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Abstract 

The Industrial Internet of Things (IIoT) scheme has the 

ability to integrate the computing center and the terminal 

actuator. It is usually the basis for the effective work of 

some IIoT systems that the terminal actuator can provide 

highly-precise location information. Under the assistance 

of the IIoT, we target at proposing a robot relocalization 

algorithm with high accuracy and stability in this paper. 

The relocalization method employing both semantic laser 

and landmark information is first designed, in which laser 

sensors are used to obtain quantitative information while 

semantic information is obtained using visual sensors. A 

pose derivation model based on the acquired landmark 

information is presented to correct the position of the 

actuator. In addition, the reinforcement learning is 

employed to dynamically select the optimal motion 

information during the relocalization process, based on 

which the positioning results are continuously optimized. 

The experimental results show that the proposed method 

has high accuracy and stability. 
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1 Introduction 

In recent years, the rapid development of wireless 

communication technologies has made it is possible to 

integrate the computing center and the terminal 

actuator through Industrial Internet of Things (IIoT), 

which has great potential to optimize the factory 

production process with better efficiency, production 

plan and quality control [1]. However, as some issues, 

such as control accuracy, scalability and security, are 

still not addressed, the potential of IIot is still not fully 

realized at present, which makes the IIoT a very 

attractive research area for researchers for years [2-8]. 

In [3], a quality of experience (QoE)-aware model for 

dynamic resource allocation is presented for tactile 

applications in IIoT, in which fog computing is adopted 

to provide computational and storage resources in close 

proximity to users. The authors in [5] concern the threat 

of the targeted ransomware to the IIoT edge gateway, 

in which the anatomy of ransomware for edge 

gateways, the likelihood of the attack and motivations 

of the threat are researched. In [8], an adaptive 

transmission architecture and approach with software 

defined network (SDN) and edge computing for IIoT is 

proposed, which has potential to significantly improve 

the performance of IIoT.  

With the rapid development of computing and 

communication techniques, such as edge computing 

and 5G, the Internet of Things (IoT), such as Internet 

of vehicle and IIoT, can provides strong network 

services for the terminal actors [9]. On the other hand, 

the location information of the terminal actor is usually 

the basis for the effective work of some IoT. For 

example, the indoor mobile robot can perform relevant 

operations automatically according to the location 

information or the command of the control center. To 

the IIoT-based control system which highly depends on 

the position information of the terminal actuator, 

improving the accuracy of the localization operation 

through relocalization algorithm is of great value to the 

improvement of the control accuracy of the system. 

Up to now, a variety of positioning algorithms, such 

as the Monte Carlo localization algorithm based on the 

principle of particle filtering, have been employed in 

practical robot simultaneous localization and mapping 

(SLAM) applications [10-13]. In [11-12], the scanning 

matching process in SLAM has been improved, which 

not only improves the performance of the observation 

matching and pose estimation but also the dependence 

of the algorithm on the environmental features. 

However, its information dependence on the odometer 

(relevant method of recording speed, displacement, etc.) 

is too high, and the observation sensitivity is not 

enough, which make the performance of it is not high 

in the dynamic scene with few features. In recent years, 

the visual SLAM algorithms based on depth image 

information is developing rapidly, as shown in [14-20]. 

These algorithms use the landmark in the environment 

as a reference object to correct the robot pose, which 

can artificially use a small number of landmarks in the 
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area, and enrich the feature information of the area. In 

addition, graph optimization is also employed to 

improve the accuracy of matching comparison to 

optimize positioning accuracy. However, in these 

algorithms, the more reliable observation information 

is commonly required to obtain better position 

estimation accuracy.  

In addition, a phenomenon of positional drift will 

appear in positioning process in the long-term motion. 

To correct the pose drift and retrieve the initial 

positioning, the closed-loop detection method, which 

can be used to find the best match with the current key 

frame in the past key frames to optimize the trajectory 

of the robot, is adopted in [16-18]. Though these 

algorithms can obtain high positioning accuracy, the 

pose correction result is unstable because the visual 

sensor used is susceptible to many practical factors 

such as light and observation orientation. Therefore, in 

the environment that robots navigate in indoor 

environments, the SLAM technology based on multi-

sensor data fusion is currently a hot research direction 

[21-23]. In [24-27], the robot corrects its own motion 

trajectory by adopting reinforcement learning to 

optimize the positioning results. However, most of 

these methods are designed to only optimize the 

planned path by learning the trajectory offset during 

the robot motion process.  

Based on these research foundations, an adaptive 

localization algorithm (ALA) based on the semantic 

laser data and landmark objects in the SLAM process 

is proposed in this paper, which combines the semantic 

laser information with laser perception and visual 

recognition. To improve the positioning efficiency of 

the robot in the SLAM process, the landmark objects is 

abstracted in the map environment and be used to build 

a landmark database. The reinforcement learning is 

adopted to correct the robot error location and 

dynamically select the odometer data source for each 

localization process. The solution is not easily affected 

by environmental factors, which can be adapted in 

indoor dynamic scenes with high positioning 

robustness. 

In addition, most of the aforementioned algorithms 

focus on optimizing the robot relocalization under the 

environment without efficient Internet connection. 

However, with the popularization and development of 

wireless sensor and actuator network (WSAN), 

machines and equipment in the factory environment 

supporting IIoT can usually get efficient Internet 

connection. For example, a typical IIoT network 

structure is shown in Figure 1, in which the edge 

computing server can provide efficient Internet access 

and powerful data computing for the terminal actuator 

with very short data transmission delay.  

 

Figure 1. A typical IIoT network structure 

In this paper, we target at proposing a robot 

relocalization algorithm with high accuracy and 

stability for the IIoT environment. Based on the 

assistance of the IIoT, a relocalization method 

employing both semantic laser and landmark 

information is designed, in which laser sensors is used 

to obtain quantitative information while semantic 

information is obtained using visual sensors. A pose 

derivation model based on the acquired landmark 

information is presented to correct the position of the 

actuator. In addition, the reinforcement learning is 

employed to dynamically select the optimal motion 

information during the relocalization process. 

The rest of the paper is organized as follows: 

Section II shows the problem formulation. The 

proposed scheme is shown in Section III. In Section IV, 

the evaluation results are presented. A conclusion is 

drawn in Section V. 

2 Problem Formulation 

In the daily driving process, even if there are global 

positioning tools, humans still easily lose the way 

when passing through some complicated and remote 

road sections. It is often necessary to use roadside 

signs or landmark buildings to confirm their location. 

The same is true for robots. Even if they have the 

ability to localize in the map environment, they are 

vulnerable to environmental factors. When entering 

dynamic scenes with few features, the robot still easy 

lose its position and cannot perform independent 

reinforcement learning.  

3 The Proposed Scheme 

Based on the assistance of IIoT, a relocalization 

algorithm using both visual sensors and laser sensor is 

proposed in this paper, in which semantic laser and 

landmark information is employed to obtain quantitative 

information and semantic information, and enhanced 

learning technique is adopted to improve the positioning 

efficiency. The approach can avoid the misidentification 
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and mismatching caused by too similar laser data, and 

errors caused by the factors that can affect the visual 

detection, which means the algorithm is suitable for the 

indoor dynamic environment. The overall structure of 

the algorithm is shown in Figure 2. 
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Figure 2. The overall architecture of the relocalization 

algorithm 

3.1 Landmark Database Establishment  

3.1.1 The Cloud Landmark Database 

In the proposed algorithm, a cloud landmark library, 

which is equivalent to the licensor, should be first build. 

With the assistance of efficient IIoT network, each 

robot can find the candidate landmarks in the current 

environment by searching the data content in the cloud 

landmark database. The landmark library in the cloud 

database is called candidate landmark library. In the 

process of constructing the cloud landmark library, the 

most critical part is the setting of the screening 

conditions that are used to judge whether the object has 

the qualification to become a landmark. The principles 

for setting the conditions are as follows: 

(1) The image characteristics of the object should be 

conspicuous, such as bright colors, rich styles. 

(2) The shape of the object is as flat as possible. In 

addition, if the shape or location of the object changes 

easily, the object should be excluded.  

3.1.2 The Localized Landmark Library  

In the process of drawing, a number of localized 

landmark libraries need to be established based on the 

cloud landmark library, as the candidate landmarks 

acquired from the cloud landmark library are difficult 

to meet some actual requirements, such as response 

delay and search efficiency. The relative locational 

relationship between candidate landmarks should be 

used to judge and select the landmark objects available 

according to the local environment.  

By exploring the real-time data transmission 

capability of the IIoT system, the local edge sever, 

which can transmit data to robots with a high data rate, 

is used to build the local landmark library. The 

diagrammatic sketch for the landmark database system 

is shown in Figure 3. Several localized landmark sub-

databases are build at the local edge sever to obtain the 

effective landmarks according to the actual 

environment. In this way, we can compress the size of 

the local landmark database and improve the efficiency 

of the landmark retrieval. 

 

Figure 3. The landmark database system 

The constraints for building the relative locational 

relationships are set to: 

(1) The location of the landmarks should be selected 

in places that are not frequently visited (by wall or 

corner, etc.) 

(2) If there are multiple landmarks in a map 

environment, the placement should not be too dense to 

cover the map environment. 

In this way, a localized landmark database can be 

initially established, and the method of integrating 

visual information and laser data in Section 3.2 can be 
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used to obtain the location coordinates of each 

landmark object on the map. The details are shown in 

Section 3.2. 

3.2 The Establishment of the Mapping 

between the Landmark Name and the 

Location Coordinate 

In the process of mapping, the algorithm determines 

the available landmarks in the current environment 

according to the constraints of the landmark library 

system and creates the connection between the 

landmark name and the global position coordinate in 

the localized landmark database. The details of the 

process is shown in Algorithm 1. 

First, the laser data is clustered by a clustering 

algorithm to obtain the clustered label for the laser 

scanning. Then, the clustered laser is fused with the 

object semantics to give a semantic label to each laser 

scanning point. The laser data with same type can be 

clustered into the same laser cluster. For each laser 

cluster, multiple laser points are included, which means 

there may be multiple labels and probabilities for each 

laser scanning point. 

The semantic information of objects, such as 

landmarks, is obtained through visual recognition 

algorithms, in which the position information of each 

object in the environment is obtained by scanning the 

surrounding environment with laser radar. Based on 

this, the fusion of the visual detection results and the 

information of laser radar can be completed to generate 

semantic laser data. Each element in the semantic laser 

data contains not only the original position information 

of the laser scanning point, but also the object label and 

the corresponding probability of the label. 

 

Algorithm 1. The creation of the connection between  

the landmark name and the position coordinate  

(a) Fusing the vision data and laser data 

(b) Recording the global position coordinate of the 

object  

(c) If the object cannot be matched in the cloud 

landmark database: go to (a) 

 else: filtering out candidate landmarks 

(e) Getting the location data of landmarks based on 

IIoT 

(f) If the positional relationship between the candidate 

landmarks does not meet the constraints: go to (a) 

(g) else: searching valid landmarks and building an 

effective landmark library 

(h) Recording the semantic names and position 

coordinates of valid landmarks 

(i) Creating the association mapping table 

 

The above fusion method can be used to obtain the 

semantic laser data, which is used to set an effective 

landmark, of the objects. In this way, the GMapping 

algorithm can be used to convert the relative local 

coordinates of the object into the global coordinates of 

the current map. When the semantic labels and label 

probabilities of the objects are obtained, the label 

probability of each object is combined with the data 

content in the cloud landmark database established in 

Section 3.1 to compare candidate landmarks. Then, 

whether the landmark objects can be used in the 

current environment is automatically determined 

according to the position constraint of the candidate 

landmark. The information contained in the landmark 

M  can be expressed by the following formula, 

 { }g g g g g g

1 1 1 2 2 2( , , ), ( , , ),..., ( , , )
m m m

M x y K x y K x y K=  (1) 

where g  is the global coordinate system with the 

center of the world map as the origin, m  is the number 

of valid landmarks in the current environment, g

m
x  and 

g

m
y  are the abscissa and ordinate of the m th landmark 

in the global Cartesian coordinate system, respectively, 

and 

m
K  is the semantic name of the m th landmark. 

The mapping between the landmark name and 

landmark global location coordinates can be created in 

the local landmark database according to equation (1), 

as shown in Table 1. 

Table 1. The mapping between the landmark name and 

the location coordinate 

Landmark 

name 
indicator 

Monitor 

Stand 

Cabinet air 

conditioner 

Global 

coordinates /m
(8.71, 5.53) (14.21, 6.73) (15.28, 9.37)

 

In this way, each landmark object is regarded as a 

point on the map in the followed position correction 

process, which is not affected by the robot observation 

location and observation angle (shown in Section 3.5). 

3.3 Data Acquisition 

3.3.1 The Global Coordinates of the Landmark 

Object 

As aforementioned, the global coordinates of the 

landmark objects on the map can be directly obtained 

by using the mapping table created based on formula 

(1), after the establishment of the map and the local 

landmark database has been completed. However, as 

there are multiple landmark objects in the mapping 

table, the machine must be filtered and searched by the 

landmark name to select the correct one. 

Currently, the mainstream approach for visual 

detection is adopting deep learning algorithms for 

identifying the object. However, by comparing the 

existing object detection algorithms, we found that 

they cannot meet the requirements of this paper well in 

terms of real-time performance and accuracy. For this 

reason, an A-YOLOv3 (Adaptive YOLOv3) algorithm 

is designed in this paper based on the studying of the 
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YOLOv3-Tiny algorithm. 

First, the training-detection model is further trained 

under the experiment scenario of this paper. The first 

step is adding the target detection datasets 

corresponding to the current environment with data 

enhancement operation on them. Based on the 

consideration of factors, such as distance, background 

environments and conditions, the real objects are 

sampled. Then, the tool program is used to perform 

random type enhancement on the sampled pictures 

(enhancement types include adjusting saturation, 

brightness, contrast, flipping left and right, rotating 0 ~ 

60 degrees, etc.). The entire proof set is repeatedly 

enhanced 5 times to obtain a valid data set. The second 

step is resetting the classification method for the visual 

detection model according to the actual environment, 

and classifying the identifiable landmark. Last, the k-

means function is used to calculate the initial sizes of 

the candidate frames of 9 types based on the data set 

obtained in the first step with the target of improving 

the recognition accuracy, before determining the initial 

values of several basic parameters (learning rate, decay 

rate, etc.). Based on this, the effective data set can be 

used to continually train the model for adapting the 

algorithm to special environments. 

In addition, a feature figure with the size of 52 × 52 

(corresponding candidate frames are (10, 13), (16, 30), 

(33, 23)) is added to increase the accuracy of the 

recognition of the small object with long-distance, of 

which the principle is that the feature figure with larger 

size corresponds to the candidate frame with smaller 

size and a smaller target to be identified, as shown in 

Figure 4. In Figure 4(a) and Figure 4(b) belong to the 

scenario that the feature figure has a small size ( 3 × 3 ) 

with a larger candidate frame, and (c) and (d) are the 

scenario that a feature figure has a large size of 6 × 6 

with a small candidate frame. 

 

Figure 4. Schematic diagram of the candidate box selection 

Though the detection speed of the new algorithm has 

no obvious change compared with YOLOv3-Tiny 

algorithm after adding the feature figure with a size of 

52 × 52, the accuracy decreases. The reason is that the 

number of basic network layers, which are employed 

for extracting features, is too small and too shallow (a 

total of 15 layers). It means the network layers used to 

extract the candidate frame with a 52 × 52 feature 

figure is too close to the input, which leads to the fine-

grained extraction is not enough and the features are 

not fully extracted. Therefore, YOLO3-Tiny’s basic 

network is added to the corresponding convolutional 

layers to enhance feature extraction. 

Based on the above steps, the semantics of each 

object in the current operation environment can be 

obtained. Then, the local landmark database is 

searched and matched through semantic information, 

and the global coordinates of the landmark objects on 

the world map can be obtained. 

3.3.2 The Local Coordinates of the Landmark 

Object 

In order to ensure the accuracy of the data source, 

the ALA (Adaptive Location Algorithm) algorithm 

uses laser radar to obtain the local coordinates of the 

landmark, which can avoid the deviation of the visual 

sensor caused by environmental factors such as light. 

By fixing the position relationship between the laser 

radar and the robot, the local coordinate system 

established by the laser radar can establish fixed 

association with the coordinate system of the robot. 

Taking the rplidar-a2 laser radar as an example, the 

data scanning interval of the laser radar is set to 0.5 

degrees (resolution), and the scanning range is set to 

180 degrees, of which a total of 361 data points can be 

scanned. It can be seen that the angle 
j

θ  of each point 

in the polar coordinate system is: 

In Figure 5, it is assumed that R
i
 is the j th laser 

point corresponding to the i th landmark near the robot. 

The Cartesian coordinates of the i th landmark object 

in the local coordinate system are: 

 l
cos

i j j
x d θ= •  (3) 

 l
sin

i j j
y d θ= •  (4) 

 
360

j

j
θ π= •  (2) 
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Figure 5. The creation of the local coordinate system 

by taking the robot as the origin of the coordinate 

system 

The IMU (Inertial Measurement Unit) is a tool for 

recording the motion information such as acceleration 

and angular velocity. The gyroscope included in the 

IMU can records the rotational speed and heading 

angle of the robot motion. After calibrating, IMU can 

obtain the angular with high precision and high 

robustness. Therefore, IMU is used as a data source to 

obtain the deflection angle α  of the robot. 

3.4 Odometer Data Source Selection 

3.4.1 The Q-Learning Algorithm for Positioning  

In this section, reinforcement learning is adopted to 

optimize the point fixing during the navigation. 

However, it is different from the traditional path 

planning application. In traditional path planning 

applications, an n n∗  grid is designed and a sub-grid is 

selected according to the principle: choosing a path 

plan to the end point without traversing all the sub-

lattices. In this paper, the data selection process is 

designed based on the principle of improving the 

adaptation of the algorithm. In order to apply the 

reinforcement learning to the selection of the odometer 

data source, each variable is uniqueness should be 

ensured, and a point which can connect both the 

starting point and the ending point in the original n n∗  

grid should be confirmed. The trainings are carried out 

on the same path, and the running results are compared 

to confirm the rationality of each optimal choice. The 

path contains n states (target points), and only one 

action selection is used in the state changes. There are 

4 action selections: encoder data, IMU data, laser 

odometer data, and vision. After completing the 

selection of odometer data, the robot jumps to the next 

state point of the path. After adapting the mechanism 

of the reinforcement learning, the selected sub-grid 

path needs be converted into Q-table in the next step. 

In Figure 6, each column represents the selection of 

four odometer data sources, while the row represents 

the current state, and the value of each cell represents 

the corresponding state in the Q-table. The maximum 

future reward expectation value (Q value) is selected 

by the selection action, which is the basis for each 

subsequent action selection. 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Actions

States

0 0 0 0

 

(a) (b) 

Figure 6. A grid map created to fit the Q-learning 

algorithm 

For example, By dividing the current running 

environment into a grid of 6 6∗  regions and selecting a 

path consisting of 8 sub-grids, the grid can be 

converted into a 8 4∗  Q-type table, as shown in Figure 

6, where the column, row and cell represents the four 

candidate odometer data sources, the states to be 

executed and the stored corresponding Q value, 

respectively. 

3.4.2  Optimization of the Positioning Results  

First, the Q-table converted from the sub-grid path 

in Figure 6 is initialized, and the initial value of each 

cell is set to zero. At the current running state point s , 

the odometer data source used in the next step is 

selected based on the current Q value estimation. Using 

the learning action value function combined with the 

moving distance cost, the reward value r  under the 

condition that the robot runs to the next state point and 

the current Q value are estimated. Combining the 

obtained r and Q with the Bellman equation, the Q in 

the Q-table is updated. Using the relocalization method, 

the estimated robot pose of each state point is corrected 

to ensure uniform operation trajectory during the 

training of the robot. The correction process is shown 

in Figure 7. Finally, the intensive training operation is 

repeated, and the selection action of the odometer data 

source is continually performed to update the reward 

expectation until the selection result with highest 

positioning accuracy in the current environment is 

found or the intensive training is manually stopped. 
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Figure 7. Robot positioning adjustment process 

In the process of intensive training on the selection 

of the odometer data source, the robot will arbitrarily 

divide multiple trajectories in the current environment, 

and sequentially complete the odometer data source 

selection action on these trajectories to update the 

reward expectation. Therefore, the selection of the 

trajectory can be performed with a cover of the entire 

map environment as much as possible. 

3.5 Pose Derivation 

During the navigation process, the ALA algorithm is 

used to estimate the real-time location of the robot with 

accurate landmark information when the robot pose 

estimation bias occurs. Therefore, it is necessary to 

establish the global location g g( , )
i i
x y  and the local 

location l l( , )
i i
x y  of the landmark in the world 

coordinate system, and the mathematical model for the 

robot’s real-time location conversion. Figure 8 shows 

the coordinate transformation method for building the 

relative relationship between the global coordinate 

system and the local coordinate system.  

θ
j

′X

′Y

1
x
l

2
x
l

1
y
l

2
y
l

0 0
( , )′O x y

l l( , )
i i

R x y

α

α

α

Y

XO  

Figure 8. The coordinate transformation between the 

global coordinate system and the local coordinate 

system 

In Figure 8, O  is the origin of the world map 

(global coordinate system), O′  is the real-time location 

of the robot, and a local coordinate system is 

constructed with it as the origin, andα  is the deflection 

angle of the robot relative to the global coordinate 

system. The real-time location coordinate of the robot 

is set to 
0 0

( , )x y , which can be derived through the 

conversion relationship: 

 
1 2

g

0 ( )
i x x

x x l l= − −  (5) 

 
1 2

g

0 ( )
i y y

y y l l= − +  (6) 

where 
1
x
l , 

2
x
l , 

1
y
l , 

2
y
l  can be derived from the local 

coordinates and angles of the landmark R . Figure 8 

only shows the coordinate conversion relationship of 

the first quadrant. Due to the diversity of actual 

conditions, landmark objects may also be in other 

quadrants of the robot’s local coordinate system. The 

deduction of the actual position of the robot can be 

summarized as: 

 
g l

0

g l
0

cos sin

sin cos

i i

i i

x x x

y y y

α α

α α

⎛ ⎞ ⎛ ⎞−⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (7) 

According to the algorithm proposed in this paper, 

the real-time location coordinate 
0 0

( , )x y  of the robot 

and its heading angle α  can be quickly and accurately 

calculated according to the multi-class sensor data and 

landmark object information. The relocalization 

process is shown in Figure 9. 

Actual pose 

of the robot

Landmark 

Landmark 

Error pose of 

the robot

 

Figure 9. The process of correcting the pose by using 

the landmark  

In summary, the algorithm only needs to input visual 

information and laser data, and can complete pose 

derivation by means of landmark objects. 
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4 Evaluation 

4.1 Experiment Platform  

In order to verify the effectiveness and innovation of 

the ALA, the intelligent platform shown in Figure 10 is 

built. It consists of PC, camera, laser radar, IMU and 

mobile base. The data transmission is carried out under 

the ROS mechanism, in which the main algorithm is 

run by the PC. 

 

Figure 10. The experiment platform 

The specific hardware configuration of the platform 

is: a monocular vision sensor with a resolution of 

640×480, i7-8750H PC CPU, GeForce GTX 1060 

graphics card, Kobuki mobile base, a L3G4200D 

model 3-axis digital gyroscope for the IMU and a laser 

sensor with a rate of up to 0.5mm. 

The experiment environment in this paper is an 

actual scene of about 60 square meters. The grid map 

initially constructed based on the laser radar is shown 

in Figure 11. In order to verify the superiority of the 

proposed ALA algorithm in intelligence and accuracy, 

a complicated scene with a lot of obstacles and similar 

parts is set in the experiment environment. 

The whole experiment environment can be divided 

into three parts, as shown in Figure 12, where Figure 

12(a) corresponds to the part A in Figure 11, which has 

fewer obstacles, but many similar environments with 

low light intensity. Figure 12(b) corresponds to the part 

B of Figure 11, where there are fewer obstacles with 

higher light intensity. Figure 12(c) corresponds to the 

part C of Figure 11, where the environment is much 

complicated, in which the movable space is small with 

a lot of obstacles. 

Since some odometer data sources are susceptible to 

the pitch angle of the robot during navigation, the 

stepped road surface in Figure 13 is specially set to 

verify the anti-jamming effect of the algorithm. 

 

Figure 11. The raster map of the experiment 

environment

 

   

 (a) Part A (b) Part B (c) Part C 

Figure 12. Experiment environment 
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Figure 13. Simulation on the uneven ground 

4.2 The Relocalization Algorithm  

Due to the cumulative error generated by the range 

derivation algorithm, the pose of the robot during the 

navigation process will gradually drift. Therefore, in 

order to ensure that the adaptive positioning algorithm 

of this paper is not affected by the accumulated error 

during the navigation process, it is necessary to 

determine the pose offset of the next state without the 

interference of the previous state when the robot 

positioning is intensively trained. Relocalization is 

required to eliminate the accumulated error. 

4.2.1  Relocalization Results 

In the intensive training process of the ALA 

algorithm, the 1i − th state point is navigated to the i th 

state point. At this time, the pose deviation may have 

been generated. In addition, the offset will be passed to 

the i  th state point if it is not eliminated. With 

navigating to the next state point, the factors caused by 

the positional deviation at the state point cannot be 

determined according to the error, which means that 

the credibility of the experimental results of the 

algorithm cannot be guaranteed. Therefore, in order to 

ensure that the positioning deviation of the 1i +  th 

state point is not interfered by the error caused by the 

previous state, it is necessary to use the relocalization 

algorithm to correct the current pose deviation before 

navigating to the next state point. Figure 14 shows the 

relocalization process at a certain state point during 

navigation.

 

   

(a) t  time (b) 1t +  time (c) 2t +  time 

Figure 14. The relocalization result at a certain state point 

The relocalization algorithm in this paper reverses 

the actual position of the robot by using landmark 

object. The position correction effect of the algorithm 

can be seen from the experiment process in Figure 14. 

The part enclosed by black and gray is the map 

representation of the current environment. The white 

circle N  in Figure 14(a) is the actual position of the 

robot at time t , and the black circle O  is the position 

misjudged in the map. As the pose deviation has 

already occurred at this time, the robot cannot directly 

navigate from the position of the white circle N  to the 

next state point, which means the position of the black 

circle O  needs to be corrected by the landmark at 1t +  

time. After the position is corrected, the robot 

continues to move to the current state point (green 

circle position) until the relocalization is completed at 

time 2t +  so that the navigation process of the next 

state can be entered, which can be seen that the 

algorithm has a high relocalization performance. 

4.2.2 Visual Recognition Results 

The relocalization process is carried out under the 

assistance of the landmark information, in which the 

corresponding semantic information and local 

coordinates are obtained by visually recognizing the 

landmark objects in the surrounding environment. 

Therefore, the AIR (Adaptive Intelligent Recognition) 

algorithm proposed in this paper should be 

experimentally verified. The verification under the near 

and far distance (4.0m and 1.5m) is carried out in three 

parts of the whole experiment environment. The 

recognition results are shown in Figure 15 and Figure 

16. 

Figure15(a) is the recognition result of the landmark 

object in the environment which is relatively simple 

but the overall illumination intensity is low. Figure 

15(b) is the recognition result of the landmark object in 

B part of the experiment environment where the 

environment is brighter and the obstacles are less. Part 
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(c) is the recognition result of the landmark object in 

the experiment environment which the environment is 

relatively complicated with many obstacles. The 

identification result is framed and be given a semantic 

tag. 

Figure 16 is the result of the landmark object from a 

long distance, in which part (a) is the recognition result 

of the landmark object in the part A of the 

experimental environment. Part (b) is the recognition 

result of the landmark object in the part B of the 

experimental environment, and Part (c) is the result 

corresponding to the part C of the experimental 

environment. 

Compared to other recognition algorithms in the 

current experiment scene, we see that the proposed 

AIR algorithm cannot achieve the best detection speed 

and accuracy at the same time. However, it can greatly 

improve the recognition accuracy when only adding 

some response time. To meet the daily navigation 

needs, the performance comparison is shown in Figure 

17. 

   

(a) Part A (b) Part B (c) Part C 

Figure 15. The results of the short-distance visual recognition 

   

(a) Part A (b) Part B (c) Part C 

Figure 16. The results of the long-distance visual recognition 

 

Figure 17. Performance comparison between different 

recognition algorithms 

4.3 The adaptive Positioning Algorithm 

It has been verified in Section 4.2.1 that the 

relocalization algorithm can achieve high pose-

correction performance and eliminate certain pose 

deviations. However, it can only be regarded as the 

back-end optimization method, in which the landmark 

is passed after each determination of the robot 

positioning. It cannot solve the problem fundamentally 

that the object reversely corrects its own pose deviation. 

The ALA (Adaptive Positioning) in this paper is 

designed to strengthen the training when the robot 

selects its odometer data source to ensure that the 

optimal amount of motion information can be obtained 

at each state point to enable the robot to complete the 

positioning. This part is the designed experiment to 

verify the actual effect of the proposed ALA algorithm. 

4.3.1 Experiment Design 

In order to verify the robustness and effectiveness of 

the proposed ALA algorithm, the robot repeatedly 

navigates 60 times across the path which is divided 

into 43 grid regions, as shown in Figure 20, in which 
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the robot is allowed to continually perform intensive 

training between each state point to dynamically filter 

the odometer data source. During the whole 

experiment, we observe the deviation between the 

actual position trajectory of the robot and the set 

trajectory. 

The orange line in Figure 18 encloses the navigation 

route set by the current experiment. The route spans 

the three parts in Figure 11 in the experimental 

environment to ensure the effectiveness of the 

experiment data. This section normalizes the 

navigation path and records the pose state of each grid 

in order to observe the experiment results more clearly. 

When the robot (black circle) navigates from one state 

point to the next, it will intensively train the selection 

of the odometer data source. 

 

Figure 18. The navigation path 

4.3.2 The Intensive Training Performance 

According to the above experiment scheme, the 

robot uses the ALA algorithm to perform autonomous 

navigation on the specified route. The actual position 

coordinates are recorded when the robot navigates to 

each state point (the global coordinate system of the 

map established with the initial point of the robot 

positioning as the origin, see Figure 18). The final 

position trajectory is compared with the set trajectory, 

and the posture deviation is observed, as shown in 

Figure 19. 

In Figure 19, the navigation process is repeated sixty 

times on the designed route, and the selection result of 

the training odometer data source is continuously 

enhanced. The blue route is the set trajectory of each 

state point, which is also the ideal navigation trajectory 

of the robot. The orange route is the actual position 

trajectory recorded during the navigation process. 

Analyzing the experiment data in Fig. 19, we can see 

that the actual pose trajectory is getting closer and 

closer to the set state point trajectory as the robot 

repeats the navigation process. 

 

(a) First pose trajectory 

 

(b) The 10th pose trajectory 

 

(c) The 30th pose trajectory 

 

(d) The 60th pose trajectory 

Figure 19. Robot pose results  
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4.3.3 The Performance of the Traversing 

The above experiments show that the data source of 

the enhanced odometer data will be more and more 

reliable and the positioning accuracy will be higher and 

higher as the number of navigations on the designed 

route increases. Therefore, the positioning performance 

in the whole experiment scene can be improved by 

performing navigation training in various parts of the 

map environment, as shown in Figure 20. The green, 

orange and red lines represent each robot travel path, 

respectively, which can be effectively traversed by the 

selection method.  

 

Figure 20. Paths for traversing the overall environment 

4.4 The Comparison on the Positioning 

Performance  

Since the global coordinates of the landmarks used 

in the algorithm are obtained by visually recognizing 

the landmarks and finding the matching association 

mapping table, the A-YOLOv3 algorithm is proposed 

in this paper to adapt the real-time and accuracy 

requirements from relocalization algorithms. In order 

to verify the feasibility of the A-YOLOv3 recognition 

algorithm, the experiment results are verified under the 

conditions of short distance and long distance (1.5m 

and 3.5m) with bright (more than 300 lux) and dark 

visual environment (less than 200 lux), respectively.  

4.4.1 The Comparison on Pose Trajectory  

The robot navigates on a closed loop route with 

fourteen state points. Figure 21(a), Figure 21(b) and 

Figure 21(c) show the pose of the proposed ALA 

algorithm, AMCL algorithm and ORB-SLAM2 

algorithm, respectively. The blue-color line indicates 

the set trajectory for the state points, which is also the 

ideal navigation trajectory of the robot, and the orange 

route is the recorded actual position trajectory. 

 

(a) The proposed algorithm 

 

(b) AMCL algorithm 

 

(c) ORB-SLAM2 algorithm 

Figure 21. The pose trajectory on closed loop route 

It can be seen from Figure 21 that the actual pose 

trajectory recorded by the ALA algorithm is closest to 

the set trajectory and can return to the initial point at 

the last moment to form a closed loop in the loopback 

route. 

4.4.2 The Comparison on Pose Deviation 

In order to better reflect the positioning performance 

of the proposed ALA algorithm, the Euclidean distance 

formula 2 2d ( ) ( )x x y y′ ′= − + −  is used to calculate 

the error between the actual position and the set 

position (state point position) of the robot on the 

current loopback line. The comparison of the 

positioning error during the whole operation is shown 

in Figure 22. 
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Figure 22. Positioning error of each algorithm during 

operation  

To show the quantified accuracy and the stability of 

the algorithm, the mean value and variance of the 

positioning error is also evaluated, as shown in Table 2. 

Table 2. The mean and variance of the positioning 

error 

 AMCL ORB-SLAM ALA 

mean error /cm About 11.8 About 16.7 About 8.2

error variance /cm About 12.3 About 29.1 About 11.4

 

5 Conclusion 

The relocalization algorithm in this paper is 

proposed based on optimizing the positioning of the 

current mainstream SLAM algorithm. An ALA 

algorithm employing visual sensor to simulate the 

human eye is designed, which is used to identify the 

objects and landmarks around the robot. The laser and 

IMU are used to obtain information with high accuracy. 

Based on the assistance of IIoT, an effective landmark 

database system is designed. A pose derivation model 

based on the acquired landmark information is 

presented to correct the position of the actuator. In 

addition, the reinforcement learning is employed to 

dynamically select the optimal motion information 

during the relocalization process. The experiment 

results show the relocalization algorithm designed in 

this paper has good performance in accuracy and 

stability, in which the total localization deviation is 

about 8.2cm and the variance is about 11.4cm.  
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