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Abstract 

In the context of Industry 4.0, real-time fine-grained 

visualization and fault prediction of intelligent 

manufacturing equipment is critical for adopting optimal 

maintenance strategies to reduce total production cost and 

avoid unnecessary downtime and even casualties. Based 

on the analysis of the electrocardiogram (ECG) principle 

of intelligent manufacturing equipment, this paper 

profoundly studies the key technologies of the Real-time 

Visualization System (RVS) of intelligent manufacturing 

equipment operating state. Firstly, the operating state of 

intelligent manufacturing equipment is the standard to 

determine the health condition of the equipment, so we 

define the tolerance value to make real-time judgment on 

the operating state of the equipment. Secondly, aiming at 

the outliers in the original data, an improved Rheinda 

criterion is proposed to eliminate the gross errors in the 

data. Thirdly, the Baseline value of the intelligent 

manufacturing equipment operation is the premise of 

judging the equipment running condition. The correlation 

analysis is carried out on the processed data, the Baseline 

model is established and the model robustness is tested. 

Finally, the robot of vehicle side welding line is taken as 

an application case to verify the reliability and 

effectiveness of the system, which provides a new 

method for monitoring the real-time fine-grained 

operation and active operation and maintenance of 

intelligent manufacturing equipment. 

Keywords: Real-time Visualization System, Intelligent 

manufacturing equipment, Fine-grained 

visualization, Fault diagnosis 

1 Introduction 

The digitization of the production process is of great 

significance for improving the industrial ecosystem. 

Industrial Internet of Things (IIOT) utilizes smart 

sensors and actuators to enhance manufacturing and 

industrial processes. Modern factory production 

automotive welding lines have a large number of 

intelligent manufacturing equipment. How to manage 

this equipment and ensure them to perform production 

tasks safely and reliably is one of the key issues that 

managers must solve. The advanced state monitoring 

technology assures timely and accurate acquisition 

of the information on intelligent manufacturing 

equipment operation state, and further fault diagnosis 

[1], providing an important technical method to ensure 

safe and reliable operation of manufacturing equipment. 

Intelligent manufacturing equipment is based on the 

integration of advanced manufacturing technology, 

information technology, artificial intelligence technology, 

and other innovative technologies, which reflects the 

development characteristics of intelligent, digital, and 

networked manufacturing [2-4]. In the context of smart 

manufacturing, intelligent manufacturing systems need 

to meet the requirements of mixed-flow manufacturing 

mode with small batches, individualization and 

customization [5]. At present, the operational data 

collection, analysis and visualization of intelligent 

manufacturing equipment can effectively reflect the 

health status of intelligent manufacturing equipment, 

provide a basis for active operation and maintenance of 

mixed-flow manufacturing equipment points, and 

promote the development of a new-generation of 

intelligent manufacturing system. 

In the era of IIOT, production equipment used in the 

modern automobile assembly industry is developing in 

the direction of high precision, high efficiency and 

intelligence. Even a slight performance degradation or 

security risk in smart manufacturing equipment can 

have serious consequences. Condition monitoring is an 

important part of modern equipment maintenance. In 

general, the performance of a machine or a component 

will gradually degrade before it fails. Therefore, 

advanced analysis and prediction techniques can be 

used to detect and correct incorrectness before a 

machine or component failure occurs. In recent years, 
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scholars at home and abroad have studied intelligent 

manufacturing equipment from different perspective, 

and made a lot of science research achievements. In the 

study of intelligent manufacturing equipment operation 

visualization, Liu et al. [6] realized a plug-and-play 

sensor platform for popularization and monitoring of 

traditional industrial machines using wireless sensors 

and open source edge devices and software. Few works 

like [7] proposed a real-time monitoring system based 

on the production process was. This system had good 

configurability and scalability and could monitor the 

process information of various devices in real time. A 

virtual reality system to study the establishment of 3D 

models and dynamic monitoring of equipment was 

proposed in [8]. A general-purpose, three-dimensional 

text file-driven visualization system was developed in 

[9], which can display the products of the construction 

process and evolution in three-dimensional (3D). Since 

the decision-making process of traditional mechanical 

equipment fault diagnosis method is not visible, Sand 

et al. [10] proposed a new 3D visualization technology 

to analyze and evaluate the assembly process and 

quality measurement data in the actuator manufacturing 

process, revealing the correlation between process, 

energy and quality data to identify events that affect 

the quality of the final product. A visual monitoring 

system based on the Internet of Things (IoT) to address 

the dynamic visualization monitoring problem of a 

discrete manufacturing process was proposed in [11]. 

Ren et al. [12] proposed a model-driven interactive 

information visualization development method - Dasiy, 

and studied its core technology. In [13], the author 

proposed a visual classification technique for 

production and logistics simulation, and outlined how 

to use this classification technique as the basis for 

decision support to select an appropriate visualization 

technology for a specific target group. A visualization 

method that can monitor the production schedule and 

equipment status in real time was proposed in [14], 

which makes production process transparent and 

facilitating production improvement. 

In the study of intelligent manufacturing equipment 

fault diagnosis, Xia et al. [15] proposed a new two-

stage method based on deep neural network to estimate 

the remaining service life of the bearing automatically. 

In [16], the author designed a new framework for 

online monitoring and diagnosis of large-scale systems 

optimized for plant performance. Aiming at the 

problem that data fusion method in the traditional fault 

diagnosis was not accurate enough, and it was difficult 

to distinguish the fault type with the dimensionless 

index, a data fusion method based on mutual 

dimensionless was proposed in [17]. In [18-19], a fault 

diagnosis method based on the localization of a 

vibration signal wavelet packet was proposed. Authors 

[20] proposed and implemented a big data solution for 

proactive preventive maintenance in manufacturing 

environment. In [21], the author integrated the 

proposed intelligent system into the machine’s 

architecture to detect the occurrence of equipment 

failures and generate corrective actions.  

The emergence of the IoT has increased industrial 

production efficiency and reduced product costs and 

resource consumption. Since the traditional fault 

diagnosis method based on signal processing and 

feature extraction and classifier is no longer applicable 

to the “big data” in the IoT, Ning et al. [22] designed 

an intelligent diagnostic architecture for industrial IoT 

devices, and based on this basis, proposed a fault 

diagnosis method applicable to IIOT. Cao et al. [23] 

introduced an image transformation preprocessing 

method for converting time-domain signals of fault 

diagnosis into two-dimensional images, and a 

convolutional neural network (CNN)-based adversarial 

network structure was designed for faults classification. 

Most of the above-mentioned equipment monitoring 

and fault diagnosis methods are coarse-grained and 

depend on expert system. In this paper, inspired by 

human ECG technology, a sub-process of the device 

operation status in the workshop production process is 

carefully monitored using the device ECG technology 

to realize a fine-grained visualization of the current 

equipment operation state. Also, it is determined 

whether various functions of the plant equipment are 

operating normally, is there a risk of downtime, and 

should certain special actuators (such as cylinders, 

motors, sensors, and the like.) be replaced. Based on 

the above characteristics, a real-time, accurate and 

efficient monitoring and control of the manufacturing 

process are realized.  

The contributions of this paper are as follows. (1) 

Inspired by human ECG technology, in the aspect of 

monitoring the operation status and active operation 

and maintenance of intelligent manufacturing 

equipment, this paper deeply studies the core motor 

technology of intelligent manufacturing equipment and 

the key technology to realize the real-time visualization 

system of production process. (2) Data preprocessing is 

a basis for studying the key technologies of the RVS. 

The original data in the database is grouped according 

to the baseline value, and the distribution of each data 

group is analyzed. The improved Rheinda criterion is 

proposed, and outliers are detected by mathematical 

statistics. (3) Applying RVS to the body-in-white side 

welding line, a real-time fine-grained visualization of 

the welding robot operating conditions is used to 

demonstrate the reliability and effectiveness of the 

system. 

The framework of this paper is as follows: Section 2 

introduces the RVS and its architecture in detail. 

Section 3 studies the key issues of the RVS, including 

the data acquisition of intelligent manufacturing 

equipment operation status, the definition of 

manufacturing equipment working status, the processing 

of abnormal values of operation status data, baseline 

modeling and model test of intelligent manufacturing 
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equipment operation. Section 4 presents the white body 

side wall welding line which is used as an application 

case and provides the real-time fine-grained 

visualization of the welding robot operation status. 

Section 5 summarizes the conclusions and gives the 

guidelines for our future work. 

2 RVS Architecture 

Equipment ECG is inspired by human ECG 

technology, doctors use an electrocardiograph to detect 

the corresponding ECG. According to the ECG trends 

and changes, doctors can effectively determine whether 

the body organs are in their normal state and whether 

there is a risk of some disease. Similarly, there is an 

inherent machine ECG intended for intelligent 

manufacturing equipment state monitoring [24]. 

Through the accurate detection and real-time 

interpretation of this ECG, it can be judged whether the 

various functions of the equipment are running 

normally, whether there is a risk of downtime, and 

whether some special actuators (such as cylinders, 

motors, and sensors.) need to be replaced in time. The 

ECG of a smart manufacturing equipment displayed by 

the RVS is presented in Figure 1. 

 

Figure 1. The ECG of the smart manufacturing 

equipment displayed by the RVS 

The blue envelope in the Figure 1 denotes the action 

timing diagram of the device point. The duration of 

sub-actions of intelligent manufacturing equipment in 

each cycle is displayed in the form of a histogram and 

marked with green, yellow, orange or red, respectively 

representing good operation, gengeral, warning and 

failure of the equipent. The histograms are displayed in 

a sequential view in the ECG, represented a set of loop 

operations. The abscissa in the ECG indicates the order 

of device sub-actions, and the ordinate represents the 

duration of each sub-action. The orange event is the 

main reason for the elongated beat. When we solve the 

orange histogram, we can improve the working beat of 

the device. The red event indicates that the device is 

faulty or there is a problem with the data collection. In 

that case, the system issues a warning and needs to 

immediately check the related equipment to eliminate 

the fault and reduce the production loss. 

The architecture of the RVS is shown in Figure 2. 

The system is divided into physical layer, data 

transmission layer, functional business layer and user 

interface layer. In the physical layer, the device 

information acquisition module obtains the real-time 

status data of the workshop site, including the 

equipment status and processing parameters, the 

barcode system collects the completion information of 

the processing task and the status information of the 

work in process, the manufacturing execution system 

(MES) pushes production task instructions and 

logistics instructions in real time, thus forming a real-

time and efficient workshop production status 

information flow. The data transmission layer is 

responsible for information transfer and data storage. 

The information transmission is mainly based on 

Ethernet and Internet, and it combines technologies 

such as OPC UA (OPC Unified Architecture) to 

efficiently and securely transfer data in the production 

process to the functional business layer. In the 

functional business layer, the information visualization 

preprocessing module mainly completes the 

information visualization mapping, including the data 

link update module, the tree directory acceptance 

module, and the data analysis module. The production 

efficiency evaluation module mainly analyzes the 

theoretical production plan output by the MES system 

based on the information about field equipment status, 

work-in-process, and task completion progress, thus 

evaluating the production status and real-time 

scheduling optimization of production resources. The 

user interface layer is for enterprise managers, team 

leaders, operators, and so on. Users interact with the 

platform through browser, client and mobile terminals 

to monitor and manage the entire production process. 

 

Figure 2. The RVS architecture 
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Traditional equipment health monitoring techniques 

require the installation of additional sensors [25-30], 

and the monitoring status is coarse-grained [31]. This 

coarse-grained detection can identify a fault only after 

it has occurred, which means that no signs of device 

degradation are detected until a critical problem occurs. 

RVS retrieves the information on each device or 

operator level from the programmable logic controller 

(PLC) timely, saving a large number of sensor 

installations. In addition, the RVS displays various 

parameters of intelligent manufacturing equipment in a 

graphical form, visually displaying the operating 

conditions of the equipment, thus realizing the early 

warning function. 

3 RVS Key Technologies 

By monitoring the sub-processes of intelligent 

manufacturing equipment operation status, RVS can 

visualize its current running process state or historical 

data to determine whether the functional modules of 

intelligent manufacturing equipment are operating 

normally and whether there is a risk of downtime, 

some special executive functions (such as cylinders, 

motors, sensors, and others) need to be replaced in time.  

In this section, we study and analyze the real-time 

visualization system of automobile production process 

from four aspects: data acquisition of intelligent 

manufacturing equipment, definition of operating state 

of manufacturing equipment, data pre-processing and 

the establishment of Baseline model, and then 

profoundly analyze the ECG mechanism of intelligent 

manufacturing equipment. 

3.1 ECG Data Acquisition Based on OPC UA 

and SDN in IIOT Environment 

The data acquisition system mainly collects the 

intelligent manufacturing equipment data in real time, 

and this information realizes data exchange and 

information update through a serial interface. Industrial 

data related to the manufacturing line includes 

equipment status data, product data, process data, and 

other data, which includes periodic signals, real-time 

alarms, device logs, and the like. The assembly data 

received by each data collection terminal is stored in 

the database of the data acquisition system, and the 

enterprise manager can timely access the real-time 

assembly data of the assembly line site, so as to timely 

make corresponding task scheduling for the assembly 

plan. The OPC UA server is applied to the intelligent 

manufacturing equipment and connected to PLC. 

Using OPC UA technology, a unified data interface is 

built to process and transmit device status data through 

hypertext transport protocol (HTTP), so as to realize a 

high-speed and reliable acquisition of device detection 

data. In the C/S mode of OPC UA, the client can obtain 

information on similar devices in different places and 

automatically integrate the data provided by the OPC 

UA server.  

In RVS, PLC accesses and summarizes the data 

collected by each sensor as the OPC UA client, and 

provides the total operating data of the device to the 

data processing layer as the OPC UA server. The 

technical characteristics of software defined network 

(SDN) transfer control separation meet the 

requirements of cloud platform-based manufacturing 

data center server for centralized network control, and 

enhance the actual configurability and operational 

flexibility of the data center. The schematic diagram of 

the SDN interface [32] is displayed in Figure 3. 

 

Figure 3. The schematic diagram of the SDN 

(Software Defined Networks) interface 

Representational State Transfer (REST) is a style of 

distributed system architecture design. In the REST, 

the entire Web is treated as a set of resources, and the 

resources are identified by a uniform resource 

identifier (URI). The operation of the resources is 

implemented by a combination of the URI and HTTP 

protocol specified by the client. The cumbersome 

response process when accessing device resources 

reduces coupling with other distributed components, 

making the acquisition system addressable and 

connected. The RESTful interface is the interface 

between the controller and the upper application (APP). 

By using the RESTful standard syntax to represent 

resources uniformly to simplify the system architecture, 

which can realize the cross-platform data collection 

function independent of manufacturing equipment, and 

the standardized integration of manufacturing systems 

can be realized quickly. The Openflow interface is a 

chip-based interface protocol between the controller 

and the lower transponder [33]. The Open Flow 

protocol is based on TCP/IP protocol, which is used for 

the communication between the controller and the 

transponder. The controller can directly access and 

manipulate the forwarding plane network device 

through the Open Flow protocol, which not only 

reduces the complexity of the control plane, but also 
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increases the programmability and scalability of the 

network configuration. 

Figure 4 shows the RVS data acquisition 

architecture. The architecture is divided into three 

layers, namely the application layer, data layer, and 

mechanical layer. The mechanical layer denotes the 

device layer, and the data acquisition source includes 

PLC, distributed control system (DCS), control center, 

and the like. The middle layer is the data layer, and 

OPC UA is the general data acquisition module. Its 

main function is to build the full information model of 

the device on the manufacturing equipment, and 

support the embedded information transmission 

protocol (such as HTTP). The configured data 

acquisition can be realized through the confriguration 

of equipment controllers, field instrumentsand sensors. 

The top layer of the architecture is the data application 

layer, and the collected data can be distributed online 

real-time visual reports. 

 

Figure 4. Data acquisition architecture of the RVS 

The data acquisition system terminal is installed on 

each device of the assembly line, and then the network 

serial port structure is used to realize the information 

transmission between the data acquisition system and 

the data acquisition terminal of the assembly line. The 

collected real-time data is sent to the local area 

network of an enterprise, thereby realizing data 

exchange with the MES. The data collection node 

supports the RESTful web service protocol. On the one 

hand, the collected I/O information can be captured in 

real time for data development through polling process; 

on the other hand, the data stored in the database can 

be applied to the secondary development through the 

Restful protocol, or it can be integrated into the MES 

for production management. 

3.2 Intelligent Manufacturing Equipment 

Working Status Judgment 

The operation state of intelligent manufacturing 

equipment depends on its operation time. Taking the 

welding robot as an example, the measurement of the 

working time of a welding robot is related to the task 

and joint of the robot. Robot movement in three-

dimensional space requires not only the ability to track 

a specified pose, but also to be as smooth as possible, 

which can not only improve the quality of welding, 

spraying and other operations, but also prevent the 

impact of joints and mechanical parts caused by the 

discontinuous changes of the robot’s overall posture.  

The robot is programmed and experimented in the 

simulation software. Under the conditions of satisfying 

the requirements of welding speed, welding precision, 

and weld quality, and reasonable settings of the 

interference zone, the working time standard of the 

robot welding line robot station is obtained. 

 In the ECG of intelligent manufacturing equipment 

displayed by the RVS, the minimum value labeled as 

DurationMin of the green bar graph and the duration 

minimum labeled as DurationMax of the orange bar 

graph were found. By correlating the two columns of 

data and referring to methods in [34,35], we defined 

the tolerance ∇  as follows: 

 
/DuratioMax DurationMinϑ =

 (1) 

By a large amount of data analysis and engineering 

experience, when 1.05ϑ < , the intelligent manufacturing 

equipment is in good condition, and the corresponding 

action bar graph of the RVS displays as green (Good); 

when 1.05 1.15ϑ< ≤ , RVS action bar graph displays 

as a yellow (Watch); when 1.15 2.1ϑ< ≤ , RVS 

displays the sub-action bar graph as orange (Warning) 

and needs to check the portion displayed in orange; 

when 2.1ϑ > , the bar graph of the sub-action in the 

ECG displays as red (Abnormal value), indicates that 

the device is faulty or there is a problem related to data 

acquisition. In this case, system issues an alarm, and 

the staff needs to check the red event to address the 

cause immediately. During the running process of the 

equipment, the fine-grained action diagram displayed 

by RVS can be used to clearly understand the running 

condition of the device, saving time for troubleshooting 

problems. The definition of the operating state of 

intelligent manufacturing equipment is the key events 

shown in orange and red bars, which is essential to 

discover the occurrence law of key events and obtain 

the relationship model between the key events and 

equipment failures. 

3.3 Preprocessing of Intelligent Manufacturing 

Equipment Status Data 

Data preprocessing is to analyze the existence and 

causes of “dirty data” within the obtained data, and the 

theoretical methods are used to transform “dirty data” 

into “clean data” to meet the data quality standards and 

application requirements. The main tasks of data 

preprocessing include the processing of redundant data, 
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the processing of missing values and the detection and 

processing of outliers. Since the amount of missing 

data in our dataset is small, we delete records 

containing “#NAN#” and duplicate redundancy. 

Outliers affect the statistics results and statistical 

inferences to different degrees [36]. Some statistical 

methods are very sensitive to outliers, and individual 

outliers can result in large changes in statistics and 

statistical inference results, leading to unreasonable or 

even completely erroneous results [37]. The use of 

mathematical statistics to identify anomalous data is 

mainly based on the assumption of a small probability 

principle and the measurement error obeying the 

normal distribution. Common criteria for discriminating 

anomalous data include the Rheinda criterion, the 

Grubbs criterion, the Dixon criterion and the Schweiler 

criterion. 

The baseline of intelligent manufacturing equipment 

vary from one task to another, and the baselines have a 

large span. Therefore, before detecting outliers, we 

group the data in the database according to the 

Baseline, and then analyzed the distribution of each 

data group. The SPSS (statistical product and service 

solutions) test results show that the classification data 

belongs to the positive partial distribution. Therefore, 

the abnormal value detection is performed by using the 

mathematical statistics method, so as to avoid the 

problem that a normal value was detected as abnormal 

value or an abnormal value was detected as a normal 

value can be avoided. Since the data samples are 

sufficient and the number of selected data 

measurements is much greater than 50 times, the 

Rheinda criterion is selected to identify outliers in the 

raw data [38]. 

In the previous section, it was mentioned that when 

1.15 2.1ϑ< ≤ , the sub-action bar graph of the RVS 

was displayed as orange (Warning). The traditional 

rheinda criterion is to calculate the standard deviation 

of all the data in an array, and then determine an 

interval according to a certain probability. The error 

beyond this interval is the gross error, and the data 

containing this error should be eliminated. The 

improvement of the Rheinda criterion is that for 

1 2
( , , , )

n
Duration X X X… , the data was grouped based 

on Baseline value, the mean and standard deviation of 

each group should be subject to the ceiling of 

2.1*Baseline. That is, when calculating the average 

and standard deviation of each group, the value ≥  

2.1*Baseline shoud be excluded from this array. This 

will eliminate most of the coarse errors, making the 

data normally distributed and convenient for future 

research. Programming in Matlab [39], where 

ans = find (Duration(:) < 2.1*Baseline), the mean and 

standard deviation of the arithmetic of ans were 

calculated as ( )X mean ans= , ( )u std a= , respectively, 

and then the root mean square deviation was found by 

using the Bessel method as 2 1/ 2( / 1)
i
v nσ = Σ − . 

Assuming that 
i
v conformed to the positive distribution, 

i.e., the measurement column conformed to positive 

distribution, the modified Rheinda criterion was based 

on the following: 

| | 3 ,
i i

X X Xσ− >  denotes the gross error and 

should be abandoned,   (2) 

| | 3 ,
i i

X X Xσ− ≤  denotes the normal data and 

should be kept. 

According to mathematical statistics, when the 

Rheinda criterion is used to discriminate the outliers 

and when an error obeyes positive distribution, the 

occurrence probability of the observation data 

containing an error greater than 3σ is less than 0.003, 

that is, the occurrence probability is greater than one in 

more than 300 observations. When the Rheinda 

criterion is used for gross error rejection, the 

confidence is 95%, and the probability of abandonment 

is small. The proposed Rheinda criterion limits the 

calculation of the Duration standard deviation and the 

arithmetic mean to the range (0, 2.1*Baseline), 

excluding the coarse errors in the original data that do 

not meet the improved Rheinda criteria. The original 

data of Baseline 2 and the data processed by the 

outliers are tested, and the obtained results were shown 

in Figure 5.  

 

(a) Raw data containing 

the gross errors 

(b) The data after gross 

errors elimination by the 

improved Rheinda criteria 

Figure 5. 

The distribution diagram of the original data is 

presented in Figure 5(a), and the distribution of the 

abnormal data obtained by the modified Rheinda 

criterion is presented in Figure 5(b). The modified 

Rheinda criterion eliminates the coarse error that does 

not conform to the rule, verifies the rule validity, and 

facilitates future data analysis. 

3.4 Intelligent Manufacturing Equipment 

Action Duration Baseline Modeling 

Intelligent manufacturing equipment status warning 

plays an extremely important role in monitoring 

diagnostic technology to promote enterprises and 

development of predictive maintenance systems. 

Reliable warnings can not only ensure the equipment 

safety, but also reduce the cost of equipment state 
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monitoring diagnostics. A proper setting of the 

Baseline can improve the working efficiency of 

operators and ensure the safe and stable operation of 

industrial production processes.  

During an action cycle of a smart device, the device 

action map displayed by the RVS will display different 

colors when the device action exceeds the set threshold. 

The setting of the performance Baseline of intelligent 

manufacturing equipment needs to be obtained through 

a large number of mathematical statistics and 

engineering experience analysis. Inductive statistics are 

performed on the data after pre-processing, for instance, 

as for the 2nd weld of the BS10L station on the side 

wall welding line of the car, the logo completed by the 

2nd weld action is weld completed, and the weld 

completed in the database collected in a certain period 

of time is performed. Then, we find the minimum 

value of DurationMin in the green bar and the 

minimum duration DurationMax in the orange bar. Do 

the same process for other actions in the same loop. 

The data with dimensions of DurationMax, 

DurationMin, and Baseline is obtained. Our goal is to 

find out the relationship between Baseline, DurationMax, 

and DurationMin, that is, to accurately fit the Baseline 

using the values of DurationMax and DurationMin. 

The OPC UA server is directly connected to PLC, can 

obtain a large number of device motion data samples, 

which is beneficial to improve the accuracy of the 

Baseline model. 

The correlation analysis was conducted on the 

preprocessed data. Pearson correlation coefficient 

correlation test shows that in the triples DurationMax, 

DurationMin, and Baseline, the two dominant 

correlation coefficients are 0.18, 0.09 and 0.114, 

respectively, indicating that the three columns of data 

were almost irrelevant. The data of the dimensions of 

DurationMax, DurationMin and Baseline are 

nonlinearly fitted, and the DurationMax and 

DurationMin are the independent variables, and the 

dependent variable is the nonlinear function 

relationship of Baseline, which is the mathematical 

model of Baseline. The fitting results are shown in 

Figure 6. 

 

Figure 6. The fitting results of the Baseline model 

The Baseline model was defined by: 

 

2

00 10 20 11

2 3 2

02 30 21

2 3 4

12 03 40

( , ) * * * *

* * * *

* * * *

f x y p p y p x p x y

p y p x p x y

p x y p y p y

= + + + +

+ + +

+ +

 (3) 

The values of the model parameters are given in 

Table 1. 

Table 1. Model parameters  

Par. label p00 p10 p20 p11 p02 

Par. value -0.51 0.72 0.08 -0.4 0.31 

Par. label p30 p21 p12 p03 p40 

Par. value -0.004 0.027 -0.04 4.9e-05 -0.0004 

 

The goodness of fit test was performed on the 

Baseline model. The statistic for measuring the 

goodness of fit is the determinable coefficient R2, 

which is also called the coefficient of determination. 

The closer R2 is to 1, the better the fit of the regression 

line to the observation is, and vice versa. At R
2
 = 

0.9999, test results indicate that the model could 

explain almost all dependent variables. After adjusting 

the degrees of freedom, the residual squared adjusted 

R
2
 = 0.9997, which is close to 1, indicating that the 

model fitting effect is good. 

4 Application of RVS to Automobile 

Siding Production Line 

The side wall is a part of the body-in-white 

composition and plays an important role in the overall 

bending rigidity of the body. The Side Frame Line 

completes the combination of the inner and outer 

panels of the side wall. On the side wall assembly line, 

there are inter-station transfer mechanisms, welding 

fixtures, robot spot welding systems, gluing equipment, 

automatic conveying machinery, and others [40]. To 

ensure the synchronization of the production efficiency 

of the whole vehicle, the left and right sides are welded 

on the same production line. Figure 7 shows the layout 

of the left assembly line and the same on the right. 

 

Figure 7. Side body welding line linear technology 

layout 

There are five assembly welding stations (BS10L 

station, BS20L station, BS30L station, BS40L station, 

and BS50L station) and one lower line station on the 

left sideline (BS06L station). The robot station is used 

as an example to demonstrate the application of the 



1486 Journal of Internet Technology Volume 21 (2020) No.5 

RVS to the side welding line of the automobile. Each 

time the robot complets an action, the corresponding 

action completion logo is written to the controller. The 

PLC read the robot’s logo and its corresponding time 

from the controller and stores the data in the database. 

The RVS reads the data from the database and display 

it in a fine-grained manner. 

The real-time visualization of the BS10L and BS20L 

robot stations movements are respectively presented in 

Figure 8 and Figure 9. From the figure, it can be seen 

that the longest sub-action of the BS10L station are 

Clear to Enter 1, Clear to Enter 2, Clear to Enter 3, and 

1st Weld. The most time-consuming action of the 

BS20L station is Cycle Time. Addressing the orange 

part in Figure 8 to Figure 9 could improve the 

production cycle of the production line. The real-time 

fine-grained visualization effect of BS30L, BS40L, and 

BS50L stations is the same as the above two stations, 

so they are not presented here due to the space reasons. 

 

Figure 8. A visual map of the BS10L station 

 

Figure 9. A visual map of the BS20L station 

Through RVS, it is found that the beat bottleneck is 

mainly concentrated in the time of waiting for the EMS 

in BS10L, BS20L, BS40L, and BS50L stations. The 

results of the visual analysis of the five stations of the 

side welding line are given in Table 2. 

Table 2. Equipment action statistics 

Station 

(L) 

Beat 

minimum (s) 

Beat mean 

(s) 

Metronome 

standard 

deviation 

Effective 

count 

BS10 131.9 172.5 31.4 1716 

BS20 120.4 165.7 32.6 1731 

BS30 109.6 114.2 17.9 1731 

BS40 121.4 166.3 31.1 1728 

BS50 128.5 139.3 17.6 1726 

Wait for EMS - 53.45 94.66 1673 

After data analysis, it was found that the minimum 

value of the beat was ideal, but the average value was 

too large. Such results were caused by the following: 

①  robot grabbing parts; ②  welding stability; ③ 

manual upper parts; ④ single cylinder stability; ⑤

cylinder group synchronization. The possible reasons 

for the instability of the robot catching and dropping 

parts are as follows: the scraping pin when the 

workpiece was placed down, the interference zone 

setting was unreasonable, the gripper chuck opening 

and closing was not smooth, and the slow response of 

the sensor on the robot after the workplace was placed. 

When the robot did not enter the weld in synchronism, 

there might be an interference zone waiting which was 

inconsistent with expectation. For the cylinders of the 

same road gas, it can be adjusted appropriately 

according to the actual situation to synchronize the 

movement of all cylinders. The optimization results are 

given in Table 3. 

Table 3. Optimization results 

Station 

(L) 

Ori. 

beat 

aver(s) 

Adjust the 

pick & 

place (s) 

Upper part 

optimization 

(s) 

Estimated 

beat (s) 

BS10 172.5 0.5 10 149.8 

BS20 165.7 1.5 0 148.4 

BS30 114.2 1 0 111.2 

BS40 166.3 1.5 0 148.9 

BS50 139.3 1 0 136.3 

Wait for MES 53.4 0 0 28.5 

 

Simulation was performed on the optimized 

production line by Flexsim, without adding any 

hardware points, it is expected that the entire line of 

Cycle would be upgraded from 172.46 s to 149.76 s, 

with an improvement rate of 13%; thus, the reliability 

and effectiveness of the RVS are verified. 

By marking the key events which are displayed in 

orange and red by the RVS, we can get an evolution of 

the warning component and identify the source of the 

problem. Figure 10 shows the performance degradation 

trend of certain intelligent manufacturing equipment 

displayed by the ECG of the device during a certain 

period of time. The sub-actions at Baseline=18 are 

selected to be displayed in it. As for the other sub-

actions, the fractal theory [41] showed that the 

performance attenuation law of intelligent 

manufacturing equipment was the same as that at 

Baseline=18. In Figure 10, the law of the occurrence of 

key events can be observed, namely, it can be seen that 

it was possible to carry out effective pre-judgment 

before the equipment fails and maintain the equipment 

in advance, thereby reducing industrial losses. 



Key Technologies of Real-time Visualization System for Intelligent Manufacturing Equipment Operating State under IIOT Environment 1487 

 

 

Figure 10. Equipment manufacturing ECG showing 

the performance degradation trend of intelligent 

manufacturing equipment 

5 Conclusion 

In this paper, key issues of active operation and 

maintenance of intelligent manufacturing equipment, 

that is how to carry out the real-time fine-grained 

monitoring of intelligent manufacturing equipment 

operation status and implement fault diagnosis to 

reduce industrial losses and even casualties caused by 

equipment failure, are studied. We introduce the 

architecture of RVS, compared RVS with traditional 

monitoring system, and point out the advantages of 

RVS. Taking the robot station on the side wall welding 

line of the body-in-white as an example, RVS 

visualizes 6 stations on the left circumvention welding 

line with fine granularity. The orange and red events in 

the ECG of the device need our close attention. The 

orange event is the main reason for the extension of the 

production line beat. Therefore, by addressing the 

orange event, the production cycle of the car sideline 

can be significantly improved. In addition, red events 

indicate equipment failure or data acquisition problems, 

so the relevant equipment needs to be inspected 

immediately to eliminate faults and reduce industrial 

losses. The fine-grained visualization of the robot 

station verifies the reliability and effectiveness of the 

real-time visualization system in automotive 

production processes. 

The next step is to find out the rules of key events, 

determine the relationship model between key events 

and equipment faults, predict the potential faults of 

intelligent manufacturing equipment with artificial 

intelligence technology, and characterize the 

performance degradation process of manufacturing 

equipment. In this way, preventive maintenance of 

intelligent manufacturing equipment is carried out to 

reduce the failure rate of intelligent manufacturing 

equipment and promote the development of the new 

generation of intelligent manufacturing system.  
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