lemma holds.

By Lemma 9 and Lemma 10, we have the following
theorem.
Theorem 6. For n > 3 and 3<N<2n-1 ,

kS(AQn,CN)=F’jV‘ 1].

Now, we discuss k(4Q,,C;) and k(AQ,,Cy) with
4<N<2n-1.




332 k(AQ,,C;)

We have the following lemma.
Lemma 11. For n>6, k(AQ,,C;)<n-1.

Proof. Let u be an any vertex in AQ,. We set
S, ={{u',u* u?}}y and S, ={{',u’, (') "}|3<i<n}.
Obviously, the subgraph induced by the element
in S, is isomorphic to C;. For 3<i<n,
(' a'y, (', @)™, (@) u'}}, C E(4Q,). Thus,
the subgraph induced by each elementin S=S,US, is
isomorphic to C; and |S|=n~1. Let W(S)=U, f .
Since AQ, —W(S) is disconnected and one component
ofitis {u}, k(40,,C)<n-1.
Lemma 12. Let F, be a C,-structure set of AQ, with
n> 6. If there exists an isolated vertex in AQ, -V (F,),
then | F,|2n—1.
Proof. Let u be an any vertex in AQ,. We set
W ={x(x,u)is a hypercube edge, x € V(G)} and Z =
{y(y,u)is a complement edge, y € V(G)}. Clearly,
|W|=n and | Z|=n-1. By Property 1 and Property 2,
each element in F, contains at most three distinct
vertices in N(u), namely, u',u""" and u""' with
1<i<n-1 and {@',u™"), @ a™), @, u"")c
E(AQ,). Thus, the subgraph induced by {u’, s, u""'
is isomorphic to C,. We set B={b,|b, €F, and
', u™ u™y < (b)) NN ()} each V(b)
contains two vertices in Z and one vertex in W,

Since

|B|2LH;IJ. In the following, we distinguish cases

for the value of | B|.
Case 1. | B|=0. Since each element in F, contains at

. . 2n-1
most two distinct vertices in N(u), F, 2{ n2 —l

Case 2. |B|=1. Suppose that {i’,u"™", u""'} V(b))
with 1<i<n-1.
contains at most two distinct vertices in N(u)—-V(B),

|Fn|21+{2n2_4—|=n—1.

Case 3. | B|=2. Suppose that {u',u"™",u"™"ycV(b),
@’ u u*y V(b)) with 1<i<i,j<n-1, and
|i— j|=2. Without loss of generality, we set j > i.

Case 3.1. j—i=2. Then {ﬁ/’uﬁl’ﬁ/“}:{171+2,uz+3751+3}‘
2

Since each element in F,-B

According to the definition of 4Q, , vertex u'** is not

adjacent to the vertices in N(u)—-V(B). As a result,

there is an element a e F, — B such that u'? eV(a)
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and V(a)N{N(@u)-V(B)}=1. Since the element in
F —B—{a} contains at most two distinct vertices in

N)-V(B)-V(a), | F, |zz+1+[2”2‘ﬂ=n_1.

Case 3.2. j—i=3. Then {u/, '™, /™"y =", u"™*, u™*).
In the following, we distinguish cases for the number

2 —i+2
2

of elements containing three vertices u'*>,u and

u™, in F,—B. We use S denote the number of

elements further deal with the following cases.
Case 3.2.1. S=3. Then there are three distinct
elements in N(u)—V(B) that contain one of three

2 and u'", respectively. By the

vertices u'", U
definition of AQ, , vertex u'*> is not adjacent to the
vertices in N(u)—V (B)—{u"*,u""}. Then there is an
aeF,—~B such that u"'eV(a) and

V(a)N{N@u)-V(B)—{u"* u">}}=1. For the cases

2

element

i+3

and ', the discussions are similar to

2

of vertices u'"
that of vertex u'*
Since each element in F —B—{a,,a,,a;} contains at
most two distinct vertices in N(u)—-V(B)-V(a)—-
2n— 10} .,

—i+2

i+3
and we set u'"“e€a,, u'"” €a,.

V(a,)-V(a,), |F;,|22+3+|7

Case 3.2.2. S =2. Then there are two distinct elements
in N(u)-V(B), one of which contains one vertex in

i+2 —i+2 3

™ u* and ¥, and the other contains the other

two vertices. We assume that @, contains one vertex in

i+2 —i+2
ul , ul

and ' and a, contains the other two
vertices.

Case 3.2.2.1. u"?eV(a) and U, u">}cV(a,).
Similar to the discussion of Case 3.2.1, we have
V(a)N{N@w)-V(B)—{u"? u" y=1. Vertex u'"
or u" is not adjacent to the vertices in N(u)—V(B)
"™} and ("?,u")eE(4Q,). Then &, u'"”}ca,
and V(a,)N{N(@u)-V(B)—{u""*}}=2. Since each
element in F,—-B-{a,a,} contains at most two
vertices in  N(u)-V(B)-V(a)—-V(a,),

2n-10

distinct

|Fn|22+1+14{ —‘zn—l. For the case of

vertices ' eV(a) and (U, u"?}zV(a,), the
discussion is similar.

Case 3.2.2.2. u'”?eV(a) and {2, u™}yaV(a,).
Since (u?,u"*)} € E(AQ,), this situation does not exist.
Case 3.2.3. S=1. Since {u'>,u"”}eE(4Q,), this
situation does not exist.
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Case 3.3. j—i>4. We set U,.j:{14”2,U"J“Z,...,uj_1 )

We will calculate the number of elements containing
U, in F,-B. Clearly, 5<|U|<2n-7. Since each

i
element contains at most two distinct vertices of
N@)-V(B) in F,-—B and U =1 (mod 2), similar to
the discussion in Case 3.2.1, we have |F, |>22+1+

(2?1—8—‘:”_1‘
2

Case 4. |B|23. If b,,b, € B and there is no b, € B

with i<k<j, we set U!,/_:{ui+2,l/—li+2,m’uj,1}‘

According to the discussion of Case 3, the minimum
number of elements that contain all vertices of Uy-

U..
in F,—-B is [711 Thus, |F,|>|B|+(B|-1)+

l'2n—1—3><|B|—(|B|—1)—‘=n_1'
2

In summary, the lemma holds.
Lemma 13. For n>6, k(AQ,,C;)=2n—1.

Proof- We will prove this lemma by contradiction. Let
F, be a C,-structure set of 40, and |F, |<n-2. If

AQ, -V (F,). is disconnected, then we let R be the

smallest component of 40, — V(Fn*). Note that | V(F;) |
<3x(n-2)=3n-6. By Lemma 1, we have 3n—6<
4n—8 for n>6. Hence |V (R)|=1. Furthermore, we
vertex u €V (R).
|N(w)NV(F,)|<2n—2<2n—1, which means that
there exists at least one neighbor of u in 4Q, —V(F)).

assume that By Lemma 12,

Therefore, we have | V(R)|>2, a contradiction. Thus,

AQ, - V(Fn*) is connected. The lemma holds.

By Lemma 11 and Lemma 13, we have the
following theorem.
Theorem 7. For n>6, k(AQ,,C;)=n—1.

333 k(40,,C,) with 4<N<2N -1
Lemma 14. For 26 and 4<N <2n-1, k(40,,Cy)
S[Zn—l—l.

N-1

Proof. Let u be an arbitrary vertex in 40, . According

to the parity of N, we will discuss the following two
cases.
Case 1. N is odd. We set

S] — {{v[(N—l)iH]’ v[(N—l)HZ], . v[(i+1)(N—1)]}’(V[(Hl)(N—l)])

(N-Dit1 |, B
5 J}|0§i<{2” IJ}.
N-1

Case 1.1. 2n—1)=1 (mod (N -1)).
Case 1.1.1. N<2n-3.. We set

Sz — {{V[Zn—l]’ (V[anl])l’ (v[znfl])Z’ (v[znfl])2’ -

N N N
(v[2”*1] )L 2 J , (V[ZVH] ){ 2 J, (v[2n*1] )t 2 J } }
Case 1.1.2. N=2n-1. We set
S2 — {{v[2n—1]’ (v[2n—l])1, (v[2n—1])2’ (v[2n—1])2’ -
(V[Zn—l])n—3 , (V[Zn—l] )n—3’ (V[Zn—l])n—S , ((V[Zn—l] )n—2 )n—4 ,
((V[2n—1])n—2 )n—4’ ((V[Zn—]])n—Z )n—3 , ((V[Zn—l])n—Z )n—3} } )
Case 1.2. (2n—1)=3. (mod (N —1)). We set

N-3
n—-l-——
Sv2 — {{V[Zn—l]’ V[Zn—S]’ v[2n—2]’ (V[Zn—Z]) 2 ’(V[Zn—Z])

N-3 N-3
4= n-l-—2 —_
5 ,(V[Zn—Z]) 2 "“,(V[2n—2])n—2, (V[Zn—Z])n—Z}}.

Case 1.3. (2n—1)>3. (mod (N —1)). We set

n—1-

2n—1 2n-1
[t (N*1)+1J] [{ (N*1)+2J] _
S, ={{ptV! ,pLiN ey V23
V]\:’::(N—I)HJ ‘ N—(Zn—lvl\:l:llJ(N—l))
I [ENET NI v 2
2n-1 2n—1
) = (;VIMJ 2 N(ZMQNIJ(ND)
v : :
2n-1 2n-1
(2721 & (;V _IMJ” N_(zn_l_tév =Sl
v - : ,
2n-1 2n-1
o272y {N_l(;MHJ” N_(M_I_QHJ(N_U)
VI;:IJ(N—I)H
- T—
(U : 3
Case 2. N is even. We set
| 2n—-1 .
If 0Sz<{ 1J and i=0 (mod 2) and N =4,
then

FHIJH
V[3l+2], (V[3t+l]) 2 }

b

S, = {v[3i+1]’ P3#3]

b

| 2n—1 .

If 031<L J and i=0 (mod 2) and N #4,
then

S, = {{V[(N—I)H]’ PIVD2] G- (V[(Hl)(N—l)])
{(N—I)H—IHJ

24

S, = {{V[(N—l)+l], P21 HEDN-D ] (v[(i+1)(N—1)+1])

{(1\/71)“1+

2 IJ}IOsi{Z”{lJ and i=1 (mod 2)}.

If 2n-1)=0 (mod (N-1) ), then §;=¢;
otherwise, we will discuss the following several cases,
Case 2.1. 2n—1)=1 (mod (N —1)). We set

S, = {{V[Zn—l]’ (V[Zn—l])l’ (v[2n—l])2’ (v[2n—l])2’ (V[Zn—l])3’

N N
2n-113 2n-1 2n-1
(G P (e N RO R B



Case 2.2. 2n—-1)=2. (mod (N -1)).
Case 2.2.1. N <n. We set
S3 :{{v[Zn—l] (V[ZVI—2]) (V[ZVI—Z])}'I—I ((V[Zn—Z])n—l)n—Z

s (P Ly
Case 2.2.2. N=2n-2. We set

S3 — {{V[anl]’ (v[2n72] )’ (v[2n72] )1’ (v[2n72] )2, ((V[2n72] ))2,
(V[Zn—Z])3’ ((V[znfz] ))3’ » (V[anz])nfz, ((V[2n—2]))n—2’
(V[2n72])n71 W
Case 2.3. (2n—1)=3. (mod (N —1)). We set

S3 — {{V[2n72] , (v[2n73]), (V[anl])’ (v[2n—l] )2+n7N’ (v[2nfl])
3+an’ . (V[Zn—l])n72}}'

Case 2.4. 2n—1)=4. (mod (N —1)). We set

Case 2.4.1. N<n.
S3 = {V[Zn—4], v[2n—3]’ V[Zn—l], v[2n—2]’ (V[Zn—Z] )4+n—N

(v[Zn—Z] )5+n—N (V[2n72] )n _ 1} } .
Case 2.4.2. N =2n-4. We set

S, = {{V[Zn—4], V[Zn—3]’ V[Zn—l]’ V[Zn—Z], (V[Zn—Z] )3’(V[2n—2] )4’

(V[Zn—Z] )4’ (V[Zn—Z] )5 . S2n-2] )5 - (V[Zn—2] )71—2 , (V[2n—2] )n—l W

Case 2.5. (2n—1) is odd (mod (N —1) )(except 1 and
3). We set

2n-1 2n-1
[{ J(N—1)+1] [{ J(N—l)+2] . -
S3 :{{V N >V N ,"'5v[2n 3]5v[2n 1]5
t2n—lJ
(N-1)+1
N-1 2n-1
221 (v[z”’”)[ N +2"{ o J(N D+l (1272
2n-1 J {Zn—]J
(N-1)+1 (N-1)+1
[“bmnﬁ\’f’”ml)m] N Lyl ° : +
yeen (V ) 1
Case 2.6. (2n—1) is even(mod (N —1) )(except 0, 2
and 4).
Case 2.6.1. N —n.. We set
2n-1 2n-1
[{ J(N—I)H] [t J(mez]
S3 :{{v N ,V N 5 eeesy
2n-1
“ o J(N1)+1+1J
S2n31 [an-1] | f2n-2] (V[Zn—Z]) 2
Zn—lJ {Zn—lJ
(N-1)+1 (N-1)+1
« [2n2])“N1 5 1Jl N-1 5 =1JN+2nB;’"11J(N1)+1
v B b

2 2 N-1

“%—IIJ(NI)H =1J “i\f‘”wmlJ
) ) 132

2n—lJ \\anlJ

(N-1)+1 (N-1)+1

“ N1 ;1J { N1 J—N+2n{2”lJ(N—1)+z
) )

( (v[2n—2]

PREEY

((V[2n—2] 2 2

Case 2.6.2. n<N<2n-6.

Case 2.6.2.1. n=N —1. We set
2n-1 2n-1
[{ J(N—1)+1] [{ J(N—l)+2] - -
S3 — {{V N-1 ,V N-1 s V[Zn 3] v[2n 1]

B 5
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“i\:’_:J(NI)HHJ “%—”WUHHJ
> NUSEND S iy

S22l ( 22l

Case 2.6.2.2. n# N —1 We set

2n-1 2n—1
[L J(N—l)ﬂ] [{ J(N71)+2]
S, ={{pt"! ,vii s
iz |
LN-LD
V[Zn—l]’ v[2n—2] , (V[Zn—Z]) 2 )
2n-1 2n-1
{N_l J(N—l)+l {N_] J(N—I)+l
((—[2n72]) 5 +1 ) 3 —N-+n+1
v - ) N 2
2n-1 2n-1
L LN—I J(N—l)+l LN—I J(N—l)+l
(( [2n—2]) 5 +1 ) 5 —N-+n+1
v - A - b
2n-1 2n-1
L {N—l J(N—l)+l {N—l J(N—l)+l
(( [2n—2]) 5 +1 ) 5 —N+n+2
v - A - b
2n-1 2n-1
{ 1 J(N—1)+1 { o J(N—l)+1
(( [2n—2]) 2 +1 ) 2 —N+n+2
A% - ) - 5 eens
2n-1 2n-1
L [Nil J(N—I)Jrl ! [Nil J(N—I)Jrl L
R
2n-1 2n-1
L [Nil J(N—I)H | [Nil J(N—I)Jrl L
2n-2 2 ' 2
(22 o) S

2n—1
N-1)+1
2

@
(V[ZH*Z]) 2

A

We set S=5,US, when N is odd or 2n—-1)=0
(mod (N-1) ) ( S=SUS,US,,
According to the definition of 4AQ, , the subgraph
induced by each element in S is isomorphic to C,, and

otherwise).

|S|=[2;ﬂ. Let W($)=U,., /. Since 40, ~W/(S)

is disconnected and one component of it is {u},
2n—-1| _.

k(40,,C\)< L\’: 1—|. Figure 5 shows a C; -structure-

cutin AQ;.

Lemma 15. Let F,, be a C,, -structure set of AQ,

with n> and 4< N <2n—1. If there exists an isolated

vertex in AQ, —V(F,), then | F, |2’7§:;_11—l

Proof. Let u be an any vertex in A0, . According to
the definition of 40, , Property 1 and Property 2, any
N neighbors of u cannot form a C, and each element
in F contains at most N —1 distinct vertices in N(u).
Thus, | F, |z{2”_11.

N-1
Lemma 16. For n>6 and 4<N <2n-1, k(40,,Cy)=

il
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Proof: We will prove this lemma by contradiction. Let
F, be a C, -structure set of AQ, and |F, |<

1{3\7 _11—‘ —-1. If 4Q, - V(F:) is disconnected, then

we let R be the smallest component of 4Q, —V(F. ).

Not that |V(Fn*)|SNx1[3\7_ll—l—l). By Lemma 1,

2n—

we have le{ 1—‘—1<4n—8 for n>6 . Hence

[V(R)|=1. . Furthermore, we assume that vertex
ueV(R). By Lemma 15, |N(u)-V(F,)<2n-2
<2n-1, which means that there exists at least one

neighbor of u in AQ, —V(F:). Therefore, we have

|V(R)|>2, a contradiction. Thus, 4Q, —V(F,) is
connected. The lemma holds.
By Lemma 14 and Lemma 16, we have the following

theorem.
Theorem 8. For n>6 and 4< N <2n-1, k(4Q,,Cy)=

Eal

u? (VH\ )

o)

— 1 [
u? (V) 3 ; u (")

TS e

/7 / = us (v'")
/ \\
oy &
wé(vh)

o)’

u (V)

()’

Figure 5. A C;-structure-cut in 4AQ,

4 Conclusion

In this paper, we study the H-structure and H-
substructure connectivity of augmented cube. The
results are summarized as follows.

(1) k(40,, KI,M) =k’ (40,, Kl,M) =
2n—-1  fornz4and K, ), =K,

[2}7_1—‘ forn>4and 1< M <3,
1+M

[HZ_I—I forn>6and 4< M <6.

2n—1
L

@) k(AQnaPL)=ks(AQnaPL)={ —‘for nz3

and 1< L<2n-1.

(3) K'(40,,Cy) = 2n_1—‘f0rn23and3SNS2n—l.
n—1 forn>6and N=3,

4) k' (40,,Cy) =4 2n—

() K(4Q.-Cv) ﬁ\r/z 11-‘ forn=26and 4<n<2n-1.

We study K, ), when M is small (1< M <6) in this

paper. In the case of ensuring reliable communication,
the number of faulty vertices that can be tolerated in
augmented cube is almost twice the traditional
connectivity under ideal conditions. In the future, we
may focus on M >7 , which will make us more
comprehensively realize the fault-tolerant ability of
augmented cube. On the other hand, we may also study
other properties of augmented cube with structure
faults such as hamiltonian properties [30-31].
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