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Abstract 

The quality of solder joints is essential for electronic 

products, and the detection of defects in solder joints is 

critical to the quality control of electronic products. A 

vision inspection is developed to detect defects of solder 

joints in automatic line. Extreme learning machine is 

applied to identify defective solder joints from qualified 

ones. Five low level features and three advanced features 

are employed as input features. The low-level features 

include roundness, roughness, entropy, contrast and 

histogram of oriented gradient. The advanced features 

include grey-level co-occurrence matrix, local binary 

pattern, and segmentation-based fractal texture analysis. 

To solve unbalanced samples problem, Gaussian mixture 

model based dense estimation scheme is proposed to 

adjust the classification super plane for extreme learning 

machine. The experimental results demonstrate that the 

proposed defect detection method is more efficient than 

neural network, support vector machines, common 

extreme learning machine and convolutional neural 

network-based methods, and it has real-time performance 

to meet the equirement of the actual production line. 

Keywords: Defect detection, Solder joints, Extreme 

learning machine, Gaussian mixture model 

1 Introduction 

Electronic components have been widely used in 

electronic equipment, including mobile phones, digital 

cameras, sensors, robots, automobiles and so on. 

Welding is one of the most important tasks in the 

production process of electronic components connected 

to electrical equipment. The quality of solder joints is 

critical to the reliability of electronic products and will 

determine the quality of electronic products.  

During the process of welding, there will be a 

variety of unqualified solder joints, including air 

welding, excessive solder, welding bridge, solder tip, 

split solder and so on. The quality of electronic 

products is becoming increasingly important due to the 

high demands for consistency, stability and reliability. 

The defects of solder joints will lead to potential 

quality problems of electronic products, so it is of great 

significant to realize the automatic detection of solder 

joints defects. In order to ensure reliable connection 

and electrical functions, the defects of solder joints 

need to be detected through quality checks during the 

production process.  

The quality inspection of solder joints was mainly 

accomplished by manual work at the early developing 

stage of electronic devices. With the development of 

technology, automatic detection methods gradually 

appeared. A variety of checking methods were reported 

in the past several decades, including radiographic 

testing, thermography testing, ultrasound testing and so 

on [1-5]. Some of these inspections can detect defects 

inside the solder joint. Electrical detection used a 

variety of electrical measuring instruments to detect 

poor conduction and thermal deterioration in 

components, and it was off-line detection.  

Because visual inspection has the advantages of 

real-time and low cost, it has been widely used in 

solder joint or other quality detection [6-8]. Image 

processing methods were used for the detection of 

solder joint defects [8-13]. These studies focused on 

positioning, background processing, and feature 

extraction of defects. Recently, machine learning based 

methods have been employed in visual inspection of 

solder joints. Defect detection can be regarded as a 

classification problem of images. The images are 

divided into two categories according to whether the 

solder joints are normal. Of course, the defects can be 

further classified in detail. Machine learning methods 

have made great progress in image classification and 

they can be used to solve defect detection problem of 

solder joints. Neural network was used to distinguish 

shapes of solder joints [14-15]. Support vector 

machines (SVM) was introduced to solve the problem 

of weld defects classification [16-17]. With the 

performance prior to neural network and other methods, 

SVM has the potential to solve the nonlinear 

classification problem with a small number of samples 

without suffering the curse of dimension. Convolution 
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neural network was used for welding defect 

classification and solder joint inspection [18-19]. 

Hybrid learning methods have also been reported, for 

example, ensemble learning was used for defect 

classification [20]. 

With the development in recent years, extreme 

learning machine (ELM) provides a new method to 

solve the problem of image classification. ELM is a 

machine learning method developed on the basis of 

neural networks. Compared with SVM, ELM not only 

optimizes fewer parameters, but also has faster 

calculation speed and better generalization ability, so 

as to avoid falling into local optimal solution [21-23]. 

ELM has been widely used in image recognition and 

vision-based defect detection applications [24-27]. For 

example, it was employed to detect panel position or 

fabric defect [28-29]. Besides, it also has some 

applications in Communication and Internet, like 

choosing threshold for time estimation of millimeter 

wave [30], as well as enhancing web caching abilities 

[31]. Apart from that, many scholars have proposed 

some novel architectures of ELM recently, and some of 

them have achieved great performances in classification 

accuracy [32]. 

In this paper, ELM is applied to defect detection of 

solder joints. The contributions of this paper mainly 

include two aspects. First, an ELM-based real-time 

defect detection method is applied to solder joint 

inspection of communication components. Secondly, 

an ELM method based on Gaussian mixture model 

density estimation is proposed, which is superior to 

other learning-based methods for solder joint defect 

detection. The rest of this paper is organized as follows. 

In section 2 a product background of solder joint defect 

detection will be introduced. The details of GMM 

(Gaussian Mixture Model) density estimation-based 

ELM for quality evaluation of solder joint will be 

described in section 3. The performance evaluation and 

discussions will be provided in section 4. Finally, this 

paper is concluded in section 5. 

2 Solder Joints Defect Detection 

Recently, an automatic line for solder joints 

detection was established in Tong Sheng Electronics 

Technology Corporation, Weihai, China. The solder 

joints of an electronic product are checked with 

machine vision approach, and the product is one 

component in a communication device which transmits 

data over long distances with optical fiber in 

synchronous digital hierarchy mode. The images of 

solder joints in print circuit boards are captured from 

the automatic line. These components to be detected 

are placed in a specially designed assembled 

installation to ensure that they are at the same level and 

that the height error was not greater than 0.1 millimeter 

as shown in Figure 1. 

 

Figure 1. Components to be detected are placed in an 

assembled installation 

Visual inspection of solder joints is performed on 

the printed circuit board, including pin and pin header 

solder joint inspection. Typical requirements of solder 

joint appearance include: (1) the shape is convex, 

glossy, plump and smooth; (2) no cracks, pinholes and 

slag inclusion; (3) soldering tin is located in a pad and 

has good contact with the pad. 

Missing component, open solder, excess solder, 

solder bridge, solder tip, and split solder are the most 

common types of flaws. Various detection methods 

have been developed to deal with different flaws. With 

filtering and threshold segmentation in a solder joint 

image, the debris can be clearly detected and 

positioned. The problem of solder bridge, solder joint 

shift, open solder and excess solder can be accurately 

detected by means of threshold-based segmentation 

and the judgement of center of gravity position. 

However, there is no perfect solution to detect solder 

tip, solder scanty and split solder of solder joints. The 

sample images of some defects are shown in Figure 2. 

This paper will focus on the inspection of these defects. 

 

Figure 2. Samples of qualified and defected solder 

joints 

3 ELM Based Defect Detection 

The defect detection problem is to judge whether the 

product has defect in its solder joints, so it can be 

regarded as a binary classification problem. ELM 

method has a widespread application in the field of 
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binary classification. ELM is used to solve the defect 

detection problem in this work. 

3.1 Extreme Learning Machine Algorithm 

ELM algorithm has two steps using neural network 

architecture. Firstly, input data are mapped into the 

hidden layer. Secondly, the middle results are 

multiplied with their corresponding weights to get the 

final output. Different from other traditional three-layer 

neural networks using parameters adjusting method 

iteratively, the hidden layer of ELM is designed non-

parametric. This obtains the smallest training error and 

the smallest norm of weights. It has been found that 

ELM has better generation performance than single 

hidden layer neural network. The ELM model is 

illustrated in Figure 3. 

 

Figure 3. ELM Model 

The input feature vectors are denoted as =x  

1 2
[ , ,..., ]

T D N

N

×

∈x x x R , where N  is the sample number, 

D is the dimensional size of the input feature vectors. 

The corresponding labels of the input vectors are 

denoted as 
1 2

[ , ,..., ] ,
T M

i i i iM
t t t= ∈t R  where 1,..., ,i N M=  

is the number of nodes in network output layer. Then 

the training sample is ( ),
i i

x t .  

The output of i -th hidden node is 

 ( ) ( ); , .
i i i i

g b g b= ⋅ +x w x w  (1) 

where 
i

w  is the input weight vector between the i -th 

hidden nodes and all input nodes, g  is the activation 

function, and 
i
b  is the bias of this node. In ELM, the 

input weights 
i

w  and biases 
i
b  are randomly decided. 

Let L  be the number of hidden layer nodes. A feature 

mapping function is used to connect the input layer and 

the hidden layer, which is defined as 

( ) ( ) ( ) ( )1 1 2 2
; , , ; , ,..., ; , .

L L
g b g b g b⎡ ⎤= ⎣ ⎦h x x w x w x w  (2) 

Let 
ij

β  be the output weight between the i -th 

hidden node and the j -th output node, 1,...,i L= , 

1,...,j M= . The output of j -th node can be obtained 

as 
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The actual output vector is denoted as Y , the input 

vector is denoted as .X  The output vector is 

represented as 
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and 
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The optimization problem of ELM is to minimize 

the training error 
2

−T Hβ  and the norm of output 

weight β . 

When the matrix ( )/
T

C +I H H  is not singular, the 

solution of β  is 

 

1

.

C

−

⎛ ⎞
= +⎜ ⎟
⎝ ⎠

I
H H H Tβ T T  (7) 

Otherwise, the solution of β  is 

 

1

,

C

−

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

I
H HH Tβ T T  (8) 

where I  is an identity matrix. The tradeoff between the 

closeness to the training data and the smoothness of the 

decision function can be controlled by the 

regularization factor C . More details of ELM theory 

and practical calculation can be found in [21-23]. 

3.2 Feature Selection for ELM 

For the solder joint defect detection application on 

the production line, the solder joint image is obtained 

through a camera. And the fixed size solder joint image 

can be obtained by simple ROI extraction because the 

solder joint and the component position are fixed. Then 

mean filter is applied to decrease the surface reflective 

disturbances of joint solders. 

Feature selection is important for ELM applications. 

After many experiments of different features, 5 low 
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level features and 3 advanced features are selected for 

defect detection of solder joints. The low-level features 

are roundness, roughness, entropy, contrast and 

histogram of oriented gradients (HOG) [33]. When 

they are used together as ELM input of samples, better 

results can be achieved. Because solder joint defect can 

be observed from the texture, geometrical, shape and 

other features in the image. These features are 

calculated as follows and are normalized into the range 

of [ ]1,1− . 

Roundness is defined as 

 
2

,
roundness

P
f

A
=  (9) 

where ,P A is edge girth and area of the region, 

respectively.  

Roughness is calculated as 

 ( ) ( )
1

1
| 1 |,

T

roughness

i

f d i d i
T

=

= − +∑  (10) 

where T  is the total point number of edge, ( )d i  is the 

standardized radius of the i -th edge point. 

Entropy is obtained with 

 ( ) ( ), ln , ,
entropy
f p i j p i j⎡ ⎤= × −⎣ ⎦∑  (11) 

( ),p i j  is the element of position ( ),i j  in grey level 

co-occurrence matrix. 

Contrast is obtained as 

 ( )2( ) , .
contrast
f i j p i j= − ×  (12) 

HOG is obtained as described in [33]. The image is 

divided into non-overlapping blocks with the size of 

5 5× . Two histograms are calculated in each block, 

one histogram is cumulative in the direction with the 

angle of 0 180−

� � , and another one with the direction 

angle of 0 360−

� � .  

The above 5 low-level features can reflect some of 

the features of the image, but they are not enough to 

distinguish the defects of solder joints. Therefore, the 

following 3 advanced features are also applied to the 

detection of solder joint defects in this paper. 

Grey-level co-occurrence matrix (GLCM) is a 

matrix describing the gray-scale relationship between a 

pixel in a local or global area of an image and adjacent 

pixels or within a certain distance. This is the number 

of times a pair of pixels of a shape in a gray image 

appears in the whole image, and it is a texture analysis 

method.  

Local binary pattern (LBP) has obvious advantages 

such as gray scale invariance, rotation invariance and 

fast computation. It is used to measure and extract 

local texture information of images.  

 ( )
1

0

2 ,
P

P

p c

P

LBP s g g
−

=

= −∑  (13) 

 ( )
1 0

,
0 0

x

s x

x

≥⎧
= ⎨

<⎩
 (14) 

where 
c

g  is the gray value of center pixel,
p

g  is the 

values of center neighbors, and P  is the number of 

neighbors. 

Segmentation-based fractal texture analysis (SFTA) 

automatically divides several binary thresholds 

according to the characteristics of the image, carries 

out texture analysis on the binary thresholds, obtains 

the fractal dimension of the texture.  

All these low-level features and advanced features 

are employed for defect recognition of solder joints in 

this paper. 

3.3 GMM Density Estimation for ELM 

As the defect of solder joints has various shapes in 

different positions, it is impossible to provide all kinds 

of defect samples. Defect detection is an unbalanced 

classification problem, and it is often solved by using 

weighted ELM [34] or normal density estimation-

based ELM [35]. However, in this defect detection 

application, the defect samples are not enough for 

binary classification with weighted ELM. Meanwhile, 

in the density estimation method, Gaussian distribution 

requires a very strict unimodal and convex data model 

of the samples. However, these assumptions are 

violated in our application due to the small defect 

samples. The small samples can be accurately modeled 

as Gaussian mixture model instead of normal model. A 

Gaussian mixture model density estimation based 

unbalanced ELM algorithm is developed for defect 

detection of solder joints in this paper. Because the 

defect samples without enough samples make the 

classification boundary close to the defect class, so 

some new defect test samples are incorrectly 

recognized as normal class. The solution in this paper 

is to estimate the classification boundary of ELM 

method employing GMM, then the classification 

boundary is pushed close to the normal class to make 

the new defect test samples are correctly recognized. 

Let F  be a family probability density functions on 

dataset D
R , the function in F  is the mixture of 

Gaussian functions f  as an isotropic Gaussian 

function which is called a component 

 ( ) ( )
1

; ; , ,

K

l l l

l

f p g mθ σ

=

=∑x x  (15) 

2
2|| ||1 1

( ; , ) exp ,
2( 2 )

i

l l D

ll

m
g m σ

σπσ
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x

x  (16) 
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where 0,
l
p ≥  

1

1,
K

l

l

p

=

=∑  and ( ) ( )1 1 1
( , , ,..., , ,

K K K
p m p mθ σ σ=  

is a vector containing the mixing probabilities 
l
p  as 

well as the means 
l

m , and standard deviation 
l

σ  of the 

k  Gaussian functions in the mixture. 

This estimation is solved with expectation-

maximization (EM) algorithm, as no parameter is set to 

influence the optimization algorithm. EM algorithm 

finds a local maximum for the log-likelihood function 

( )log ;f θx  by alternatingly maximizing an auxiliary 

function over the parameters θ . Denote n  as the 

iteration number, this maximization is called the 

expectation step as the assignments 
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Maximization step results in the parameter 

estimation with the following update rules 
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More details about EM for GMM parameters 

estimation can be found in [36]. The component 

number K  is determined as the one which gives the 

best performance on the dataset. The initial parameters 

are decided by performing k-means on the data set. 

The output of ELM can approximate the posterior 

probability of Naive Bayesian classifier [35]. 

Consequently, the probability density function can be 

estimated from the predictive output of qualified class 

and flaw class after ELM training. The GMM a  and b  

those corresponding to qualified class with 2 

components of Gaussian model and flaw class with 3 

components respectively are showed in Figure 4. Then 

the intersection position s  can be determined with the 

estimated GMM of the two classes. When the number 

of intersections is more than one, we merely choose the 

one as the selected intersection s  which obtains the 

greatest sum of the area under curve a  and b  after the 

intersection position breaks the two curves. We deem 

s  the optimal breakpoint for the binary classification. 

In our defect detection application, which is lack of 

defect samples, the sample size of these two classes is 

imbalanced. So, the intersection position needs to be 

pushed to the qualified class as showed in Figure 4. 

 

Figure 4. GMM of qualified class and defect class 

Mark the mean of the component which is closest to 

s  in qualified class GMM as 
p

m , and the one in defect 

class as fm . Without loss of generality, assume that 

p fm s m< < . Let f pL m m= − , ( )0
/ 2f ps m m= + , and 

( ) /fm s Lλ = − . When the samples of the two classes 

are enough to provide entire distribution information, 

0
s  is a good solution for binary classification. 

However, when defect samples are lacking to supply 

distribution information, 
0
s  is required being pushed to 

a new position as 

 ( ) ( )( )log

1 0 1 exp ,
n

p p
s m s m

λ−
= + − −  (20) 

 
1 0

Δ ,s s s= −  (21) 

where n  is the total number of defect samples during 

training. When λ  is const and n  is greater, the new 

classification position 
1
s  is farther from 

p
m  and is 

closer to 
0
s . When n  is constant and s  is smaller, 

which means that samples are enough to provide entire 

information of the defect class, λ  is greater and 
1
s  is 

closer to 
0
s . 

3.4 ELM for Defect Detection 

In the proposed ELM network, the input feature 

vector is used as the input for ELM. This input feature 

vector includes two parts, those are feature vector and 

pixel vector. The low-level features and advanced 

features are arranged in a row to get a feature vector. 

The pixels in regions like defect with the size of 

48 48×  are also arranged in a row to get a pixel vector. 

The feature vector and the pixel vector are joined 

together to form a row input feature vector. This 

feature vector can be feed into ELM network as input 

for training or test. The output layer has one node, the 

value of the output is -1 when there is no defect in 

solder joint, and otherwise, the value is 1.  
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During the sample training, the input weights w
i
 

and biases 
i
b  in ELM are randomly selected. After 

training an unweighted ELM, we obtain the predictive 

output for each training sample. The two GMMs of 

qualified class and flaw class are calculated and the 

only intersection s is determined. We update the 

predictive output ( )xk
f  of qualified class and defect 

class with the following rules 

 ( ) ( )x x Δ ,
k k
f f s← −  (22) 

where 1 .k K≤ ≤  After employing ELM algorithm 

again to the updated training dataset, we can obtain the 

result classifier.  

4 Results and Discussions 

In order to test ELM based defect detection method, 

a dataset is set up. The images in the data set are 

collected from the production line. The camera used is 

Basler acA2500-14gm GigE. The captured image is 

preprocessed by median filter. Because the standard 

solder joint is a semi-ellipsoid with smooth surface and 

the defective solder joint is an irregular shape, the 

captured image is segmented by watershed algorithm, 

and the solder joint contour can be obtained. Finally, 

the segmented contour image is transformed into a 

uniform size image as sample image. There are 4200 

images of qualified solder joints and 360 images of 

defective solder joints collected from the industry field. 

The proposed ELM method is cross-validated by 

dividing the dataset stochastically into two groups. 

Half of the data set is used for training and the other 

half for testing. That is to say, there are 2100 images of 

qualified solder joints and 180 images of unqualified 

solder joints in the training and testing data sets. 

Some other machine learning based methods are 

employed to compare the performance of different 

algorithms. There algorithms include neural network 

(NN) [14], SVM [16], an ELM method applying HOG 

feature (aELM) [25], weighted ELM (wELM) [34], 

probability density estimation-based ELM (pELM) 

[35], convolutional neural network (CNN) [18], and 

cascaded convolutional neural network (cCNN) [19]. 

The parameters of NN, ELM and CNN are the same as 

in the references. The parameters of SVM are 

optimized for the best classification performance using 

grid search. Our experiments show that after the 

number of hidden layers is greater than 400, the results 

obtained are similar for our proposed method. The 

number of hidden layer nodes is set to 400 for the 

proposed method in this paper. 

4.1 Performance 

According to whether the classification results are 

correct, TP, TN, FP, and FN can be determined. TP 

means that the classification result is true and positive. 

Similarly, TN means true negative, and so on.  

Recall, precision, accuracy, specificity and F1-score 

are employed as classification performance indicators 

to evaluate different methods. They are defined as 

follows [37]. 

 Recall .
TP

TP FN
=

+

 (23) 

 Precision .
TP

TP FP
=

+

 (24) 

 Specificity .
TN

FP TN
=

+

 (25) 

 Accuracy .
TP TN

TP TN FP FN

+
=

+ + +

 (26) 

 
2

F1-score .
2

TP

TP FP FN
=

+ +

 (27) 

Recall measures the proportion of actual positives 

that are correctly identified as such. Specificity 

represents the proportion of actual negatives that are 

correctly identified as such. Accuracy is defined as the 

proportion of all samples that have been successfully 

classified. Precision is the ratio of samples correctly 

classified as positive to all the samples which are 

classified. F1-score is the harmonic mean of precision 

and sensitivity. When the above performance index is 

greater, the classification performance is better. 

The above mentioned five indicators of different 

defect detection methods are listed in Table 1. The 

proposed method in this paper has the greatest value in 

all the performance indicators. It means that the 

proposed GMM density estimation-based ELM method 

is superior to other classification methods for defect 

detection of solder joints. The performance comparison 

is also shown in Figure 5. It indicates that the proposed 

method has the best classification performance. This 

also reveals that GMM is efficient for the estimation of 

unbalanced classification boundary. When GMM is 

employed to ELM method, the classification boundary 

is pushed close to the normal class to make the defect 

samples are correctly recognized. 

Table 1. Classification performance of different 

methods for defect detection of solder joint 

Method NN SVM aELM wELM pELM CNN cCNN Proposed 

Recall 0.888 0.902 0.932 0.949 0.958 0.948 0.950 0.988 

Precision 0.950 0.954 0.967 0.975 0.977 0.973 0.972 0.989 

Accuracy 0.853 0.870 0.909 0.931 0.941 0.928 0.928 0.979 

Specificity 0.453 0.497 0.631 0.714 0.733 0.689 0.678 0.872 

F1-score 0.918 0.928 0.949 0.962 0.967 0.960 0.961 0.989 
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Figure 5. Classification performance comparison of 

different methods 

4.2 Confusion Matrix 

Confusion matrix is often used to visualize the 

performance of supervised learning-based classification. 

The matrix row represents samples in a predicted class 

while matrix column indicates the samples in an actual 

class [37-38]. Confusion matrices of different methods 

are illustrated in Figure 6.  

 

Figure 6. Confusion matrices of different methods 

The confusion matrix of the proposed method 

obtains the maximum value on the main diagonal and 

the minimum value in the secondary diagonal. It shows 

that the proposed method in this paper has the best 

classification performance. This is consistent with the 

analysis results of the performance data in 4.1. This 

also indicates that our proposed method is the most 

efficient one for defect detection of solder joints. 

4.3 Realtime 

All experiments are performed on an industrial field 

computer, its memory is 8G, and CPU is 2.66GHz. The 

test time of each sample is about 0.029-0.049s. 

Considering the image acquisition time, the detection 

time of each component is less than 1 second. The 

average time with manual detection is about 5 seconds. 

In the actual production line, the component studied in 

this paper requires an average of 1 second to complete 

the solder joint detection. The method proposed in this 

paper can meet the real-time requirement of the actual 

production line. 

5 Conclusions 

In this paper, a visual inspection application for 

defect detection of solder joints is developed. The 

following conclusions can be drawn from this paper. 

(1) Gaussian mixture model density estimation is 

efficient for the unbalanced classification boundary.  

(2) ELM method is efficient for defect detection of 

solder joints based on Gaussian mixture model density 

estimation, and it has real-time performance to meet 

the requirement of the actual production line. 

(3) Compared with neural network, support vector 

machine, and common ELM based methods, the 

proposed ELM method has superior classification 

performance. 
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