
An Improved Cellular Automata-Based Classifier with Soft Decision 1701

An Improved Cellular Automata-Based Classifier with

Soft Decision

Pattapon Wanna, Sartra Wongthanavasu

Department of Computer Science, Khon Kaen University, Thailand

pattaponw@kkumail.com, wongsar@kku.ac.th*

*Corresponding Author: Sartra Wongthanavasu; E-mail: wongsar@kku.ac.th

DOI: 10.3966/160792642020112106012

Abstract

Classification has been successfully applying in

problems in a variety of fields, such as science, business,

engineering, and industry. Unfortunately, the classifier

coping with nonconforming binary patterns are rare. To

deal with nonconforming pattern in binary Cellular

Automata-based Classifier (CAC) had been proposed.

However, CAC faces several limitations that need to

improve. First, the rule ordering process in CAC which

used Genetic Algorithm (GA) is unable to handle high

dimensional complex problems. Second, finding decision

boundaries is quite rough when dealing with ambiguous

data. To deal with these problems, therefore, we propose

a new classifier, called Cellular Automata-Based

Classifier with Soft Decision (CAS). We replace the GA

with the promising optimization algorithm, called

Butterfly Optimization, for the rule ordering process.

Subsequently, we improve the classification performance

by augmenting a Soft-Decision step. This Soft-Decision

step uses the pruning method to create a soft decision

table, which efficiently serves for filtering useless data.

Finally, to verify the classification performance of the

proposed method, ten datasets consisting of conforming

and nonconforming patterns are experimented in

comparison with the promising classifiers including CAC,

Support Vector Machine (SVM), K-Nearest Neighbor

(KNN), Naïve Bayes, and Deep Learning using K-fold

cross-validation. In this regard, CAS provides the

promising results.

Keywords: Cellular automata, Classification, Soft

decision, Pruning, Butterfly optimization

1 Introduction

Classification is an important technique in pattern

recognition and data mining [41]. There are several

popular classification techniques, such as Support

Vector Machine (SVM) [13, 60], Naive Bayes [3, 31],

K-nearest neighbor [20, 36], Decision Tree [49],

Random Forest [11-12], Deep learning [4], and so forth.

Nowadays, the problems in classification have

dramatically increased the variety and complexity of

the problems. For example, to deal with multi-class

classification problem, additional techniques such as

probabilistic rule lists and the minimum description

length (MDL) principle [38], Divide and Conquer [16],

and Multiple Empirical Kernel Learning (MEKL) [51]

are used. Moreover, Ordinal classification [47], a

specific case of multi-class classification that has a

natural sequence on a set of class labels, audio

classification [58], Hyperspectral [10] and Fabric [59]

image classification, including video classification [40]

method were proposed, including solutions for

classification of binary data, for example, data with the

format 0 or 1, Yes or No, etc. Research focuses on

managing this type of data, such as [17, 39].

On the other hand, Cellular Automata (CA) is a

model that tends to be successful in applying to

advanced classification research. There are some

promising classifiers based on cellular automata

dealing with classification in complicated problems.

Two-dimensional cellular automata are used in

research for image analysis and classification. [43]

proposed a conceptual framework for two image

processing methods to improve brain tumor segmentation:

image transformation and segmentation algorithm. To

cope with ambiguous tumor boundaries, it is not only

can extract extracts from the spectral-spatial properties

of HSIs automatically but also restrict training samples

using different spectral sizes and spatial sizes. In 2015,

[14] proposed the classifier with the concept of

corrosion modelling and cellular automata to generate

a texture descriptor, dealing with synthetic and natural

texture images classification tasks. The results show

that the proposed texture indicator is useful in

classifying the surface according to the LLNA high

success rate obtained in all cases. In addition, solving

the density problem based on cellulara automata in

both one-dimension with expand the neightbors of the

current cell [27], Fixed-Length technique [15] and two-

dimensional [53] is challenging.

As stated previously, to solve the gap of classifiers

based on cellular automata, the researcher proposed the

Cellular Automata-Based Learning Method for

Classification (CAC) [55]; this classifier is capable of

implementing the conforming and non-conforming

1702 Journal of Internet Technology Volume 21 (2020) No.6

patterns in binary data. It is pattern classifiers based on

elementary cellular automata. CAC creates two rules

matrices using the “Rule Ordering process” using the

Genetic algorithm (GA). The most crucial part of this

classifier is the cellular automata rules represented by

rule matrix. Rules matrices are divided into both

positive and negative sides, then classify the class of

data by using Decision function CAC consists of two

rule matrices and provides binary classification. For

this reason, CAC using decision directed acyclic graph

(DDAG) [2, 46] structure to deal with multi-class

classification problem.

The main idea of this research is how to improve the

classification capability of the CAC classifier. To cope

with the improvement, we classify a wide range of

classifiers into two groups: hard classifier and soft

classifier [33]. In general, a soft classification rule

generally estimates the class conditional probabilities

explicitly and then makes the class prediction based on

the most considerable estimated probability. In contrast,

hard classification bypasses the requirement of class

probability estimation and directly estimates the

classification boundary. Typical soft classifiers include

some traditional distribution-based likelihood

approaches, such as Naive Bayes and K-nearest

neighbors. On the other hand, some margin-based

approaches, such as SVM, especially CAC. Generally,

distributional assumption-free belongs to the class of

hard classification methods. There are some research

using the Soft and Hard classification to improve

classifiers performance, for example, in 2011, a

margin-based classifier, including both hard and soft

classifiers, called Large-margin unified

machines(LUMs), which covers a broad range of

margin-based classifiers, including both hard and soft

ones. By offering a natural bridge from soft to hard

classification, the LUM provides a unified algorithm to

fit various classifiers and hence a convenient platform

to compare hard and soft classification. As a result, it

can also use as a probability estimation technique for

hard classifiers such as the SVM. According to [28],

Lee and Kim proposed an overlap-sensitive margin

(OSM) classifier based on a modified fuzzy support

vector machine and k-nearest neighbor algorithm to

address imbalanced and overlapping data sets. The

main idea of the proposed OSM classifier is to separate

the data space into soft and hard-overlap regions using

the modified fuzzy support vector machine algorithm.

According to CAC that uses the concept of two-class

classification like SVM, and the classification

performance is depended on elementary cellular

automata rule matrices, it still faces two problems.

Firstly, the data with ambiguity impact the rule

ordering process, which is a process that converts data

pattern to rules vectors using a configuration of

Cellular Automata. The initial rules matrixes are many

duplicates in the same location. This problem is known

as a collision problem; the classification used boundary

finding method is not useful for this problem. Some

researchers try to solve collision problems using the

optimization algorithm with numerical instead of

discrete binary variables [18], changing particle

directions [48]. Secondly, typically, the classifier has

found that when data have a higher dimension, it will

affect the efficiency of the classifier [8]. In this regard,

CAC faces this problem when dealing with high

dimensional data. CAC’s rule ordering process using

GA does not address the best solution and has got low

classification accuracy when dealing with high

dimensional data. GA has limitation when dealing with

high dimensional problems [26], especially for

premature convergence and falling into a local

optimum [45]. We want to find a new, efficient

optimization algorithm. One of these is butterfly

optimization, which has better performance than

traditional optimization and has been improved for use

in a variety of applications, such as feature selection [6,

57] and improve BOA by using mutualism scheme

[42].

In this research, we have presented a highly efficient

classification, called Cellular Automata-Based

Classifier with Soft Decision (CAS), for solving

problems faced in CAC. It reduce overfitting while rule

ordering process and improves classification accuracy

by using the Pruning method based on Soft decision

based idea. Then implemented a Butterflies

Optimization Algorithm (BOA) instead of GA in the

rule ordering process, to deal with severe complexity

problems. We validate the CAS in comparison with the

state-of-the-art algorithms using ten UCI datasets.

The rest of the paper is organized as follows: In

section 2, we introduce related work on Pattern

Classifier Based on Decision Support Elementary

Cellular Automata, a Butterfly Optimization Algorithm,

Pruning method, and Principle component analysis for

data virtualization. In section 3, we elaborate on our

proposed CAS approach. In section 4, the empirical

analysis and the comparison of experimental results are

presented. Section 5 concludes our work.

2 Related Work

2.1 Pattern Classification Based on Decision

Support Elementary Cellular Automata

Cellular Automata are systems evolving on lattices

according to a local transition function [34]. It evolves

through several discrete time steps according to a set of

rules based on the states of neighboring cells. The rules

are applied iteratively for as many time steps as desired.

In 1983, S. Wolfram proposed the simplest type of

cellular automata, called “Elementary Cellular

Automata”. It is a binary nearest-neighbor, one-

dimensional automaton.

Elementary Cellular Automata (ECA) consists of

An Improved Cellular Automata-Based Classifier with Soft Decision 1703

two possible status groups (0 or 1), with the pattern of

cells arranged in one dimension. A next state 1t

i
Q

+ for

the th
i cell is considered from its one nearest

neighbor’s local transition function f(
1

t

i
Q

−
, t

i
Q ,

1

t

i
Q

+
) of

the present state t

i
Q For simplicity, a next state of n

cells ECA is represented by a matrix R given following

 ()ij m nR a
×

= (1)

A rule matrix R consist of a set of inputs and

solutions m rows and n columns, where m is bits

pattern and n I
+

∈ , aij represents the members that are

in row i and column j of the matrix. Thus, pattern

classifiers based on the evolving structure of ECA is

defined as follow.

 1 (,)t t
Q R Q

+

= (2)

Let R be a |n × 8| matrix representing the next state

for n cells ECA, called a rule matrix. And element of

the matrix, aij∈{0, 1} is the next state ith for the cell

where it is nearest neighbors, (
1

t

i
Q

−
, t

i
Q ,

1

t

i
Q

+
) is

decode in decimal equal to j, j = 0 to 7. A general form

of evolving ECA in a form of R is defined as following

equation.

 1
(,),

,

t t

t

t

R Q if Q Y
Q

Q and stop otherwise

+
⎧ ∈⎪

= ⎨
⎪⎩

 (3)

In 2016, the researcher proposed a novel classifier

based on cellular automata model, called Cellular

Automata-based Classifier (CAC) was proposed. In

Figure 1, it developed based on a new kind of one-

dimensional cellular automata (ECA), called Decision

Support Elementary Cellular Automata (DS-ECA). It is

the elementary cellular automata with capability to

choose a proper rule matrix for changing the state. It

comprises two rule matrices (R+ and R−) and a decision

function 1 1(,) { 1,1}.t t

R R
f Q Q

+ −

+ +

∈ − The 1 1(,)t t

R R
f Q Q

+ −

+ + is a

sign function using 1 1(,)t t

R R
Q Q

+ −

+ + as parameters. The

function is given in (4).

1

1 1 1 1

0

(,) sgn ()
n

t t t t

R R R R

i

f Q Q Q Q
+ − + −

−

+ + + +

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ (4)

where 1t

R
Q

+

+ and 1t

R
Q

−

+ are a next state generated by the

rule matrices R+

 and R− . 1t

R
Q

+

+ and 1t

R
Q

−

+ are the i
th

cells of n bits from 1t

R
Q

+

+ and 1t

R
Q

−

+ , respectively.

The two next states 1t

R
Q

+

+ and 1t

R
Q

−

+ , are generated as

follows:

 ()1
,

t t

R
Q R Q

+

+ +

= (5)

Figure 1. CAC with two attractor basins

 ()1
,

t t

R
Q R Q

−

+ −

= (6)

Example 1. Suppose binary number ‘110011’ is a 6-

cell ECA with null boundary condition [1] and rule

matrices R+

 and R− ; the classification task could be

processed by following steps:

000 001 010 011 100 101 110 111

1 0 0 1 1 0 0 0 0

2 0 0 0 0 0 1 1 0

3 0 0 0 0 1 0 0 0

4 0 1 0 0 0 0 1 0

5 0 0 1 0 1 0 0 0

6 1 0 0 0 1 0 0 0

R
+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

000 001 010 011 100 101 110 111

1 0 0 1 1 0 0 0 0

2 0 0 0 0 0 1 0 1

3 0 0 1 0 0 0 1 1

4 1 0 0 0 1 1 0 0

5 1 1 1 1 0 0 0 0

6 0 0 1 0 1 0 1 0

R
−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Step 1: The first step, choosing a null boundary

condition to define the ECA configuration, the first

feature must add ’0’ on the left then choose left and

right neighbor with itself.

 0 1 1 0 0 1 1

The first feature of the pattern matching with ECA

configuration ‘011’ then []
1,4

1R
+

= and []
1,4

1R
−

= also.

Step 2: Continue to choose left and right neighbors of

the second feature.

 0 1 1 0 0 1 1

The second feature of the pattern maching with ECA

config-uration ‘110’ then []
2,7

1R
+

= and []
2,7

0R
−

=

Subsequently, repete step 2 for remaining features until

reaching the last feature.

1704 Journal of Internet Technology Volume 21 (2020) No.6

 0 1 1 0 0 1 1

The thirth feature, ECA configuration is ‘100’ then

[]
3,5

1R
+

= and []
3,5

0R
−

= .

 0 1 1 0 0 1 1

The forth feature, ECA configuration is ‘001’ then

[]
4,2

1R
+

= and []
4,2

0R
−

= .

 0 1 1 0 0 1 1

The fifth feature, ECA configuration is ‘011’

[]
5,4

0R
+

= and []
5,4

1R
−

= .

Step 3: This step is similar to the step, but add ‘0’ to

be a right neighbor for the last feature.

 0 1 1 0 0 1 1 0

The ECA configuration of the last feature is ‘110’ is

maching with []
6,7

0R
+

= and []
6,7

1R
−

= .

Step 4: Define the class of binary pattern ‘110011’ by

using (4)

[] []() [] []()
[] []() [] []()
[] []() [] []()

1,4 1,4 2,7 2,7

1 1

3,5 3,5 4,2 4,2

5,4 5,4 6,7 6,7

(,) sgnt t

R R

R R R R

f Q Q R R R R

R R R R

+ −

+ − + −

+ − + −+ +

+ − + −

⎛ ⎞− + −
⎜ ⎟
⎜ ⎟

= + − + −⎜ ⎟
⎜ ⎟
⎜ ⎟+ − + −⎜ ⎟
⎝ ⎠

Replace variables with the values from step 1-3:

() () () ()

() ()
1 1

1 1 1 0 1 0 1 0
(,) sgn

0 1 0 1

t t

R R
f Q Q

+ −

+ +

⎛ ⎞− + − + − + −
= ⎜ ⎟

⎜ ⎟+ − + −⎝ ⎠

Then calculate sign function:

 1 1(,) 1t t

R R
f Q Q

+ −

+ +

= +

From the answer is +1, let be known that binary

number 110011 is in the positive class and the next

step should generate by using (5).

The rule matrices are the performance for

classifying patterns. In this respect, a Genetic

Algorithm (GA) use to order the rules arriving at R+

and R− for classification.

In general, GA cannot cope with the complicated

problem with high dimensional space to arrive at the

close-to-optimal solutions. Hence, it is an appropriate

and challenging problem to improve the performance

of CAC using promising advanced optimization

techniques. Furthermore, the classifier uses the basis of

finding boundaries to classify classes in certain types

of data is not enough to solve a difficult problem. From

a literature review, the amendment to the limitations of

this classifier is to use class classifications with

probability calculations from some method to deal with

areas that are sensitive classifying.

2.2 Butterfly Optimization Algorithm (BOA)

The butterfly optimization algorithm (BOA) is a

novel meta-heuristic algorithm that is inspired by the

butterfly’s feeding behavior. The effectiveness of BOA

depends on the prob-ability parameter, which

determines whether the butterfly must move towards

the best butterfly of the population or perform a

random search [7, 30]. The structure principally relies

upon the butterfly prey technique, which utilizes smell

acknowledgment to decide the area of nourishment or

mating sets. The entire idea of discovery and handling

relies upon three critical conditions: the fragrance (f),

sensory exposure (c), stimulus intensity (I) and power

(a). Utilizing these ideas, in BOA, the scent is defined

as a component of the physical power of boost as

follow:

 f = cIa (7)

where f is the size of perfume recognition, namely the

strength of the smell recognition of other butterflies, c

is the sensory receptor, I is a stimulating force and a is

the exponent power depending on the modality. There

are three phases in BOA: (1) Initialization phase, (2)

Iteration phase and (3) Finally In the first BOA

operation, each time will then perform a recursive

search, and in the final phase the algorithm will

eventually be terminated when the best solution is

found. In the initial step, the algorithm determines the

problem-solving area and the purpose of the function

— besides, the parameters used in the BOA set. The

position of the butterfly will be generated randomly in

the search area with their perfume values and

suitability calculated and stored. This progress will

include the initial phase and the recursion phase

calculation at a later stage. The second step of the

algorithm, such as the looping phase, multiple

iterations, is performed by an algorithm. In each

iteration, all butterflies in the solution area will move

to a new location and then evaluate the suitability. The

first algorithm will calculate the suitability of all

butterflies in different positions in the solution area.

Then, these butterflies will create fragrances by

position using equation (7). There are two essential

steps in the algorithm, such as local search procedures

and global search procedures. In the global search

process, butterflies move to the most appropriate

butterfly g answer, which can be displayed using

equation (8).

 ()1 2
*

t t t

i i i i
x x r g x f+

= + × − × (8)

where 1t

i
x

+ is the solution vector
i
x for ith butterfly in

iteration number t. Here, g represents the current best

solution found among all the solutions in current

iteration. Fragrance of ith butterfly is represented by
i
f

and r is a random number in [0, 1]. Local search phase

can be represented as

An Improved Cellular Automata-Based Classifier with Soft Decision 1705

 ()1 2t t t t
i i j k ix x r x x f+

= + × − × (9)

where t

i
x and t

k
x are jth and kth butterflies from the

solution space. If t

jx and t

k
x belongs to the same

swarm and r is a random number in [0, 1], then

equation (9) becomes a local random walk. Finding

food mates and mating by butterflies can occur both

locally and globally. Searching for food may be

important in the overall mating or butterfly search

activity, considering the physical proximity and other

factors such as wind, rain, weather, temperature, etc.

So, a switch probability p is used in BOA to switch

between common global searches to intensive local

search. Criteria for stopping can determine in many

ways, such as the maximum CPU time used, the

maximum number of iterations, the maximum number

of repetitions without improvement, the error rate, or

other appropriate criteria when summarizing the

repetition process. The algorithm will export the best

solution that meets the most appropriate. The three

steps above comprise a complete algorithm of butterfly

optimization algorithms describes in the “Algorithm 1”.

2.3 Pruning Method

Pruning method is a technique in machine learning

that reduces the computational complexity of classifier

and aim to improve classification accuracy. In other

words, the pruning process uses to prevent overfitting

of machine learning [56]. Pruning methods are widely

used in machine learning, especially in classification

techniques, for example decision tree [19], deep

learning [32]. In the case of collision problems. Due to

a large number of useless classification elements

causing the problem to be solved by defining only the

scope that is not good enough. A popular method to

eliminate such problems is the pruning method [5, 50].

Typically, pruning consists of 2 steps: (1) evaluating

the efficiency in all elements then in the process (2)

Eliminate the most useless elements, which in the

beginning when cutting out the branches, will increase

the accuracy and cut until the accuracy of the

classification is lower. But the process to finding the

most suitable value for this method is also a challenge

for research. In research [24] has been tested using GA

to calculate the most suitable value for pruning. The

result is that it can reduce the computation time and get

better results than normal cuttings.

In general, the pruning method is used to cut

decision branches that cause poor decision-making

efficiency. Based on this concept, we have

implemented a pruning technique to improve the rule

metrics used to enhance classification by eliminating

values that cause poor classification efficiency in the

rule metrics.

2.4 Principal Component Analysis (PCA)

Generally, a dataset cannot be able to plot and

observed the distribution if the number of attributes is

higher than three. Principal component analysis (PCA)

[21] is a widely used dimensionality reduction

technique in data analysis. It reduces high dimensional

features to low dimension and maintains distances

between data points as much as possible. Finally, the

most significant first two or three eigenvectors choose

to plot the graph.

3 Proposed Method

This research proposed an efficient classifier-based

cellular automaton, called Cellular Automata-Based

Classifier with Soft Decision (CAS). CAS shown in

Algorithm 2 aims to improve the performance of the

Cellular Automata-based Classifier (CAC) algorithm.

As a result that CAC faced a classification accuracy

problem when using just the boundary to identify the

class and rule ordering by using the Genetic Algorithm

(GA) cannot crop high dimensional problems. This

research gets rid of such a limitation by applying Soft

Decision (Pruning method) while Rule ordering

process and implement Butterfly Optimization

Algorithm (BOA) instead of Genetic Algorithm

illustrate in Figure 2.

1706 Journal of Internet Technology Volume 21 (2020) No.6

Figure 2. CAS overview

The initial matrix creation process uses the same as

the original method, which defines the traditional

boundary finding that focuses on only the boundary of

the class into the hard decision section. Then, adding

the Soft decision, which is a calculation of the

percentage of the ability to classify each element of the

rule matrix to eliminate the useless position of the rule

matrices. The soft decision consists of 2 steps: the first

step is to measure the ability of each element of the

initial matrices before being introduced into the

appropriate elemental valuation process by creating the

Soft Decision table. It then leads to the optimization

process, which is the endpoint of eliminating useless

elements. This process occurs along with the

determination of the boundary lines of the hard

decision obtained from the butterfly optimization

algorithm. Next, after obtaining the boundaries and

points suitable for soft decision making, it will get rid

of useless points with the value obtained above in the

process of the pruning process. Finally, the rule

synthesis process will be the last step in creating the

rule matrix for data classification, as shown in Figure 3.

Figure 3. CAS rule ordering process

3.1 Initial Values of Rule Matrices

The Rule ordering process starts with converting the

input to binary with Gray code [22, 35, 44] encoder if

input data is not binary data. By using null boundary

condition (First left neighbor is 0, last right neighbor is

0). The initial values of the matrices Rp and Rn are

created by counting the number of patterns from an

attractor basin (PAB or NAB) corresponding to the

matrix. That is, and element of the matrix Rp in the ith (i

= 0, 1, 2, …, n-1) row and the jth (j = 0, 1, 2, …, n-1)

column is the number of patterns from PAB in which

the nearest neighbors (
1

t

i
Q

−
, t

i
Q ,

1

t

i
Q

+
) for the ith cell

decoded to decimal must be equal to j. Similarly, an

element of the matrix Rn is formulated by NAB.

Example 2. Set up a training data(D) of 6 bits pat-tern

for CAS is (110011,+1), (101100,+1), (111100,+1),

(101001,+1), (100010,+1), (110000,+1), (110100,+1),

(110010,+1), (111101,-1), (101000,-1), (111011,-1),

(110001,-1), (111001,-1), (111010,-1), (101011,-1),

(100001,-1). Set +1 and -1 is the class label of PAB

An Improved Cellular Automata-Based Classifier with Soft Decision 1707

and NAB, respectively. That mean PAB={110011,

101100, 111100, 101001, 100010, 110000, 110100,

110010} and NAB ={111101, 101000, 111011, 110001,

111001, 111010, 101011, 100001}. Subsequently, the

initial rule matrices Rp and Rn are created as follow.

000 001 010 011 100 101 110 111

1 0 0 3 5 0 0 0 0

2 0 0 0 0 1 2 4 1

3 1 0 1 1 3 1 0 1

4 1 3 1 0 1 0 1 1

5 1 1 2 1 2 0 1 0

6 3 0 1 0 3 0 1 0

R
+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

000 001 010 011 100 101 110 111

1 0 0 3 5 0 0 0 0

2 0 0 0 0 1 2 1 4

3 1 0 2 0 1 0 3 1

4 2 0 0 0 2 3 1 0

5 1 3 1 2 0 1 0 0

6 1 0 4 0 1 0 2 0

R
−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

3.2 Preparing Data for BOA

CAS starts with changing
p

R and
n

R to '

p
R and '

n
R

by the following conditions:

()'
0,1 0

0,

p p
ij ij

p
ij

R random if R
R

otherwise

⎧⎡ ⎤ ⎡ ⎤+ >⎪⎣ ⎦ ⎣ ⎦⎡ ⎤ = ⎨⎣ ⎦
⎪⎩

 (10)

 []
[] () []

'

0,1 0

0,

n nij ij

n ij

R random if R
R

otherwise

⎧ + >⎪
= ⎨
⎪⎩

 (11)

Example 3. The modified rule matrices from (10) and

(11) shown as below

000 001 010 011 100 101 110 111

1 0.00 0.00 3.09 5.04 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 1.28 2.31 4.20 1.98

3 1.73 0.00 1.33 1.15 3.50 1.72 0.00 1.39

4 1.99 3.18 1.16 0.00 1.15 0.00 1.13 1.84

5 1.62 1.91 2.13 1.31 2.02 0.00 1.96 0.00

6 3.51 0.0

R
+ =

0 1.82 0.00 3.88 0.00 1.53 0.00

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

000 001 010 011 100 101 110 111

1 0.00 0.00 3.17 5.49 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 1.81 2.23 1.21 4.11

3 1.85 0.00 2.44 0.00 1.23 0.00 3.38 1.99

4 2.59 0.00 0.00 0.00 2.26 3.75 1.68 0.00

5 1.51 3.58 1.18 2.20 0.00 1.93 0.00 0.00

6 1.03 0.0

R
− =

0 4.55 0.00 1.25 0.00 2.15 0.00

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Theorem 1. For
'

p
ij

R⎡ ⎤⎣ ⎦ and []
'

n ij
R are the elements of

the matrices '

p
R and '

n
R which are the rule matrices that

modified with equations (10) and (11) at the ith row and

the jth column, respectively. We can denote the relation

 []
'

'

ij p n ijij
A R R⎡ ⎤= −⎣ ⎦

where Aij is the difference of the matrices '

p
R and '

n
R at

the same position.

If Aij is exactly different, it will make the

classification of patterns easier. On the other hand, if

the above differences are not apparent or have a small

value, the classification will be difficult.

Proof. The initial rule matrices, '

p
R and '

n
R can use the

same element position of each other to classify the

pattern.

For example, at the row 4th and column 2nd of

'

p
R and '

n
R ,

'

4,2
p

R⎡ ⎤⎣ ⎦ = 3.18 and []
'

4,2n
R = 0.00 where

'

4,2
p

R⎡ ⎤⎣ ⎦ is the element that indicates the fourth position

of the pattern with a configuration “001” of positive

side, and []
'

4,2n
R shows the same meaning but negative

side. From this information, we immediately know that

the pattern with configuration “001” at position four is

a positive side data since all negative data do not have

any data with the configuration “001” in position forth.

On the other hand, for
'

3,1
p

R⎡ ⎤⎣ ⎦ =1.73 and []
'

3,1n
R =

1.85 means the pattern with the configuration “000” in

that first position. We cannot identify the side of the

pattern since the values in both positions are similar.

From the above relation, we can conclude that if the

Aij value of any element is high, the classification

ability is high. Differently, if the value of Aij is low, it

shows that the position also has a little classification

ability.

3.2.1 Create Soft Decision Table (τ)

The first step to pruning useless branches for

pruning methods is to evaluate the ability of

classification in every decision tree, which can

1708 Journal of Internet Technology Volume 21 (2020) No.6

compare to the element of the rule matrices in the

classifier based on Cellular automata.

Definition 1. Overlap Coefficient

Overlap coefficient is a measure of the ability to

classify each element in the rule matrices. We use

[]{ }| 0,1ij x xα = ∈ to represent the Overlap coefficient

at the ith row, jth column of the Rule matrices for

i={1,2,...,n} and j={1,2,...,8} where n is the features

number of dataset in binary patterns. From Theorem 1

and Definition 1, we can define in equation (12) as

below

[]

[] []

'
'

'
'

'
' , 0

0,

p n ijij

ij p n ijijp n ijij

R R

R R
R R

otherwise

α

⎧ ⎡ ⎤ −⎣ ⎦⎪
⎪

⎡ ⎤ + >⎨ ⎡ ⎤ ⎣ ⎦+⎣ ⎦⎪
⎪
⎩

 (12)

where
'

p
ij

R⎡ ⎤⎣ ⎦ and []
'

n ij
R are elements of the matrices

'

p
R and '

n
R at the ith row and the jth column, respectively.

ijα vary with the efficiency of classification.

Definition 2. Soft Decision Table

Soft decision table is the relationship of ijα in the

form of a matrix (τ) as shown below.

11 12 18

21 22 28

1 2 8n n n

α α α

α α α

τ

α α α

⋅ ⋅ ⋅⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥

⋅ ⋅ ⋅⎣ ⎦

�

� � � �

where n is the features number of datasets in binary

patterns.

3.2.2 Adjust the Rule Matrices for BOA Processes

When the matrices '

p
R , '

n
R and τ will be processed by

the following processes:

First, Rearrange the matrices '

p
R , '

n
R and to one

dimension. Second, sort the one-dimensional matrices

in ascending order and unique (no copy of elements

allowed). Finally, the results will be contained in one

dimensional matrix Kp, Kn and Kβ respectively.

Definition 3. Hard Decision Boundary

Hard Decision Boundary { }|0 max()
p p

x x Kω = < <

and { }|0 max()
n n

x x Kω = < < are the least value that

separates the area of the classes by using an

optimization algorithm to find the optimal decision

boundaries for the best classification accuracy.

Definition 4. Soft decision boundary

The Soft decision boundary { }|0 max()x x Kβ βω = < <

and { }|0 max()
n n

x x Kω = < < are the best value for

pruning method by using an optimization algorithm to

find the optimal decision boundaries for the best

classification accuracy.

3.2.2 Adjust the Rule Matrices Form for BOA

The result from butterfly optimization algorithm

consists of 3 variables, (), ,
p n βω ω ω which are a

threshold making the classifier converge to the best

solution.

3.3 Soft Decision

The pruning method is implemented on '

p
R and '

n
R to

eliminate useless classification elements by following

condition:

[]

' '
'

'

0,

p p n ijijij ij

ij

R if R R or
R

otherwise

βα ω
+

⎧⎡ ⎤ ⎡ ⎤ > >⎪⎣ ⎦ ⎣ ⎦⎡ ⎤ = ⎨⎣ ⎦
⎪⎩

 (13)

[] []

'
' '

'

0,

n n p ijij ij ij

ij

R if R R or
R

otherwise

βα ω
−

⎧ ⎡ ⎤> >⎪ ⎣ ⎦⎡ ⎤ = ⎨⎣ ⎦
⎪⎩

 (14)

where βω is a threshold to making the model

converged to the best answer.

3.4 Synthesizing Rule Matrices

This step is the final step in creating the rule to be

used in recognition, using
p

ω and
n

ω from butterfly

optimization process by the following condition:

'

1

0,

p
ij

ij

if R
R

otherwise

ω
+

+

⎧ ⎡ ⎤ >⎪ ⎣ ⎦⎡ ⎤ = ⎨⎣ ⎦
⎪⎩

 (15)

'

1

0,

n
ij

ij

if R
R

otherwise

ω
−

−

⎧ ⎡ ⎤ >⎪ ⎣ ⎦⎡ ⎤ = ⎨⎣ ⎦
⎪⎩

 (16)

where
ij

R
+⎡ ⎤

⎣ ⎦ and
ij

R
−⎡ ⎤

⎣ ⎦ are rules matrices for pattern

recognition.

Although CAS uses the same process for

synthesizing the rule matrices with CAC, CAS has

improved an initial rule matrices format before the rule

matrix synthesis. Allowing us to get a better-quality

rule matrix than the previous method

An Improved Cellular Automata-Based Classifier with Soft Decision 1709

4 Experiments

In this section, we propose a process to evaluate the

efficiency of the proposed classifier. The datasets,

comparing classifiers and discussion are presented.

4.1 Datasets

The datasets from the UCI data repository are

implemented. They consist of different types of

instances, dimensions, and distribution as shown in

Table 1. Datasets are analyzed through Principal

component analysis (PCA). As shown PCA explicitly

illustrates datasets with conforming and non-

conforming patterns, we reduce a dimension of

datasets to 2 dimensions by using the PCA technique

and scatter plot to represent data related to each class.

Table 1. Datasets

Dataset Class Instances Attributes

Monk Problem 2 2 601 7

Congressional Voting Records 2 435 16

Hayes-Roth 3 160 5

Colon 2 62 2000

Soybean 4 47 35

Pima Indians Diabetes 2 768 8

Mammographic Mass 2 961 6

New thyroid 2 306 3

SPECT heart 2 80 23

Libras Movement 15 360 91

The result shows that the datasets represent itself as

clusters such as the Congressional Voting dataset

(Figure 4(a)), Soybean dataset (Figure 4(c)), and

Mammographic Mass dataset (Figure 4€) distribution

clustered that mean datasets are conforming. But for

non-conforming data, for example, The Monk’s

Problem 2 (Figure 4(b)), Hayes-Roth (Figure 4(d)), and

SPECT heart (Figure 4(f)). The results of the scatter

plot shown most of the data of different classes are

mixed because the classification accuracy lowers than

the previous one.

4.2 Evaluation Method

To validate the proposed method, we prepare

training and sampling data by using K-fold cross

validation [54] with 2, 4, 6, 8, 10 folds, respectively.

According to CAS. Confusion matrix [29] is

determined to report the classification accuracy as the

equation given below.

TP TN

Accuracy
TP TN FP FN

+
=

+ + +

 (17)

where True Positive (TP) is predicted to be positive

correctly, False Negative (FN) is positive observation,

but is predicted negative, True Negative (TN) is

negative observation, and is predicted to be negative,

False Positive (FP) is negative observation, but is

predicted positive. Additionally, CAS implements

DDAG scheme for multiclass classification.

4.3 Compared Methods

For comparison purpose, the state-of-the-art

classification methods are compared. We implement

the compared methods besides CAC through

RapidMiner Software by setting up a test environment

on a personal computer consist with 8 Gigabytes

memory, CPU Intel core i7 eight cores, Windows 10

operating system. The compared methods are as

follows.

4.3.1 Cellular Automata-based Classifier (CAC)

CAC is an efficient classifier based on cellular

automata model that possesses the promising capability

to deal with non-conforming patterns in the bit-level

features [52]. It consists of 2 layers, evolving layers,

and decision layer. An evolving layer consist of 2

cellular automata rule matrices to provide the next state.

A decision layer processes the result of an evolving

layer to decision the class of the pattern. The efficiency

of the classifier is a rule matrix that created using

reverse engineering techniques and genetic algorithms.

4.3.2 Support Vector Machine (SVM)

SVM is a classifier that has the principle of

changing dimensions to data and finding boundaries

[23], dividing data into two parts, using vectors of

multiple vector points called support vector to define

the boundaries. For the SVM configuration, a dot

kernel type is used.

1710 Journal of Internet Technology Volume 21 (2020) No.6

(a) Congressional voting (b) The Monk’s Problem 2

(c) Soybean (d) Hayes-Roth

(e) Mammographic mass (f) SPECT heart

Figure 4. Datasets visualized through PCA technique

4.3.3 k-Nearest Neighbor Algorithm (k-NN)

The k-Nearest Neighbor algorithm [9] is based on

comparing an unknown example with the k training

examples which are the nearest neighbors of the

unknown example. In this case, we assign the number

of 5 nearest neighbor to the method.

4.3.4 Deep Learning

Deep Learning is based on a multi-layer feed-

forward artificial neural network that is trained with

stochastic gradient descent using back-propagation

[37]. The network can contain many hidden layers

consisting of neurons with tanh, rectifier, and max out

An Improved Cellular Automata-Based Classifier with Soft Decision 1711

activation functions. We add 2 layers and 50 nodes for

each layer.

4.3.5 Naive Bayes

Naive Bayes is a high-bias, low-variance classifier,

and it can build a good model even with a small data

set [25]. It is simple to use and computationally

inexpensive. Typical use cases involve text

categorization, including spam detection, sentiment

analysis, and recommender systems.

4.4 Experimental Results

The recognition performance of the proposed CAS

is evaluated through the stated datasets compared to

the state-of-the-art methods. For non-binary features,

the datasets must be transforming into gray code. For

implementation purpose, the parameters of the

butterfly optimization for rules ordering are set as

follows:

(1) Probability switch (p): 0.5

(2) Power exponent: 0.4

(3) Sensory modality: 0.03

(4) Max iteration: 20

The experiments are conducted on ten UCI datasets

in different instances and feature numbers. When

comparing the classification accuracy result between

CAC and CAS, both also report the high classification

accuracy and do not seem to make much difference.

Whereas the dataset with non-conforming patterns, the

classification accuracy is much lower than conforming

datasets. However, if we are only considering the

correctness of classification between CAC and the

CAS, it seems that when the datasets consist of

conforming patterns, the accuracy of CAS much higher

than non-conforming patterns. Table 2 shows

comparative classification accuracy of the proposed

algorithm and the compared state-of-the-art methods.

Figure 5 portrays comparative results of classification

accuracy obtained from Table 2.

Table 2. Comparative classification accuracy of the proposed algorithm and the state-of-the-art methods

K-Fold
Datasets Classifiers

2 4 6 8 10
Average

CAS 96.12 96.98 96.14 97.00 96.60 96.57

CAC 96.98 96.26 95.83 96.87 96.94 96.58

SVM 94.00 95.00 96.00 96.00 95.00 95.20

k-NN 93.97 93.10 93.06 93.10 93.95 93.44

Deep Learning 95.26 93.53 94.79 95.26 95.25 94.82

Congressional Voting

Naïve Bayes 93.97 94.83 94.8 95.26 94.82 94.74

CAS 100.00 100.00 100.00 100.00 100.00 100.00

CAC 100.00 100.00 100.00 100.00 100.00 100.00

SVM 100.00 100.00 100.00 100.00 100.00 100.00

k-NN 95.74 97.92 97.92 97.92 98.00 97.5

Deep Learning 100.00 100.00 100.00 100.00 100.00 100.00

Soybean

Naïve Bayes 100.00 100.00 100.00 100.00 100.00 100.00

CAS 67.05 68.55 70.21 65.97 69.02 68.16

CAC 51.30 53.40 44.75 46.08 51.43 49.39

SVM 55.00 58.00 54.00 56.00 53.00 55.20

k-NN 70.05 68.06 66.89 66.56 66.56 67.62

Deep Learning 66.56 62.40 62.23 65.93 65.89 64.60

Monk Problem 2

Naïve Bayes 63.22 64.39 65.22 64.39 64.39 64.32

CAS 72.58 74.17 73.83 69.64 65.95 71.24

CAC 72.57 74.05 73.65 69.53 66.12 71.18

SVM 64.52 71.15 69.70 71.21 72.38 69.79

k-NN 54.84 60.83 50.15 43.53 48.10 51.49

Deep Learning 66.13 69.35 66.13 64.52 67.74 66.77

Colon

Naïve Bayes 51.61 63.02 56.36 54.24 59.52 56.95

CAS 86.23 85.71 80.63 87.56 85.75 85.18

CAC 81.88 80.00 84.33 85.00 82.47 82.74

SVM 72.00 79.00 78.00 77.00 77.00 76.60

k-NN 58.75 61.25 66.12 65.00 66.25 63.47

Deep Learning 56.25 60.62 58.71 58.75 58.75 58.62

Hayes-Roth

Naïve Bayes 61.25 63.12 68.85 66.88 70.00 66.02

CAS 76.25 73.75 72.53 75.34 72.50 74.07

CAC 66.25 58.75 62.55 63.75 62.00 62.66

SVM 64.00 61.00 69.00 74.00 66.00 66.80

k-NN 71.25 67.50 66.21 63.75 63.75 66.49

Deep Learning 68.75 66.25 68.96 68.75 70.00 68.54

SPECT heart

Naïve Bayes 73.75 70.00 67.58 68.75 68.75 69.77

1712 Journal of Internet Technology Volume 21 (2020) No.6

Table 2. Comparative classification accuracy of the proposed algorithm and the state-of-the-art methods (continue)

K-Fold
Datasets Classifiers

2 4 6 8 10
Average

CAS 83.53 82.25 83.15 82.53 83.65 83.02

CAC 83.25 84.65 82.53 82.13 82.25 82.96

SVM 82.00 83.00 82.00 82.00 82.00 82.20

k-NN 78.80 78.92 79.76 79.39 79.40 79.25

Deep Learning 80.00 80.60 81.20 80.48 80.60 80.58

Memo

Naïve Bayes 79.64 80.60 81.33 81.08 80.96 80.72

CAS 72.58 74.17 73.83 69.64 65.95 71.24

CAC 72.57 74.05 73.65 69.53 66.12 71.18

SVM 64.52 71.15 69.70 71.21 72.38 69.79

k-NN 54.84 60.83 50.15 43.53 48.10 51.49

Deep Learning 66.13 69.35 66.13 64.52 67.74 66.77

Pima

Naïve Bayes 51.61 63.02 56.36 54.24 59.52 56.95

CAS 94.79 94.76 96.22 95.92 94.80 95.30

CAC 95.81 91.20 93.03 94.90 94.39 93.87

SVM 93.96 93.96 93.98 93.93 93.92 93.95

k-NN 91.63 92.57 93.98 92.54 93.46 92.84

Deep Learning 93.03 94.88 94.91 93.47 93.48 93.95

New thyroid

Naïve Bay 95.82 96.75 96.76 96.74 96.73 96.56

CAS 62.5 65.556 64.44 65.83 70.26 65.72

CAC 56.11 56.11 55.21 57.32 56.23 56.20

SVM 46.94 47.78 50.28 52.22 30 45.44

k-NN 70.83 74.44 77.5 76.67 78.89 75.67

Deep Learning 66.67 64.72 66.11 69.44 66.67 66.72

Libras Movement

Naïve Bay 59.72 64.72 65.28 64.44 62.5 63.33

Figure 5. Comparative results of classification accuracy

An Improved Cellular Automata-Based Classifier with Soft Decision 1713

5 Conclusion

CAC is an efficient classifier that can deal with

conforming and nonconforming binary patterns.

However, finding decision boundaries to divide data is

difficult. In this regard, GA cannot well handle high

dimensional complicated problems. In this paper, we

propose an improved cellular automata-based classifier

by augmenting a soft decision technique and Butterfly

Optimization Algorithm in lieu of Genetic Algorithm.

As compared to the promising state-of-the-art

classification methods, namely, SVM, k-NN, Deep

Learning, Naïve Bayes, and CAC, CAS reports the

promising results while experimented in ten UCI

datasets in different instances, features, and class

number.

For future research, the following issues can

improve the accuracy performance. Firstly, an efficient

method rather than Gray code in transforming data into

binary must be determined. Secondly, multi-

classification using DDAG scheme in binary classifier

(CAC and CAS) is limited. An efficient technique can

be determined to improve the accuracy performance.

Acknowledgments

Authors would like to thank Computer Science

Department and Senior Research Scholar Program of

Khon Kaen University, Thailand.

References

[1] A. Aghaei, A Cellular Automata Approach for Noisy Images

Edge Detection under Null Boundary Conditions, Second

International Conference on Computing Methodologies and

Communication (ICCMC), Erode, India, 2018, pp. 771-777.

[2] E. Al-Hawri, N. Correia, A. Barradas, Dag-coder: Directed

Acyclic Graph-based Network Coding for Reliable Wireless

Sensor Networks, IEEE Access, Vol. 8, pp. 21886-21896,

January, 2020.

[3] A. Wood, V. Shpilrain, K. Najarian, D. Kahrobaei, Private

Naive Bayes Classification of Personal Biomedical Data:

Application in Cancer Data Analysis, Computers in Biology

and Medicine, Vol. 105, pp. 144 -150, February, 2019.

[4] Y. T. Chang, W. K. T. M. Gunarathne, T. K. Shih, Deep

Learning Approaches for Dynamic Object Understanding and

Defect Detection, Journal of Internet Technology, Vol. 21,

No. 3, pp. 783-790, May, 2020.

[5] S. Wang, H. Yi, L. Wu, F. C. Zhou, N. N. Xiong, Mining

Probabilistic Representative Gathering Patterns for Mobile

Sensor Data, Journal of Internet Technology, Vol. 18, No. 2,

pp. 321-332, March, 2017.

[6] S. Arora, P. Anand, Binary Butterfly Optimization

Approaches for Feature Selection, Expert Systems with

Applications, Vol. 116, pp. 147 -160, February, 2019.

[7] S. Arora, S. Singh, Butterfly Optimization Algorithm: A

Novel Approach for Global Optimization, Soft Computing,

Vol. 23, No. 3, pp. 715-734, February, 2019.

[8] M. Bennasar, Y. Hicks, R. Setchi, Feature Selection Using

Joint Mutual Information Maximisation, Expert Systems with

Applications, Vol. 42, No. 22, pp. 8520-8532, December,

2015.

[9] B. Zhang, S. N. Srihari, Fast k-nearest Neighbor

Classification Using Cluster-based Trees, IEEE Transactions

on Pattern Analysis and Machine Intelligence, Vol. 26, No. 4,

pp. 525-528, April, 2004.

[10] F. Cao, W. Guo, Cascaded Dual-scale Crossover Network for

Hyperspectral Image Classification, Knowledge-Based

Systems, Vol. 189, p. 105122, February, 2020.

[11] H. Cao, S. Bernard, R. Sabourin, L. Heutte, Random Forest

Dissimilarity Based Multi-view Learning for Radiomics

Application, Pattern Recognition, Vol. 88, pp. 185-197, April,

2019.

[12] B. Chang, R. Yang, C. Guo, S. Ge, L. Li, A New Application

of Optimized Random Forest Algorithms in Intelligent Fault

Location of Rudders, IEEE Access, Vol. 7, pp. 94276-94283,

July, 2019.

[13] S. Bhandari, H. P. Zhao, H. Kim, P. Khan, S. Ullah, Packet

Scheduling Using SVM Models in Wireless Communication

Networks, Journal of Internet Technology, Vol. 20, No. 5, pp.

1505-1512, September, 2019.

[14] N. R. da Silva, P. V. der Weeën, B. D. Baets, O. M. Bruno,

Improved Texture Image Classification through the Use of a

Corrosion-inspired Cellular Automaton, Neurocomputing,

Vol. 149, pp. 1560- 1572, February, 2015.

[15] M. Dembowski, B. Wolnik, W. Bołt, J. M. Baetens, B. Baets,

Affine Continuous Cellular Automata Solving the Fixed-

length Density Classification Problem, Natural Computing:

An International Journal, Vol. 17, No. 3, pp. 467-477,

September, 2018.

[16] D. R. Don, I. E. Iacob, Dcsvm: Fast Multi-class Classification

Using Support Vector Machines, International Journal of

Machine Learning and Cybernetics, Vol. 11, No. 2, pp. 433-

447, February, 2020.

[17] Fawad, M. J. Khan, M. A. Riaz, H. Shahid, M. S. Khan, Y.

Amin, J. Loo, H. Tenhunen, Texture Representation through

Overlapped Multi-oriented Tri-scale Local Binary Pattern,

IEEE Access, Vol. 7, pp. 66668-66679, May, 2019.

[18] N. Gan, S. Yao, Y. Xiong, and X. Hong, A Hybrid Cellular

Automaton-bi-directional Evolutionary Optimization

Algorithm for Topological Optimization of Crashworthiness,

Engineering Optimization, Vol. 50, No. 12, pp. 2054-2070,

2018.

[19] S. B. Gelfand, C. S. Ravishankar, E. J. Delp, An Iterative

Growing and Pruning Algorithm for Classification Tree

Design, IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 13, No. 2, pp. 163-174, February, 1991.

[20] J. Gou, W. Qiu, Z. Yi, X. Shen, Y. Zhan, W. Ou, Locality

Constrained Representation-based k-nearest Neighbor

Classification, Knowledge-Based Systems, Vol. 167, pp. 38-

52, March, 2019.

1714 Journal of Internet Technology Volume 21 (2020) No.6

[21] H. Gu, T. Lin, X. Wang, A Preliminary Geometric Structure

Simplification for Principal Component Analysis,

Neurocomputing, Vol. 336, pp. 46-55, April, 2019.

[22] G. Gutierres, R. Mamede, and J. L. Santos, Gray Codes for

Signed Involutions, Discrete Mathematics, Vol. 341, No. 9,

pp. 2590-2601, September, 2018.

[23] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, B. Scholkopf,

Support Vector Machines, IEEE Intelligent Systems and Their

Applications, Vol. 13, No. 4, pp. 18-28, July-August, 1998.

[24] S. M. Hedjazi, S. S. Marjani, Pruned Genetic Algorithm, in: F.

L. Wang, H. Deng, Y. Gao, J. Lei (Eds.), Artificial

Intelligence and Computational Intelligence, Springer Berlin

Heidelberg, 2010, pp. 193-200.

[25] H. J. Huang, C. N. Hsu, Bayesian Classification for Data

from the Same Unknown Class, IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), Vol. 32,

No. 2, pp. 137-145, April, 2002.

[26] A. K. Kar, Bio Inspired Computing- A Review of Algorithms

and Scope of Applications, Expert Systems with Applications,

Vol. 59, pp. 20-32, October, 2016.

[27] Z. Laboudi, An Effective Approach for Solving the Density

Classification Task by Cellular Automata, 4th World

Conference on Complex Systems (WCCS), Ouarzazate,

Morocco, 2019, pp. 1-8.

[28] H. K. Lee and S. B. Kim, An Overlap-sensitive Margin

Classifier for Imbalanced and Overlapping Data, Expert

Systems with Applications, Vol. 98, pp. 72-83, May, 2018.

[29] Y. Lei, Y. Dong, F. Xiong, H. Bai, H. Yuan, Confusion

Weighted Loss for Ambiguous Classification, IEEE Visual

Communications and Image Processing (VCIP), Taichung,

Taiwan, 2018, pp. 1-4.

[30] G. Li, F. Shuang, P. Zhao, C. Le, An Improved Butterfly

Optimization Algorithm for Engineering Design Problems

Using the Cross-entropy Method, Symmetry, Vol. 11, No. 8,

1049, August, 2019.

[31] L. Li, Y. Zhang, W. Chen, S. K. Bose, M. Zukerman, G. Shen,

Naïve Bayes Classifier-assisted Least Loaded Routing for

Circuit-switched Networks, IEEE Access, Vol. 7, pp. 11854-

11867, January, 2019.

[32] Y. Lin, Y. Tu, Z. Dou, An Improved Neural Network Pruning

Technology for Automatic Modulation Classification in Edge

Devices, IEEE Transactions on Vehicular Technology, Vol.

69, No. 5, pp. 5703-5706, May, 2020.

[33] Y. Liu, H. H. Zhang, Y. Wu, Hard or Soft Classification?

Large-margin Unified Machines, Journal of the American

Statistical Association, Vol. 106, No. 493, pp. 166-177,

March, 2011.

[34] P. Maji, P. P. Chaudhuri, Non-uniform Cellular Automata

Based Associative Memory: Evolutionary Design and Basins

of Attraction, Information Sciences, Vol. 178, No. 10, pp.

2315-2336, May, 2008.

[35] E. N. Mambou, T. G. Swart, A Construction for Balancing

Non-binary Sequences Based on Gray Code Prefixes, IEEE

Transactions on Information Theory, Vol. 64, No. 8, pp.

5961-5969, August, 2018.

[36] Y. Pan, Z. Pan, Y. Wang, W. Wang, A New Fast Search

Algorithm for Exact k-nearest Neighbors Based on Optimal

Triangle-inequality-based Check Strategy, Knowledge-Based

Systems, Vol. 189, p. 105088, February, 2020.

[37] M. Zhou, Z. Bai, T. Yi, X. Chen, W. Wei, Performance

Predict Method Based on Neural Architecture Search,

Journal of Internet Technology, Vol. 21, No. 2, pp. 385-392,

March, 2020.

[38] H. M. Proença, M. van Leeuwen, Interpretable Multiclass

Classification by Mdl-based Rule Lists, Information Sciences,

Vol. 512, pp. 1372-1393, February, 2020.

[39] L. C. Ribas, J. Machicao, O. M. Bruno, Life-like network

Automata Descriptor Based on Binary Patterns for Network

Classification, Information Sciences, Vol. 515, pp. 156-168,

April, 2020.

[40] A. Sasithradevi, S. M. M. Roomi, Video Classification and

Retrieval Through Spatio-temporal Radon Features, Pattern

Recognition, Vol. 99, p. 107099, March, 2020.

[41] S. Dehuri, A. Ghosh, Revisiting Evolutionary Algorithms in

Feature Selection and Nonfuzzy/Fuzzy Rule Based

Classification, Wiley Interdisciplinary Reviews: Data Mining

and Knowledge Discovery, Vol. 3, No. 2, pp. 83-108, March/

April, 2013.

[42] S. Sharma, A. K. Saha, m-mboa: A Novel Butterfly

Optimization Algorithm Enhanced with Mutualism Scheme,

Soft Computing, Vol. 24, No. 7, pp. 4809-4827, April, 2020.

[43] C. Sompong, S. Wongthanavasu, An Efficient Brain Tumor

Segmentation Based on Cellular Automata and Improved

Tumor-cut Algorithm, Expert Systems with Applications, Vol.

72, pp. 231-244, April, 2017.

[44] J. Song, P. Shen, K. Wang, L. Zhang, H. Song, Can Gray

Code Improve the Performance of Distributed Video Coding?

IEEE Access, Vol. 4, pp. 4431-4441, August, 2016.

[45] Y. Song, F. Wang, X. Chen, An Improved Genetic Algorithm

for Numerical Function Optimization, Applied Intelligence,

Vol. 49, No. 5, p. 1880-1902, May, 2019.

[46] P. Songsiri, T. Phetkaew, B. Kijsirikul, Enhancement of

Multi-class Support Vector Machine Construction from

Binary Learners Using Generalization Performance,

Neurocomputing, Vol. 151, pp. 434-448, March, 2015.

[47] M. Tang, R. Pérez-Fernández, B. D. Baets, Fusing Absolute

and Relative Information for Augmenting the Method of

Nearest Neighbors for Ordinal Classification, Information

Fusion, Vol. 56, pp. 128-140, April, 2020.

[48] G. E. Tucker, D. E. J. Hobley, E. Hutton, N. M. Gasparini, E.

Istanbulluoglu, J. M. Adams, S. S. Nudurupati, Celllab-CTS

2015: Continuous-time Stochastic Cellular Automaton

Modeling Using Landlab, Geoscientific Model Development,

Vol. 9, No. 2, pp. 823-839, February, 2016.

[49] Y. Sung, J. Kwak, J. H. Park, Decision Tree Generation

Algorithm for Image-based Video Conferencing, Journal of

Internet Technology, Vol. 20, No. 5, pp. 1535-1545,

September, 2019.

[50] S. Wang, P. Lin, R. Hu, H. Wang, J. He, Q. Huang, S. Chang,

Acceleration of lstm with Structured Pruning Method on fpga,

IEEE Access, Vol. 7, pp. 62930-62937, May, 2019.

[51] Z. Wang, Z. Zhu, D. Li, Collaborative and Geometric Multi-

An Improved Cellular Automata-Based Classifier with Soft Decision 1715

kernel Learning for Multi-class Classification, Pattern

Recognition, Vol. 99, p. 107050, March, 2020.

[52] P. Wanna, S. Wongthanavasu, J. Ponkaew, A Differential

Evolution-based Rule Ordering of Cellular Automata for

Classification, 10th International Conference on Knowledge

and Smart Technology (KST), Chiang Mai, Thailand, 2018,

pp. 34-39.

[53] B. Wolnik, M. Dembowski, W. Bołt, J. M. Baetens, B. D.

Baets, Density-conserving Affine Continuous Cellular

Automata Solving the Relaxed Density Classification

Problem, Journal of Physics A: Mathematical and

Theoretical, Vol. 50, No. 34, p. 345103, July, 2017.

[54] T. Wong, N. Yang, Dependency Analysis of Accuracy

Estimates in k-fold cross Validation, IEEE Transactions on

Knowledge and Data Engineering, Vol. 29, No. 11, pp. 2417-

2427, November, 2017.

[55] S. Wongthanavasu, J. Ponkaew, A Cellular Automata-based

Learning Method for Classification, Expert Systems with

Applications, Vol. 49, pp. 99-111, May, 2016.

[56] Z. Yilbas, M. Hashmi, Simulation of Weight Prunning

Process in Backpropagation Neural Network for Pattern

Classification: A Self-running threshold Approach, Computer

Methods in Applied Mechanics and Engineering, Vol. 166,

No. 3-4, pp. 233-246, November, 1998.

[57] B. Zhang, X. Yang, B. Hu, Z. Liu, Z. Li, Oebboa: A Novel

Improved Binary Butterfly Optimization Approaches with

Various Strategies for Feature Selection, IEEE Access, Vol. 8,

pp. 67799-67812, April, 2020.

[58] T. Zhang, J. Liang, B. Ding, Acoustic Scene Classification

Using Deep CNN with Fine-resolution Feature, Expert

Systems with Applications, Vol. 143, p. 113067, April, 2020.

[59] Y. Zhao, K. Hao, H. He, X. Tang, B. Wei, A Visual Long-

short-term Memory Based Integrated CNN MODel for Fabric

Defect Image Classification, Neurocomputing, Vol. 380, pp.

259-270, March, 2020.

[60] H. S. Zhao, Y. Gao, H. Liu, L. Li, Fault Diagnosis of Wind

Turbine Bearing Based on Stochastic Subspace Identification

and Multi-kernel Support Vector Machine, Journal of

Modern Power Systems and Clean Energy, Vol. 7, No. 2, pp.

350-356, March, 2019.

Biographies

Pattapon Wanna received B.S. in

Electrical Engineering from Burapha

University, Thailand, in 2006 and

M.Sc. in Information Technology

from King Mongkut’s University of

Technology Thonburi (KMUTT). His

research interests include Machine

Learning, Cellular Automata. He is a Ph.D. cancidate

at Computer Science Department, Khon Kaen

University, Thailand.

Sartra Wongthanavasu received M.S.

in computer science from Illinois

Institute of Technology, USA, in 1996.

He received Ph.D. in computer

science from Asian Institute of

Technology, Thailand, in 2001. His

research interests include machine

learning, computer vision, cellular automata,

knowledge engineering.

1716 Journal of Internet Technology Volume 21 (2020) No.6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

