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Abstract 

Classification has been successfully applying in 

problems in a variety of fields, such as science, business, 

engineering, and industry. Unfortunately, the classifier 

coping with nonconforming binary patterns are rare. To 

deal with nonconforming pattern in binary Cellular 

Automata-based Classifier (CAC) had been proposed. 

However, CAC faces several limitations that need to 

improve. First, the rule ordering process in CAC which 

used Genetic Algorithm (GA) is unable to handle high 

dimensional complex problems. Second, finding decision 

boundaries is quite rough when dealing with ambiguous 

data. To deal with these problems, therefore, we propose 

a new classifier, called Cellular Automata-Based 

Classifier with Soft Decision (CAS). We replace the GA 

with the promising optimization algorithm, called 

Butterfly Optimization, for the rule ordering process. 

Subsequently, we improve the classification performance 

by augmenting a Soft-Decision step. This Soft-Decision 

step uses the pruning method to create a soft decision 

table, which efficiently serves for filtering useless data. 

Finally, to verify the classification performance of the 

proposed method, ten datasets consisting of conforming 

and nonconforming patterns are experimented in 

comparison with the promising classifiers including CAC, 

Support Vector Machine (SVM), K-Nearest Neighbor 

(KNN), Naïve Bayes, and Deep Learning using K-fold 

cross-validation. In this regard, CAS provides the 

promising results.  

Keywords: Cellular automata, Classification, Soft 

decision, Pruning, Butterfly optimization 

1 Introduction 

Classification is an important technique in pattern 

recognition and data mining [41]. There are several 

popular classification techniques, such as Support 

Vector Machine (SVM) [13, 60], Naive Bayes [3, 31], 

K-nearest neighbor [20, 36], Decision Tree [49], 

Random Forest [11-12], Deep learning [4], and so forth. 

Nowadays, the problems in classification have 

dramatically increased the variety and complexity of 

the problems. For example, to deal with multi-class 

classification problem, additional techniques such as 

probabilistic rule lists and the minimum description 

length (MDL) principle [38], Divide and Conquer [16], 

and Multiple Empirical Kernel Learning (MEKL) [51] 

are used. Moreover, Ordinal classification [47], a 

specific case of multi-class classification that has a 

natural sequence on a set of class labels, audio 

classification [58], Hyperspectral [10] and Fabric [59] 

image classification, including video classification [40] 

method were proposed, including solutions for 

classification of binary data, for example, data with the 

format 0 or 1, Yes or No, etc. Research focuses on 

managing this type of data, such as [17, 39]. 

On the other hand, Cellular Automata (CA) is a 

model that tends to be successful in applying to 

advanced classification research. There are some 

promising classifiers based on cellular automata 

dealing with classification in complicated problems. 

Two-dimensional cellular automata are used in 

research for image analysis and classification. [43] 

proposed a conceptual framework for two image 

processing methods to improve brain tumor segmentation: 

image transformation and segmentation algorithm. To 

cope with ambiguous tumor boundaries, it is not only 

can extract extracts from the spectral-spatial properties 

of HSIs automatically but also restrict training samples 

using different spectral sizes and spatial sizes. In 2015, 

[14] proposed the classifier with the concept of 

corrosion modelling and cellular automata to generate 

a texture descriptor, dealing with synthetic and natural 

texture images classification tasks. The results show 

that the proposed texture indicator is useful in 

classifying the surface according to the LLNA high 

success rate obtained in all cases. In addition, solving 

the density problem based on cellulara automata in 

both one-dimension with expand the neightbors of the 

current cell [27], Fixed-Length technique [15] and two-

dimensional [53] is challenging.  

As stated previously, to solve the gap of classifiers 

based on cellular automata, the researcher proposed the 

Cellular Automata-Based Learning Method for 

Classification (CAC) [55]; this classifier is capable of 

implementing the conforming and non-conforming 
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patterns in binary data. It is pattern classifiers based on 

elementary cellular automata. CAC creates two rules 

matrices using the “Rule Ordering process” using the 

Genetic algorithm (GA). The most crucial part of this 

classifier is the cellular automata rules represented by 

rule matrix. Rules matrices are divided into both 

positive and negative sides, then classify the class of 

data by using Decision function CAC consists of two 

rule matrices and provides binary classification. For 

this reason, CAC using decision directed acyclic graph 

(DDAG) [2, 46] structure to deal with multi-class 

classification problem.  

The main idea of this research is how to improve the 

classification capability of the CAC classifier. To cope 

with the improvement, we classify a wide range of 

classifiers into two groups: hard classifier and soft 

classifier [33]. In general, a soft classification rule 

generally estimates the class conditional probabilities 

explicitly and then makes the class prediction based on 

the most considerable estimated probability. In contrast, 

hard classification bypasses the requirement of class 

probability estimation and directly estimates the 

classification boundary. Typical soft classifiers include 

some traditional distribution-based likelihood 

approaches, such as Naive Bayes and K-nearest 

neighbors. On the other hand, some margin-based 

approaches, such as SVM, especially CAC. Generally, 

distributional assumption-free belongs to the class of 

hard classification methods. There are some research 

using the Soft and Hard classification to improve 

classifiers performance, for example, in 2011, a 

margin-based classifier, including both hard and soft 

classifiers, called Large-margin unified 

machines(LUMs), which covers a broad range of 

margin-based classifiers, including both hard and soft 

ones. By offering a natural bridge from soft to hard 

classification, the LUM provides a unified algorithm to 

fit various classifiers and hence a convenient platform 

to compare hard and soft classification. As a result, it 

can also use as a probability estimation technique for 

hard classifiers such as the SVM. According to [28], 

Lee and Kim proposed an overlap-sensitive margin 

(OSM) classifier based on a modified fuzzy support 

vector machine and k-nearest neighbor algorithm to 

address imbalanced and overlapping data sets. The 

main idea of the proposed OSM classifier is to separate 

the data space into soft and hard-overlap regions using 

the modified fuzzy support vector machine algorithm.  

According to CAC that uses the concept of two-class 

classification like SVM, and the classification 

performance is depended on elementary cellular 

automata rule matrices, it still faces two problems. 

Firstly, the data with ambiguity impact the rule 

ordering process, which is a process that converts data 

pattern to rules vectors using a configuration of 

Cellular Automata. The initial rules matrixes are many 

duplicates in the same location. This problem is known 

as a collision problem; the classification used boundary 

finding method is not useful for this problem. Some 

researchers try to solve collision problems using the 

optimization algorithm with numerical instead of 

discrete binary variables [18], changing particle 

directions [48]. Secondly, typically, the classifier has 

found that when data have a higher dimension, it will 

affect the efficiency of the classifier [8]. In this regard, 

CAC faces this problem when dealing with high 

dimensional data. CAC’s rule ordering process using 

GA does not address the best solution and has got low 

classification accuracy when dealing with high 

dimensional data. GA has limitation when dealing with 

high dimensional problems [26], especially for 

premature convergence and falling into a local 

optimum [45]. We want to find a new, efficient 

optimization algorithm. One of these is butterfly 

optimization, which has better performance than 

traditional optimization and has been improved for use 

in a variety of applications, such as feature selection [6, 

57] and improve BOA by using mutualism scheme 

[42]. 

In this research, we have presented a highly efficient 

classification, called Cellular Automata-Based 

Classifier with Soft Decision (CAS), for solving 

problems faced in CAC. It reduce overfitting while rule 

ordering process and improves classification accuracy 

by using the Pruning method based on Soft decision 

based idea. Then implemented a Butterflies 

Optimization Algorithm (BOA) instead of GA in the 

rule ordering process, to deal with severe complexity 

problems. We validate the CAS in comparison with the 

state-of-the-art algorithms using ten UCI datasets.  

The rest of the paper is organized as follows: In 

section 2, we introduce related work on Pattern 

Classifier Based on Decision Support Elementary 

Cellular Automata, a Butterfly Optimization Algorithm, 

Pruning method, and Principle component analysis for 

data virtualization. In section 3, we elaborate on our 

proposed CAS approach. In section 4, the empirical 

analysis and the comparison of experimental results are 

presented. Section 5 concludes our work. 

2 Related Work 

2.1 Pattern Classification Based on Decision 

Support Elementary Cellular Automata 

Cellular Automata are systems evolving on lattices 

according to a local transition function [34]. It evolves 

through several discrete time steps according to a set of 

rules based on the states of neighboring cells. The rules 

are applied iteratively for as many time steps as desired. 

In 1983, S. Wolfram proposed the simplest type of 

cellular automata, called “Elementary Cellular 

Automata”. It is a binary nearest-neighbor, one-

dimensional automaton.  

Elementary Cellular Automata (ECA) consists of 
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two possible status groups (0 or 1), with the pattern of 

cells arranged in one dimension. A next state 1t

i
Q

+  for 

the th
i  cell is considered from its one nearest 

neighbor’s local transition function f(
1

t

i
Q

−
, t

i
Q ,

1

t

i
Q

+
) of 

the present state t

i
Q  For simplicity, a next state of n 

cells ECA is represented by a matrix R given following 

 ( )ij m nR a
×

=  (1) 

A rule matrix R consist of a set of inputs and 

solutions m rows and n columns, where m is bits 

pattern and n I
+

∈ , aij represents the members that are 

in row i and column j of the matrix. Thus, pattern 

classifiers based on the evolving structure of ECA is 

defined as follow. 

 1 ( , )t t
Q R Q

+

=  (2) 

Let R be a |n × 8| matrix representing the next state 

for n cells ECA, called a rule matrix. And element of 

the matrix, aij∈{0, 1} is the next state ith for the cell 

where it is nearest neighbors, (
1

t

i
Q

−
, t

i
Q ,

1

t

i
Q

+
) is 

decode in decimal equal to j, j = 0 to 7. A general form 

of evolving ECA in a form of R is defined as following 

equation.  

 1
( , ),

,

t t

t

t

R Q if Q Y
Q

Q and stop otherwise

+
⎧ ∈⎪

= ⎨
⎪⎩

 (3) 

In 2016, the researcher proposed a novel classifier 

based on cellular automata model, called Cellular 

Automata-based Classifier (CAC) was proposed. In 

Figure 1, it developed based on a new kind of one-

dimensional cellular automata (ECA), called Decision 

Support Elementary Cellular Automata (DS-ECA). It is 

the elementary cellular automata with capability to 

choose a proper rule matrix for changing the state. It 

comprises two rule matrices (R+  and R− ) and a decision 

function 1 1( , ) { 1,1}.t t

R R
f Q Q

+ −

+ +

∈ −  The 1 1( , )t t

R R
f Q Q

+ −

+ +  is a 

sign function using 1 1( , )t t

R R
Q Q

+ −

+ + as parameters. The 

function is given in (4). 

 
1

1 1 1 1

0

( , ) sgn ( )
n

t t t t

R R R R

i

f Q Q Q Q
+ − + −

−

+ + + +

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑  (4) 

where 1t

R
Q

+

+  and 1t

R
Q

−

+ are a next state generated by the 

rule matrices R+

 and R− . 1t

R
Q

+

+  and 1t

R
Q

−

+  are the i
th 

cells of n bits from 1t

R
Q

+

+  and 1t

R
Q

−

+ , respectively. 

The two next states 1t

R
Q

+

+ and 1t

R
Q

−

+ , are generated as 

follows: 

 ( )1
,

t t

R
Q R Q

+

+ +

=  (5) 

 

Figure 1. CAC with two attractor basins 

 ( )1
,

t t

R
Q R Q

−

+ −

=  (6) 

Example 1. Suppose binary number ‘110011’ is a 6-

cell ECA with null boundary condition [1] and rule 

matrices R+

 and R− ; the classification task could be 

processed by following steps: 

 

000 001 010 011 100 101 110 111

1 0 0 1 1 0 0 0 0

2 0 0 0 0 0 1 1 0

3 0 0 0 0 1 0 0 0

4 0 1 0 0 0 0 1 0

5 0 0 1 0 1 0 0 0

6 1 0 0 0 1 0 0 0

R
+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

 

000 001 010 011 100 101 110 111

1 0 0 1 1 0 0 0 0

2 0 0 0 0 0 1 0 1

3 0 0 1 0 0 0 1 1

4 1 0 0 0 1 1 0 0

5 1 1 1 1 0 0 0 0

6 0 0 1 0 1 0 1 0

R
−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

Step 1: The first step, choosing a null boundary 

condition to define the ECA configuration, the first 

feature must add ’0’ on the left then choose left and 

right neighbor with itself. 

 0 1 1 0 0 1 1  

The first feature of the pattern matching with ECA 

configuration ‘011’ then [ ]
1,4

1R
+

=  and [ ]
1,4

1R
−

=  also. 

Step 2: Continue to choose left and right neighbors of 

the second feature. 

 0 1 1 0 0 1 1 

The second feature of the pattern maching with ECA 

config-uration ‘110’ then [ ]
2,7

1R
+

=  and [ ]
2,7

0R
−

=  

Subsequently, repete step 2 for remaining features until 

reaching the last feature. 
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 0 1 1 0 0 1 1 

The thirth feature, ECA configuration is ‘100’ then 

[ ]
3,5

1R
+

=  and [ ]
3,5

0R
−

= . 

 0 1 1 0 0 1 1 

The forth feature, ECA configuration is ‘001’ then 

[ ]
4,2

1R
+

=  and [ ]
4,2

0R
−

= . 

 0 1 1 0 0 1 1 

The fifth feature, ECA configuration is ‘011’ 

[ ]
5,4

0R
+

=  and [ ]
5,4

1R
−

= . 

Step 3: This step is similar to the step, but add ‘0’ to 

be a right neighbor for the last feature. 

 0 1 1 0 0 1 1 0 

The ECA configuration of the last feature is ‘110’ is 

maching with [ ]
6,7

0R
+

=  and [ ]
6,7

1R
−

= . 

Step 4: Define the class of binary pattern ‘110011’ by 

using (4) 

[ ] [ ]( ) [ ] [ ]( )
[ ] [ ]( ) [ ] [ ]( )
[ ] [ ]( ) [ ] [ ]( )

1,4 1,4 2,7 2,7

1 1

3,5 3,5 4,2 4,2

5,4 5,4 6,7 6,7

( , ) sgnt t

R R

R R R R

f Q Q R R R R

R R R R

+ −

+ − + −

+ − + −+ +

+ − + −

⎛ ⎞− + −
⎜ ⎟
⎜ ⎟

= + − + −⎜ ⎟
⎜ ⎟
⎜ ⎟+ − + −⎜ ⎟
⎝ ⎠

 

Replace variables with the values from step 1-3: 

( ) ( ) ( ) ( )

( ) ( )
1 1

1 1 1 0 1 0 1 0
( , ) sgn

0 1 0 1

t t

R R
f Q Q

+ −

+ +

⎛ ⎞− + − + − + −
= ⎜ ⎟

⎜ ⎟+ − + −⎝ ⎠
  

Then calculate sign function: 

 1 1( , ) 1t t

R R
f Q Q

+ −

+ +

= +  

From the answer is +1, let be known that binary 

number 110011 is in the positive class and the next 

step should generate by using (5). 

The rule matrices are the performance for 

classifying patterns. In this respect, a Genetic 

Algorithm (GA) use to order the rules arriving at R+  

and R− for classification. 

In general, GA cannot cope with the complicated 

problem with high dimensional space to arrive at the 

close-to-optimal solutions. Hence, it is an appropriate 

and challenging problem to improve the performance 

of CAC using promising advanced optimization 

techniques. Furthermore, the classifier uses the basis of 

finding boundaries to classify classes in certain types 

of data is not enough to solve a difficult problem. From 

a literature review, the amendment to the limitations of 

this classifier is to use class classifications with 

probability calculations from some method to deal with 

areas that are sensitive classifying. 

2.2 Butterfly Optimization Algorithm (BOA) 

The butterfly optimization algorithm (BOA) is a 

novel meta-heuristic algorithm that is inspired by the 

butterfly’s feeding behavior. The effectiveness of BOA 

depends on the prob-ability parameter, which 

determines whether the butterfly must move towards 

the best butterfly of the population or perform a 

random search [7, 30]. The structure principally relies 

upon the butterfly prey technique, which utilizes smell 

acknowledgment to decide the area of nourishment or 

mating sets. The entire idea of discovery and handling 

relies upon three critical conditions: the fragrance (f), 

sensory exposure (c), stimulus intensity (I) and power 

(a). Utilizing these ideas, in BOA, the scent is defined 

as a component of the physical power of boost as 

follow: 

 f = cIa (7) 

where f is the size of perfume recognition, namely the 

strength of the smell recognition of other butterflies, c 

is the sensory receptor, I is a stimulating force and a is 

the exponent power depending on the modality. There 

are three phases in BOA: (1) Initialization phase, (2) 

Iteration phase and (3) Finally In the first BOA 

operation, each time will then perform a recursive 

search, and in the final phase the algorithm will 

eventually be terminated when the best solution is 

found. In the initial step, the algorithm determines the 

problem-solving area and the purpose of the function 

— besides, the parameters used in the BOA set. The 

position of the butterfly will be generated randomly in 

the search area with their perfume values and 

suitability calculated and stored. This progress will 

include the initial phase and the recursion phase 

calculation at a later stage. The second step of the 

algorithm, such as the looping phase, multiple 

iterations, is performed by an algorithm. In each 

iteration, all butterflies in the solution area will move 

to a new location and then evaluate the suitability. The 

first algorithm will calculate the suitability of all 

butterflies in different positions in the solution area. 

Then, these butterflies will create fragrances by 

position using equation (7). There are two essential 

steps in the algorithm, such as local search procedures 

and global search procedures. In the global search 

process, butterflies move to the most appropriate 

butterfly g answer, which can be displayed using 

equation (8). 

 ( )1 2
*

t t t

i i i i
x x r g x f+

= + × − ×  (8) 

where 1t

i
x

+  is the solution vector 
i
x  for ith butterfly in 

iteration number t. Here, g represents the current best 

solution found among all the solutions in current 

iteration. Fragrance of ith butterfly is represented by 
i
f  

and r is a random number in [0, 1]. Local search phase 

can be represented as 
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 ( )1 2t t t t
i i j k ix x r x x f+

= + × − ×  (9) 

where t

i
x  and t

k
x  are jth and kth butterflies from the 

solution space. If t

jx  and t

k
x  belongs to the same 

swarm and r is a random number in [0, 1], then 

equation (9) becomes a local random walk. Finding 

food mates and mating by butterflies can occur both 

locally and globally. Searching for food may be 

important in the overall mating or butterfly search 

activity, considering the physical proximity and other 

factors such as wind, rain, weather, temperature, etc. 

So, a switch probability p is used in BOA to switch 

between common global searches to intensive local 

search. Criteria for stopping can determine in many 

ways, such as the maximum CPU time used, the 

maximum number of iterations, the maximum number 

of repetitions without improvement, the error rate, or 

other appropriate criteria when summarizing the 

repetition process. The algorithm will export the best 

solution that meets the most appropriate. The three 

steps above comprise a complete algorithm of butterfly 

optimization algorithms describes in the “Algorithm 1”. 

 

 
 

2.3 Pruning Method  

Pruning method is a technique in machine learning 

that reduces the computational complexity of classifier 

and aim to improve classification accuracy. In other 

words, the pruning process uses to prevent overfitting 

of machine learning [56]. Pruning methods are widely 

used in machine learning, especially in classification 

techniques, for example decision tree [19], deep 

learning [32]. In the case of collision problems. Due to 

a large number of useless classification elements 

causing the problem to be solved by defining only the 

scope that is not good enough. A popular method to 

eliminate such problems is the pruning method [5, 50]. 

Typically, pruning consists of 2 steps: (1) evaluating 

the efficiency in all elements then in the process (2) 

Eliminate the most useless elements, which in the 

beginning when cutting out the branches, will increase 

the accuracy and cut until the accuracy of the 

classification is lower. But the process to finding the 

most suitable value for this method is also a challenge 

for research. In research [24] has been tested using GA 

to calculate the most suitable value for pruning. The 

result is that it can reduce the computation time and get 

better results than normal cuttings. 

In general, the pruning method is used to cut 

decision branches that cause poor decision-making 

efficiency. Based on this concept, we have 

implemented a pruning technique to improve the rule 

metrics used to enhance classification by eliminating 

values that cause poor classification efficiency in the 

rule metrics. 

2.4 Principal Component Analysis (PCA) 

Generally, a dataset cannot be able to plot and 

observed the distribution if the number of attributes is 

higher than three. Principal component analysis (PCA) 

[21] is a widely used dimensionality reduction 

technique in data analysis. It reduces high dimensional 

features to low dimension and maintains distances 

between data points as much as possible. Finally, the 

most significant first two or three eigenvectors choose 

to plot the graph.  

3 Proposed Method 

This research proposed an efficient classifier-based 

cellular automaton, called Cellular Automata-Based 

Classifier with Soft Decision (CAS). CAS shown in 

Algorithm 2 aims to improve the performance of the 

Cellular Automata-based Classifier (CAC) algorithm. 

As a result that CAC faced a classification accuracy 

problem when using just the boundary to identify the 

class and rule ordering by using the Genetic Algorithm 

(GA) cannot crop high dimensional problems. This 

research gets rid of such a limitation by applying Soft 

Decision (Pruning method) while Rule ordering 

process and implement Butterfly Optimization 

Algorithm (BOA) instead of Genetic Algorithm 

illustrate in Figure 2. 
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Figure 2. CAS overview 

The initial matrix creation process uses the same as 

the original method, which defines the traditional 

boundary finding that focuses on only the boundary of 

the class into the hard decision section. Then, adding 

the Soft decision, which is a calculation of the 

percentage of the ability to classify each element of the 

rule matrix to eliminate the useless position of the rule 

matrices. The soft decision consists of 2 steps: the first 

step is to measure the ability of each element of the 

initial matrices before being introduced into the 

appropriate elemental valuation process by creating the 

Soft Decision table. It then leads to the optimization 

process, which is the endpoint of eliminating useless 

elements. This process occurs along with the 

determination of the boundary lines of the hard 

decision obtained from the butterfly optimization 

algorithm. Next, after obtaining the boundaries and 

points suitable for soft decision making, it will get rid 

of useless points with the value obtained above in the 

process of the pruning process. Finally, the rule 

synthesis process will be the last step in creating the 

rule matrix for data classification, as shown in Figure 3. 

 

Figure 3. CAS rule ordering process 

3.1 Initial Values of Rule Matrices 

The Rule ordering process starts with converting the 

input to binary with Gray code [22, 35, 44] encoder if 

input data is not binary data. By using null boundary 

condition (First left neighbor is 0, last right neighbor is 

0). The initial values of the matrices Rp and Rn are 

created by counting the number of patterns from an 

attractor basin (PAB or NAB) corresponding to the 

matrix. That is, and element of the matrix Rp in the ith (i 

= 0, 1, 2, …, n-1) row and the jth (j = 0, 1, 2, …, n-1) 

column is the number of patterns from PAB in which 

the nearest neighbors (
1

t

i
Q

−
, t

i
Q ,

1

t

i
Q

+
) for the ith cell 

decoded to decimal must be equal to j. Similarly, an 

element of the matrix Rn is formulated by NAB.  

Example 2. Set up a training data(D) of 6 bits pat-tern 

for CAS is (110011,+1), (101100,+1), (111100,+1), 

(101001,+1), (100010,+1), (110000,+1), (110100,+1), 

(110010,+1), (111101,-1), (101000,-1), (111011,-1), 

(110001,-1), (111001,-1), (111010,-1), (101011,-1), 

(100001,-1). Set +1 and -1 is the class label of PAB 



An Improved Cellular Automata-Based Classifier with Soft Decision 1707 

 

and NAB, respectively. That mean PAB={110011, 

101100, 111100, 101001, 100010, 110000, 110100, 

110010} and NAB ={111101, 101000, 111011, 110001, 

111001, 111010, 101011, 100001}. Subsequently, the 

initial rule matrices Rp and Rn are created as follow. 

 

000 001 010 011 100 101 110 111

1 0 0 3 5 0 0 0 0

2 0 0 0 0 1 2 4 1

3 1 0 1 1 3 1 0 1

4 1 3 1 0 1 0 1 1

5 1 1 2 1 2 0 1 0

6 3 0 1 0 3 0 1 0

R
+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

 

000 001 010 011 100 101 110 111

1 0 0 3 5 0 0 0 0

2 0 0 0 0 1 2 1 4

3 1 0 2 0 1 0 3 1

4 2 0 0 0 2 3 1 0

5 1 3 1 2 0 1 0 0

6 1 0 4 0 1 0 2 0

R
−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

3.2 Preparing Data for BOA 

CAS starts with changing 
p

R  and 
n

R  to '

p
R  and '

n
R  

by the following conditions:  

 
( )'
0,1 0

0,

p p
ij ij

p
ij

R random if R
R

otherwise

⎧⎡ ⎤ ⎡ ⎤+ >⎪⎣ ⎦ ⎣ ⎦⎡ ⎤ = ⎨⎣ ⎦
⎪⎩

 (10) 

 [ ]
[ ] ( ) [ ]

'

0,1 0

0,

n nij ij

n ij

R random if R
R

otherwise

⎧ + >⎪
= ⎨
⎪⎩

 (11) 

Example 3. The modified rule matrices from (10) and 

(11) shown as below 

000 001 010 011 100 101 110 111

1 0.00 0.00 3.09 5.04 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 1.28 2.31 4.20 1.98

3 1.73 0.00 1.33 1.15 3.50 1.72 0.00 1.39

4 1.99 3.18 1.16 0.00 1.15 0.00 1.13 1.84

5 1.62 1.91 2.13 1.31 2.02 0.00 1.96 0.00

6 3.51 0.0

R
+ =

0 1.82 0.00 3.88 0.00 1.53 0.00

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

000 001 010 011 100 101 110 111

1 0.00 0.00 3.17 5.49 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 1.81 2.23 1.21 4.11

3 1.85 0.00 2.44 0.00 1.23 0.00 3.38 1.99

4 2.59 0.00 0.00 0.00 2.26 3.75 1.68 0.00

5 1.51 3.58 1.18 2.20 0.00 1.93 0.00 0.00

6 1.03 0.0

R
− =

0 4.55 0.00 1.25 0.00 2.15 0.00

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Theorem 1. For 
'

p
ij

R⎡ ⎤⎣ ⎦ and [ ]
'

n ij
R are the elements of 

the matrices '

p
R and '

n
R which are the rule matrices that 

modified with equations (10) and (11) at the ith row and 

the jth column, respectively. We can denote the relation  

 [ ]
'

'

ij p n ijij
A R R⎡ ⎤= −⎣ ⎦   

where Aij is the difference of the matrices '

p
R and '

n
R at 

the same position. 

If Aij is exactly different, it will make the 

classification of patterns easier. On the other hand, if 

the above differences are not apparent or have a small 

value, the classification will be difficult.  

Proof. The initial rule matrices, '

p
R and '

n
R can use the 

same element position of each other to classify the 

pattern. 

For example, at the row 4th and column 2nd of 

'

p
R and '

n
R , 

'

4,2
p

R⎡ ⎤⎣ ⎦ = 3.18 and [ ]
'

4,2n
R  = 0.00 where 

'

4,2
p

R⎡ ⎤⎣ ⎦ is the element that indicates the fourth position 

of the pattern with a configuration “001” of positive 

side, and [ ]
'

4,2n
R  shows the same meaning but negative 

side. From this information, we immediately know that 

the pattern with configuration “001” at position four is 

a positive side data since all negative data do not have 

any data with the configuration “001” in position forth. 

On the other hand, for 
'

3,1
p

R⎡ ⎤⎣ ⎦ =1.73 and [ ]
'

3,1n
R = 

1.85 means the pattern with the configuration “000” in 

that first position. We cannot identify the side of the 

pattern since the values in both positions are similar. 

From the above relation, we can conclude that if the 

Aij value of any element is high, the classification 

ability is high. Differently, if the value of Aij is low, it 

shows that the position also has a little classification 

ability. 

3.2.1 Create Soft Decision Table (τ) 

The first step to pruning useless branches for 

pruning methods is to evaluate the ability of 

classification in every decision tree, which can 
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compare to the element of the rule matrices in the 

classifier based on Cellular automata.  

Definition 1. Overlap Coefficient  

Overlap coefficient is a measure of the ability to 

classify each element in the rule matrices. We use 

[ ]{ }| 0,1ij x xα = ∈  to represent the Overlap coefficient 

at the ith row, jth column of the Rule matrices for 

i={1,2,...,n} and j={1,2,...,8} where n is the features 

number of dataset in binary patterns. From Theorem 1 

and Definition 1, we can define in equation (12) as 

below 

 

[ ]

[ ] [ ]

'
'

'
'

'
' , 0

0,

p n ijij

ij p n ijijp n ijij

R R

R R
R R

otherwise

α

⎧ ⎡ ⎤ −⎣ ⎦⎪
⎪

⎡ ⎤ + >⎨ ⎡ ⎤ ⎣ ⎦+⎣ ⎦⎪
⎪
⎩

 (12) 

where 
'

p
ij

R⎡ ⎤⎣ ⎦ and [ ]
'

n ij
R  are elements of the matrices 

'

p
R and '

n
R at the ith row and the jth column, respectively. 

ijα  vary with the efficiency of classification. 

Definition 2. Soft Decision Table  

Soft decision table is the relationship of ijα in the 

form of a matrix (τ ) as shown below. 

 

11 12 18

21 22 28

1 2 8n n n

α α α

α α α

τ

α α α

⋅ ⋅ ⋅⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥

⋅ ⋅ ⋅⎣ ⎦

�

� � � �
 

where n is the features number of datasets in binary 

patterns. 

3.2.2 Adjust the Rule Matrices for BOA Processes 

When the matrices '

p
R , '

n
R and τ will be processed by 

the following processes: 

First, Rearrange the matrices '

p
R , '

n
R  and to one 

dimension. Second, sort the one-dimensional matrices 

in ascending order and unique (no copy of elements 

allowed). Finally, the results will be contained in one 

dimensional matrix Kp, Kn and Kβ respectively. 

Definition 3. Hard Decision Boundary  

Hard Decision Boundary { }|0 max( )
p p

x x Kω = < <  

and { }|0 max( )
n n

x x Kω = < < are the least value that 

separates the area of the classes by using an 

optimization algorithm to find the optimal decision 

boundaries for the best classification accuracy.  

Definition 4. Soft decision boundary 

 

 

 

The Soft decision boundary { }|0 max( )x x Kβ βω = < <  

and { }|0 max( )
n n

x x Kω = < < are the best value for 

pruning method by using an optimization algorithm to 

find the optimal decision boundaries for the best 

classification accuracy. 

3.2.2 Adjust the Rule Matrices Form for BOA 

The result from butterfly optimization algorithm 

consists of 3 variables, ( ), ,
p n βω ω ω which are a 

threshold making the classifier converge to the best 

solution. 

3.3  Soft Decision 

The pruning method is implemented on '

p
R and '

n
R to 

eliminate useless classification elements by following 

condition: 

 
[ ]

' '
'

'

0,

p p n ijijij ij

ij

R if R R or
R

otherwise

βα ω
+

⎧⎡ ⎤ ⎡ ⎤ > >⎪⎣ ⎦ ⎣ ⎦⎡ ⎤ = ⎨⎣ ⎦
⎪⎩

 (13) 

 
[ ] [ ]

'
' '

'

0,

n n p ijij ij ij

ij

R if R R or
R

otherwise

βα ω
−

⎧ ⎡ ⎤> >⎪ ⎣ ⎦⎡ ⎤ = ⎨⎣ ⎦
⎪⎩

 (14) 

where βω  is a threshold to making the model 

converged to the best answer. 

3.4 Synthesizing Rule Matrices 

This step is the final step in creating the rule to be 

used in recognition, using 
p

ω  and 
n

ω  from butterfly 

optimization process by the following condition: 

 

'

1

0,

p
ij

ij

if R
R

otherwise

ω
+

+

⎧ ⎡ ⎤ >⎪ ⎣ ⎦⎡ ⎤ = ⎨⎣ ⎦
⎪⎩

 (15) 

 

'

1

0,

n
ij

ij

if R
R

otherwise

ω
−

−

⎧ ⎡ ⎤ >⎪ ⎣ ⎦⎡ ⎤ = ⎨⎣ ⎦
⎪⎩

 (16) 

where 
ij

R
+⎡ ⎤

⎣ ⎦ and 
ij

R
−⎡ ⎤

⎣ ⎦ are rules matrices for pattern 

recognition. 

Although CAS uses the same process for 

synthesizing the rule matrices with CAC, CAS has 

improved an initial rule matrices format before the rule 

matrix synthesis. Allowing us to get a better-quality 

rule matrix than the previous method  
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4 Experiments 

In this section, we propose a process to evaluate the 

efficiency of the proposed classifier. The datasets, 

comparing classifiers and discussion are presented. 

4.1 Datasets 

The datasets from the UCI data repository are 

implemented. They consist of different types of 

instances, dimensions, and distribution as shown in 

Table 1. Datasets are analyzed through Principal 

component analysis (PCA). As shown PCA explicitly 

illustrates datasets with conforming and non-

conforming patterns, we reduce a dimension of 

datasets to 2 dimensions by using the PCA technique 

and scatter plot to represent data related to each class. 

Table 1. Datasets 

Dataset Class Instances Attributes

Monk Problem 2 2 601 7 

Congressional Voting Records 2 435 16 

Hayes-Roth 3 160 5 

Colon 2 62 2000 

Soybean 4 47 35 

Pima Indians Diabetes 2 768 8 

Mammographic Mass 2 961 6 

New thyroid 2 306 3 

SPECT heart 2 80 23 

Libras Movement 15 360 91 

 

The result shows that the datasets represent itself as 

clusters such as the Congressional Voting dataset 

(Figure 4(a)), Soybean dataset (Figure 4(c)), and 

Mammographic Mass dataset (Figure 4€) distribution 

clustered that mean datasets are conforming. But for 

non-conforming data, for example, The Monk’s 

Problem 2 (Figure 4(b)), Hayes-Roth (Figure 4(d)), and 

SPECT heart (Figure 4(f)). The results of the scatter 

plot shown most of the data of different classes are 

mixed because the classification accuracy lowers than 

the previous one. 

4.2 Evaluation Method 

To validate the proposed method, we prepare 

training and sampling data by using K-fold cross 

validation [54] with 2, 4, 6, 8, 10 folds, respectively. 

According to CAS. Confusion matrix [29] is 

determined to report the classification accuracy as the 

equation given below.  

 
TP TN

Accuracy
TP TN FP FN

+
=

+ + +

 (17) 

where True Positive (TP) is predicted to be positive 

correctly, False Negative (FN) is positive observation, 

but is predicted negative, True Negative (TN) is 

negative observation, and is predicted to be negative, 

False Positive (FP) is negative observation, but is 

predicted positive. Additionally, CAS implements 

DDAG scheme for multiclass classification. 

4.3 Compared Methods 

For comparison purpose, the state-of-the-art 

classification methods are compared. We implement 

the compared methods besides CAC through 

RapidMiner Software by setting up a test environment 

on a personal computer consist with 8 Gigabytes 

memory, CPU Intel core i7 eight cores, Windows 10 

operating system. The compared methods are as 

follows.  

4.3.1 Cellular Automata-based Classifier (CAC) 

CAC is an efficient classifier based on cellular 

automata model that possesses the promising capability 

to deal with non-conforming patterns in the bit-level 

features [52]. It consists of 2 layers, evolving layers, 

and decision layer. An evolving layer consist of 2 

cellular automata rule matrices to provide the next state. 

A decision layer processes the result of an evolving 

layer to decision the class of the pattern. The efficiency 

of the classifier is a rule matrix that created using 

reverse engineering techniques and genetic algorithms. 

4.3.2 Support Vector Machine (SVM) 

SVM is a classifier that has the principle of 

changing dimensions to data and finding boundaries 

[23], dividing data into two parts, using vectors of 

multiple vector points called support vector to define 

the boundaries. For the SVM configuration, a dot 

kernel type is used. 
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(a) Congressional voting (b) The Monk’s Problem 2 

  

(c) Soybean (d) Hayes-Roth 

  

(e) Mammographic mass (f) SPECT heart 

Figure 4. Datasets visualized through PCA technique 

4.3.3 k-Nearest Neighbor Algorithm (k-NN) 

The k-Nearest Neighbor algorithm [9] is based on 

comparing an unknown example with the k training 

examples which are the nearest neighbors of the 

unknown example. In this case, we assign the number 

of 5 nearest neighbor to the method. 

4.3.4 Deep Learning 

Deep Learning is based on a multi-layer feed-

forward artificial neural network that is trained with 

stochastic gradient descent using back-propagation 

[37]. The network can contain many hidden layers 

consisting of neurons with tanh, rectifier, and max out 
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activation functions. We add 2 layers and 50 nodes for 

each layer. 

4.3.5 Naive Bayes 

Naive Bayes is a high-bias, low-variance classifier, 

and it can build a good model even with a small data 

set [25]. It is simple to use and computationally 

inexpensive. Typical use cases involve text 

categorization, including spam detection, sentiment 

analysis, and recommender systems. 

4.4 Experimental Results 

The recognition performance of the proposed CAS 

is evaluated through the stated datasets compared to 

the state-of-the-art methods. For non-binary features, 

the datasets must be transforming into gray code. For 

implementation purpose, the parameters of the 

butterfly optimization for rules ordering are set as 

follows: 

 

(1) Probability switch (p): 0.5 

(2) Power exponent: 0.4 

(3) Sensory modality: 0.03 

(4) Max iteration: 20  

The experiments are conducted on ten UCI datasets 

in different instances and feature numbers. When 

comparing the classification accuracy result between 

CAC and CAS, both also report the high classification 

accuracy and do not seem to make much difference. 

Whereas the dataset with non-conforming patterns, the 

classification accuracy is much lower than conforming 

datasets. However, if we are only considering the 

correctness of classification between CAC and the 

CAS, it seems that when the datasets consist of 

conforming patterns, the accuracy of CAS much higher 

than non-conforming patterns. Table 2 shows 

comparative classification accuracy of the proposed 

algorithm and the compared state-of-the-art methods. 

Figure 5 portrays comparative results of classification 

accuracy obtained from Table 2. 

Table 2. Comparative classification accuracy of the proposed algorithm and the state-of-the-art methods 

K-Fold 
Datasets Classifiers 

2 4 6 8 10 
Average 

CAS 96.12 96.98 96.14 97.00 96.60 96.57 

CAC 96.98 96.26 95.83 96.87 96.94 96.58 

SVM 94.00 95.00 96.00 96.00 95.00 95.20 

k-NN 93.97 93.10 93.06 93.10 93.95 93.44 

Deep Learning 95.26 93.53 94.79 95.26 95.25 94.82 

Congressional Voting 

Naïve Bayes 93.97 94.83 94.8 95.26 94.82 94.74 

CAS 100.00 100.00 100.00 100.00 100.00 100.00 

CAC 100.00 100.00 100.00 100.00 100.00 100.00 

SVM 100.00 100.00 100.00 100.00 100.00 100.00 

k-NN 95.74 97.92 97.92 97.92 98.00 97.5 

Deep Learning 100.00 100.00 100.00 100.00 100.00 100.00 

Soybean 

Naïve Bayes 100.00 100.00 100.00 100.00 100.00 100.00 

CAS 67.05 68.55 70.21 65.97 69.02 68.16 

CAC 51.30 53.40 44.75 46.08 51.43 49.39 

SVM 55.00 58.00 54.00 56.00 53.00 55.20 

k-NN 70.05 68.06 66.89 66.56 66.56 67.62 

Deep Learning 66.56 62.40 62.23 65.93 65.89 64.60 

Monk Problem 2 

Naïve Bayes 63.22 64.39 65.22 64.39 64.39 64.32 

CAS 72.58 74.17 73.83 69.64 65.95 71.24 

CAC 72.57 74.05 73.65 69.53 66.12 71.18 

SVM 64.52 71.15 69.70 71.21 72.38 69.79 

k-NN 54.84 60.83 50.15 43.53 48.10 51.49 

Deep Learning 66.13 69.35 66.13 64.52 67.74 66.77 

Colon 

Naïve Bayes 51.61 63.02 56.36 54.24 59.52 56.95 

CAS 86.23 85.71 80.63 87.56 85.75 85.18 

CAC 81.88 80.00 84.33 85.00 82.47 82.74 

SVM 72.00 79.00 78.00 77.00 77.00 76.60 

k-NN 58.75 61.25 66.12 65.00 66.25 63.47 

Deep Learning 56.25 60.62 58.71 58.75 58.75 58.62 

Hayes-Roth 

Naïve Bayes 61.25 63.12 68.85 66.88 70.00 66.02 

CAS 76.25 73.75 72.53 75.34 72.50 74.07 

CAC 66.25 58.75 62.55 63.75 62.00 62.66 

SVM 64.00 61.00 69.00 74.00 66.00 66.80 

k-NN 71.25 67.50 66.21 63.75 63.75 66.49 

Deep Learning 68.75 66.25 68.96 68.75 70.00 68.54 

SPECT heart 

Naïve Bayes 73.75 70.00 67.58 68.75 68.75 69.77 
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Table 2. Comparative classification accuracy of the proposed algorithm and the state-of-the-art methods (continue) 

K-Fold 
Datasets Classifiers 

2 4 6 8 10 
Average 

CAS 83.53 82.25 83.15 82.53 83.65 83.02 

CAC 83.25 84.65 82.53 82.13 82.25 82.96 

SVM 82.00 83.00 82.00 82.00 82.00 82.20 

k-NN 78.80 78.92 79.76 79.39 79.40 79.25 

Deep Learning 80.00 80.60 81.20 80.48 80.60 80.58 

Memo 

Naïve Bayes 79.64 80.60 81.33 81.08 80.96 80.72 

CAS 72.58 74.17 73.83 69.64 65.95 71.24 

CAC 72.57 74.05 73.65 69.53 66.12 71.18 

SVM 64.52 71.15 69.70 71.21 72.38 69.79 

k-NN 54.84 60.83 50.15 43.53 48.10 51.49 

Deep Learning 66.13 69.35 66.13 64.52 67.74 66.77 

Pima 

Naïve Bayes 51.61 63.02 56.36 54.24 59.52 56.95 

CAS 94.79 94.76 96.22 95.92 94.80 95.30 

CAC 95.81 91.20 93.03 94.90 94.39 93.87 

SVM 93.96 93.96 93.98 93.93 93.92 93.95 

k-NN 91.63 92.57 93.98 92.54 93.46 92.84 

Deep Learning 93.03 94.88 94.91 93.47 93.48 93.95 

New thyroid 

Naïve Bay 95.82 96.75 96.76 96.74 96.73 96.56 

CAS 62.5 65.556 64.44 65.83 70.26 65.72 

CAC 56.11 56.11 55.21 57.32 56.23 56.20 

SVM 46.94 47.78 50.28 52.22 30 45.44 

k-NN 70.83 74.44 77.5 76.67 78.89 75.67 

Deep Learning 66.67 64.72 66.11 69.44 66.67 66.72 

Libras Movement 

Naïve Bay 59.72 64.72 65.28 64.44 62.5 63.33 

 

 

Figure 5. Comparative results of classification accuracy 
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5 Conclusion 

CAC is an efficient classifier that can deal with 

conforming and nonconforming binary patterns. 

However, finding decision boundaries to divide data is 

difficult. In this regard, GA cannot well handle high 

dimensional complicated problems. In this paper, we 

propose an improved cellular automata-based classifier 

by augmenting a soft decision technique and Butterfly 

Optimization Algorithm in lieu of Genetic Algorithm. 

As compared to the promising state-of-the-art 

classification methods, namely, SVM, k-NN, Deep 

Learning, Naïve Bayes, and CAC, CAS reports the 

promising results while experimented in ten UCI 

datasets in different instances, features, and class 

number.  

For future research, the following issues can 

improve the accuracy performance. Firstly, an efficient 

method rather than Gray code in transforming data into 

binary must be determined. Secondly, multi-

classification using DDAG scheme in binary classifier 

(CAC and CAS) is limited. An efficient technique can 

be determined to improve the accuracy performance.  
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