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Abstract 

This paper analyzes the time-consuming analysis of 

each cascading network module (PNet module, RNet 

module and ONet module) in MTCNN, and finds that the 

time-consuming of PNet module is the highest (about 

70%). According to the results of time-consuming 

analysis, two improved methods are proposed, one is to 

reduce the number of candidate face frames in input PNet 

network and the other is to reduce the number of output 

face frames in PNet network. Then, aiming at the 

problem that MTCNN algorithm has low detection speed 

in high-resolution video and cannot meet real-time 

requirements, a series of optimization such as adjusting 

the minnisize parameter and PNet threshold in 

combination with the low computing power application 

scenarios of the channel bayonet. It is verified in the 

FDDB face test set and practical application, the 

detection speed has increased by 70.1% when the 

detection rate has dropped by only 3.5%, and the 

improved scheme has achieved good results. Compared 

with the performance of OpenCV-VJ and SURF face 

detection algorithms on FDDB, the optimized MTCNN 

algorithm has better performance. Through the analysis 

of the detection results of the specific FDDB data set 

pictures, it is found that the undetected face conditions do 

not meet the actual application scenarios in this article, 

which proves that the optimized algorithm has excellent 

performance in actual applications. The test results reflect 

that the reproduced and optimized MTCNN face 

detection algorithm has good robustness to face pose 

changes, and fully meets the requirements of face 

recognition systems in low computing power scenarios 

such as channel bayonet. 

Keywords: MTCNN, Low computing power scenarios, 

Face detection, PNet time-consuming 

optimization 

1 Introduction 

A mature face recognition system usually consists of 

image acquisition, image preprocessing, face detection, 

face tracking, face alignment, feature extraction and 

comparison. Among the more critical steps are face 

detection, tracking and face feature extraction. In 

recent years, face recognition systems have been 

widely used in channel bayonet systems such as smart 

access control and identity verification in high-speed 

railway stations. These channel bayonet face 

recognition systems have all or most of the face image 

collection, face detection, face alignment, face quality 

detection, face feature extraction, face tracking and 

other steps. However, some of these systems require a 

high degree of cooperation from people, some are 

complex to implement, and some have high 

requirements for hardware such as computing devices. 

On the one hand, the computing power of embedded 

systems is not enough to support face detection, 

tracking and face feature pairing based on deep 

learning. Real-time requirements, some channel 

bayonet face recognition systems require people to 

deliberately approach the camera to cooperate with the 

system for verification, discarding the natural and 

convenient advantages of face recognition. The 

specific target scenario studied in this paper is a single-

channel bayonet (single face close range), and the goal 

is to be able to quickly compare and recognize faces 

within 1-4 meters. The goal of the research is to apply 

a faster and better performance algorithm to the 

channel bayonet face recognition system with low 

computing power, and to improve the operating speed 

of the face recognition system through the improved 

face detection algorithm. It can be mounted on low-end 

devices with poor computing performance while 

maintaining certain detection and recognition performance.  

Aiming at the above problems, this paper combines 

the channel bayonet application scenarios, through 

research and improve face detection algorithms, face 

tracking auxiliary algorithms, and introduce face 

selection algorithms in the face recognition module to 

satisfy the real-time and convenience requirements of 

the channel bayonet face recognition system. 
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After investigating and studying the existing face 

recognition system and analyzing its advantages and 

disadvantages, this paper improves the key 

technologies of the face recognition system. Firstly, 

using Python language to reproduce the MTCNN face 

detection algorithm on the TensorFlow deep learning 

framework, and it is optimized and improved by 

combining with the actual application scene of channel 

bayonet in this paper. The fusion of the improved 

speed-up MTCNN algorithm and the supervised 

Kalman filter human tracking algorithm proposed in 

this paper accelerates the system operation speed. 

According to the face selection algorithm proposed in 

this paper, a face selection module with multiple 

purposes is designed. Then according to the 

comparison and analysis of various face recognition 

algorithms, the FaceNet face recognition algorithm is 

selected, and the face recognition module is designed 

in combination with the face selection algorithm 

proposed in this paper. Finally, the above research is 

applied to the channel bayonet face recognition system, 

and the system design and implementation are 

completed. The chapter arrangement and corresponding 

main work of this paper are as follows. 

The first part is the introduction and the second part 

is overseas and domestic research status, which 

explains the research background and significance of 

face recognition system; This paper analyzes the 

development status of face detection in the system at 

home and abroad, and compares and analyzes various 

algorithms, paving the way and explaining the reasons 

for the selection of various algorithms in the following 

research work. The third part introduces the common 

data set of face detection. The fourth part and the fifth 

part choose MTCNN algorithm as the face detection 

algorithm in the system according to the investigation 

and experimental comparison of face detection algorithm. 

Since there is no engineering implementation of 

MTCNN algorithm based on Python language and 

TensorFlow framework, it is reproduced and trained 

after an in-depth understanding of its convolutional 

neural network structure and detailed training methods. 

Afterwards, the time-consuming analysis of all levels 

of the network in MTCNN was carried out, and it was 

found that the PNet module took the highest proportion 

of time, and the corresponding speed-up suggestions 

were put forward. Then, in view of the low detection 

speed of the MTCNN algorithm in high-resolution 

videos, it cannot meet the real-time problem, combined 

with the specific application scenarios of the channel 

bayonet face recognition in this paper, a series of 

optimizations such as minnisize adjustment and PNet 

threshold adjustment are performed. Finally, according 

to the detection rate on the FDDB face test set and the 

actual detection speed in 720p high-resolution video, it 

can be seen that the detection speed increases by 

70.1% when the detection rate drops by 3.5%. By 

analyzing the detection results of specific FDDB data 

set images, it is found that the undetected face 

conditions do not meet the practical application 

scenarios in this paper, which proves the excellent 

performance of the optimized algorithm in practical 

application. Finally, the face detection module was 

designed and implemented, and actual engineering 

tests were carried out; the test results reflect the 

specific data that the reproduced and tuned MTCNN 

face detection algorithm has good robustness to face 

pose changes and fully meet the requirements of the 

channel bayonet face recognition system. The sixth 

part is a summary and outlook. It summarizes the main 

research content of this paper, analyzes the affirmative 

part of the research work and the problems that need to 

be studied, and put forward the research direction for 

future work. 

2 Overseas and Domestic Research Status 

Face detection algorithms are divided into 

knowledge-based, feature-based, statistics-based, and 

deep learning-based algorithms. Face detection 

algorithms based on deep learning have achieved 

remarkable success in recent years [1]. This article 

only discusses the part of Convolutional Neural 

Networks (Convolutional Neural Networks, this 

chapter is referred to as “CNN”) in deep learning. In 

the task of face detection, CNN has been successfully 

introduced as a face feature extractor. The face 

detection algorithm based on CNN has strong 

robustness to influencing factors such as face pose 

changes, illumination changes, blur and so on [2]. 

CNN-based face detection algorithms can be roughly 

divided into cascade-based, classification-based and 

logistic regression-based algorithms. 

The proposed face detection algorithm based on 

cascaded CNN is inspired by the VJ framework. The 

face detection algorithm based on the VJ framework is 

fast, and the face detection algorithm based on CNN 

has high accuracy. A natural idea is to combine the 

advantages of these two algorithms. The face detection 

algorithm based on cascaded CNN puts CNN into the 

cascaded structure to improve the detection accuracy 

and speed [3]. A feedback Radial Basis Function 

neural network (FRBF) is proposed to estimate the 

missing attribute values for incomplete data. The error 

between the actual output value of RBF neural network 

and the expected value is fed back to the input layer [4], 

then a feedback RBF neural network is constructed. In 

addition to using multiple CNN networks to cascade, 

different network layers in the same network are also 

used to form a cascade structure [5]; The first few 

layers detect faces that are easier to detect, and the 

latter layers detect faces that are difficult to detect. The 

most famous MTCNN [6] (Multi-task convolutional 

neural network, multi-task convolutional neural 

network) face detection algorithm integrates three 

CNNs into one CNN model, and integrates face 
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detection and face alignment tasks into one framework 

for implementation [7]. Combining different methods 

of MTCNN has different detection advantages in 

different situations [8]. For example, Zhang [9] et al. 

used the multi-task convolutional neural network 

(MTCNN) under the CaffeOnACL framework for face 

detection, and adopted local binary mode (LBP) As a 

face recognition algorithm, it is fast and accurate. 

Sabbir Ejaz [10], guo [11] and wang [12] et al. 

proposed a feasible method, which includes first 

detecting the facial area and using multi-task cascaded 

convolutional neural network (MTCNN) to solve the 

face occlusion Then use the Google FaceNet 

embedding model to perform facial feature extraction. 

Finally, the classification task has been performed by a 

support vector machine (SVM), which has excellent 

performance in masked face recognition. Lu [13] et al. 

proposed that a multi-task cascaded convolutional 

network (MTCNN) was used to detect all faces in the 

image, and then, by using a deep convolutional neural 

network and performing transfer learning from a pre-

trained VGGFace model, the effect was good. Its 

overall complexity is well controlled and can be 

applied in some industrial scenarios [14].For example, 

Yi [15]et al. proposed the MTCNN-based facial 

occlusion recognition research in railway face-scrolling 

scenes, and Antony [16]and deng [17]et al. proposed 

the MTCNN-based driver fatigue detection. 

A series of CNN face detection algorithms based on 

the classification of candidate regions is one of the 

most important branches in the current face detection 

technology field. This type of algorithm first generates 

many candidate face frames, and then uses the CNN 

network to determine whether there are faces in the 

candidate frames. The most famous algorithms in this 

series are R-CNN [18], SPP-NET [19], Fast R-CNN 

[20] and Faster R-CNN [21], etc. The detection process 

becomes more and more simple, and the detection 

speed has also been steadily improved. HyperFace [22] 

face detection algorithm uses a selective search 

algorithm to generate candidate frames, and the 

subsequent Faster-CNN algorithm uses a region 

proposal network to generate candidate frames. Face-

RCNN [23] is a face detection algorithm designed 

based on the Faster-RCNN network and the central 

loss function. CMS-RCNN [24] face detection network 

introduces the contextual reasoning of the face into the 

Faster-RCNN face detection algorithm, thereby 

reducing the detection error rate. J. J. Li [25] achieves 

state-of-the-art results over prior arts on both the 

WIDER FACE dataset and the Face Detection Dataset 

and Benchmark. SSH [26] face detection algorithm 

introduces the candidate region suggestion network in 

the Faster-RCNN network into the VGG network 

structure, and at the same time, it also achieves good 

detection effect by removing its full connection layer. 

The CNN target detection algorithm based on 

logistic regression is represented by YOLO [27] and 

SSD [28]. After training on the face set, it can 

complete the classification of the face and the 

regression of the face bounding box in the face 

detection at one time. The subsequent FaceBoxes [29] 

were inspired by the face region extraction network in 

Fast R-CNN and the multi-scale mechanism in SSD, 

and proposed a neural network that only contains fully 

convolution and can be trained end-to-end. Y. T. 

Chang [30] compared several algorithms of defect 

detections using a data set, which comprises 20 

categories of objects and 50 images in each category. 

Cai et al. proposed the MS-CNN [31] face detection 

network. In order to find faces of different sizes, face 

detection is performed on multiple levels of the 

network. Wang et al. proposed the FAN [32] face 

detection algorithm based on the RetinaNetnetwork 

structure, J. S. Li [33] using the attention mechanism to 

enhance the network to extract facial features. The 

SRN [34] face detection network is also improved 

based on the RetinaNet network structure, adding 

binary classification and regression tasks, and fine-

tuning the position of the anchor node on the high-level 

feature map. Pyramid [35] face detection network uses 

background information to improve the performance of 

face detection. 

In summary, on the FDDB data set, the three types 

of algorithms based on deep face detection are shown 

in Table 1. 

Table 1. Comparison of speed and accuracy of three 

types of methods 

 Speed Precision 
Representative 

algorithm 

Based on 

cascade 
Fastest Lower 

Cascade CNN [4] 

MTCNN [6] 

Based on 

classification 
Slower Higher ICS [7] 

Based on  

logistic  

regression 

Faster Higher 

Faster R-CNN [21] 

Face R-CNN [23] 

Face R-FCN [25] 

 

3 Common Data Sets for Face Detection 

3.1 FDDB Data Set 

FDDB data set has a total of 2845 images. These 

images contain 5,171 faces. They are one of the most 

authoritative face-detection evaluation datasets in the 

world. FDDB face test data set contains both black and 

white and color images, and faces contain different 

pose, occlusion, resolution and other factors that affect 

the detection rate, as shown in Figure 1. In addition, 

this data set is large, so it is more challenging to 

evaluate the face detection algorithm on this data set. 

Moreover, the author provides a prescribed procedure 

to evaluate the results, so it is fair to evaluate the 

detection algorithm on this data. 
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Figure 1. FDDB data set 

The image resolution of the FDDB data set is small. 

The resolution of all images is less than 450×450, and 

the smallest marked face size is 20×20. The relevant 

training methods include ten fold cross validation 

based on FFDB data set and unlimited training based 

on isolated FDDB data set. However, due to the small 

number of FDDB data sets, most of them use unlimited 

training. The detection result has two methods: discrete 

ROC and continuous ROC. Discrete ROC focuses on 

whether the intersection ratio between the detection 

frame and the labeled frame is greater than 0.5, while 

continuous ROC focuses on whether the intersection 

ratio between the detection frame and the labeled 

frame is close to 1. Since most of the methods of 

unlimited training are used, the detector will be 

affected by the training set, so discrete ROC is more 

reliable. 

3.2 WIDER FACE Data Set 

The WIDER FACE data set contains 32,203 images, 

including 393,703 faces marked on them. Faces 

contain various scale changes, posture changes and 

other factors affecting the detection, which can be used 

as a training set or a test set. As shown in Figure 2. 

 

Figure 2. WIDER FACE data set 

The resolution of the images in the data set is 

generally high, and the width of all images are scaled 

to a size of 1024 in length and width; the data set is all 

color images, and the minimum labeled face size is 10×

10. The whole data set is divided into training set, 

validation set and test set according to the ratio of 4:1:5, 

but the true label value of the test set is not public, and 

the test results need to be submitted to the official for 

comparison, which is more fair. 

4 Comparison and Analysis of Related 

Algorithms 

Traditional face detection algorithms use classifiers 

for classification after extracting artificially designed 

features by human. Classical algorithms include 

Adaboost algorithm based on Harr features, SVM 

algorithm based on HOG features, and so on. These 

classical algorithms tend to lose one way or the other 

in detecting speed and accuracy. In recent years, with 

the development of deep learning, the use of 

convolutional neural networks in face detection 

technology improves accuracy while also taking into 

account the detection speed. 

In the two-stage detection network, Faster R-CNN 

completes the detection task through classification and 

regression and has a high mAP (mean Average 

Precision), but its own RPN (Region Proposal Network) 

network generates too much RoI (Region of Interest), 

resulting in a large amount of calculation and slow 

detection speed. Face R-CNN is a representative 

algorithm of two-step Face detection. It is an improved 

face detection algorithm based on the Faster R-CNN 

framework. Its characteristics are high accuracy but 

poor speed. In a one-stage detection network, the more 

effective solutions include YOLO and SSD. They both 

complete the target detection through regression. 

YOLO and SSD are adjusted after the target box is 

manually defined by the anchor node, which reduces 

the number of RoI and accelerates the speed of the 

algorithm; among them, YOLO can fully meet the 

industrial real-time requirements, but when 

transplanted into the face detection algorithm, the 

detection effect of small targets such as faces is poor. 

In practical applications, most faces occupy a small 

proportion in the image, so they cannot be detected. 

Although the accuracy of the SSD algorithm is good, 

too many model parameters require the support of 

high-performance graphics card, which cannot meet 

the real-time requirements of products on devices with 

only CPU or embedded devices. 

Among the cascaded CNN detection algorithms, 

MTCNN has good robustness to face posture changes 

and occlusion, and it is one of the few cascaded CNN 

face detectors that can be applied in industrial scenes. 

In practical application, although its own cascade 

structure limits the detection speed in the case of 

multiple faces, it can still meet the actual requirements 

of product detection performance and real-time 

performance in the common channel bayonet scene (1 

to 3 people) after industrial level optimization. 

Considering that the MTCNN algorithm is a multi-task 
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network structure, it can not only complete the face 

detection function, but also do the task of marking the 

key points of the face. A network completes two tasks 

and provides key points for the face alignment task. 

The integration of the recognition system will be 

higher and the running speed will be faster, so the 

MTCNN algorithm is selected as the face detection 

algorithm in this system. 

4.1 MTCNN Algorithm 

The idea of the MTCNN algorithm is to scale the 

image to different sizes as the input of each network 

layer, and then using the idea of rough to fine to sort 

three independent network which detection accuracy 

from poor to good. Then a cascade structure consisting 

of three convolutional neural networks is constructed 

to accomplish the multi-task detection target. MTCNN 

algorithm can complete three tasks at the same time: 

face detection, face border regression and face feature 

point positioning. Because the three tasks require 

different training labels, different loss functions are 

required. 

The face detection task uses the two-class cross-

entropy loss function: 

 ( ) ( ) ( )( )( )det det det

i
log 1 1 log .

i i i i
L y p y p= − + − −  (1) 

Among them, p
i
represents the possibility that the 

sample x
i
 is a human face, and det

y
i

 is 0 or 1. 

The bounding box regression and key point tasks use 

the L2 loss function: 

 
det

det det 2

i 2
|| || .

ii
L y y

∧

= −  (2) 

Where 
det

y
i

∧

 is the regression box of network output 

and det
y
i

 is the true value. 

 2

i 2
|| || .

landmark

landmark landmark

ii
L y y

∧

= −  (3) 

Among them, y
landmark

i

∧

 is the key point coordinates 

of the network output, and 
i

landmark
L  is the true value. 

The total loss function is: 

 
{ }1 det, ,

loss .
N j j

j i ii j bbox landmark
Lα β

= ∈

=∑ ∑  (4) 

Where jα  represents the importance of different 

tasks, 
i

jβ  is an indicator of sample type, and 
i

j
L  has 

different loss functions in different training samples. 

MTCNN puts forward the idea of online hard 

sample training. In the training process, the hard 

samples that are difficult to train are selected online to 

accelerate the convergence of the network. The 

processing method is to sort the batches of the current 

batch with forward propagation loss in each minibatch, 

and find out the top 70% difficult samples. Only 

difficult samples are used for training in back 

propagation. The MTCNN algorithm process is 

roughly that the image completes related tasks through 

three cascaded networks. 

The first is the data preprocessing stage. The 

MTCNN algorithm responds to face size changes by 

building an image pyramid, scaling the original image 

to different sizes through a certain scale factor, and 

building an image pyramid as the input data of the 

network cascade architecture. 

In the first stage, all images in the image pyramid 

are obtained through a shallow full convolutional 

neural network PNet to obtain the candidate face frame 

and the face frame regression (the face frame 

regression is used to correct the position of the 

candidate face frame), so as to realize the role of 

rapidly generating the candidate face frame. Then use 

the NMS (Non-Maximum Suppression, non-maximum 

suppression) algorithm to merge the candidate face 

frames with a high overlap rate. 

In the second stage, the candidate face frame 

generated in the first stage is used as the input of RNet; 

RNet is more complex than PNet in network structure, 

which can remove most of the wrong candidate face 

frame and then use the face frame regression vector to 

fine-tune the position of the candidate face frame. Then 

use the NMS algorithm to reduce the face frame. 

The process of the third stage and the second stage 

are similar, and both use the output of the previous 

stage as the input of this stage. Adjust the position of 

the face frame while removing the wrong candidate 

frame, and output the position coordinate information 

of the five face feature points. It’s just that the network 

structure of ONet is more complex than RNet, and the 

output results are more accurate. 

The network structure of MTCNN is shown in 

Figure 3. 

 

Figure 3. Network structure of MTCNN 
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4.2 Network Time-consuming Analysis 

The face detection algorithm is proposed to solve 

two major problems, one is to detect whether the image 

contains a face, and the other is how to extract the 

position information of the face. The process of most 

face detection algorithms can be divided into two parts. 

The first step is to find all candidate areas that may 

contain faces in the image, and the second step is to 

select the candidate regions containing the highest 

probability of faces from these candidate regions. The 

MTCNN algorithm uses PNet to find the candidate 

area of the face, and uses RNet and Onet to further 

select the face candidate area with the highest 

probability. Generally, this kind of algorithm will be 

outstanding in the detection rate, but the speed will not 

be too ideal. In the following, the time-consuming of 

MTCNN network at all levels will be analyzed one by 

one to determine the improved method. 

The average time consumption of PNet module, 

RNet module and ONet module was respectively 

calculated by sending 200 single-person face video 

frame images in each group into MTCNN face detector, 

as shown in Table 2. The PNet module, RNet module 

and ONet module here respectively include the 

preprocessing of input data, network operation and 

NMS algorithm, not just the process of model 

calculation [36]. 

Table 2. Time-consuming statistics of MTCNN after 

modifying parameters 

parameter settings 
PNet 

module/ms 

RNet 

module/ms 

ONet 

module/ms

Total 

time/ms 

Control group 120.2 39.0 18.4 177.6 

minisize40 42.1 12.7 4.7 59.5 

minisize60 27.1 12.7 4.2 44.0 

minisize80 19.8 11.1 4.5 35.4 

PNet threshold 0.5 47.3 17.4 9.1 73.8 

PNet threshold 0.7 37.7 11.0 4.5 53.2 

PNet threshold 0.8 33.7 10.1 4.2 48.1 

scale_factor0.6 24.1 11.0 4.4 39.4 

scale_factor0.5 19.1 13.1 4.9 37.1 

 

Among them, the control group parameters: the 

PNet threshold is 0.6, the minimum face size is 20, the 

pyramid scaling factor is 0.709, and the image 

resolution is 720p. In addition, the minisize parameter 

set for the PNet threshold change group and the 

scale_factor change group is 40, and the other 

parameters are the same as the control group. Timing 

method: use the cv2.getTickCount() function to time 

each module before and after running. The 

cv2.getTickCount() function here returns the clock 

cycle from the start of the program to the current code 

execution; for example, set the timing function before 

and after the PNet module
1
t = cv2.getTickCount() and 

2
t = cv2.getTickCount(), the module running time can 

be calculated by t=(
2 1
t t− )/cv2.getTickFrequency(), 

the function cv2.getTickFrequency() returns the 

number of clock cycles of the CPU in 1 second, so it 

can be timed in seconds. 

According to the data analysis in Table 1, it is 

concluded that the PNet module stage consumes the 

most time. However, when we analyze the three 

cascaded network structures in MTCNN, we can see 

that the complexity of the network models of PNet, 

RNet, and Onet increase sequentially, which means 

that their parameter quantities are also increased 

sequentially, and their running time should also 

increase sequentially. This is inconsistent with our 

experimental results. After careful analysis of the 

algorithm flow of MTCNN, it is found that in the data 

processing stage, the MTCNN algorithm adopted the 

image pyramid method to scale the original image with 

a coefficient of 0.709 in order to solve the problem of 

face scale change, and made the face in the image close 

to the image size (12×12) required by PNet training. 

The implementation method is to first reduce the 

original image by 12/minisize (minisize is the 

hyperparameter, that is, the smallest face size in the 

image, set to 20 in MTCNN), and then reduce it to a 

size close to 12×12 by the scale factor. As mentioned 

above, when the zoom factor is smaller and the 

minisize is larger, the fewer pyramid images are 

generated, and the image input into PNet will be 

relatively reduced. If the resolution of the original 

image is high, the data processing stage will be very 

time-consuming, and PNet will accept a lot of input 

images. In combination with actual scenes, the face 

size that needs to be recognized in the channel bayonet 

is often larger than 20×20. The minisize could be 

scaled up for high resolution images or the scaling 

factor could be lowered to reduce the amount of 

pyramid images and speed up the testing. 

The number of face frames output by the previous 

subconvolutional network will be reduced after being 

eliminated by the NMS; therefore, the number of face 

frames that the PNet module needs to process is the 

largest, followed by the RNet module, and the ONet 

module least. This is also the cause of the most time-

consuming part of the PNet module. Therefore, adjust 

the default settings of the network threshold [0.6, 0.7, 

0.7] to [0.7, 0.7, 0.7] and [0.8, 0.7, 0.7] and re-test. 

Combining the data in the table and the algorithm flow 

of each module, it can be analyzed that as the PNet 

threshold increases, the amount of data that the NMS 

algorithm needs to process is reduced, and the time 

consumption of the PNet module is reduced; and the 

number of pictures sent to the RNet module is reduced. 

The RNet module consumes less time. Therefore, in 

the subsequent testing stage, the network threshold can 

be appropriately increased to speed up the network 

operation [37]. 

In summary, the following conclusions can be drawn: 

(1) PNet module part consumes the most time, so in 

terms of speed improvement, it gives priority to 
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improve PNet module. (2) In the actual scene, the 

minisize (recognized minimum face size) can be 

adjusted to adapt to factors such as image quality and 

distance, which can speed up the operation of the face 

detector at the same time [38]. (3) The scaling factor 

and network threshold can be adjusted appropriately to 

speed up the running speed. 

Since the specific scene of the application of 

MTCNN face detection algorithm trained in this paper 

is the channel bayonet, such as the single channel 

bayonet of the railway station entrance examination 

bayonet, intelligent face recognition access control, etc., 

the detection personnel need to be close to the image 

collection equipment. The size of the face in the 

channel bayonet video frame is much higher than the 

20×20 resolution. In MTCNN, the relevant coefficient 

minisize can be adjusted according to the minimum 

face size in the image to be detected. According to the 

experimental data obtained from the time-consuming 

analysis part of the MTCNN algorithm in this article, 

the minisize could be adjusted from the original default 

parameter 20 to 40 under a single person face, and the 

number of detection frames increases, and the speed is 

increased significantly. Therefore, the solution adjusts 

the minimum face size to be detected to 40 × 40 

according to actual application scenarios. And on this 

basis, it analyzes the influence of further adjusting the 

network threshold on the detection rate and detection 

speed of the MTCNN algorithm. 

5 Experiment and Analysis 

5.1 Network Training 

Since the MTCNN algorithm does not have the 

corresponding official code, and most of the 

reproduction projects are built on the caffe deep 

learning platform, the deep learning platform chosen in 

this article is tensoflow. In this way, MTCNN needs to 

be duplicated first, and then the model can be improved 

based on it. Finally, the algorithm performance before 

and after the improvement can be compared on the 

same platform TensorFlow. 

In terms of project implementation, the software 

used and the environment built are: Anaconda, 

pycharm, py3.6, tensorflow1.8 and their dependent 

packages. The hardware used is: CPU i5-7300HQ 

2.5GHz, memory 16GB, GPU is GTX1050. 

When building network models of PNet, RNet and 

ONet, this paper selects the TF-Slim library in 

TensorFlow to implement. TF-slim is a lightweight 

deep learning library built into TensorFlow, making 

the process of testing, training and building models 

very simple. The convolutional layer, pooling layer, 

full connection layer and deep separable convolutional 

layer to be used in this paper can all be implemented 

by using the TF-Slim library. For example, the full 

connection layer can be realized using the slim.fully_ 

connected() library function, with the number of 

network input and output neurons indicated in 

parentheses. 

Then the corresponding function modules are built 

according to the algorithm flow and training process of 

MTCNN. The algorithm flow has been described in 

detail in Section 3.4, and it will not be repeated in this 

section. MTCNN is a three-stage cascade neural 

network, and the training process is divided into three 

steps to conduct separate training for PNet, RNet and 

ONet. Each network requires its own training set, and 

the output of the previous network is the training input 

of the current network. The training set of PNet uses 

12×12 pictures, which are obtained after fine-tuning up 

and down based on the actual label information of the 

face on the prepared data set. The image interception 

was divided into positive sample, negative sample, 

partial face sample and key point sample according to 

the numerical size of IoU(Intersection over Union, 

handover ratio), with a ratio of 1:1:3:1. The positive 

sample, negative sample and part of the face samples 

are randomly clipped. The maximum IoU value of 

cropped image and face frame is greater than 0.65 as 

positive samples, those with greater than 0.4 and less 

than 0.65 are partial face images, and those with less 

than 0.3 are negative samples, and the image with key 

points is taken from the key point sample. The training 

sets of RNet and ONet need to be intercepted and 

normalized from the original image by the regression 

box information output by the network of the previous 

layer, and only 70% of the training data before the 

classification loss is taken for the difficult case mining 

training. The training process needs to be divided into 

three parts according to the MTCNN algorithm flow 

and trained in sequence. 

The training set of the face detection part is 

WIDER_Face_train data set. The training sets of face 

key point detection are LFW_5590 and NET_7876 

data sets. According to the original paper, the 

thresholds of the three networks were set to 0.6, 0.7, 

0.7 (set according to the MTCNN paper), the initial 

learning rate was set to 0.001, and the minisize was set 

to 20 (the minimum face size marked in FDDB is 

20×20). The epoch of each network (1 epoch means all 

samples in the training set for 1 pass) were set to 30, 22, 

22, and batch_size was set to 384. 

5.2 Performance Analysis 

In this paper, FDDB is used as the test set to 

compare the performance of the duplicated MTCNN 

and the two improved schemes. The FDDB data set 

provides prescribed procedures to evaluate face 

detection algorithms. But the program it provides is 

written in C/C++ language, needs to be compiled by 

make, and the corresponding C/C++ version of opencv 

needs to be configured in Visual Studio. The 

environment building process is complicated, and the 
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C/C++ language environment of Visual Studio that 

needs to be built conflicts with the Python language 

environment of PyCharm that has been built in this 

article. For example, the py-opencv library in the built 

py3.6 environment conflicts with the C/C++ version of 

opencv and cannot be in the same system. Based on the 

above reasons, this article packages the evaluation 

program provided in FDDB into an exe executable 

program, and places the required opencv-related files 

opencv_world310d.dll and opencv_world310.dll in the 

same directory, completing the migration of the 

evaluation program. The data required by the 

evaluation program is the detection result of the face 

detector on the FDDB data set, so this article first 

designs the program fddbout.py to record the position 

and size information of the face frame obtained after 

all the images in the FDDB data set through the face 

detection algorithm. 

Perform performance analysis below. According to 

the time-consuming analysis results of the control 

group and the minisize parameter variation group in 

Table 2, the maximum speed improvement was 

achieved when the value of minisize was elevated from 

20 to 40, which changed from 177.6ms/ frame to 

59.5ms/ frame, reducing the time consumption by 

66.5%. The performance of a variety of replicating 

MTCNN algorithms over FDDB was tested. The test 

results are shown in Figure 4. The thresholds of the 

three cascaded networks were set as 0.6, 0.7 and 0.7 

respectively. 

As can be broadly seen in Figure 7, the performance 

declined as minisize increased. The specific data are 

shown in Table 3. 

 

Figure 4. Algorithm performance comparison under 

different minisizes 

 

Table 3. Comparison of algorithm performance under 

different minimum face parameters 

minisize 
Maximum 

accuracy 

FP=400 

accuracy

Number

of FP 

Average 

Detection 

time/ms 

20 0.866 0.792 1423 177.6 

40 0.840 0.790 1036 59.5 

60 0.801 0.784 620 44.0 

80 0.766 
0.766 

(FP=389) 
389 35.4 

 

As can be seen from Table 2, the detection rate has 

dropped by 2.6 percentage points when the minisize 

changes from 20 to 40, and the detection rate has 

dropped by 3.0%; The average detection time 

decreased from 177.6ms to 59.5ms, a decrease of 

118.1ms and a relative decrease of 66.5%. The time 

consumption was significantly reduced compared to 

minisize60 and minisize80. The experimental data 

prove that the scheme is completely feasible. 

On the basis of changing the minisize from 20 to 40, 

we will explore whether changing the PNet network 

threshold can further greatly reduce the time-

consuming detection. Therefore, the PNet threshold is 

set to 0.5, 0.6, 0.7, 0.8 and tested on the FDDB data set. 

The test results are shown in Figure 5. The specific 

values are shown in Table 4. 

 

Figure 5. Comparison of algorithm performance under 

different thresholds 

Table 4. Comparison of algorithm performance under 

different thresholds 

PNet 

threshold

Maximum 

accuracy 

FP=800 

accuracy 

Number  

of FP 

Average 

detection 

time/ms 

0.5 0.841 0.825 1129 73.8 

0.6 0.840 0.826 1036 59.5 

0.7 0.837 0.828 940 53.2 

0.8 0.834 
0.834 

(FP=792) 
792 48.1 
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After analyzing the data in Table 4, the detection 

rate and average detection time decreased slightly and 

changed little after increasing the PNet threshold value 

in the original setting.However, increasing the PNet 

threshold reduces the number of FP, which will reduce 

the number of false detections in practical application. 

Therefore, the PNet threshold is selected here as 0.7. 

The eventual improvement was to adjust minisize to 

40 and the PNet network threshold to 0.7, achieving an 

acceptable range of only 2.9% drop in detection rate 

(relative drop of 3.5%), and its time-consuming from 

177.6ms/frame The reduction is 53.2ms/frame (the 

average time consumption is relatively reduced by 

70.1%). 

Finally, the repeated MTCNN algorithm, the 

adjusted MTCNN algorithm (minisize=40, PNet 

threshold of 0.7) and the built-in VJ algorithm based 

on Adaboost and the surf-based face detection 

algorithm were compared on the FDDB data set. The 

test results are shown in Figure 6, and the specific data 

are shown in Table 5. The results show that the 

algorithm in this paper is significantly better than the 

traditional VJ face detection algorithm and the face 

detection algorithm based on SURF features. 

 

Figure 6. Performance comparison of various face 

algorithms 

Table 5. Comparison of detection rates of various 

algorithms under different FP 

algorithm FP=200 FP=400 FP=600 FP=800 

Repetition MTCNN 0.747 0.792 0.816 0.832 

Improved MTCNN 0.749 0.793 0.814 0.828 

opencv-VJ 0.411 0.513 0.552 0.583 

SURF 0.737 0.750 0.755 0.757 

 

5.3 Test Analysis 

Figure 7 shows the difficult detection pictures of 

occlusion and pose changes on the FDDB data set. The 

ellipse box is the real-value face box given by the data 

set, and the box is the face box given by the MTCNN  

 

Figure 7. Detection results of blur, occlusion, and 

attitude change in FDDB 

detection in this paper. It can be seen from the 

detection results that the MTCNN algorithm 

reproduced in this paper has good robustness to pose 

and occlusion. 

As shown in Figure 8, there are some difficult 

images not detected on the FDDB data set by the 

reproduced MTCNN algorithm in this paper, and there 

are three typical cases with large attitude change, fuzzy 

and small face size, and excessive occlusion. The 

recognition rate of these faces into the face recognition 

module is very low, which will result in the waste of 

computing resources. Moreover, these situations have 

no practical significance in the face recognition of 

channel bayonet in this paper. Even if they are detected, 

they will be determined by the face selection module 

designed in Chapter 4 that does not meet the frontal 

face conditions and cannot achieve a certain degree of 

clarity and human face images whose face confidence 

is not up to the standard are eliminated. 

In summary, the improved and optimized MTCNN 

algorithm in this paper not only has a good detection 

rate on the FDDB data set, but also shows that this 

algorithm will perform better in real applications 

through the analysis of specific hard cases. 

The main problem of the channel bayonet face 

recognition system in this paper is the decline in the 

accuracy of face detection and recognition caused by 

face pose changes, so pose changes are the main test 

point in the module test. 

The face detection module is the most important 

module of the face recognition system designed in this 

paper, which determines the performance of the face 

recognition system to a certain extent. The face 

detection module outputs the border of the face in the 

image and five key points of the face. The algorithm  
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Figure 8. Difficult example diagram of FDDB with 

missed detection 

adopted by the detection module is the MTCNN face 

detection algorithm after modifying the minisize 

parameter and PNet threshold according to the actual 

application scenario. The main test method is to 

simulate the pose changes of the face in the real scene, 

and test whether it can detect the face and its key point 

coordinates under a variety of pose conditions. Figure 

9 shows the test results. 

 

Figure 9. Test result of face detection module 

The first group of test samples simulates the face 

detection effect in the case of frontal faces. From the 

first group of samples, it can be seen that in the case of 

frontal detection, no matter whether the size of the face 

changes or not, the face can be accurately detected and 

five faces are labeled key point. Then the second, third, 

and fourth groups of samples simulate various 

situations of face pose changes to test the detection of 

non-standard pose faces by the face detection module. 

It can be seen that the detection effect of the face 

detection module is not affected when the person is in 

the posture of head up, head down, side face, or tilted 

head. On the basis of the above video frames, a 

detection statistics table is made for the three pose 

changes of the face, and the detection results of the 

recurring MTCNN algorithm for the pose changes are 

counted. The statistical results are shown in Table 6. 

From the data in the table, it can be seen that it has 

good robustness to attitude changes, which fully meets 

the this system requires. 

Table 6. Detection range in different postures 

 Profile Pitch Tilt head 

examination 

range 

(The front face 

is 0°) 

Left face 

75° 

Right face 

71° 

Head up 

37° 

Head down 

45° 

Tilt your head 

left 41° 

Tilt your head 

right 35° 

 

The face detection module designed in this paper 

plays a very important role in the system. Only when 

the face detection module is running normally and 

completing the task can the subsequent modules 

provide important information such as face frame 

position and key point coordinates. This module can 

also be used alone, with strong reusability, and can be 

used in other face recognition systems or various 

research work that requires the use of face detection 

modules. 

5.4 The Experimental Summary 

This chapter first introduces the factors and 

performance indicators that affect the detection rate of 

face detection algorithms, and then introduces 

commonly used face data sets. By analyzing some 

existing detection algorithms, the MTCNN algorithm is 

selected as the improvement object [39]. Then the 

MTCNN algorithm was reproduced on tensorflow and 

time-consuming analysis was made. On this basis, an 

improved scheme was proposed (the minisize 

parameter was adjusted from 20 to 40 and the PNet 

threshold was adjusted from 0.6 to 0.7). The 

experimental results show that the performance of the 

algorithm is reduced by 3.5% after optimization, but 

the speed is increased by 70.1%, achieving the purpose 

of improvement. Compared with other face detection 

algorithms, the results show that the algorithm in this 

paper has better performance. In the test and analysis 

stage, through the analysis of the specific detection 

images of the face detection algorithm on the FDDB 

data set, it is concluded that the algorithm has good 

robustness in terms of attitude change and occlusion to 

meet the design requirements. Finally, through the 

actual face detection module test and quantitative 

robustness analysis of pose changes, it is further 

verified that the reproduced MTCNN algorithm can 
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meet the design requirements of the channel bayonet 

face recognition system after adjusting the parameters. 

6 Summary 

With the continuous development of deep learning 

and computer vision in recent years, the research 

interest of face recognition system related technologies 

is increasing year by year. This paper uses channel 

bayonet as the actual application scenario to study the 

most critical face detection of the face recognition 

system, and analyzes the time-consuming analysis of 

each cascaded network module (PNet module, RNet 

module, ONet module) in MTCNN, and finds the PNet 

module takes the most time (about 70%). According to 

the results of time-consuming analysis, two 

improvement suggestions are put forward: reducing the 

number of face frames input to the PNet network 

candidates and reducing the number of face frames 

output from the PNet network. Then, aiming at the 

problem that MTCNN algorithm has low detection 

speed in high-resolution video and cannot meet the 

real-time requirement, a series of optimization such as 

minnisize parameter adjustment and PNet threshold 

value are carried out in combination with the specific 

application scene of channel bayonet face recognition 

in this paper and the speedup suggestion obtained from 

time-consuming analysis. According to the detection 

rate of the MTCNN algorithm on the FDDB face test 

set and the detection speed of the actual application in 

720p high-resolution video, it can be seen that the 

detection speed has increased by 70.1% when the 

detection rate has dropped by only 3.5%, and the 

improvement plan has been achieved good effect. And 

the performance comparison with opencv-VJ and 

SURF face detection algorithm on FDDB shows that 

the optimized MTCNN algorithm performs better. By 

analyzing the detection results of specific FDDB data 

set images, it is found that the undetected face 

conditions do not meet the practical application 

scenarios in this paper, which proves the excellent 

performance of the optimized algorithm in practical 

application. Finally, the face detection module was 

designed and implemented, and actual engineering 

tests were carried out; the test results reflected from the 

specific data that the reproduced and tuned MTCNN 

face detection algorithm has good robustness to face 

pose changes, and fully meets the requirements of the 

channel bayonet face recognition system. 

The shortcoming of the research work of this article 

is that in the selection of tools for implementing 

algorithms and modules, an environment based on the 

Python language is selected. In terms of speed, the 

Python language is not as good as C/C++. This puts 

forward higher requirements for the operating speed of 

modules and systems. In the future, you can try to 

replace the tensorflow framework with the caffe deep 

learning framework, which runs faster, and use the 

C/C++ language to develop related systems. 

Acknowledgments 

This work is supported by Beijing Natural Science 

Foundation (Grant No.4192023 and 4202024); The Qin 

Xin Talents Cultivation Program of BISTU (Grant 

No.QXTCPC201704) 

References 

[1] L. Y. Chen, F. Y. Zhao, Overlapped Face Detection Based on 

Deep Learning, Computer Technology and Development, Vol. 

30, No. 2, pp. 28-32, February, 2020. 

[2] F. Filipovic, M. Despotovic-Zrakic, B. Radenkovic, B. 

Jovanic, L. Živojinovic, An Application of Artificial 

Intelligence for Detecting Emotions in Neuromarketing, 2019 

International Conference on Artificial Intelligence: 

Applications and Innovations (IC-AIAI), Belgrade, Serbia, 

2019, pp. 49-53. 

[3] D. Poster, S. Hu, N. Nasrabadi, B. Riggan, An Examination 

of Deep-Learning Based Landmark Detection Methods on 

Thermal Face Imagery, 2019 IEEE/CVF Conference on 

Computer Vision and Pattern Recognition Workshops 

(CVPRW), Long Beach, CA, USA, 2019, pp. 980-987. 

[4] H. Luo, Q. Hou, Y. Liu, L. Zhang, Y. Z. Li, Fuzzy Clustering 

Algorithm for Interval Data Based on Feedback RBF Neural 

Network, Journal of Internet Technology, Vol. 21, No. 3, pp. 

799-810, May, 2020. 

[5] K. Zhang, Z. Zhang, H. Wang, Z. Li, Y. Qiao, W. Liu, 

Detecting Faces Using Inside Cascaded Contextual CNN, 

IEEE International Conference on Computer Vision (ICCV), 

Venice, Italy, 2017, pp. 3190-3198. 

[6] H. C. Ku, W. Dong, Face Recognition Based on MTCNN and 

Convolutional Neural Network, Frontiers in Signal 

Processing, Vol. 4, No. 1, pp. 37-42, January, 2020. 

[7] H. Qin, J. Yan, X. Li, X. Hu, Joint Training of Cascaded 

CNN for Face Detection, IEEE Conference on Computer 

Vision and Pattern Recognition (CVPR), Las Vegas, NV, 

USA, 2016, pp. 3456-3465. 

[8] K. Chou, Y. Cheng, W. Chen, Y. Chen, Multi-task Cascaded 

and Densely Connected Convolutional Networks Applied to 

Human Face Detection and Facial Expression Recognition 

System, 2019 International Automatic Control Conference 

(CACS), Keelung, Taiwan, 2019, pp. 1-6. 

[9] M. Zhang, W. Liao, J. Zhang, H. Gao, F. Wang, B. Lin, 

Embedded Face Recognition System Based on Multi-task 

Convolutional Neural Network and LBP Features, 2019 IEEE 

International Conference of Intelligent Applied Systems on 

Engineering (ICIASE), Fuzhou, China, 2019, pp. 132-135. 

[10] M. S. Ejaz, M. R. Islam, Masked Face Recognition Using 

Convolutional Neural Network, 2019 International 

Conference on Sustainable Technologies for Industry 4.0 

(STI), Dhaka, Bangladesh, 2019, pp. 1-6. 

[11] C. Guo, Y. Yang, Implementation of a Specified Face 

Recognition System Based on Video, 2019 IEEE 4th 



1474 Journal of Internet Technology Volume 21 (2020) No.5 

 

Advanced Information Technology, Electronic and 

Automation Control Conference (IAEAC), Chengdu, China, 

2019, pp. 79-84. 

[12] S. Ji, K. Wang, X. Peng, J. Yang, Z. Zeng, Y. Qiao, Multiple 

Transfer Learning and Multi-label Balanced Training 

Strategies for Facial AU Detection In the Wild, 2020 

IEEE/CVF Conference on Computer Vision and Pattern 

Recognition Workshops (CVPRW), Seattle, WA, USA, 2020, 

pp. 1657-1661. 

[13] G. Lu, W. Zhang, Happiness Intensity Estimation for a Group 

of People in Images Using Convolutional Neural Networks, 

2019 3rd International Conference on Electronic Information 

Technology and Computer Engineering (EITCE), Xiamen, 

China, 2019, pp. 1707-1710. 

[14] J. Du, High-Precision Portrait Classification Based on 

MTCNN and Its Application on Similarity Judgement, 

Journal of Physics: Conference Series, Vol. 1518, No. 1, pp. 

1-9, April, 2020. 

[15] S. Yi, J. S. Zhu, H. Jing, Face Recognition Technology 

Applies in Railway Scene Based on MTCNN Face Occlusion 

Technology Research, Computer Simulation, Vol. 37, No. 5, 

pp. 96-99, May, 2020. 

[16] N. Antony, R. KR, S. Patel, S. S, N. M, Driver Drowsiness 

Detection Using Convoluted Neural Networks, 2019 1st 

International Conference on Advanced Technologies in 

Intelligent Control, Environment, Computing & 

Communication Engineering (ICATIECE), Bangalore, India, 

2019, pp. 92-97. 

[17] W. Deng, Z. Zhan, Y. Yu, W. Wang, Fatigue Driving 

Detection Based on Multi Feature Fusion, 2019 IEEE 4th 

International Conference on Image, Vision and Computing 

(ICIVC), Xiamen, China, 2019, pp. 407-411. 

[18] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich Feature 

Hierarchies for Accurate Object Detection and Semantic 

Segmentation, IEEE Conference on Computer Vision and 

Pattern Recognition, Columbus, OH, USA, 2014, pp. 580-

587. 

[19] K. He, X. Zhang, S. Ren, J. Sun, Spatial Pyramid Pooling in 

Deep Convolutional Networks for Visual Recognition, IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 

Vol. 37, No. 9, pp. 1904-1916, September, 2015. 

[20] R. Girshick, Fast R-CNN, IEEE International Conference on 

Computer Vision (ICCV), Santiago, Chile, 2015, pp. 1440-

1448. 

[21] S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards 

Real-Time Object Detection with Region Proposal Networks, 

IEEE Transactions on Pattern Analysis and Machine 

Intelligence, Vol. 39, No. 6, pp. 1137-1149, June, 2017. 

[22] R. Ranjan, V. M. Patel, R. Chellappa, HyperFace: A Deep 

Multi-Task Learning Framework for Face Detection, 

Landmark Localization, Pose Estimation, and Gender 

Recognition, IEEE Transactions on Pattern Analysis and 

Machine Intelligence, Vol. 41, No. 1, pp. 121-135, January, 

2019. 

[23] B. Y. Yao, H. Zhou, J. H. Yin, G. Q. Li, C. C. Lv, Small 

Sample Image Recognition Based on CNN and RBFNN, 

Journal of Internet Technology, Vol. 21, No. 3, pp. 881-889, 

May, 2020. 

[24] C. Zhu, Y. Zheng, K. Luu, M. Savvides, CMS-RCNN: 

Contextual Multi-scale Region-based CNN for Unconstrained 

Face Detection, https://arxiv.org/abs/1606.05413, 2016. 

[25] J. J. Li, J. X. Wang, X. C. Chen, Z. X. Luo, Z. G. Song, 

Multiple Task-driven Face Detection Based on Super-

resolution Pyramid Network, Journal of Internet Technology, 

Vol. 20, No. 4, pp. 1263-1272, July, 2019. 

[26] M. Najibi, P. Samangouei, R. Chellappa, L. S. Davis, SSH: 

Single Stage Headless Face Detector, IEEE International 

Conference on Computer Vision (ICCV), Venice, Italy, 2017, 

pp. 4885-4894. 

[27] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only 

Look Once: Unified, Real-Time Object Detection, IEEE 

Conference on Computer Vision and Pattern Recognition 

(CVPR), Las Vegas, NV, USA, 2016, pp. 779-788. 

[28] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Fu, 

A. C. Berg, SSD: Single Shot MultiBox Detector, https://arxiv. 

org/abs/1512.02325, 2016. 

[29] S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, S. Z. Li, 

FaceBoxes: A CPU Real-time Face Detector with High 

Accuracy, 2017 IEEE International Joint Conference on 

Biometrics (IJCB), Denver, CO, USA, 2017, pp. 1-9. 

[30] Y. T. Chang, W. K. T. M. Gunarathne, T. K. Shih, Deep 

Learning Approaches for Dynamic Object Understanding and 

Defect Detection, Journal of Internet Technology, Vol. 21, 

No. 3, pp. 783-790, May, 2020. 

[31] Z. W. Cai, Q. F. Fan, R. S. Feris, N. Vasconcelos, A Unified 

Multi-scale Deep Convolutional Neural Network for Fast 

Object Detection, https://arxiv.org/abs/1607.07155, 2016. 

[32] T. Lin, P. Goyal, R. Girshick, K. He, P. Dollar, Focal Loss for 

Dense Object Detection, IEEE Transactions on Pattern 

Analysis and Machine Intelligence, Vol. 42, No. 2, pp. 318-

327, February, 2020. 

[33] J. S. Li, I. H. Liu, C. Y. Lee, C. F. Li, C. G. Liu, A Novel 

Data Deduplication Scheme for Encrypted Cloud Databases, 

Journal of Internet Technology, Vol. 21, No. 4, pp. 1115-

1125, July, 2020. 

[34] W. Ke, J. Chen, J. Jiao, G. Zhao, Q. Ye, SRN: Side-Output 

Residual Network for Object Symmetry Detection in the Wild, 

2017 IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 302-310. 

[35] X. Tang, D. K. Du, Z. Q. He, J. T. Liu, PyramidBox: A 

Context-assisted Single Shot Face Detector, https://arxiv.org/ 

abs/1803.07737, August, 2018. 

[36] W. Zhang, Z. Zhang, H. C. Chao, M. Guizani, Toward 

Intelligent Network Optimization in Wireless Networking: 

An Auto-learning Framework, IEEE Wireless 

Communications, Vol. 26, No. 3, pp. 76-82, June, 2019.  

[37] Z. Zhang, W. Zhang, F. H. Tseng, Satellite Mobile Edge 

Computing: Improving QoS of High-speed Satellite-

terrestrial Networks Using Edge Computing Techniques, 

IEEE Network, Vol. 33, No. 1, pp. 70-76, January/February, 

2019. 

[38] X. S. Jia, S. Y. Zeng, B. Pan, Y. Zhou, Fast Detection of 



Research on MTCNN Face Recognition System in Low Computing Power Scenarios 1475 

 

Target Face Based on the Improved MTCNN Network, 

Computer Engineering and Science, Vol. 42, No. 7, pp. 1262-

1266, July, 2020. 

[39] W. Zhang, Z. Zhang, S. Zeadally, H. C. Chao, V. C. M. 

Leung, MASM: A Multiple-Algorithm Service Model for 

Energy-Delay Optimization in Edge Artificial Intelligence, 

IEEE Transactions on Industrial Informatics, Vol. 15, No. 7, 

pp. 4216-4224, July, 2019. 

Biographies 

Yinggang Xie received the B.Sc. 

degree in Automatic Control of 

Engineering from University of 

Science and Technology Beijing, 

Beijing, China, in 2001, and the M.E. 

and Ph.D. degrees in Control theory 

and control engineering from the 

University of Science and Technology Beijing, Beijing, 

China, in 2003 and 2007 respectively. He is currently a 

professor at the Department of Internet of things, 

Beijing Information Science and Technology 

University, China, His current research interests 

include multiple working modes control design for 

modular and reconfigurable robots, collaborative 

robots, Internet of Things. 

 

Hui Wang is currently a Master’s 

degree in Beijing Information Science 

and Technology University, Beijing, 

China, Her current research interests 

include real-time reconstruction of 

unstructured scenes and multiple 

working modes control design for 

modular, robotic arm control, target recognition.  

 

ShaoHua Guo received the B.Sc. 

degree in Bachelor of Engineering 

from the QingDao University of 

Science & Technology, ShangDong, 

China, in 2018. She is currently a 

Master’s degree in Beijing 

Information Science and Technology 

University, Beijing, China, Her current research 

interests include the Internet of Things, machine vision, 

and face recognition. 

 



1476 Journal of Internet Technology Volume 21 (2020) No.5 

 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9.354330
      /MarksWeight 0.141730
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


