
Load Balancing Using P4 in Software-Defined Networks 1671

Load Balancing Using P4 in Software-Defined Networks

Chih-Heng Ke1, Shih-Jung Hsu2

1 Department of Computer Science and Information Engineering, National Quemoy University, Taiwan
2 Master of Information Technology and Application, National Quemoy University, Taiwan

smallko@gmail.com, s8101127@gmail.com*

*Corresponding Author: Chih-Heng Ke; E-mail: smallko@gmail.com

DOI: 10.3966/160792642020112106009

Abstract

Conventional software-defined networks (SDNs) use a

controller to write static rules into SDN switches through

OpenFlow protocol. But legacy SDN switches cannot

remember the data flow processing status. When the

controller fails and cannot connect with the switch, the

load balance function is affected. Conventional load

balancer (LB), such as Linux Virtual Server and

HAProxy, must perform layer-by-layer decapsulation,

retrieve the information required to execute load

balancing algorithms, and add the headers back before

transmitting a packet. This process is time intensive.

Therefore, we use P4 language to implement the LB,

analyzes the packet headers, and uses stateful objects to

record data flow information. The P4 LB can process

packets according to predefined rules and operating status

without operations such as encapsulation or decapsulation.

Based on the aforementioned characteristics, we present

four packet scheduling schemes, connection hash, random,

round-robin, and weighted round-robin. Therefore, this

P4 LB can independently function, without a controller.

However, when a controller is available, the controller

can be used to monitor the health of web servers. In this

case, the controller can detect a server fault and inform

the P4 LB to block the request to the malfunctioning

server to decrease the dispatching failure rate.

Keywords: P4 switch, Software defined network, Load

balancer

1 Introduction

In recent years, with the booming of the network and

the popularization of smart phones, people can receive

a lot of services through mobile phones, tablet PCs or

computers, for example, online shopping, online study,

Internet banking, online hospital registration and

network car-hailing. Under such a development

circumstance, the servers need to serve a bigger

number of requests at one time, which increases the

possibility of server overload and collapse and

motivates the development of the load balancing

technology. At present, the ways to reach load balance

on the Internet include software ways like LVS [1],

HAProxy [2], Nginx [3] and SDN [4-6] and hardware

ways such as F5 and Array load balancers. These

aforesaid technologies are mainly divided into the load

balancing through Layer 4 [7] and the one through

Layer 7 [8].

Generally, a common Layer 4 load balancer has a

virtual IP address (VIP), and all the client requests are

responded through this VIP. Every web server’s IP

(real IP) is stored and managed in the load balancer.

Load Balancer, according to information of the client

packet’s source IP, destination IP, source port,

destination port or transport layer protocol, can be

allocated to different web servers.

A load balancer using Layer 7 can provide more

functions. A load balancer determines whether a client

request is for a dynamic web page (such as a web page

containing database query results) or a static web page

(such as an image file in .jpg or .gif format) according

to the packet content of the client HTTP request and

transmits the request to different back-end servers, thus

reducing feedback time required to respond to a client

request; a load balancer can also align with the cookie

information of the client packet to ensure that

information requested by the same client is served by

the same web server.

Moreover, load balancers can implement two basic

strategies: routing client requests to different servers,

or routing packets via different paths to a single server

[9-10]. We will focus only on the former. The open-

source P4 language (short for “programing protocol-

independent packet processor”) represents an evolution

of OpenFlow that achieves improved elegance and

flexibility in configuring software switches. Previously

reported work on P4 load balancers includes no

function to check on the status of the backend servers

[11-12]. In this case, the load balancer might direct a

packet to a server that is down, resulting in error. For

conventional SDNs, a controller must be used. Though

packet-handling rules are written into SDN switches

under the OpenFlow protocol, the switches cannot

retain the processing status of the data flow. If the

controller fails before a new request packet arrives at

the switch, in this case, the switch will not know how

to handle the request. Then the switch can only discard

1672 Journal of Internet Technology Volume 21 (2020) No.6

the new packet, which disrupts the load balance in the

network and results in dispatching failure. To solve the

problem, the P4 language addresses this and other

limitations of the OpenFlow protocol by implementing

stateful objects such as the register, counter, and meter.

These stateful objects allow the software switch to be

dynamically configured. In this paper, we present four

packet scheduling schemes, connection hash, round-

robin, weighted round-robin, and random. Therefore,

our proposed P4 load balancer can independently

function, without a controller. However, when a

controller is available, the controller can be used to

monitor the health of web servers. In this case, the

controller can detect a server fault and inform the P4

load balancer to block the request to the malfunctioning

server to decrease the dispatching failure rate.

Furthermore, we integrated Mininet [13], a P4

software switch (behavioral model version 2, bmv2)

[14], and Docker host. Using the integrated environment

[15], researchers can easily evaluate load balancing

algorithms for web servers that have different central

processing unit (CPU) performance.

This remainder of this paper is divided as follows.

Section 2 presents background knowledge. Section 3

discusses the load balancing research method and

design. Section 4 provides experimental results. Finally,

Section 5 presents the conclusion and future prospects.

2 Background Knowledge

This section introduces two common software load

balancers (LVS and HAProxy), SDNs, and the P4

software switch.

2.1 Linux Virtual Server (LVS)

LVS [1] is a software load balancer for Linux. The

load balancing software, which supports Layer 4, is

highly load-resistant and requires little internal storage

and few CPU resources.

Figure 1 presents an example of an LVS-NAT mode.

When a client sends a TCP SYN packet to initiate a

connection with the HTTP server, the destination

address is the virtual IP. The TCP SYN packet first

reaches the load balancer, which selects a real server as

per the dispatching algorithm. The connection

information is then recorded in the load balancer’s

hash list to ensure that follow-up HTTP request

packets are sent to the same real server. When the

packet is dispatched to the backend server, the server

writes its IP and port number to the packet. Before the

packet is returned to the client, the LVS-NAT changes

the packet’s source IP and port number to the virtual IP

and port number of the load balancer. LVS cannot

verify the health of the back-end servers by itself;

therefore, if a server is down, the LVS will still

dispatch the request to it, resulting in an error.

Figure 1. LVS-NAT mode

2.2 HAProxy

HAProxy [2] is load balancing software that can

support virtual hosts and supports Layer 4 and Layer 7.

HTTP is stateless, meaning that neither the server nor

the client retains session information or connection

status during multiple requests. Therefore, the server

does not know the status of the client (i.e., whether the

client is logged in) and has access to the user

information in only the session record stored on the

web server. Session mechanisms store required user

information after the user completes identity

authentication then produce a session ID and store it in

a response packet before transmission to the user side.

The next time the user side sends the request, the web

server validates the request and identifies the session

ID, thereby validating the user and confirming the

connection status. Simultaneously, user data flow is

guided to the same server.

HAProxy can verify the status of backend servers.

For this purpose, HAProxy sends a TCP SYN packet to

the backend server. If the back-end server returns TCP

SYN+ACK packet, HAProxy replies with the TCP

RST+ACK packet to terminate the connection, and

logs the fact that the server is up. If no ACK packet is

received, HAProxy knows that the server is down and

will redirect traffic to other backend servers.

2.3 Software Defined Networks

Nick McKeown’s research team introduced SDNs, a

new network structure based on the characteristics of

OpenFlow. SDNs separate the network control plane

and data plane and realize network functions inside an

SDN controller in a software approach intended to help

network managers plan and manage networks. This

structure has solved the problem of the network

manager resetting every device when a network

strategy changes. Moreover, if a traditional network

structure requires a new network function (firewall or

flow rate limitation), a new device must be purchased

for onsite deployment and testing. However, in an

SDN environment, users can create or purchase the

required functional software module, send it to the

appointed device through OpenFlow, and complete the

setup of the new network functions. Certain SDN

controllers such as the Open Network Operating

Load Balancing Using P4 in Software-Defined Networks 1673

System (ONOS) are equipped with complete web

management interfaces and can monitor transmissions

on the network. These monitoring interfaces allow

network managers to adjust routing strategies on the

fly to reroute traffic around jammed channels.

OpenFlow has become considerably more complicated

as networking technology has advanced, going from

implementing 12 matching fields in version 1.0 to 44

matching fields in version 1.5 [16]. OpenFlow no

longer offers the flexibility and interoperability needed

with state-of-the-art networks, and the high-level P4

language was introduced to develop network managers

with even greater flexibility and hardware

interoperability with SDNs.

2.4 P4 Switch

Bosshart et al. introduced the P4 language to address

the OpenFlow’s inability to analyze and process any

field in the packet header. P4 switches can forward

packets according to any protocol because they can be

reconfigured flexibly by a parser. P4 was designed to

offer three advantages over OpenFlow: (1) reconfig-

urability in the field, (2) protocol independence, and (3)

target independence [17]. The compiler for a P4 switch

automatically translates the P4 program into whatever

machine code the target hardware requires. Figure 2

shows Bosshart et al.’s abstract model of packet

forwarding. When a packet reaches the switch, the

parser first extracts specific fields from the packet

header. These extracted header fields are then operated

upon by match+action steps in series or in parallel. In

these steps, the packet may be forwarded, copied, or

dropped in the ingress pipeline, and its header can be

modified in the egress pipeline.

Figure 2. P4 switch abstract forwarding model [17]

The differences between OpenFlow and P4 are that

OpenFlow is a protocol allowing us to add, modify, or

delete forwarding entries for 44 matching fields in

version 1.5 on the switches that have fixed functions.

And P4 is a language that allows us to define the

packet header, how to match the header, and what

actions should be taken on each header. More

information can refer to [18].

3 Research Methods and Design

We implemented four packet-scheduling algorithms

in a P4 switch to test their performances: connection

hash, round-robin, weighted round-robin, and random.

We assume the network includes n backend servers,

denoted by S1, …, Si, …, Sn, where n ≥ 2. Moreover,

we assume that the weights for S1, …, Si, … Sn are

W1, …, Wi, …, Wn, where Wi is an integer and Wi ≥ 1

when using the weighted round-robin algorithm.

3.1 Connection Hash Load Balancer

We designed a P4 program for load balancing that

uses the novel algorithm described in detail in this

subsection. The connection hash load balancer

algorithm uses five tuples in the IP and TCP header to

produce hash values for the n servers in the backend

stack. The tuples are the source IP, destination IP,

source port, destination port, and the protocol value.

When the client sends a TCP SYN packet to the P4

load balancer, the Parser gains the information of the

Ethernet header, the IPv4 header, and the TCP header,

and then runs the Verifychecksum function to evaluate

whether the checksums in the IPv4 and TCP headers

are correct. If so, the packet is forwarded to the ingress

pipeline. Pseudocode for the Connection Hash Load

Balancer is shown in Algorithm 1. Because this is a

TCP SYN packet, a hash function is used to hash the

five tuples to one of the n backend servers, i (line 9).

Another hash function is used to hash five tuples as an

index to access the register flow_select (line 10). The

register flow_select stores the chosen server i in the

corresponding index for the new connection (line 11).

Next, health status of chosen server Si should be

checked (line 13-19). If server S i is down, the

algorithm needs to send the packet to the next

functioning server Sj. Initially, all servers are assumed

to be up. While the network is running, the P4

controller can dynamically change the statuses of each

server. To route the TCP SYN packet, the load

balancer needs to change the MAC and IP address to

the selected server’s MAC and IP address and send it

to the corresponding port (line 20-24). The packet is

not operated upon in the egress pipeline. When the

server responds with a TCP SYN+ACK packet to the

load balancer, the packet’s MAC address is changed to

the client’s MAC address and sent to the corresponding

port in the ingress pipeline (line 4-7). At the Egress

Pipeline, the source IP address needs to be changed to

the virtual IP (VIP) (line 25-27). Finally, the client will

send out a TCP ACK packet to finish the three-way

handshake. The five tuples of this TCP ACK packet

are the same as those of the first TCP SYN packet.

Therefore, the five tuples are used to simply identify

the serving server in flowlet_select (line 1-3), and no

further hash function is required to choose the serving

server. Then, this TCP ACK packet is sent out to the

1674 Journal of Internet Technology Volume 21 (2020) No.6

Algorithm 1. Connection Hash Load Balancer

Ingress Pipeline

1. if a packet destined to virtual IP and not a TCP

SYN packet

2. using five tuples to get a hash value as the index

in the flowlet_select to get serving server

3. end

4. if a packet destined to client

5. change the destination MAC address to the

client’s MAC

6. send this packet to the corresponding port

7. end

8. if this is a TCP SYN packet destined to virtual IP

9. using five tuples to get a hash value i (i is 1~n)

10. using five tuples to get a hash value as an index

to flowlet_select

11. store i in the flowlet_select with the corresponding

index

12. end

13. if Si is down

14. find the next functioning well server with index j

15. store j in flowlet_select

16. if all servers are down

17. drop this packet

18. end

19. end

20. if a packet destined to virtual IP

21. change the destination MAC address to the

chosen Server’s MAC

22. change the destination IP address to the chosen

Server’s IP

23. send this packet to the corresponding output port

24. end

Egress Pipeline

25. if a packet destined to the client

26. change the source IP address to VIP

27. end

selected server. The subsequent operations on the

HTTP request packet sent from client are similar to

those performed on the TCP ACK packet, and the

operations on the HTTP response sent from the server

are similar to those performed on the TCP SYN+ACK

packet. We use a cURL script in the controller for

health checks to avoid introducing an agent on the

server side. If the cURL script fails to execute, the

corresponding server is assumed to be down. The

controller will then change the status of the

corresponding server in the P4 code, and the P4 load

balancer will not dispatch the request to the down

server. If the execution of the cURL script is successful,

the corresponding server is healthy and remains on the

server list. To maintain the separation of the control

plane from the data plane, we use a separate

communication channel to send and receive health

check packets between controller and servers.

Moreover, the health check function in our controller

can monitor a specific webpage to verify whether it

contains a predefined keyword. If the fetched webpage

does not include this keyword, this webpage may have

been hacked. The server hosting this webpage should

be shut down for a detailed checkup and removed from

the load balancer’s server table. For the complete code

and a model of this load balancer, refer to [19].

3.2 Random Load Balancer

The random load balancer behaves similar to the

connection hash load balancer, except that it uses a

pseudorandom number generator to select server Si.

This difference is reflected in lines 8-12 of Algorithm 1.

All other operations are the same. For the complete

code and model, please refer to [20].

3.3 Round Robin (RR) Load Balancer

For the round robin (RR) load balancer, the P4

program requires another register, i.e., myselect in our

implementation, to remember the last serving server

index. When a TCP SYN packets arrives at the ingress

pipeline, the last-used server index i is obtained from

myselect. The load balancer then uses i and n to move

through servers in round-robin fashion, storing the

indices with the myselect and flowlet_select objects.

The health check operation and packet routing to the

client are identical to those in the connection hash load

balancer. For the complete code and model, please

refer to [21].

3.4 Weighted Round Robin (WRR) Load

Balancer

The primary difference between the RR and WRR

load balancers is that the last serving server index is

not saved in the myselect register. Instead, a value

between 0 and
1

n

i

i

W

=

∑ is saved. If the value is less than

or equal to W1, the server 1 is selected. If the value is

greater than
1

p

i

i

W

=

∑ and less than or equal to
1

q

i

i

W

=

∑ ,

server q is selected. As each new connection (a TCP

SYN packet) arrives at the Ingress Pipeline, the value k

stored in myselect is incremented up by 1. The

corresponding server is then extracted as per the above

rules. When k reaches n, it is set back to 0. After

selecting the serving server, the selected server and

index k will be stored back into flowlet_select and

myselect. The other operations are identical to those of

the connection hash algorithm. For the complete code

and model, please refer to [22].

4 Experiment

4.1 Settings

We designed three scenarios to compare the

Load Balancing Using P4 in Software-Defined Networks 1675

performance of the load balancing algorithms running

on a P4 software switch. We adopted the Mininet

emulator [13] and a P4 software switch (bmv2) [14] for

our experimental environment. We use Docker

containers to act as backend servers and Apache for

web service. In Scenarios 1 and 2, the P4 switch is

implemented with the four load balancing algorithms,

namely, connection hash, random, round-robin, and

weighted round-robin. ApacheBench [23] is used to

simulate a scenario of 10 users sending 10,000 requests

to fetch a 300-KB web page. Each experiment is

repeated with 30 trials for each load balancing

algorithm to obtain a confidence interval of 95%.

Scenario 3 includes four back-end web servers, but

server 4 is down. The weights for servers 1-4 are 1, 2,

3, and 4, respectively, for the weighted round robin

algorithm. If a controller is available, it performs

health checks at 1-s intervals. Moreover, we use a bash

script that uses cURL to access the web pages 1000

times such that we can compare the load balancers’

dispatching failure rates.

4.2 Scenarios

Scenario 1. Servers with identical CPU performance

Assume that the CPU performance of the Docker

web server is 50,000 µs for the CPU period and 5000

µs for the CPU quota. The CPU quota specifies the

time that Docker has access to CPU resources during

the time specified by the CPU period [24]. With the

settings we implemented, this quota limits each Docker

web server to using 10% of the common CPU

resources. The experiments with identical server CPU

performance use two, three, and four servers, as

illustrated in Figure 3.

client(H1) P4switch
docker server1(H2)

docker server2(H3)

docker server3(H4)

docker server4(H5)

Connection Hash

Round-Robin

Weighted Round-Robin

Random

load docker image php-apache

Two servers

Join the third server

Then join the fourth server

CPU limit

cpu-period 50000 µs

cpu-quota 5000 µs

Figure 3. Scenario 1

Scenario 2. Servers with different CPU performanc

Assume that the CPU period of server 1 is 50,000 µs,

and its CPU quota is 10,000 µs. The CPU periods of

servers 2, 3, and 4 are 50,000 µs, and the corresponding

CPU quota is 5000 µs. The Scenario 2 settings are

presented in Figure 4.

Scenario 3. Dispatching failure rate

The failure rate is defined as the ratio of how many

times the cURL program fails to fetch a web page to

the total number of cURL requests sent. This metric

lets us compare the dispatching failure rate of our

proposed P4 load balancer and a conventional

Figure 4. Scenario 2

OpenFlow-based switch with or without a controller.

Moreover, the legacy LVS and HAProxy switches,

which adopt the round-robin algorithm, are also

compared with our P4 load balancer.

4.3 Results

As shown in Figure 5, in Scenario 1, each addition

of a back-end server effectively reduces the response

time. Among the four load balancing algorithms, the

round-robin load balancer is most efficient when the

CPU performance of the back-end servers is the same.

Figure 6 shows the distributions of packets among

the two servers after collecting 240 packet requests in

the P4 switch log. As expected, the round-robin load

balancer distributes the packets evenly. The weighted

round-robin load balancer distributes packets to the

backend servers in a 2:1 ratio, overloading in Server 1

and increasing the response time. With the random

load balancer, packets can be distributed to the same

server continually. Therefore, every 80 packets will be

distributed differently, which increases the response

time. Finally, the connection hash load balancer tends

to overload one or the other of the servers. Therefore,

when the CPU performance of the servers is the same

and equal requests are sent to the servers, the load

balance is superior with the round-robin algorithm.

As shown in Figure 7, when the back-end servers

have distinct CPU speeds (Scenario 2), the weighted

round-robin load balancer is most efficient. For the

random load balancer and connection hash load

balancer, every time the number of servers increases by

one set, the reduction in response time is considerably

small, although the greater number of servers should

reduce response time. These algorithms seem to send

many requests to servers with slower CPU

performance, explaining this effect.

Figure 8 shows the distribution of 240 successive

packet requests between the two web servers in the P4

switch log. With the round-robin load balancer, the

packets are equally distributed between the back-end

servers; however, Server 1 has higher CPU performance

and receives the same number of requests as Server 2.

Thus, server 1 has idle resources. If certain requests

were redistributed from Server 2 to 1, the response

time would be shorter. With the weighted round-robin

load balancer, the packets are distributed to the back-

end servers in a 2: 1 ratio, according to the relative

1676 Journal of Internet Technology Volume 21 (2020) No.6

Figure 5. Results of Scenario 1

40 40 4040 40 40

0

5

10

15

20

25

30

35

40

45

1~80 packets 81~160 packets 161~240 packets

)re
b

m
u

n(ste
kca

p f
o re

b
m

u
N

Round-Robin

Server 1

Server 2

53
54

53

27
26

27

0

10

20

30

40

50

60

1~80 packets 81~160 packets 161~240 packets

)re
b

m
u

n(ste
kca

p f
o re

b
m

u
N

Weighted Round-Robin

Server 1

Server 2

34

46

36

46

34

44

0

5

10

15

20

25

30

35

40

45

50

1~80 packets 81~160 packets 161~240 packets

)re
b

m
u

n(ste
kca

p f
o re

b
m

u
N

Random

Server 1

Server 2

46

36

44

34

46

36

0

5

10

15

20

25

30

35

40

45

50

1~80 packets 81~160 packets 161~240 packets

)re
b

m
u

n(ste
kca

p f
o re

b
m

u
N

Hash Connection

Server 1

Server 2

Figure 6. Distributions of packets to servers under Scenario 1

speeds of the CPUs. As expected, then, WRR is the

most efficient load balancer in this scenario. With the

random load balancer, more requests are distributed to

Server 2, which shows lower CPU performance and

increased the response time. Similarly, with the

connection hash load balancer, the uneven request

distribution increases the server response time.

Table 1 and Table 2 show the dispatching failure

rate for SDN-based load balancer, LVS, and HAProxy.

In Table 1, Legacy SDN method indicates that we use

a controller that implements the round-robin algorithm

to help an OpenFlow-based switch execute load

balancing job. When a controller is available, our

proposed P4 load balancer can achieve a failure rate of

0% because includes a controller. Since the legacy

SDN has no health-check function, all requests that are

directed to server 4 get no response; therefore, the

failure rate is 25%. When no controller is available, the

Load Balancing Using P4 in Software-Defined Networks 1677

Figure 7. Results of Scenario 2

40 40 4040 40 40

0

5

10

15

20

25

30

35

40

45

1~80 packets 81~160 packets 161~240 packets

)re
b

m
u

n(ste
kca

p f
o re

b
m

u
N

Round-Robin

Server 1

Server 2

53
54

53

27
26

27

0

10

20

30

40

50

60

1~80 packets 81~160 packets 161~240 packets

)re
b

m
u

n(ste
kca

p f
o re

b
m

u
N

Weighted Round-Robin

Server 1

Server 2

34

31

26

46

49

54

0

10

20

30

40

50

60

1~80 packets 81~160 packets 161~240 packets

)re
b

m
u

n(ste
kca

p f
o re

b
m

u
N

Random

Server 1

Server 2

35
34

40

45
46

40

0

5

10

15

20

25

30

35

40

45

50

1~80 packets 81~160 packets 161~240 packets

)re
b

m
u

n(ste
kca

p f
o re

b
m

u
N

Hash Connection

Server 1

Server 2

Figure 8. Distributions of packets to servers under Scenario 2

Table 1. Dispatching failure rate for SDN-based load

balancer

Connection

Hash
Random RR WRR

Legacy

SDN

w/ controller 0% 0% 0% 0% 25%

w/o controller 25.4% 24.4% 25% 40% 100%

Table 2. Dispatching failure rate for LVS and

HAProxy

 LVS HAProxy

Failure rate 25% 0.1%

1678 Journal of Internet Technology Volume 21 (2020) No.6

dispatching failure rate is ~25% for three of our

proposed P4 load balancers. Since these three

algorithms dispatch requests evenly among the servers,

and one of four servers is down without the controller

knowing it, the failure rate is ~25%. For WRR, the

weight for server 4 is 4, indicating that 40% of all

requests will be dispatched to server 4; therefore, we

expect the failure rate to be 40%. For the Legacy SDN

method, when the controller is unavailable and the

OpenFlow based switch does not have stateful objects

to remember the processing status, load balancing fails

entirely. The dispatching failure rate is 100%. Because

the LVS has no health-check capability, all requests

directed to server 4 will get no response. The failure

rate for LVS is 25%. For HAProxy, the dispatching

failure rate is similar to our proposed P4 load balancers,

i.e., very close to 0%. However, the health-check

packets (TCP SYN sent from HAProxy, TCP

SYN+ACK sent from server, and TCP RST+ACK sent

from HAProxy) are sent out seven times for each

server while the HAProxy executes the dispatching-

failure test program, adding the overhead to the data

communication channel. If we want to decrease the

dispatching failure rate, health checks should be

executed at shorter intervals, but then the added

overhead would tax the available network resources. In

our P4 switch, however, we use distinct channels to

monitor the health of backend servers; therefore,

health-check packets will not add overhead to the data

plane.

5 Conclusion and Future Prospects

This study has presented the performance of a P4

switch running four different load-balancing

algorithms. These implementations demonstrate that

the P4 language’s stateful objects such as registers

allows a load balancer to function without the

requirement of the controller for p4 switches.

Conventional OpenFlow-based switches will fail in

load balancing if the connection to the control plane

fails. If a controller is available, moreover, the

controller can perform health checks on the backend

servers in conjunction with our P4 load balancer. If a

back-end server is down, the P4 load balancer can

reroute the request to a functioning backend server.

Compared to LVS, a P4 load balancer can provide a

lower dispatching failure rate. The P4 load balancer

achieves similar performance to that of HAProxy. The

P4 load balancer offers the advantage of separating

health-check and data packets on different channels,

while HAProxy uses the same channel for both types

of packets. The P4 load balancer therefore integrates

health checks without increasing overhead in the data

plane.

Our experimental results also show that if the CPU

speeds of the back-end servers are equal, the round-

robin algorithm is most efficient. If the back-end

servers have disparate CPU speeds, the weighted

round-robin load balancer is most efficient. Although

the load balancer presented above is compatible only

with Layer 4 schemes, we plan to design one for Layer

7 in future work. Moreover, because of the poor

performance of the bmv2 software switch [25], we

intend to port the code to the NetFPGA hardware

platform and measure how much latency is introduced

by running P4 code on the hardware. Finally, further

design work and comparisons with HAProxy, LVS,

and Nginx are expected to improve P4 load balancers

in the future.

References

[1] M. Zhang, H. Yu, A New Load Balancing Scheduling

Algorithm Based on Linux Virtual Server, 2013 International

Conference on Computer Sciences and Applications, Wuhan,

China, 2013, pp. 737-740.

[2] J. E. C. de la Cruz, I. C. A. R. Goyzueta, Design of a High

Availability System with HAProxy and Domain Name

Service for Web Services, 2017 IEEE XXIV International

Conference on Electronics, Electrical Engineering and

Computing (INTERCON), Cusco, Peru, 2017, pp. 1-4.

[3] Z. Wen, G. Li, G. Yang, Research and Realization of Nginx-

based Dynamic Feedback Load Balancing Algorithm, 2018

IEEE 3rd Advanced Information Technology, Electronic and

Automation Control Conference (IAEAC), Chongqing, China,

2018, pp. 2541-2546.

[4] M. Qilin, S. Weikang, A Load Balancing Method Based on

SDN, 2015 Seventh International Conference on Measuring

Technology and Mechatronics Automation, Nanchang, China,

2015, pp. 18-21.

[5] J. S. Sabiya, Weighted Round-Robin Load Balancing Using

Software Defined Networking, International Journal of

Advanced Research in Computer Science and Software

Engineering, Vol. 6, No. 6, pp. 621-625, 2016.

[6] Y. Zhou, L. Ruan, L. Xiao, R. Liu, A Method for Load

Balancing based on Software- Defined Network, Advanced

Science and Technology Letters, Vol. 45 (CCA 2014), pp. 43-

48, 2014.

[7] R. Miao, H. Zeng, C. Kim, J. Lee, M. Yu, SilkRoad: Making

Stateful layer-4 Load Balancing Fast and Cheap Using

Switching ASICs, Conference of the ACM Special Interest

Group on Data Communication (SIGCOMM’17), Los Angeles,

CA, USA, 2017, pp. 15-28.

[8] R. Gandhi, Y. C. Hu, M. Zhang, Yoda: A Highly Available

Layer-7 Load Balancer, Eleventh European Conference on

Computer Systems (EuroSys’16), London, UK, 2016, Article 21,

pp. 1-16.

[9] J. Ye, C. Chen, Y. H. Chu, A Weighted ECMP Load

Balancing Scheme for Data Centers Using P4 Switches, 2018

IEEE 7th International Conference on Cloud Networking

(CloudNet), Tokyo, Japan, 2018, pp. 1-4.

[10] C. H. Benet, A. J. Kassler, T. Benson, G. Pongracz, MP-

HULA: Multipath Transport Aware Load Balancing Using

Load Balancing Using P4 in Software-Defined Networks 1679

Programmable Data Planes, 2018 Morning Workshop on In-

Network Computing, Budapest, Hungary, 2018, pp. 7-13.

[11] B. Pit-Claudel, Y. Desmouceaux, P. Pfister, M. Townsley, T.

Clausen, Stateless Load-Aware Load Balancing in P4, 2018

IEEE 26th International Conference on Network Protocols

(ICNP), Cambridge, UK, 2018, pp. 418-423.

[12] T. Barbette, C. Tang, H. Yao, D. Kostic, G. Q. Maguire Jr., P.

Papadimitratos, M. Chiesa, A High-Speed Load-Balancer

Design with Guaranteed Per-Connection-Consistency, 17th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI 20), Santa Clara, CA, 2020, pp. 667-

683

[13] Emulator for Rapid Prototyping of Software Defined Networks,

https://github.com/mininet/mininet.

[14] The Reference P4 Software Switch, https://github.com/p4lang/

behavioral-model.

[15] myP4Dockernet (P4 switch+Mininet+Docker Host), http://

csie.nqu.edu.tw/smallko/sdn/p4-dockernet.htm.

[16] S. Jouet, R. Cziva, D. P. Pezaros, Arbitrary Packet Matching in

OpenFlow, 2015 IEEE 16th International Conference on

High Performance Switching and Routing (HPSR), Budapest,

Hungary, 2015, pp. 1-6.

[17] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J.

Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese,

D. Walker, P4: Programming Protocol-independent packet

Processors, ACM SIGCOMM Computer Communication

Review, Vol. 44, No. 3, pp. 87-95, July, 2014.

[18] N. Mckeown, J. Rexford, Clarifying the Differences between

P4 and OpenFlow, https://p4.org/p4/clarifying-the-differences-

between-p4-and-openflow.html, 2016.

[19] C. H. Ke, Connection Hash Load Balancer, http://csie.nqu.

edu.tw/smallko/sdn/LBP4.htm.

[20] C. H. Ke, Random Load Balancer, http://csie.nqu.edu.tw/

smallko/sdn/randomLB.htm.

[21] C. H. Ke, Round-Robin Load Balancer, http://csie.nqu.edu.

tw/smallko/sdn/RRP4.htm.

[22] C. H. Ke, Weighted Round-Robin Load Balancer, http://csie.

nqu.edu.tw/smallko/sdn/wrrlb.htm.

[23] Apache HTTP Server Benchmarking Tool, https://httpd.

apache. org/docs/2.4/programs/ab.html.

[24] Specify a Container’S Resources, https://docs.docker.com/

config/containers/resource_constraints.

[25] Y. Iozzelli, L. Rizzo, G. Lettieri, Performance Improvements

on the P4 Software Switch, https://core.c.uk/download/

pdf/79622350.pdf, 2016.

Biographies

Chih-Heng Ke received his B.S. and

Ph.D. degrees in electrical engineering

from National Cheng-Kung University,

in 1999 and 2007. He is an associate

professor at the Department of

Computer Science and Information

Engineering in National Quemoy

University, Kinmen, Taiwan. His

current research interests include multimedia

communications, wireless networks, and software

defined networks.

Shih-Jung Hsu received his B.S.

degrees Master of Information

Technology and Application, National

Quemoy University, Kinmen, Taiwan,

in 2019. His research interests include

computer networks and software

defined networks.

1680 Journal of Internet Technology Volume 21 (2020) No.6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

