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Abstract 

For supporting Artificial Intelligence (AI) applications 

of connected vehicles, sensing data is collected by 

Service Providers (SPs) as input to AI models to execute 

model inference. Based on the inference results, SPs 

respond to users’ requests. To ensure the quality of 

service (QoS), enhancing the sensing quality of data 

collection and shortening the latency of inference 

execution are two crucial issues. To address these issues, 

we propose the integration of hybrid sensor network and 

edge computing. Hybrid sensor network enables the 

cooperation of dynamic vehicular nodes and static sensor 

nodes for improving sensing quality. Edge computing 

fulfills local processing of sensing data in edge servers to 

improve the overall performance of services. After that, 

we study the problem for SP-side assigning sensing tasks 

and corresponding rewards between vehicular nodes and 

sensor nodes. A three-party Stackelberg game is 

leveraged to design the task assignment scheme, which 

allows the three parties to reach a deal with optimal 

pricing strategies and sensing strategies. We also develop 

a resource allocation scheme which enables SPs to 

optimally allocate computation resource of edge servers 

for minimizing the delay of inference execution. 

Numerical results indicate that the proposed task 

assignment scheme based on hybrid sensor network 

outperforms the schemes based on pure vehicular nodes 

or sensor nodes. The designed resource allocation scheme 

achieves the convergence of 4.2 times faster than that of 

the greedy algorithm. 

Keywords: AI applications of connected vehicles, 

Hybrid sensor network, Edge computing, 

Three-party Stackelberg game 

1 Introduction 

Artificial Intelligence (AI) applications have been 

widely implemented for connected vehicles. Service 

Providers (SPs) collect image data of target objects in 

urban areas as input to AI models (e.g., Deep Neural 

Network model) and execute model inference. 

According to the inference results, SPs respond to 

users’ requests.  

For supporting AI applications of connected vehicles, 

data collection of transportation system is necessary. 

To extend the spatial coverage of observing areas, we 

pay attention to the utilization of hybrid sensor 

network, which consists of static wireless sensor 

network (WSN) and dynamic vehicular crowdsensing 

network (VCN). Here, WSN could perform regular 

sensing tasks by deploying static sensor nodes in cities 

[1]. But it is hard to use a large-scale WSN due to the 

enormous economic expense. VCN employs moving 

vehicles to sense their surrounding environment and 

achieves higher coverage due to the natural mobility of 

vehicles [2]. Nevertheless, the number of vehicles for 

gathering data cannot be guaranteed sometimes, for 

example, at night. Therefore, we consider the integration 

of these two types of networks for obtaining sufficient 

data sources. 

In addition, edge computing is exploited to improve 

the overall performance of AI applications. First, the 

massive collected data should be locally stored and 

analyzed for reducing bandwidth consumption instead 

of being transferred to a remote cloud. Second, 

distributed data management has excellent advantages 

in coping with large-scale data with higher efficiency, 

such as load balancing, decreasing response time, and 

fault tolerance. Last but not least, the gathered data 

generally has the feature of local relevance. This means 

that the data had better be processed proximal to users 

for the better quality of service (QoS) [3]. Based on the 

advantages, we consider that an SP can rent edge 

servers to perform the AI model inference locally for 

low latency, reduced energy consumption, and 

enriched location awareness. 

In summary, we integrate hybrid sensor network 

with edge computing into a new system for provisioning 

AI applications of connected vehicles. More 

specifically, the hybrid sensor network combines fixed 

sensors and moving vehicles on the roads to acquire 
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sufficient image data in a specific interesting area. 

Then SPs schedule dedicated edge servers for local 

inference by taking the gathered image data as input 

data of AI models. As a consequence, this also gives 

rise to two essential optimization problems consisting 

of a task assignment problem in data collection and a 

resource allocation problem in model inference. 

Next, we focus on solving the problems above for 

optimizing SP-side decision making in the system 

implementation. In the system, vehicular nodes and 

sensor nodes carry out sensing tasks published by an 

SP to get rewards. The SP, vehicular nodes, and sensor 

nodes are three independent parties and aim to 

maximize their utilities. To solve the task assignment 

problem, we leverage a three-party Stackelberg game 

to reach a satisfying deal about data collection. In the 

game, the SP acts as a leader to decide the optimal 

pricing strategies, while the vehicular nodes and sensor 

nodes become followers to determine their sensing 

strategies accordingly. On the other hand, as various 

data from different nodes is uploaded to a nearby edge 

server for local inference, we formulate the resource 

allocation problem as a nonconvex problem and 

present a suboptimal algorithm for minimizing the 

inference latency. Finally, simulation results are 

provided to demonstrate the efficiency and 

effectiveness of the schemes above. 

The main contributions of this paper are summarized 

as follows.  

(1) We propose a new system by jointly using a 

hybrid sensor network and edge computing for 

provisioning AI applications of connected vehicles. We 

describe the system implementation with crucial 

entities, which mainly include users in AI applications, 

vehicular nodes and sensor nodes for data collection, 

and an SP renting edge servers for local inference. 

(2) We elaborately design the task assignment 

scheme by using a three-party Stackelberg game. In the 

scheme, the SP achieves the maximum sensing 

satisfaction with the minimal monetary cost, while 

both the vehicular nodes and sensor nodes get the 

optimal revenues. 

(3) We develop the resource allocation scheme 

based on an iteration algorithm so that the SP is able to 

obtain the inference results promptly. The proposed 

algorithm enables the convergence rate of 4.2 times 

faster than that of the greedy algorithm. 

The rest of this paper is organized as follows. We 

summarize the related work in Section 2. In Section 3, 

we describe the system model of the proposed system. 

We formulate the task assignment problem in Section 4 

and provide the optimal solution in Section 5. In 

section 6, we study the resource allocation problem and 

propose a suboptimal solution. Simulation results are 

presented in Section 7. Then we conclude the paper in 

Section 8. 

2 Related Work 

Much work has been done for studying data 

collection and edge computing in supporting AI 

applications of connected vehicles. We shall 

respectively introduce existing work in these two 

aspects. 

2.1 Data Collection for Vehicular Service 

Data collection schemes can be divided into WSN 

and VCN. WSN is widely used for the vehicular 

environment [1]. The static sensor nodes deployed 

along the road shoot passing vehicles by cameras, and 

the data supports the analysis and prediction of vehicle 

mobility and traffic congestion. However, WSN is 

difficult for large-scale deployment due to the 

tremendous cost. 

VCN utilizes vehicular sensors for acquiring various 

data. Due to the natural mobility of vehicles, VCN 

achieves more substantial spatial coverage with less 

deployment expense when compared with WSN. When 

participating in data collection and transmission, 

vehicles consume a considerable amount of resource 

and have a risk of privacy disclosure. Thus, some work 

focused on incentivizing vehicles for executing sensing 

tasks. In [4-5], recruited mechanisms were studied for 

maximizing the spatial coverage with limited incentive 

budget. A study in [6] aimed at minimizing the 

incentive cost when satisfying the requirement of 

spatial coverage. In [7-8], game theory-based incentive 

mechanisms were proposed, where the SP chooses its 

pricing strategy and vehicles decide their sensing 

strategies accordingly. Nevertheless, it is difficult to 

recruit sufficient vehicles to collect data sometimes, for 

example, at night. 

To ensure the spatial coverage, we have proposed a 

hybrid sensor network in our previous work [7]. The 

hybrid sensor network allows the cooperation of VCN 

and WSN. Furthermore, in this paper, we pay attention 

to a detailed application scenario where the proposed 

hybrid sensor network is utilized to perform image data 

collection tasks. Meanwhile, we identify the difference 

between the two kinds of nodes for sensing in the 

network. The mathematic model with specific 

parameters is also given to adapt to the practical 

application. 

2.2 Edge Computing for Vehicular Crowd-

sensing 

Management and analysis of the collected data take 

essential parts in vehicular services and consume 

computation and storage resources. Edge/fog 

computing is an attractive paradigm that provides 

distributed resources in the network edge [9-10]. 

Instead of uploading the collected data to a remote 

cloud, some work suggested localized management and 

processing the data [11]. In [12-13], systems were 
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proposed to locally analyze the collected data and 

make decisions in fog servers to reduce bandwidth 

consumption and centralized burden. In [14], a 

framework was developed to integrate deep learning-

based data validation and edge computing-based local 

processing. The resource allocation of edge/fog servers 

is crucial for reducing the energy consumption and 

processing latency [15-16]. Some work has proposed 

the resource allocation method, such as reinforcement 

learning (RL) methods [17-18]. However, RL methods 

spend time cost to learning optimal action selection. In 

this paper, we use the edge servers to perform AI 

model inference. In order to respond to users more 

quickly, we propose a resource allocation scheme 

without learning process to minimize the inference 

latency. 

3 System Model 

In this section, we introduce the proposed system 

and describe the procedure for provisioning AI 

applications.  

3.1 System Entities 

As shown in Figure 1, we consider the system over 

one urban area. The main entities are summarized as 

follows.  

 

Figure 1. The system integrating hybrid sensor network and edge computing for AI applications of connected 

vehicles 

Users send requests to the SP for AI applications. 

The required services have the feature of local 

relevance and delay-sensitive. Take parking navigation 

service as an example. Users want to obtain the 

locations of unoccupied parking spaces before they 

arrive at the destination. 

SP collects image data as input of AI model by 

incentivizing the hybrid sensor network and executes 

AI inference by renting geographically distributed edge 

servers. According to the inference results, the SP 

responds to users’ requests timely. For example, the SP 

gathers image data of roadside and recognizes 

unoccupied parking spaces for supporting parking 

navigation service. 

Hybrid sensor network consists of a group of 

dynamic vehicular nodes and multiple static sensor 

nodes. Vehicular nodes are vehicles passing through 

the urban region and equipped with onboard cameras. 

Due to the mobility feature, vehicular nodes can take 

images covering multiple angles of the target objects. 

But the motion of vehicles also brings image blur 

problem. Sensor nodes are fixed camera sensors 

deployed over the urban region and have their own 

working duties, such as street monitoring. When the 

number of vehicular nodes is insufficient, sensor nodes 

are recruited for compensation.  

Edge servers are rented by the SP and have 

sufficient computation and storage resources for 

supplying local data management and AI inference 

execution. Compared with transmitting the data to 

cloud data centers, localized inference execution in 

edge servers reduces the burden of data transmission 

and the latency of service response. 

3.2 System Procedure 

The procedure of the proposed system includes four 

stages. In the service request stage, users send requests 

to the SP for AI applications. The service requests 

include the location of target regions and tolerant 

response delay. Then SP generates sensing tasks in the 

edge server of the target region. The sensing tasks 

imply required data size, location of target objects, 

tolerant latency for completing the tasks. 

In the data collection stage, the SP needs to assign 

sensing tasks and corresponding rewards. The SP 

desires to assign sensing tasks to achieve higher 

sensing quality by considering coverage ability and 

motion blur. Meanwhile, both vehicular nodes and 
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sensor nodes want to gain more rewards. A tasks 

assignment scheme is needed for the three parties to 

reach a deal with satisfying pricing strategies and 

sensing strategies. After that, vehicular nodes and 

sensor nodes carry out the assigned sensing tasks and 

gain the agreed rewards. 

In the inference execution stage, the SP exploits the 

edge server to carry out model inference based on the 

collected data. For the data uploaded by each node, the 

SP generates a corresponding inference task. All the 

inference tasks are executed in a parallel computing 

manner. The latency of performing an inference task 

depends on its available computation resource. In order 

to shorten the latency of inference execution, a 

resource allocation scheme is needed to optimally 

allocate the computation resource of the edge server to 

each inference task. 

In the service response stage, the SP responds to 

users based on the inference results. The accuracy of 

inference results depends on the sensing quality of the 

nodes. The response delay is related to the time 

consumption of executing sensing tasks and inference 

tasks. Thus, the task assignment scheme and the 

resource allocation scheme are crucial for improving 

the QoS. 

4 Task Assignment for Data Collection 

We consider the AI application scenario of the 

hybrid sensor network which consists one SP, dynamic 

vehicular nodes, and static sensor nodes. The task 

assignment problem is formulated as a three-party 

Stackelberg game.  

4.1 Sensing Tasks and Sensing Quality 

The generated sensing tasks specify required data 

size D , a set of target objects I , and the maximum 

tolerant delay time T  for carrying out the sensing tasks. 

The information of target object i I∈  is a tuple 

( ), ,
i i
l l θ

�

, where 
i
l  is the location of i , { }1 2

, ,

K

i i i i
l l l l=

�� �� ����

�  

is the different K  aspects of i , k

i
l

��

 is a vector indicated 

by an angle in [ ]0,2π  with 0 degree is the one pointing 

to the right (east on the map), θ  is the effective angle. 

The effective angle range to k

i
l

��

 is ,

k k

i i
l lθ θ⎡ ⎤− +
⎣ ⎦

�� ��

. The 

effective angle ranges of one target object’s different 

aspects are assumed to be not overlapped.  

There exists a set of nodes S  (including vehicular 

nodes and sensor nodes) equipped with cameras for 

carrying out the sensing tasks. The camera information 

of node s S∈  is a tuple ( ), ,
s s s

d lϕ

��

, where 
s

d  is the 

effective range of the camera, beyond which people 

can hardly distinguish anything in the photo, 
s

ϕ  is the 

field-of-view, which implies how wide the camera can 

catch, and 
s
l

��

 is the orientation of the camera. When s  

takes a photo 
si
P  of i  in a location, 

s
l

��

 points to 
i
l

�

. 

The picture 
si
P covers i  if the range of 

si
P  includes i . 

The picture 
si
P covers k

i
l

��

 if the angle between k

i
l

��

 and 

s
l

��

 is smaller than θ . According to [19-20], the sensing 

quality of a node depends on its coverage ability for 

the target objects, i.e., the number of the target objects’ 

aspects which the photos taken by the nodes can cover. 

We use an indicator k

si
α  to imply whether s  can take 

photos covering k

i
l

��

. If the aspect is covered, 1
k

si
α = , 

otherwise, 0
k

si
α = . Therefore, the coverage ability of 

s  is defined as k

si

i I k K

α

∈ ∈

∑∑ . According to [21], the 

sensing quality also relate to the motion of the camera. 

The speed fluctuation of vehicular nodes (learned from 

the accelerometer sensor in vehicles) leads to 

increasing image blur. So, the sensing quality is 

defined as follows. 

Definition 1 (Sensing Quality): Sensing quality 

measurement is based on coverage ability and motion 

blur. Formally, it can be defined as: 

 ,
1

k

si

i I k K

s

s

q
y

α

∈ ∈

=

+

∑∑
 (1) 

where 
s
y  is the average acceleration of s , which can 

be observed from the historical driving manner. If s  is 

a static sensor node, 0
s
y = . 

The sensing satisfaction of the SP at one node 

depends on not only the node’s sensing quality but also 

the node’s collected data quantity and time 

consumption of performing the sensing task [3]. The 

image data has an explicit lifetime of utility. For 

example, an image of unoccupied parking space may 

be valid for 10 minutes, and after that, the parking 

space may be occupied. Thus, the sensing satisfaction 

of the SP is defined as follows. 

Definition 2 (Sensing Satisfaction): The sensing 

satisfaction of the SP at s  is based on the node’s 

sensing quality, collected data size, and the time 

consumption of executing the sensing task. Formally, 

the sensing satisfaction at s  can be defined as: 

 ( ) ,se se se tr

s s s s s s
Q q f t T t tδ= − −  (2) 

where δ  is a parameter, se

s
f  is the sensing frequency 

of s , se

s
t  is the time consumed by s  for sensing, tr

s
t  is 

the time consumed for uploading data. se se

s s
f t  denotes 

the data size of s  and se tr

s s
T t t− −  denotes how much 

time that s  finishes the sensing task earlier than the 

deadline. The sensing satisfaction of the SP at all nodes 

is 
s

s S

Q Q
∈

=∑ . 
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4.2 Utilities of Three Parties 

We consider a set of vehicular nodes M S⊂  

recruited to execute sensing tasks. The moving path of 

vehicular node m M∈  is denoted as a set of location 

coordinate 
m

L , and the path length is denoted as 
m

L . 

Vehicular node m  is driven at average speed 
m
v  along 

the path and utilizes the onboard camera to take photos 

of target objects. The residence time of m  in the urban 

region is / ,
se

m m m
t L v=  which is also the time 

consumed for sensing. The sensing strategy of m  is its 

adjustable sensing frequency se

m
f , and its collected 

data size is .

se se

m m
f t  The collected image data is 

considered to be similar and redundant if the time and 

locations of the photos are too close [20]. To ensure the 

temporal-spatial diversity of the collected data, we set 
se

m m
f vβ≤ , where β  is a parameter. When m  moves 

out of the urban region and cannot cover the target 

objects again, it uploads the collected data to a nearby 

access point (AP). The channel transmission rate is 

expressed as 

 
( )0

2

0

log 1 ,

r

m m

m

P h d
r B

w

−⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

 (3) 

where B  is the bandwidth of the leased transmission 

channel between m  and the AP, 
0
P  is the transmission 

power, 
m
h  is the channel gain, 

0
w  is the power level of 

white noise, and 
m

d  is the distance between m  and the 

AP. Here we assume that all the vehicular nodes have 

the same bandwidth and the same transmission power. 

The time consumed for uploading data is 

/
tr se se

m m m m
t f t r= . To ensure the sensing task execution 

satisfies the delay constraint, we have se tr

m m
t t T+ ≤ . 

Each vehicular node is selfish and competing for a 

reward. The profit of m  is the reward gained from the 

SP. As similar as that in [22-23], the earned reward is 

proportional to the contributed data size and denoted as 

/
se se se se

m m m m

m M

R f t f t
∈

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ , where R  is the reward to all the 

vehicular nodes. The cost of m  for sensing is se se se

m m m
c f t , 

where se

m
c  is the sensing cost of unit data. The cost of 

m  for transmission is /
tr se se

m m m
c f t r , where tr

c  is the 

communication cost of unit time for occupying the 

bandwidth. Therefore, the utility of m  is 

 ( ) .

se se tr

se se se sem m

m m m m mse se

m m m

m M

f t c
U f R c f t

f t r
∈

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠∑
 (4) 

We consider a set of sensor nodes N S⊂  recruited 

to perform sensing tasks, where M N S∪ =  and 

M N∩ =∅ . The sensor nodes are assumed to set the 

uniform sensing frequency sef , which ensures the 

collected data has time diversity and not redundant. 

Thus, the sensing strategy of sensor node n N∈  is its 

sensing time consumption se

n
t , and the collected data 

size is se se

n
f t . After taking all the photos, n  uploads 

the collected image data to a nearby AP. As similar as 

that of vehicular nodes, the channel transmission rate 

of n  is ( )( )2 0 0
log 1 /

r

n n n
r B P h d w

−

= + , where 
n
h  is 

the channel gain, and 
n

d  is the distance between n  and 

the AP. The time consumed for uploading data is 

/
tr se se

n n n
t f t r= . To ensure that the sensor node can 

finish the sensing task within the tolerant delay, we 

have se tr

n n
t t T+ ≤ . When multiple vehicular nodes and 

sensor nodes upload the sensing data simultaneously, 

they use different spectrum bands via OFDMA 

technology, same as IEEE standard 802.11p/D3.0 for 

vehicular networks [24-25]. There is no mutual 

interference among different spectrum bands. The 

profit of n  is the reward attained from the SP. 

Different from the vehicular nodes, the sensor nodes 

are administrated by the government and have no 

competition for the reward. The reward received by n  

is denoted as se se

n n m
p f t , where 

n
p  is the price offered 

by the SP for unit data. The cost of n  for sensing is 
se se se

n n
c f t  and the cost for transmission is /

tr se se

n n n
c f t r . 

Each sensor node has its own working duties, such as 

traffic monitoring. During the period of occupation by 

the SP for sensing, the sensor nodes have the risk of 

disturbing their own work and causing economic loss. 

The risk is denoted as ( )
2

se

n n
w t  , where 

n
w  is a risk 

factor. Therefore, the utility of n  is 

 ( ) ( )
2

.

tr

se se se se se

n n n n n n n

n

c
U t p c f t w t

r

⎛ ⎞
= − − −⎜ ⎟
⎝ ⎠

 (5) 

The profit of the SP is its expected sensing 

satisfaction at all the nodes. The sensing qualities of 

vehicular nodes and sensor nodes are different based 

on their spatial coverage and motion blur. Therefore, 

the sensing satisfaction function in Eqn. (2) can be 

rewritten as 

 

     ,

se se

se se se m m

m m m m

m M m

se se

se se se n n

n n n

n N n

f t
Q q f t T t

r

f t
q f t T t

r

δ

δ

∈

∈

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠

⎛ ⎞
+ − −⎜ ⎟

⎝ ⎠

∑

∑

 (6) 

where 
m
q  and 

n
q  are the sensing quality of each 

vehicular node and each static node, respectively. The 

cost of the SP is the paid reward. Therefore, the utility 

of the SP is 



1508 Journal of Internet Technology Volume 21 (2020) No.5 

 

 ( )0
, ,

se se

n n

n N

U R Q R p f t
∈

= − −∑p  (7) 

where { }1
, ,

N
p p=p �  with entry 

n
p  denotes the price 

that the SP offers to n . 

4.3 Game Formulation 

A Stackelberg game is a strategic game which 

consists of a leader and multiple followers competing 

with each other [22-23]. The leader chooses its strategy 

first, and the followers decide their strategies 

subsequently [26]. Here the problem is how the SP 

assigns the sensing tasks and the rewards to maximize 

its sensing satisfaction. We formulate the problem as a 

three-party Stackelberg game, where the SP is the 

leader while the vehicular and the sensor nodes are two 

groups of followers. 

Under the Stackelberg game formulation, the 

sensing strategy of m  is se

m
f , which depends on R . 

Each vehicular node has to determine its optimal *se

m
f  

given R  and the sensing strategies of the other 

vehicular nodes. Mathematically, the problem can be 

written as Problem 1: 

 

( )

max

max

s.t.C1:0 min , 1

se

m

se

m m
f

se

m m m m se

m

U f

T
f f v r

t
β

⎧ ⎫⎛ ⎞⎪ ⎪
≤ ≤ = −⎨ ⎬⎜ ⎟

⎪ ⎪⎝ ⎠⎩ ⎭

 (8) 

where max

m
f  in C1 is the maximum sensing frequency, 

which ensures the spatial-temporal diversity of 

collected data and completing task within the tolerant 

latency. 

In the proposed game, the sensing strategy of n  is 
se

n
t , which depends on 

n
p . Each sensor node has to 

decide its optimal *se

n
t  given 

n
p . Mathematically, the 

problem can be written as Problem 2: 

 

( )

max

max

s.t.C2:0 ,

se

n

se

n n
t

se n

n n se

n

U t

r T
t t

f r
≤ ≤ =

+

 (9) 

where max

n
t  in C2 is the maximum sensing time 

ensuring the task can be accomplished within the 

tolerant latency. 

Clearly, the SP can command the total collected data 

size by controlling R  and 
n
p . However, setting high 

reward and price also increases the operating cost of 

the SP. Therefore, the SP needs to find the optimal *

R  

and *

p  to maximize its utility. Mathematically, the 

problem can be written as Problem 3: 

 

( )0
,

max ,

s.t.C3: .

R

se se se se

m m n

m M n N

U R

f t f t D
∈ ∈

+ =∑ ∑
p

p

 (10) 

C3 ensures the assigned tasks collect enough data. 

Problem 1, Problem2, and Problem 3 together form 

the three-party Stackelberg game. The objective of this 

game is to find a Stackelberg Equilibrium (SE) point 

from which the SP (leader), the vehicular nodes 

(followers), and the sensor nodes (followers) have no 

motivation to deviate.  

Definition 3 (Stackelberg Equilibrium): Let *se

m
f  be 

the solution for Problem 1, *se

n
t  be the solution for 

Problem 2, and ( )* *

,R p  be the solution for Problem 3. 

The point ( )* *

, , ,R
se* se*

p f t  is an SE for the proposed 

three-party Stackelberg game if, for any ( ), , ,R
se se

p f t , 

the following conditions are satisfied: 

 

( ) ( )

( ) ( )

( ) ( )

* *

0 0

* * *

* * *

, , , , , , ,

, , , ,

, , , ,

se se

m m m m

se se

n n n n n n

U R U R

U f R U f R m

U t p U t p n

≥

≥ ∀

≥ ∀

se* se* se* se*
p f t p f t

 (11) 

where se

f  with entry se

m
f  denotes the sensing 

frequency that vehicular node m  chooses, and se

t  with 

entry se

n
t  denotes the sensing time that sensor node n  

determines. 

The vehicular nodes compete with each other. Thus, 

a non-cooperative subgame is formulated among the 

vehicular nodes. There may exist a Nash Equilibrium 

(NE) point where anyone cannot enhance its utility by 

changing its strategy unilaterally.  

Definition 4 (Nash Equilibrium): Let ( )* *

,

se se

m m
f

−

f  be 

the solution for Problem 1. The point ( )* *

,

se se

m m
f

−

f  is a 

NE for the non-cooperative subgame if, for any 

( )*,

se se

m m
f

−

f , the following conditions are satisfied: 

 ( ) ( )* * *

, , , .

se se se se

m m m m m m
U f U f m

− −

≥ ∀f f  (12) 

5 Game Analysis 

In this section, the backward induction method is 

used to analyze the game and find the NE and the SE.  

5.1 Subgame Nash Equilibrium 

We analyze the existence and uniqueness of the NE. 

Theorem 1: A Nash equilibrium exists in the subgame 

among vehicular nodes. 

Proof: The strategy space of each vehicular node is 

defined to be max

0,
m
f⎡ ⎤⎣ ⎦ , which is a non-empty, convex, 
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compact subset of the Euclidean space. From Eqn. (4), 

m
U  is continuous in max

0,
m
f⎡ ⎤⎣ ⎦ . We take the first and 

second derivatives of 
m

U  with respect to se

m
f  and get 

 

{ }

( )
{ }

\

2

2

2
\

32

,

2

0.

se se se

m j j tr
j M m se sem

m mse

m mse se

m m

m M

se se se

m j j

j M mm

se

m se se

m m

m M

Rt f t
U c

c t
f r

f t

R t f t
U

f
f t

∈

∈

∈

∈

⎛ ⎞∂
= − +⎜ ⎟

∂ ⎛ ⎞ ⎝ ⎠
⎜ ⎟
⎝ ⎠

−
∂

= <
∂ ⎛ ⎞

⎜ ⎟
⎝ ⎠

∑

∑

∑

∑

 (13) 

m
U  is strictly concave with respect to se

m
f . 

Therefore, the Nash equilibrium exists. The proof is 

now completed. 

Lemma 1: The best response function of vehicular 

node m  is 

( )

( )

2
max

*

2

2
max

max

0,

,

,

m m

se

m m m m
se m m

m m mse se

m m m m

se

m m m m

m

m

R c a

c a f tRa a
f c a R

a t t a

c a f t
f R

a

⎧
⎪

<⎪
⎪

+⎪
= − ≤ <⎨
⎪
⎪

+⎪
≥⎪

⎩

 (14) 

where 
{ }\

se se

m j j

j M m

a f t
∈

= ∑  and /
se tr

m m m
c c c r= + . 

Proof: Eqn. (13) implies that the first derivative of 
m

U  

strictly decreases on se

m
f . Let 

 

( )
max

0

2
max

lim ,

lim .

se

m

se

m m

se
sem m

m mse
f

m m

se
sem m m

m mse
sef f

m
m m m

U Rt
c t

f a

U Rt a
c t

f a f t

→

→

∂
= −

∂

∂
= −

∂ +

 (15) 

We consider the best response strategy *se

m
f  to 

maximize 
m

U  in three cases. In case 1 that 
m m m

R c a≤ , 

we have 
0

lim 0.
se

m

m

se
f

m

U

f→

∂
<

∂
 In means that 

m
U  is a 

decreasing function with respect to se

m
f , and the best 

response strategy is *

0
se

m
f = . In case 2 that 

( )
2

max

,

se

m m m m

m

c a f t
R

a

+

≥  we have 
max

lim 0.
se

m m

m

se
f f

m

U

f→

∂
≥

∂
 In 

means that 
m

U  is an increasing function with respect to 
se

m
f , and the best response strategy is * maxse

m m
f f= . In 

case 3 that 
( )

2
max

,

se

m m m m

m m

m

c a f t
c a R

a

+

≤ <  we have 

0

lim 0
se

m

m

se
f

m

U

f→

∂
≥

∂
 and 

max

lim 0
se

m m

m

se
f f

m

U

f→

∂
<

∂
. It means that 

m
U  

firstly increases and then decreases with respect to se

m
f . 

Thus 
m

U  is a strictly concave function with respect to 

.

se

m
f  By solving 0,m

se

m

U

f

∂
=

∂
 we obtain *

2

se m m

m se se

m m m

Ra a
f

a t t
− . 

The proof is now completed. 

Theorem 2: The uniqueness of the Nash equilibrium 

in the non-cooperative subgame is guaranteed if the 

following condition 

 ( )2 1
m m

m M

c c M

∈

> −∑  (16) 

is satisfied. M  is the number of vehicular nodes. 

Proof: From Theorem 1, we know that there exists a 

NE in the subgame. Given R  and sensing strategies 
*se

m−
f  of other vehicular nodes, the best response 

function of m  is defined as ( )*

B ,
se se

m m
f R

−

= f , which is 

given in Eqn. (14). The uniqueness of the NE can be 

proved by showing that the best response function is 

the standard function, which needs to satisfy the 

following conditions [26]. 

Positivity: ( )B , 0
se

m
R

−

>f ; 

Monotonicity: For all se

m−
f  and se

m−

′f , if se se

m m− −

′≥f f , then 

( ) ( )B , B ,
se se

m m
R R

− −

′≥f f ; 

Scalability: For all 1µ > , ( ) ( )B , B ,
se se

m m
R Rµ µ

− −

≥f f . 

Firstly, for the positivity, under the condition in (16), 

we can get (from lemma 1) 
{ }\ 4

se se

j j

j M m m m

R R
f t

c c
∈

< <∑  

and conclude that 
{ } { }\ \

se se se se

j j j j

j M m j M mm

R
f t f t

c
∈ ∈

<∑ ∑ . 

Thus, we have 

 
{ } { }\ \

1
0,

se se se se

j j j jse
j M m j M mm m

R
f t f t

t c
∈ ∈

⎛ ⎞
⎜ ⎟− >
⎜ ⎟
⎝ ⎠

∑ ∑  (17) 

which satisfies the positivity condition. Secondly, 

taking the first derivative of ( )B ,
se

m
R

−

f  with respect to 

se

j
f , { }\j M m∈ , we have 

 
( )

{ }\

B , 1
1 .

2

se se
m j se se

j jse se
j M mj m m

R t R
f t

f t c

−

∈

⎛ ⎞∂
⎜ ⎟= −
⎜ ⎟∂ ⎝ ⎠

∑
f

 (18) 

Under the condition 
{ }\

,
4

se se

j j

j M m m

R
f t

c
∈

<∑  we have 
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{ }\

1
1 0

2

se se

j j

j M mm

R
f t

c
∈

− >∑ . Thus, when se se

m m− −

′≥f f , we 

have ( ) ( )B , B , .
se se

m m
R R

− −

′≥f f  The monotonicity is 

proved. Finally, for 1µ > , we have 

( ) ( ) { }\

B , B , .

se se

j j

j M mse se

m m se

m m

R f t

R R
t c

µ µ
µ µ

∈

− −

−

− =

∑
f f (19) 

Thus, ( ) ( )B , B ,
se se

m m
R Rµ µ

− −

≥f f  is always satisfied 

for 1µ > . The scalability is proved. The best response 

function meets the three conditions and is a standard 

function. The NE is unique. The proof is now 

completed. 

Theorem 3: For the non-cooperative subgame among 

the vehicular nodes, the unique Nash equilibrium for 

vehicular node m  has a closed-form expression give 

by 

 
( ) ( )

*

1 1
1 ,

se

m mse

m m m

m M m M

R M M
f c

t c c
∈ ∈

⎛ ⎞
− −⎜ ⎟= −⎜ ⎟

⎜ ⎟
⎝ ⎠

∑ ∑
  (20) 

when the condition in (16) holds. 

Proof: Based on Eqn. (14), we have  

 
{ }

2

\

.

se se se sem

j j m m

j M m m M

c
f t f t

R
∈ ∈

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑   (21) 

Then we calculate the summation of this expression 

for all vehicular nodes and get 

 
( )1

.
se se

m m

m M m

m M

R M
f t

c
∈

∈

−

=∑
∑

  (22) 

Substituting Eqn. (22) into Eqn. (21), we have 

 
( ) ( )

2

1 1
,

se se m

m m

m m

m M m M

R M R Mc
f t

c R c
∈ ∈

⎛ ⎞
− −⎜ ⎟

− = ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑
  (23) 

which can be rewritten as Eqn. (20). The proof is now 

completed. 

Lemma 2: Under the condition in Eqn. (16), the 

condition 

 
{ }\ 4

se se

j j

j M m m

R
f t

c
∈

<∑   (24) 

is satisfied. 

Proof: Based on Eqn. (21) and Eqn. (22), we have 

 
{ }

2

\

1
.

se se

j j m

j M m m

m M

M
f t Rc

c
∈

∈

⎛ ⎞
−⎜ ⎟= ⎜ ⎟

⎜ ⎟
⎝ ⎠

∑
∑

  (25) 

Based on (16), we have 
1 1

2
m m

m M

M

c c

∈

−

<

∑
, and thus 

conclude that 
{ }\ 4

se se

j j

j M m m

R
f t

c
∈

<∑ . It means that if (16) 

holds, the condition in (24) is satisfied. The proof is 

now completed. 

Generally, we can get the NE by utilizing the best 

response dynamics [26]. Problem 1 is solved and we 

analyze the SE in the following. 

5.2 Stackelberg Equilibrium 

Firstly, we analyze the best response of a sensor 

node. The strategy space of each sensor node is defined 

to be max

0,
n
t⎡ ⎤⎣ ⎦ , which is a non-empty, convex, compact 

subset of the Euclidean space. From Eqn. (5), 
n

U  is 

continuous in max

0,
n
t⎡ ⎤⎣ ⎦ . Let /

se tr

n m n
c c c r= + , we 

calculate the first and second derivatives of 
n

U  with 

respect to se

n
t  and get 

 
2

2

2 ,

2 0.

sen

n n n nse

n

n

nse

n

U
p c w t

t

U
w

t

∂
= − −

∂

∂
= − <

∂

  (26) 

n
U  is strictly concave. By using 0

n

se

n

U

t

∂
=

∂
, we obtain 

 * max

max max

0,

, 2
2

, 2

n n

se n n

n n n n n n

n

n n n n n

p c

p c
t c p w t c

w

t p w t c

⎧ <
⎪

−⎪
= ≤ < +⎨
⎪
⎪ ≥ +⎩

  (27) 

Given 
n
p , Eqn. (27) is the solution for Problem 2. 

We now study the best strategy of the SP. By 

substituting *se

m
f  and *se

n
t  into the objective function of 

Problem 3, which leads to Problem 3a: 

( )
( )

{ }

2 2

0
,

2

max

max

max

\

max max

max

s.t.C4: 1
2

    C5:0 arg max

    C6: 2

n n n n
R

n N n N

se

n n

m

m M n N n

se

m m m

m M

se
m

j j

j M m

n n n n n n

U aR bR e p g p z

f p c
R h c h D

w

c f t

R R
f t

c p p w t c

∈ ∈

∈ ∈

∈

∈

= − + − −

−
− + =

⎛ ⎞
⎜ ⎟
⎝ ⎠≤ ≤ =

≤ ≤ = +

∑ ∑

∑ ∑

∑

∑

p

  (28) 
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where 
1

m

m M

M
h

c

∈

−

=

∑
, ( )( )1 1

se

m m m

m M

a q h T t c hδ

∈

= − − −∑ , 

( )
2

2

1 ,m

m

m M m

q h
b c h

r

δ

∈

= −∑  
2

se

n n n

n

n n n

q f c u c
e T

w w q

δ
δ
⎛ ⎞

= + +⎜ ⎟
⎝ ⎠

, 

1 ,
2 2

se

n

n

n n

g uf
g

w w

δ⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 ,

2 2

se

n n n

n N n n

q f c c u
z T

w w

δ

∈

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑  

1 /
se

n
u f r= + . C4 ensures that the assigned sensing 

tasks collect enough amount of data. C5 and C6 limit 

the ranges of R  and 
n
p , respectively. The proof is as 

follows. Based on Eqn. (27), optimal price *

n
p  is 

bounded by 
n
c  and max

n
p . This is because that when 

n n
p c= , sensor node n  will not carry out the sensing 

task. When max

n n
p p= , n  will sense data at maximum 

sensing time. Offering a price less than 
n
c  or larger 

than max

n
p  will not increase the SP’s profit, but will 

enhance the SP’s cost. Based on Eqn. (14), * maxse

m m
f f=  

when 
( )

2
max

.

se

m m m m

m

c a f t
R

a

+

≥  If 
max

,R R=  each vehicular 

node will sense data at its maximum sensing frequency. 

Offering a reward larger than max

R  will not enhance 

the SP’s profit, but will increase the SP’s cost. Then 

we analyze the best response of the SP. 

Lemma 3: The optimized strategies *

R  and *

p  of the 

SP is unique. 

Proof: The strategy spaces of the SP for R  and 
n
p  are 

defined to be max

0,R⎡ ⎤⎣ ⎦  and max

,
n n
c p⎡ ⎤⎣ ⎦ , respectively. 

Each strategy space is a non-empty, convex, compact 

subset of the Euclidean space. From Eqn. (28), 
0

U  is 

continuous with respect to R  and 
n
p  in the strategy 

spaces. We take the second derivatives of Eqn. (28) 

with respect to R  and 
n
p  respectively, and get 

0
2 0

U
b

R

∂
= − <

∂
, 0

2 0
n

n

U
g

p

∂
= − <

∂
. We can observe that 

all the constraints are linear. So, Problem 3a is a 

convex problem with multiple variables. The SP has 

the unique optimized strategies *

R  and *

p , which can 

be directly found out by using the existing typical 

convex optimal algorithms (e.g., dual decomposition 

algorithm [27]). 

Theorem 4: There exists a unique Stackelberg 

equilibrium in the proposed three-party game. 

Proof: With given reward R , each vehicular node acts 

as a follower and always chooses a unique best 

response *se

m
f  to reach the NE among all the vehicular 

nodes. Given price 
n
p , each sensor node acts as a 

follower and always has its unique best response *se

n
t  

due to the concave character of the utility function 
n

U . 

No matter what strategy the SP chooses, each vehicular 

node, as well as each sensor node, always has its 

unique best response. Based on Lemma 3, given the 

strategy chosen by each sensing node, the utility 

function of the SP is strictly concave with respect to R  

and 
n
p , respectively. Hence, the SP would be able to 

find a unique *

R  and a unique *

p  to maximize its 

utility. The condition (11) is satisfied. Therefore, there 

exists a unique SE. The proof is now completed. 

We note that it is able to solve the task assignment 

problem in a centralized fashion if the SP has global 

information, such as se

m
c , se

n
c , and 

n
w . However, in 

order to protect the privacy of each vehicular node and 

each sensor node, we design a distributed algorithm, 

where the optimization can be performed by the three 

parties without the need for any private information. In 

the proposed algorithm, wireless communication is 

adopted between nodes and APs, and APs 

communicate with each other by wire connection. In 

each round, the SP offers reward and prices to the 

nodes via APs. Each sensor node chooses its strategy 

according to the offer price. Each vehicular node 

decides its strategy based on the offered reward and the 

strategies from other vehicular nodes. The process 

iterates until enough sensing data would be collected. 

 

6 Resource Allocation for Inference  

In this section, we study the resource allocation 

problem. The problem focuses on how the SP allocates 

the computation resources of the edge server to 

minimize the delay of getting inference results. The 

problem is nonconvex and nonsmooth, and we propose 

an iteration algorithm to find a locally optimized 

solution. 
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6.1 Problem Formulation 

When carrying out the sensing task, each node has 

its sensing data size se se

s s s
x f t=  and time consumption 

se tr

s s s
t t t= + . When receiving the uploaded data, the SP 

utilizes the computation resource of the edge server for 

executing inference. We define the inference based on 

the data uploaded by node s  as inference task s . The 

inference tasks are executed with a parallel computing 

manner. In order to shorten the latency of inference 

execution, the SP needs to allocate the computation 

resources to the inference tasks optimally. 

Following [28], we model the computation recourse, 

i.e., the number of cycles, needed for inference task s  

as ,
s
xα  where 0α >  is the factor depends on 

computation complexity of the deep learning model for 

inference. The computation recourse allocated to 

inference task s  is denoted as in

s
f , which implies 

CPU’s computational speed. Thus, the time consumed 

for inference execution is /
in

s s
x fα . The total time 

consumed to carry out sensing task s and 

corresponding inference task is /
in

s s s
t x fα+ . Since the 

inference tasks are executed with a parallel computing 

manner, the time consumed to obtain all the inference 

results is { }max /
in

s s s
t x fα+ , s S∀ ∈ . Following [28], 

we model the power consumption of CPU as ( )
3

in

s
fε , 

where ε  is a coefficient which depends on chip 

architecture. As in

s
f  is cycles per second, the energy 

consumption per cycle is ( )
2

in

s
fε . Thus, the energy 

consumption for inference task s  is ( )
2

in

s s
x fεα . The 

problem focuses on how the SP allocates the 

computation resources of the edge server to minimize 

the delay of obtaining all the inference results. 

Meanwhile, the stringent requirement for energy 

consumption needs to be satisfied. Mathematically, the 

problem can be written as Problem 4: 

 

( )
2

max

min max

s.t.C7:

    C8:

    C9:0

in

s

s in
s

s

in

s

s S

in

s s

s S

in

s

x
t

f

f F

x f E

f F

α

εα

∈

∈

⎧ ⎫
+⎨ ⎬

⎩ ⎭

≤

≤

< <

∑

∑

f

  (29) 

C7 constrains the total amount of the computation 

resources in the edge server. C8 reflects the energy 

constraint. C9 specifies the domain of computation 

resource allocated to inference task s . Due to the 

nonconvexity and nonsmooth of objective function, P4 

is a nonconvex and nonsmooth problem. 

6.2 Locally Optimal Solution 

Lemma 4: In the optimal solution *in
f  for Problem 4, 

the following condition 

 1 2

1 2* * *

1 2

S

Sin in in

S

xx x
t t t

f f f

αα α

+ = + = = +�   (30) 

is satisfied, which means that all the inference results 

are obtained at the same delay. 

Proof: Suppose that the condition is not satisfied, 

which means that for the optimal solution *in
f , there 

exists at least one inference task s  finished at the 

maximum delay. To minimize the maximum delay, the 

SP has to allocate more computation resource in

s
f  to 

the inference task, which violates the given optimal 

solution *in

s
f . The proof is now completed. 

We propose a suboptimal algorithm to find a locally 

optimal solution without learning process. Based on 

Lemma 4, we introduce a new variable λ  to rewrite 

the original Problem 4 as Problem 4a: 

 

min

s.t.C7,C8,C9

    C10:

in

s

s in

s

x
t

f

λ

α
λ+ =

f

  (31) 

Given any λ , there exists a unique in
f  to satisfy 

C10. If in
f  satisfies C7, C8, C9, Problem 4a is feasible 

for ( ),

in
λ f . Therefore, we could solve Problem 4a by 

Algorithm 2. Specifically, we first give a feasible 

solution ( ),

in
λ f , then we decrease λ  with iteration. 

This process is continued until the solution does not 

satisfy the constraints. Algorithm 2 yields a non-

increasing objective, which is bounded by a value 

larger than zero and converges to the stationary point. 
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7 Numerical Results 

We evaluate the performance of the proposed task 

assignment scheme and resource allocation scheme by 

extensive simulations. Vehicular nodes’ behavior is 

formulated on a real dataset from San Francisco 

Yellow Cabs [29], which includes moving traces of 

536 urban taxis over one month. We randomly take a 

metropolitan area of 5KM 5KM×  in the map of the 

dataset for observation. We randomly distribute 10 

target objects near the roads, and each has 4 effective 

angles. Sensor nodes are deployed along the road based 

on two types of distributions: even distribution and 

uneven distribution. We set that the cameras of all 

nodes have the same field-of-view 45
s

ϕ =

�  and 

effective range 50
s

d m=  [19]. We consider that the 

collected data is used for image classification, which 

can support the vehicular services. Taking parking 

navigation service as example, the image data is used 

for identifying whether a parking space is occupied. 

We consider the model similar with the face 

recognition model in [30], where the data size is 

420KB and the total number of CPU cycles is 

1000Megacycles. Thus, 2 mega cycle/KBα = . The 

computation resource of the edge server is F=16GHz. 

Similar setting is made in [31]. The other parameters 

are set according to Table 1, which is similar to the 

parameters set in [24, 28]. 

Table 1. Parametet setting in the simulation 

Parameter Setting 

A vehicular node: v
m
, t

m
, q

m
 [11.1, 16.7]m/s, [120, 240]s, 

[10, 13] 

A sensor node: f
n
, q

n
, w

n
 0.1MB/s, [4, 6], [0.001, 

0.005] 

Communication parameters 

B, P, h, N0, r 

20MHz, 1W, 10-3W, 10-9W, 

2.5 

Cost parameters Cse, Ctr 0.1RMB/MB, 0.1RMB/s 

The edge server F, α, E
max

, ε 16 GHz, 2 mega cycle/KB, 

1J, 10-26 

 

7.1 Performance Evaluation of Task 

Assignment 

Figure 2 shows the utility of the SP 
0

U  with respect 

to reward R  and average price p . Without the 

constraint of required data size D , 
0

U is a convex 

function with respect to R  and p . With the constraint 

100MD = , R  and p  are linear relations, which is the 

plane in the figure. The unique SE is on the tangent 

line of the plane and the surface. No matter what D  is, 

there exists a unique SE. 

 

Figure 2. 
0

U  with respect to R  and p  

Considering the case of parking navigation service, 

an image of unoccupied parking space is generally 

valid for no more than 10 minutes. Here we set the 

tolerant delay 480T s= , the number of vehicular 

nodes 20M = , the number of sensor nodes 10N = . 

We compare the performance of our proposed task 

assignment scheme used for hybrid sensor network 

(HSN), pure VCN, and pure WSN. We also compare 

the performance of the centralized scheme and the 

distributed scheme. With the centralized scheme, the 

SP is available to know the private information of each 

vehicular node and each sensor node, such as se

m
c , se

n
c , 

n
w . As shown in Figure 3, the utility of the SP by 

using the distributed scheme reduces only 0.02% than 

that by using the centralized scheme. The SP gets 

higher utility by using HSN than by using pure VCN 

and pure WSN. It is because that HSN provides the 

improved sensing quality and reduced delay of 

obtaining the data. The SP achieves growing utility 

with respect to increasing D  when using HSN or pure 

VCN. But when the SP utilizes pure WSN, the SP’s 

utility firstly increases then decreases with respect to 

growing D . It is because the sensor nodes consume 

more time for collecting the required data and thus 

diminish the sensing satisfaction. 

 

Figure 3. 
0

U  comparison using different task 

assignment schemes 
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Figure 4 shows with more required data, the SP 

prefers to obtain more data from the vehicular nodes. It 

is because the vehicular nodes increase the sensing 

frequency to get more data. Meanwhile, the sensor 

nodes need to increase sensing time to obtain more 

data, which also increases the delay. The SP has higher 

sensing satisfaction at the vehicular nodes than that at 

the sensor nodes. With the higher tolerant delay T , the 

SP also chooses to get more data from the vehicular 

nodes. It is because that the vehicular nodes can save 

more time for finishing the assigned sensing tasks and 

gain higher sensing satisfaction. 

 

Figure 4. Percentage of collected data by vehiular 

node with respect to D  

Figure 5 indicates that the utility of the SP increases 

when the number of vehicular nodes M  increases. It is 

because that the growing number of vehicular nodes 

promote their internal competition and also enhance 

their sensing quality. The sensing satisfaction increases 

accordingly. Similarly, the increasing number of sensor 

nodes N  lead to the enhancement of SP’s utility. The 

SP prefers to obtain more sensing data from vehicular 

nodes when the distribution of sensor nodes is uneven. 

It is because that the sensor nodes of even distribution 

have higher coverage ability than that of uneven 

distribution. 

 

Figure 5. 
0

U  with respect to M  

Figure 6 shows that with more vehicular nodes, the 

SP prefers to get more data from the vehicular nodes. It 

is because increasing M  enhances the sensing quality 

of the vehicular nodes. Meanwhile, the competition 

among the vehicular nodes reduces the incentive cost 

of the SP. Similarly, the SP chooses to obtain more 

data from the sensor nodes if more sensor nodes. The 

SP get less utility when the distribution of sensor nodes 

is uneven. It is because the sensor nodes of uneven 

distribution have lower coverage ability than that of 

even distribution. 

 

Figure 6. Percentage of collected data by vehiular 

node with respect to M  

7.2 Performance Evaluation of Resource 

Allocation 

We set 480sT = , 100MD = , 20M = , 10N = . 

Based on the simulation, the maximum delay of a node 

performing the assigned sensing task is 305s. We 

compare the performance of our proposed iteration 

algorithm and the greedy algorithm for resource 

allocation. The greedy algorithm allocates more 

amount of computation resource in

s
f  to the inference 

task of maximum delay in each iteration. As shown in 

Figure 7, the convergence rate of our proposed 

algorithm is 4.2 times faster than that of the greedy 

algorithm. 

 

Figure 7. Convergence of the algorithms 

Figure 8 shows the delay of getting the inference 

results with respect to M . With the increasing M , the 

delay decreases. It is because that with the higher M , 

the nodes can finish the sensing tasks earlier. The delay 
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increases with the growing required data size D . It is 

because that when D  grows, the nodes need to collect 

more data and consume more time. 

 

Figure 8. Latency of inference execution with respect 

to M  

8 Conclusion 

In this paper, we propose a new system to facilitate 

AI applications of connected vehicles. The system 

utilizes hybrid sensor network to increase the sensing 

quality and exploits edge servers to reduce the service 

delay. We formulate a three-party game to design the 

task assignment scheme. In the SE, the SP, the 

vehicular nodes, and the sensor nodes reach a deal with 

satisfying pricing strategies and sensing strategies. We 

also present a resource allocation scheme to help the 

SP for minimizing the delay of performing AI 

inference. Numerical results demonstrate that our 

proposed task assignment scheme is effective for 

massive data collection and our proposed resource 

allocation scheme is efficient for fast inference 

execution. 
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