
Research on MTCNN Face Recognition System in Low Computing Power Scenarios 1463

Research on MTCNN Face Recognition System in Low

Computing Power Scenarios

YingGang Xie1,2, Hui Wang1, ShaoHua Guo1

1 School of Information & Communication Engineering, Beijing Information Science and Technology University, China
2 Key Laboratory of the Ministry of Education for Optoelectronic Measurement, Technology and Instrument, Beijing

Information Science & Technology University, China

xieyinggang@bistu.edu.cn, 1374207430@qq.com, guoshaohua0930@163.com*

*Corresponding Author: YingGang Xie; E-mail: xieyinggang@bistu.edu.cn

DOI: 10.3966/160792642020092105020

Abstract

This paper analyzes the time-consuming analysis of

each cascading network module (PNet module, RNet

module and ONet module) in MTCNN, and finds that the

time-consuming of PNet module is the highest (about

70%). According to the results of time-consuming

analysis, two improved methods are proposed, one is to

reduce the number of candidate face frames in input PNet

network and the other is to reduce the number of output

face frames in PNet network. Then, aiming at the

problem that MTCNN algorithm has low detection speed

in high-resolution video and cannot meet real-time

requirements, a series of optimization such as adjusting

the minnisize parameter and PNet threshold in

combination with the low computing power application

scenarios of the channel bayonet. It is verified in the

FDDB face test set and practical application, the

detection speed has increased by 70.1% when the

detection rate has dropped by only 3.5%, and the

improved scheme has achieved good results. Compared

with the performance of OpenCV-VJ and SURF face

detection algorithms on FDDB, the optimized MTCNN

algorithm has better performance. Through the analysis

of the detection results of the specific FDDB data set

pictures, it is found that the undetected face conditions do

not meet the actual application scenarios in this article,

which proves that the optimized algorithm has excellent

performance in actual applications. The test results reflect

that the reproduced and optimized MTCNN face

detection algorithm has good robustness to face pose

changes, and fully meets the requirements of face

recognition systems in low computing power scenarios

such as channel bayonet.

Keywords: MTCNN, Low computing power scenarios,

Face detection, PNet time-consuming

optimization

1 Introduction

A mature face recognition system usually consists of

image acquisition, image preprocessing, face detection,

face tracking, face alignment, feature extraction and

comparison. Among the more critical steps are face

detection, tracking and face feature extraction. In

recent years, face recognition systems have been

widely used in channel bayonet systems such as smart

access control and identity verification in high-speed

railway stations. These channel bayonet face

recognition systems have all or most of the face image

collection, face detection, face alignment, face quality

detection, face feature extraction, face tracking and

other steps. However, some of these systems require a

high degree of cooperation from people, some are

complex to implement, and some have high

requirements for hardware such as computing devices.

On the one hand, the computing power of embedded

systems is not enough to support face detection,

tracking and face feature pairing based on deep

learning. Real-time requirements, some channel

bayonet face recognition systems require people to

deliberately approach the camera to cooperate with the

system for verification, discarding the natural and

convenient advantages of face recognition. The

specific target scenario studied in this paper is a single-

channel bayonet (single face close range), and the goal

is to be able to quickly compare and recognize faces

within 1-4 meters. The goal of the research is to apply

a faster and better performance algorithm to the

channel bayonet face recognition system with low

computing power, and to improve the operating speed

of the face recognition system through the improved

face detection algorithm. It can be mounted on low-end

devices with poor computing performance while

maintaining certain detection and recognition performance.

Aiming at the above problems, this paper combines

the channel bayonet application scenarios, through

research and improve face detection algorithms, face

tracking auxiliary algorithms, and introduce face

selection algorithms in the face recognition module to

satisfy the real-time and convenience requirements of

the channel bayonet face recognition system.

1464 Journal of Internet Technology Volume 21 (2020) No.5

After investigating and studying the existing face

recognition system and analyzing its advantages and

disadvantages, this paper improves the key

technologies of the face recognition system. Firstly,

using Python language to reproduce the MTCNN face

detection algorithm on the TensorFlow deep learning

framework, and it is optimized and improved by

combining with the actual application scene of channel

bayonet in this paper. The fusion of the improved

speed-up MTCNN algorithm and the supervised

Kalman filter human tracking algorithm proposed in

this paper accelerates the system operation speed.

According to the face selection algorithm proposed in

this paper, a face selection module with multiple

purposes is designed. Then according to the

comparison and analysis of various face recognition

algorithms, the FaceNet face recognition algorithm is

selected, and the face recognition module is designed

in combination with the face selection algorithm

proposed in this paper. Finally, the above research is

applied to the channel bayonet face recognition system,

and the system design and implementation are

completed. The chapter arrangement and corresponding

main work of this paper are as follows.

The first part is the introduction and the second part

is overseas and domestic research status, which

explains the research background and significance of

face recognition system; This paper analyzes the

development status of face detection in the system at

home and abroad, and compares and analyzes various

algorithms, paving the way and explaining the reasons

for the selection of various algorithms in the following

research work. The third part introduces the common

data set of face detection. The fourth part and the fifth

part choose MTCNN algorithm as the face detection

algorithm in the system according to the investigation

and experimental comparison of face detection algorithm.

Since there is no engineering implementation of

MTCNN algorithm based on Python language and

TensorFlow framework, it is reproduced and trained

after an in-depth understanding of its convolutional

neural network structure and detailed training methods.

Afterwards, the time-consuming analysis of all levels

of the network in MTCNN was carried out, and it was

found that the PNet module took the highest proportion

of time, and the corresponding speed-up suggestions

were put forward. Then, in view of the low detection

speed of the MTCNN algorithm in high-resolution

videos, it cannot meet the real-time problem, combined

with the specific application scenarios of the channel

bayonet face recognition in this paper, a series of

optimizations such as minnisize adjustment and PNet

threshold adjustment are performed. Finally, according

to the detection rate on the FDDB face test set and the

actual detection speed in 720p high-resolution video, it

can be seen that the detection speed increases by

70.1% when the detection rate drops by 3.5%. By

analyzing the detection results of specific FDDB data

set images, it is found that the undetected face

conditions do not meet the practical application

scenarios in this paper, which proves the excellent

performance of the optimized algorithm in practical

application. Finally, the face detection module was

designed and implemented, and actual engineering

tests were carried out; the test results reflect the

specific data that the reproduced and tuned MTCNN

face detection algorithm has good robustness to face

pose changes and fully meet the requirements of the

channel bayonet face recognition system. The sixth

part is a summary and outlook. It summarizes the main

research content of this paper, analyzes the affirmative

part of the research work and the problems that need to

be studied, and put forward the research direction for

future work.

2 Overseas and Domestic Research Status

Face detection algorithms are divided into

knowledge-based, feature-based, statistics-based, and

deep learning-based algorithms. Face detection

algorithms based on deep learning have achieved

remarkable success in recent years [1]. This article

only discusses the part of Convolutional Neural

Networks (Convolutional Neural Networks, this

chapter is referred to as “CNN”) in deep learning. In

the task of face detection, CNN has been successfully

introduced as a face feature extractor. The face

detection algorithm based on CNN has strong

robustness to influencing factors such as face pose

changes, illumination changes, blur and so on [2].

CNN-based face detection algorithms can be roughly

divided into cascade-based, classification-based and

logistic regression-based algorithms.

The proposed face detection algorithm based on

cascaded CNN is inspired by the VJ framework. The

face detection algorithm based on the VJ framework is

fast, and the face detection algorithm based on CNN

has high accuracy. A natural idea is to combine the

advantages of these two algorithms. The face detection

algorithm based on cascaded CNN puts CNN into the

cascaded structure to improve the detection accuracy

and speed [3]. A feedback Radial Basis Function

neural network (FRBF) is proposed to estimate the

missing attribute values for incomplete data. The error

between the actual output value of RBF neural network

and the expected value is fed back to the input layer [4],

then a feedback RBF neural network is constructed. In

addition to using multiple CNN networks to cascade,

different network layers in the same network are also

used to form a cascade structure [5]; The first few

layers detect faces that are easier to detect, and the

latter layers detect faces that are difficult to detect. The

most famous MTCNN [6] (Multi-task convolutional

neural network, multi-task convolutional neural

network) face detection algorithm integrates three

CNNs into one CNN model, and integrates face

Research on MTCNN Face Recognition System in Low Computing Power Scenarios 1465

detection and face alignment tasks into one framework

for implementation [7]. Combining different methods

of MTCNN has different detection advantages in

different situations [8]. For example, Zhang [9] et al.

used the multi-task convolutional neural network

(MTCNN) under the CaffeOnACL framework for face

detection, and adopted local binary mode (LBP) As a

face recognition algorithm, it is fast and accurate.

Sabbir Ejaz [10], guo [11] and wang [12] et al.

proposed a feasible method, which includes first

detecting the facial area and using multi-task cascaded

convolutional neural network (MTCNN) to solve the

face occlusion Then use the Google FaceNet

embedding model to perform facial feature extraction.

Finally, the classification task has been performed by a

support vector machine (SVM), which has excellent

performance in masked face recognition. Lu [13] et al.

proposed that a multi-task cascaded convolutional

network (MTCNN) was used to detect all faces in the

image, and then, by using a deep convolutional neural

network and performing transfer learning from a pre-

trained VGGFace model, the effect was good. Its

overall complexity is well controlled and can be

applied in some industrial scenarios [14].For example,

Yi [15]et al. proposed the MTCNN-based facial

occlusion recognition research in railway face-scrolling

scenes, and Antony [16]and deng [17]et al. proposed

the MTCNN-based driver fatigue detection.

A series of CNN face detection algorithms based on

the classification of candidate regions is one of the

most important branches in the current face detection

technology field. This type of algorithm first generates

many candidate face frames, and then uses the CNN

network to determine whether there are faces in the

candidate frames. The most famous algorithms in this

series are R-CNN [18], SPP-NET [19], Fast R-CNN

[20] and Faster R-CNN [21], etc. The detection process

becomes more and more simple, and the detection

speed has also been steadily improved. HyperFace [22]

face detection algorithm uses a selective search

algorithm to generate candidate frames, and the

subsequent Faster-CNN algorithm uses a region

proposal network to generate candidate frames. Face-

RCNN [23] is a face detection algorithm designed

based on the Faster-RCNN network and the central

loss function. CMS-RCNN [24] face detection network

introduces the contextual reasoning of the face into the

Faster-RCNN face detection algorithm, thereby

reducing the detection error rate. J. J. Li [25] achieves

state-of-the-art results over prior arts on both the

WIDER FACE dataset and the Face Detection Dataset

and Benchmark. SSH [26] face detection algorithm

introduces the candidate region suggestion network in

the Faster-RCNN network into the VGG network

structure, and at the same time, it also achieves good

detection effect by removing its full connection layer.

The CNN target detection algorithm based on

logistic regression is represented by YOLO [27] and

SSD [28]. After training on the face set, it can

complete the classification of the face and the

regression of the face bounding box in the face

detection at one time. The subsequent FaceBoxes [29]

were inspired by the face region extraction network in

Fast R-CNN and the multi-scale mechanism in SSD,

and proposed a neural network that only contains fully

convolution and can be trained end-to-end. Y. T.

Chang [30] compared several algorithms of defect

detections using a data set, which comprises 20

categories of objects and 50 images in each category.

Cai et al. proposed the MS-CNN [31] face detection

network. In order to find faces of different sizes, face

detection is performed on multiple levels of the

network. Wang et al. proposed the FAN [32] face

detection algorithm based on the RetinaNetnetwork

structure, J. S. Li [33] using the attention mechanism to

enhance the network to extract facial features. The

SRN [34] face detection network is also improved

based on the RetinaNet network structure, adding

binary classification and regression tasks, and fine-

tuning the position of the anchor node on the high-level

feature map. Pyramid [35] face detection network uses

background information to improve the performance of

face detection.

In summary, on the FDDB data set, the three types

of algorithms based on deep face detection are shown

in Table 1.

Table 1. Comparison of speed and accuracy of three

types of methods

 Speed Precision
Representative

algorithm

Based on

cascade
Fastest Lower

Cascade CNN [4]

MTCNN [6]

Based on

classification
Slower Higher ICS [7]

Based on

logistic

regression

Faster Higher

Faster R-CNN [21]

Face R-CNN [23]

Face R-FCN [25]

3 Common Data Sets for Face Detection

3.1 FDDB Data Set

FDDB data set has a total of 2845 images. These

images contain 5,171 faces. They are one of the most

authoritative face-detection evaluation datasets in the

world. FDDB face test data set contains both black and

white and color images, and faces contain different

pose, occlusion, resolution and other factors that affect

the detection rate, as shown in Figure 1. In addition,

this data set is large, so it is more challenging to

evaluate the face detection algorithm on this data set.

Moreover, the author provides a prescribed procedure

to evaluate the results, so it is fair to evaluate the

detection algorithm on this data.

1466 Journal of Internet Technology Volume 21 (2020) No.5

Figure 1. FDDB data set

The image resolution of the FDDB data set is small.

The resolution of all images is less than 450×450, and

the smallest marked face size is 20×20. The relevant

training methods include ten fold cross validation

based on FFDB data set and unlimited training based

on isolated FDDB data set. However, due to the small

number of FDDB data sets, most of them use unlimited

training. The detection result has two methods: discrete

ROC and continuous ROC. Discrete ROC focuses on

whether the intersection ratio between the detection

frame and the labeled frame is greater than 0.5, while

continuous ROC focuses on whether the intersection

ratio between the detection frame and the labeled

frame is close to 1. Since most of the methods of

unlimited training are used, the detector will be

affected by the training set, so discrete ROC is more

reliable.

3.2 WIDER FACE Data Set

The WIDER FACE data set contains 32,203 images,

including 393,703 faces marked on them. Faces

contain various scale changes, posture changes and

other factors affecting the detection, which can be used

as a training set or a test set. As shown in Figure 2.

Figure 2. WIDER FACE data set

The resolution of the images in the data set is

generally high, and the width of all images are scaled

to a size of 1024 in length and width; the data set is all

color images, and the minimum labeled face size is 10×

10. The whole data set is divided into training set,

validation set and test set according to the ratio of 4:1:5,

but the true label value of the test set is not public, and

the test results need to be submitted to the official for

comparison, which is more fair.

4 Comparison and Analysis of Related

Algorithms

Traditional face detection algorithms use classifiers

for classification after extracting artificially designed

features by human. Classical algorithms include

Adaboost algorithm based on Harr features, SVM

algorithm based on HOG features, and so on. These

classical algorithms tend to lose one way or the other

in detecting speed and accuracy. In recent years, with

the development of deep learning, the use of

convolutional neural networks in face detection

technology improves accuracy while also taking into

account the detection speed.

In the two-stage detection network, Faster R-CNN

completes the detection task through classification and

regression and has a high mAP (mean Average

Precision), but its own RPN (Region Proposal Network)

network generates too much RoI (Region of Interest),

resulting in a large amount of calculation and slow

detection speed. Face R-CNN is a representative

algorithm of two-step Face detection. It is an improved

face detection algorithm based on the Faster R-CNN

framework. Its characteristics are high accuracy but

poor speed. In a one-stage detection network, the more

effective solutions include YOLO and SSD. They both

complete the target detection through regression.

YOLO and SSD are adjusted after the target box is

manually defined by the anchor node, which reduces

the number of RoI and accelerates the speed of the

algorithm; among them, YOLO can fully meet the

industrial real-time requirements, but when

transplanted into the face detection algorithm, the

detection effect of small targets such as faces is poor.

In practical applications, most faces occupy a small

proportion in the image, so they cannot be detected.

Although the accuracy of the SSD algorithm is good,

too many model parameters require the support of

high-performance graphics card, which cannot meet

the real-time requirements of products on devices with

only CPU or embedded devices.

Among the cascaded CNN detection algorithms,

MTCNN has good robustness to face posture changes

and occlusion, and it is one of the few cascaded CNN

face detectors that can be applied in industrial scenes.

In practical application, although its own cascade

structure limits the detection speed in the case of

multiple faces, it can still meet the actual requirements

of product detection performance and real-time

performance in the common channel bayonet scene (1

to 3 people) after industrial level optimization.

Considering that the MTCNN algorithm is a multi-task

Research on MTCNN Face Recognition System in Low Computing Power Scenarios 1467

network structure, it can not only complete the face

detection function, but also do the task of marking the

key points of the face. A network completes two tasks

and provides key points for the face alignment task.

The integration of the recognition system will be

higher and the running speed will be faster, so the

MTCNN algorithm is selected as the face detection

algorithm in this system.

4.1 MTCNN Algorithm

The idea of the MTCNN algorithm is to scale the

image to different sizes as the input of each network

layer, and then using the idea of rough to fine to sort

three independent network which detection accuracy

from poor to good. Then a cascade structure consisting

of three convolutional neural networks is constructed

to accomplish the multi-task detection target. MTCNN

algorithm can complete three tasks at the same time:

face detection, face border regression and face feature

point positioning. Because the three tasks require

different training labels, different loss functions are

required.

The face detection task uses the two-class cross-

entropy loss function:

 () () ()()()det det det

i
log 1 1 log .

i i i i
L y p y p= − + − − (1)

Among them, p
i
represents the possibility that the

sample x
i
 is a human face, and det

y
i

 is 0 or 1.

The bounding box regression and key point tasks use

the L2 loss function:

det

det det 2

i 2
|| || .

ii
L y y

∧

= − (2)

Where
det

y
i

∧

 is the regression box of network output

and det
y
i

 is the true value.

 2

i 2
|| || .

landmark

landmark landmark

ii
L y y

∧

= − (3)

Among them, y
landmark

i

∧

 is the key point coordinates

of the network output, and
i

landmark
L is the true value.

The total loss function is:

{ }1 det, ,

loss .
N j j

j i ii j bbox landmark
Lα β

= ∈

=∑ ∑ (4)

Where jα represents the importance of different

tasks,
i

jβ is an indicator of sample type, and
i

j
L has

different loss functions in different training samples.

MTCNN puts forward the idea of online hard

sample training. In the training process, the hard

samples that are difficult to train are selected online to

accelerate the convergence of the network. The

processing method is to sort the batches of the current

batch with forward propagation loss in each minibatch,

and find out the top 70% difficult samples. Only

difficult samples are used for training in back

propagation. The MTCNN algorithm process is

roughly that the image completes related tasks through

three cascaded networks.

The first is the data preprocessing stage. The

MTCNN algorithm responds to face size changes by

building an image pyramid, scaling the original image

to different sizes through a certain scale factor, and

building an image pyramid as the input data of the

network cascade architecture.

In the first stage, all images in the image pyramid

are obtained through a shallow full convolutional

neural network PNet to obtain the candidate face frame

and the face frame regression (the face frame

regression is used to correct the position of the

candidate face frame), so as to realize the role of

rapidly generating the candidate face frame. Then use

the NMS (Non-Maximum Suppression, non-maximum

suppression) algorithm to merge the candidate face

frames with a high overlap rate.

In the second stage, the candidate face frame

generated in the first stage is used as the input of RNet;

RNet is more complex than PNet in network structure,

which can remove most of the wrong candidate face

frame and then use the face frame regression vector to

fine-tune the position of the candidate face frame. Then

use the NMS algorithm to reduce the face frame.

The process of the third stage and the second stage

are similar, and both use the output of the previous

stage as the input of this stage. Adjust the position of

the face frame while removing the wrong candidate

frame, and output the position coordinate information

of the five face feature points. It’s just that the network

structure of ONet is more complex than RNet, and the

output results are more accurate.

The network structure of MTCNN is shown in

Figure 3.

Figure 3. Network structure of MTCNN

1468 Journal of Internet Technology Volume 21 (2020) No.5

4.2 Network Time-consuming Analysis

The face detection algorithm is proposed to solve

two major problems, one is to detect whether the image

contains a face, and the other is how to extract the

position information of the face. The process of most

face detection algorithms can be divided into two parts.

The first step is to find all candidate areas that may

contain faces in the image, and the second step is to

select the candidate regions containing the highest

probability of faces from these candidate regions. The

MTCNN algorithm uses PNet to find the candidate

area of the face, and uses RNet and Onet to further

select the face candidate area with the highest

probability. Generally, this kind of algorithm will be

outstanding in the detection rate, but the speed will not

be too ideal. In the following, the time-consuming of

MTCNN network at all levels will be analyzed one by

one to determine the improved method.

The average time consumption of PNet module,

RNet module and ONet module was respectively

calculated by sending 200 single-person face video

frame images in each group into MTCNN face detector,

as shown in Table 2. The PNet module, RNet module

and ONet module here respectively include the

preprocessing of input data, network operation and

NMS algorithm, not just the process of model

calculation [36].

Table 2. Time-consuming statistics of MTCNN after

modifying parameters

parameter settings
PNet

module/ms

RNet

module/ms

ONet

module/ms

Total

time/ms

Control group 120.2 39.0 18.4 177.6

minisize40 42.1 12.7 4.7 59.5

minisize60 27.1 12.7 4.2 44.0

minisize80 19.8 11.1 4.5 35.4

PNet threshold 0.5 47.3 17.4 9.1 73.8

PNet threshold 0.7 37.7 11.0 4.5 53.2

PNet threshold 0.8 33.7 10.1 4.2 48.1

scale_factor0.6 24.1 11.0 4.4 39.4

scale_factor0.5 19.1 13.1 4.9 37.1

Among them, the control group parameters: the

PNet threshold is 0.6, the minimum face size is 20, the

pyramid scaling factor is 0.709, and the image

resolution is 720p. In addition, the minisize parameter

set for the PNet threshold change group and the

scale_factor change group is 40, and the other

parameters are the same as the control group. Timing

method: use the cv2.getTickCount() function to time

each module before and after running. The

cv2.getTickCount() function here returns the clock

cycle from the start of the program to the current code

execution; for example, set the timing function before

and after the PNet module
1
t = cv2.getTickCount() and

2
t = cv2.getTickCount(), the module running time can

be calculated by t=(
2 1
t t−)/cv2.getTickFrequency(),

the function cv2.getTickFrequency() returns the

number of clock cycles of the CPU in 1 second, so it

can be timed in seconds.

According to the data analysis in Table 1, it is

concluded that the PNet module stage consumes the

most time. However, when we analyze the three

cascaded network structures in MTCNN, we can see

that the complexity of the network models of PNet,

RNet, and Onet increase sequentially, which means

that their parameter quantities are also increased

sequentially, and their running time should also

increase sequentially. This is inconsistent with our

experimental results. After careful analysis of the

algorithm flow of MTCNN, it is found that in the data

processing stage, the MTCNN algorithm adopted the

image pyramid method to scale the original image with

a coefficient of 0.709 in order to solve the problem of

face scale change, and made the face in the image close

to the image size (12×12) required by PNet training.

The implementation method is to first reduce the

original image by 12/minisize (minisize is the

hyperparameter, that is, the smallest face size in the

image, set to 20 in MTCNN), and then reduce it to a

size close to 12×12 by the scale factor. As mentioned

above, when the zoom factor is smaller and the

minisize is larger, the fewer pyramid images are

generated, and the image input into PNet will be

relatively reduced. If the resolution of the original

image is high, the data processing stage will be very

time-consuming, and PNet will accept a lot of input

images. In combination with actual scenes, the face

size that needs to be recognized in the channel bayonet

is often larger than 20×20. The minisize could be

scaled up for high resolution images or the scaling

factor could be lowered to reduce the amount of

pyramid images and speed up the testing.

The number of face frames output by the previous

subconvolutional network will be reduced after being

eliminated by the NMS; therefore, the number of face

frames that the PNet module needs to process is the

largest, followed by the RNet module, and the ONet

module least. This is also the cause of the most time-

consuming part of the PNet module. Therefore, adjust

the default settings of the network threshold [0.6, 0.7,

0.7] to [0.7, 0.7, 0.7] and [0.8, 0.7, 0.7] and re-test.

Combining the data in the table and the algorithm flow

of each module, it can be analyzed that as the PNet

threshold increases, the amount of data that the NMS

algorithm needs to process is reduced, and the time

consumption of the PNet module is reduced; and the

number of pictures sent to the RNet module is reduced.

The RNet module consumes less time. Therefore, in

the subsequent testing stage, the network threshold can

be appropriately increased to speed up the network

operation [37].

In summary, the following conclusions can be drawn:

(1) PNet module part consumes the most time, so in

terms of speed improvement, it gives priority to

Research on MTCNN Face Recognition System in Low Computing Power Scenarios 1469

improve PNet module. (2) In the actual scene, the

minisize (recognized minimum face size) can be

adjusted to adapt to factors such as image quality and

distance, which can speed up the operation of the face

detector at the same time [38]. (3) The scaling factor

and network threshold can be adjusted appropriately to

speed up the running speed.

Since the specific scene of the application of

MTCNN face detection algorithm trained in this paper

is the channel bayonet, such as the single channel

bayonet of the railway station entrance examination

bayonet, intelligent face recognition access control, etc.,

the detection personnel need to be close to the image

collection equipment. The size of the face in the

channel bayonet video frame is much higher than the

20×20 resolution. In MTCNN, the relevant coefficient

minisize can be adjusted according to the minimum

face size in the image to be detected. According to the

experimental data obtained from the time-consuming

analysis part of the MTCNN algorithm in this article,

the minisize could be adjusted from the original default

parameter 20 to 40 under a single person face, and the

number of detection frames increases, and the speed is

increased significantly. Therefore, the solution adjusts

the minimum face size to be detected to 40 × 40

according to actual application scenarios. And on this

basis, it analyzes the influence of further adjusting the

network threshold on the detection rate and detection

speed of the MTCNN algorithm.

5 Experiment and Analysis

5.1 Network Training

Since the MTCNN algorithm does not have the

corresponding official code, and most of the

reproduction projects are built on the caffe deep

learning platform, the deep learning platform chosen in

this article is tensoflow. In this way, MTCNN needs to

be duplicated first, and then the model can be improved

based on it. Finally, the algorithm performance before

and after the improvement can be compared on the

same platform TensorFlow.

In terms of project implementation, the software

used and the environment built are: Anaconda,

pycharm, py3.6, tensorflow1.8 and their dependent

packages. The hardware used is: CPU i5-7300HQ

2.5GHz, memory 16GB, GPU is GTX1050.

When building network models of PNet, RNet and

ONet, this paper selects the TF-Slim library in

TensorFlow to implement. TF-slim is a lightweight

deep learning library built into TensorFlow, making

the process of testing, training and building models

very simple. The convolutional layer, pooling layer,

full connection layer and deep separable convolutional

layer to be used in this paper can all be implemented

by using the TF-Slim library. For example, the full

connection layer can be realized using the slim.fully_

connected() library function, with the number of

network input and output neurons indicated in

parentheses.

Then the corresponding function modules are built

according to the algorithm flow and training process of

MTCNN. The algorithm flow has been described in

detail in Section 3.4, and it will not be repeated in this

section. MTCNN is a three-stage cascade neural

network, and the training process is divided into three

steps to conduct separate training for PNet, RNet and

ONet. Each network requires its own training set, and

the output of the previous network is the training input

of the current network. The training set of PNet uses

12×12 pictures, which are obtained after fine-tuning up

and down based on the actual label information of the

face on the prepared data set. The image interception

was divided into positive sample, negative sample,

partial face sample and key point sample according to

the numerical size of IoU(Intersection over Union,

handover ratio), with a ratio of 1:1:3:1. The positive

sample, negative sample and part of the face samples

are randomly clipped. The maximum IoU value of

cropped image and face frame is greater than 0.65 as

positive samples, those with greater than 0.4 and less

than 0.65 are partial face images, and those with less

than 0.3 are negative samples, and the image with key

points is taken from the key point sample. The training

sets of RNet and ONet need to be intercepted and

normalized from the original image by the regression

box information output by the network of the previous

layer, and only 70% of the training data before the

classification loss is taken for the difficult case mining

training. The training process needs to be divided into

three parts according to the MTCNN algorithm flow

and trained in sequence.

The training set of the face detection part is

WIDER_Face_train data set. The training sets of face

key point detection are LFW_5590 and NET_7876

data sets. According to the original paper, the

thresholds of the three networks were set to 0.6, 0.7,

0.7 (set according to the MTCNN paper), the initial

learning rate was set to 0.001, and the minisize was set

to 20 (the minimum face size marked in FDDB is

20×20). The epoch of each network (1 epoch means all

samples in the training set for 1 pass) were set to 30, 22,

22, and batch_size was set to 384.

5.2 Performance Analysis

In this paper, FDDB is used as the test set to

compare the performance of the duplicated MTCNN

and the two improved schemes. The FDDB data set

provides prescribed procedures to evaluate face

detection algorithms. But the program it provides is

written in C/C++ language, needs to be compiled by

make, and the corresponding C/C++ version of opencv

needs to be configured in Visual Studio. The

environment building process is complicated, and the

1470 Journal of Internet Technology Volume 21 (2020) No.5

C/C++ language environment of Visual Studio that

needs to be built conflicts with the Python language

environment of PyCharm that has been built in this

article. For example, the py-opencv library in the built

py3.6 environment conflicts with the C/C++ version of

opencv and cannot be in the same system. Based on the

above reasons, this article packages the evaluation

program provided in FDDB into an exe executable

program, and places the required opencv-related files

opencv_world310d.dll and opencv_world310.dll in the

same directory, completing the migration of the

evaluation program. The data required by the

evaluation program is the detection result of the face

detector on the FDDB data set, so this article first

designs the program fddbout.py to record the position

and size information of the face frame obtained after

all the images in the FDDB data set through the face

detection algorithm.

Perform performance analysis below. According to

the time-consuming analysis results of the control

group and the minisize parameter variation group in

Table 2, the maximum speed improvement was

achieved when the value of minisize was elevated from

20 to 40, which changed from 177.6ms/ frame to

59.5ms/ frame, reducing the time consumption by

66.5%. The performance of a variety of replicating

MTCNN algorithms over FDDB was tested. The test

results are shown in Figure 4. The thresholds of the

three cascaded networks were set as 0.6, 0.7 and 0.7

respectively.

As can be broadly seen in Figure 7, the performance

declined as minisize increased. The specific data are

shown in Table 3.

Figure 4. Algorithm performance comparison under

different minisizes

Table 3. Comparison of algorithm performance under

different minimum face parameters

minisize
Maximum

accuracy

FP=400

accuracy

Number

of FP

Average

Detection

time/ms

20 0.866 0.792 1423 177.6

40 0.840 0.790 1036 59.5

60 0.801 0.784 620 44.0

80 0.766
0.766

(FP=389)
389 35.4

As can be seen from Table 2, the detection rate has

dropped by 2.6 percentage points when the minisize

changes from 20 to 40, and the detection rate has

dropped by 3.0%; The average detection time

decreased from 177.6ms to 59.5ms, a decrease of

118.1ms and a relative decrease of 66.5%. The time

consumption was significantly reduced compared to

minisize60 and minisize80. The experimental data

prove that the scheme is completely feasible.

On the basis of changing the minisize from 20 to 40,

we will explore whether changing the PNet network

threshold can further greatly reduce the time-

consuming detection. Therefore, the PNet threshold is

set to 0.5, 0.6, 0.7, 0.8 and tested on the FDDB data set.

The test results are shown in Figure 5. The specific

values are shown in Table 4.

Figure 5. Comparison of algorithm performance under

different thresholds

Table 4. Comparison of algorithm performance under

different thresholds

PNet

threshold

Maximum

accuracy

FP=800

accuracy

Number

of FP

Average

detection

time/ms

0.5 0.841 0.825 1129 73.8

0.6 0.840 0.826 1036 59.5

0.7 0.837 0.828 940 53.2

0.8 0.834
0.834

(FP=792)
792 48.1

Research on MTCNN Face Recognition System in Low Computing Power Scenarios 1471

After analyzing the data in Table 4, the detection

rate and average detection time decreased slightly and

changed little after increasing the PNet threshold value

in the original setting.However, increasing the PNet

threshold reduces the number of FP, which will reduce

the number of false detections in practical application.

Therefore, the PNet threshold is selected here as 0.7.

The eventual improvement was to adjust minisize to

40 and the PNet network threshold to 0.7, achieving an

acceptable range of only 2.9% drop in detection rate

(relative drop of 3.5%), and its time-consuming from

177.6ms/frame The reduction is 53.2ms/frame (the

average time consumption is relatively reduced by

70.1%).

Finally, the repeated MTCNN algorithm, the

adjusted MTCNN algorithm (minisize=40, PNet

threshold of 0.7) and the built-in VJ algorithm based

on Adaboost and the surf-based face detection

algorithm were compared on the FDDB data set. The

test results are shown in Figure 6, and the specific data

are shown in Table 5. The results show that the

algorithm in this paper is significantly better than the

traditional VJ face detection algorithm and the face

detection algorithm based on SURF features.

Figure 6. Performance comparison of various face

algorithms

Table 5. Comparison of detection rates of various

algorithms under different FP

algorithm FP=200 FP=400 FP=600 FP=800

Repetition MTCNN 0.747 0.792 0.816 0.832

Improved MTCNN 0.749 0.793 0.814 0.828

opencv-VJ 0.411 0.513 0.552 0.583

SURF 0.737 0.750 0.755 0.757

5.3 Test Analysis

Figure 7 shows the difficult detection pictures of

occlusion and pose changes on the FDDB data set. The

ellipse box is the real-value face box given by the data

set, and the box is the face box given by the MTCNN

Figure 7. Detection results of blur, occlusion, and

attitude change in FDDB

detection in this paper. It can be seen from the

detection results that the MTCNN algorithm

reproduced in this paper has good robustness to pose

and occlusion.

As shown in Figure 8, there are some difficult

images not detected on the FDDB data set by the

reproduced MTCNN algorithm in this paper, and there

are three typical cases with large attitude change, fuzzy

and small face size, and excessive occlusion. The

recognition rate of these faces into the face recognition

module is very low, which will result in the waste of

computing resources. Moreover, these situations have

no practical significance in the face recognition of

channel bayonet in this paper. Even if they are detected,

they will be determined by the face selection module

designed in Chapter 4 that does not meet the frontal

face conditions and cannot achieve a certain degree of

clarity and human face images whose face confidence

is not up to the standard are eliminated.

In summary, the improved and optimized MTCNN

algorithm in this paper not only has a good detection

rate on the FDDB data set, but also shows that this

algorithm will perform better in real applications

through the analysis of specific hard cases.

The main problem of the channel bayonet face

recognition system in this paper is the decline in the

accuracy of face detection and recognition caused by

face pose changes, so pose changes are the main test

point in the module test.

The face detection module is the most important

module of the face recognition system designed in this

paper, which determines the performance of the face

recognition system to a certain extent. The face

detection module outputs the border of the face in the

image and five key points of the face. The algorithm

1472 Journal of Internet Technology Volume 21 (2020) No.5

Figure 8. Difficult example diagram of FDDB with

missed detection

adopted by the detection module is the MTCNN face

detection algorithm after modifying the minisize

parameter and PNet threshold according to the actual

application scenario. The main test method is to

simulate the pose changes of the face in the real scene,

and test whether it can detect the face and its key point

coordinates under a variety of pose conditions. Figure

9 shows the test results.

Figure 9. Test result of face detection module

The first group of test samples simulates the face

detection effect in the case of frontal faces. From the

first group of samples, it can be seen that in the case of

frontal detection, no matter whether the size of the face

changes or not, the face can be accurately detected and

five faces are labeled key point. Then the second, third,

and fourth groups of samples simulate various

situations of face pose changes to test the detection of

non-standard pose faces by the face detection module.

It can be seen that the detection effect of the face

detection module is not affected when the person is in

the posture of head up, head down, side face, or tilted

head. On the basis of the above video frames, a

detection statistics table is made for the three pose

changes of the face, and the detection results of the

recurring MTCNN algorithm for the pose changes are

counted. The statistical results are shown in Table 6.

From the data in the table, it can be seen that it has

good robustness to attitude changes, which fully meets

the this system requires.

Table 6. Detection range in different postures

 Profile Pitch Tilt head

examination

range

(The front face

is 0°)

Left face

75°

Right face

71°

Head up

37°

Head down

45°

Tilt your head

left 41°

Tilt your head

right 35°

The face detection module designed in this paper

plays a very important role in the system. Only when

the face detection module is running normally and

completing the task can the subsequent modules

provide important information such as face frame

position and key point coordinates. This module can

also be used alone, with strong reusability, and can be

used in other face recognition systems or various

research work that requires the use of face detection

modules.

5.4 The Experimental Summary

This chapter first introduces the factors and

performance indicators that affect the detection rate of

face detection algorithms, and then introduces

commonly used face data sets. By analyzing some

existing detection algorithms, the MTCNN algorithm is

selected as the improvement object [39]. Then the

MTCNN algorithm was reproduced on tensorflow and

time-consuming analysis was made. On this basis, an

improved scheme was proposed (the minisize

parameter was adjusted from 20 to 40 and the PNet

threshold was adjusted from 0.6 to 0.7). The

experimental results show that the performance of the

algorithm is reduced by 3.5% after optimization, but

the speed is increased by 70.1%, achieving the purpose

of improvement. Compared with other face detection

algorithms, the results show that the algorithm in this

paper has better performance. In the test and analysis

stage, through the analysis of the specific detection

images of the face detection algorithm on the FDDB

data set, it is concluded that the algorithm has good

robustness in terms of attitude change and occlusion to

meet the design requirements. Finally, through the

actual face detection module test and quantitative

robustness analysis of pose changes, it is further

verified that the reproduced MTCNN algorithm can

Research on MTCNN Face Recognition System in Low Computing Power Scenarios 1473

meet the design requirements of the channel bayonet

face recognition system after adjusting the parameters.

6 Summary

With the continuous development of deep learning

and computer vision in recent years, the research

interest of face recognition system related technologies

is increasing year by year. This paper uses channel

bayonet as the actual application scenario to study the

most critical face detection of the face recognition

system, and analyzes the time-consuming analysis of

each cascaded network module (PNet module, RNet

module, ONet module) in MTCNN, and finds the PNet

module takes the most time (about 70%). According to

the results of time-consuming analysis, two

improvement suggestions are put forward: reducing the

number of face frames input to the PNet network

candidates and reducing the number of face frames

output from the PNet network. Then, aiming at the

problem that MTCNN algorithm has low detection

speed in high-resolution video and cannot meet the

real-time requirement, a series of optimization such as

minnisize parameter adjustment and PNet threshold

value are carried out in combination with the specific

application scene of channel bayonet face recognition

in this paper and the speedup suggestion obtained from

time-consuming analysis. According to the detection

rate of the MTCNN algorithm on the FDDB face test

set and the detection speed of the actual application in

720p high-resolution video, it can be seen that the

detection speed has increased by 70.1% when the

detection rate has dropped by only 3.5%, and the

improvement plan has been achieved good effect. And

the performance comparison with opencv-VJ and

SURF face detection algorithm on FDDB shows that

the optimized MTCNN algorithm performs better. By

analyzing the detection results of specific FDDB data

set images, it is found that the undetected face

conditions do not meet the practical application

scenarios in this paper, which proves the excellent

performance of the optimized algorithm in practical

application. Finally, the face detection module was

designed and implemented, and actual engineering

tests were carried out; the test results reflected from the

specific data that the reproduced and tuned MTCNN

face detection algorithm has good robustness to face

pose changes, and fully meets the requirements of the

channel bayonet face recognition system.

The shortcoming of the research work of this article

is that in the selection of tools for implementing

algorithms and modules, an environment based on the

Python language is selected. In terms of speed, the

Python language is not as good as C/C++. This puts

forward higher requirements for the operating speed of

modules and systems. In the future, you can try to

replace the tensorflow framework with the caffe deep

learning framework, which runs faster, and use the

C/C++ language to develop related systems.

Acknowledgments

This work is supported by Beijing Natural Science

Foundation (Grant No.4192023 and 4202024); The Qin

Xin Talents Cultivation Program of BISTU (Grant

No.QXTCPC201704)

References

[1] L. Y. Chen, F. Y. Zhao, Overlapped Face Detection Based on

Deep Learning, Computer Technology and Development, Vol.

30, No. 2, pp. 28-32, February, 2020.

[2] F. Filipovic, M. Despotovic-Zrakic, B. Radenkovic, B.

Jovanic, L. Živojinovic, An Application of Artificial

Intelligence for Detecting Emotions in Neuromarketing, 2019

International Conference on Artificial Intelligence:

Applications and Innovations (IC-AIAI), Belgrade, Serbia,

2019, pp. 49-53.

[3] D. Poster, S. Hu, N. Nasrabadi, B. Riggan, An Examination

of Deep-Learning Based Landmark Detection Methods on

Thermal Face Imagery, 2019 IEEE/CVF Conference on

Computer Vision and Pattern Recognition Workshops

(CVPRW), Long Beach, CA, USA, 2019, pp. 980-987.

[4] H. Luo, Q. Hou, Y. Liu, L. Zhang, Y. Z. Li, Fuzzy Clustering

Algorithm for Interval Data Based on Feedback RBF Neural

Network, Journal of Internet Technology, Vol. 21, No. 3, pp.

799-810, May, 2020.

[5] K. Zhang, Z. Zhang, H. Wang, Z. Li, Y. Qiao, W. Liu,

Detecting Faces Using Inside Cascaded Contextual CNN,

IEEE International Conference on Computer Vision (ICCV),

Venice, Italy, 2017, pp. 3190-3198.

[6] H. C. Ku, W. Dong, Face Recognition Based on MTCNN and

Convolutional Neural Network, Frontiers in Signal

Processing, Vol. 4, No. 1, pp. 37-42, January, 2020.

[7] H. Qin, J. Yan, X. Li, X. Hu, Joint Training of Cascaded

CNN for Face Detection, IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Las Vegas, NV,

USA, 2016, pp. 3456-3465.

[8] K. Chou, Y. Cheng, W. Chen, Y. Chen, Multi-task Cascaded

and Densely Connected Convolutional Networks Applied to

Human Face Detection and Facial Expression Recognition

System, 2019 International Automatic Control Conference

(CACS), Keelung, Taiwan, 2019, pp. 1-6.

[9] M. Zhang, W. Liao, J. Zhang, H. Gao, F. Wang, B. Lin,

Embedded Face Recognition System Based on Multi-task

Convolutional Neural Network and LBP Features, 2019 IEEE

International Conference of Intelligent Applied Systems on

Engineering (ICIASE), Fuzhou, China, 2019, pp. 132-135.

[10] M. S. Ejaz, M. R. Islam, Masked Face Recognition Using

Convolutional Neural Network, 2019 International

Conference on Sustainable Technologies for Industry 4.0

(STI), Dhaka, Bangladesh, 2019, pp. 1-6.

[11] C. Guo, Y. Yang, Implementation of a Specified Face

Recognition System Based on Video, 2019 IEEE 4th

1474 Journal of Internet Technology Volume 21 (2020) No.5

Advanced Information Technology, Electronic and

Automation Control Conference (IAEAC), Chengdu, China,

2019, pp. 79-84.

[12] S. Ji, K. Wang, X. Peng, J. Yang, Z. Zeng, Y. Qiao, Multiple

Transfer Learning and Multi-label Balanced Training

Strategies for Facial AU Detection In the Wild, 2020

IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW), Seattle, WA, USA, 2020,

pp. 1657-1661.

[13] G. Lu, W. Zhang, Happiness Intensity Estimation for a Group

of People in Images Using Convolutional Neural Networks,

2019 3rd International Conference on Electronic Information

Technology and Computer Engineering (EITCE), Xiamen,

China, 2019, pp. 1707-1710.

[14] J. Du, High-Precision Portrait Classification Based on

MTCNN and Its Application on Similarity Judgement,

Journal of Physics: Conference Series, Vol. 1518, No. 1, pp.

1-9, April, 2020.

[15] S. Yi, J. S. Zhu, H. Jing, Face Recognition Technology

Applies in Railway Scene Based on MTCNN Face Occlusion

Technology Research, Computer Simulation, Vol. 37, No. 5,

pp. 96-99, May, 2020.

[16] N. Antony, R. KR, S. Patel, S. S, N. M, Driver Drowsiness

Detection Using Convoluted Neural Networks, 2019 1st

International Conference on Advanced Technologies in

Intelligent Control, Environment, Computing &

Communication Engineering (ICATIECE), Bangalore, India,

2019, pp. 92-97.

[17] W. Deng, Z. Zhan, Y. Yu, W. Wang, Fatigue Driving

Detection Based on Multi Feature Fusion, 2019 IEEE 4th

International Conference on Image, Vision and Computing

(ICIVC), Xiamen, China, 2019, pp. 407-411.

[18] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich Feature

Hierarchies for Accurate Object Detection and Semantic

Segmentation, IEEE Conference on Computer Vision and

Pattern Recognition, Columbus, OH, USA, 2014, pp. 580-

587.

[19] K. He, X. Zhang, S. Ren, J. Sun, Spatial Pyramid Pooling in

Deep Convolutional Networks for Visual Recognition, IEEE

Transactions on Pattern Analysis and Machine Intelligence,

Vol. 37, No. 9, pp. 1904-1916, September, 2015.

[20] R. Girshick, Fast R-CNN, IEEE International Conference on

Computer Vision (ICCV), Santiago, Chile, 2015, pp. 1440-

1448.

[21] S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards

Real-Time Object Detection with Region Proposal Networks,

IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 39, No. 6, pp. 1137-1149, June, 2017.

[22] R. Ranjan, V. M. Patel, R. Chellappa, HyperFace: A Deep

Multi-Task Learning Framework for Face Detection,

Landmark Localization, Pose Estimation, and Gender

Recognition, IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 41, No. 1, pp. 121-135, January,

2019.

[23] B. Y. Yao, H. Zhou, J. H. Yin, G. Q. Li, C. C. Lv, Small

Sample Image Recognition Based on CNN and RBFNN,

Journal of Internet Technology, Vol. 21, No. 3, pp. 881-889,

May, 2020.

[24] C. Zhu, Y. Zheng, K. Luu, M. Savvides, CMS-RCNN:

Contextual Multi-scale Region-based CNN for Unconstrained

Face Detection, https://arxiv.org/abs/1606.05413, 2016.

[25] J. J. Li, J. X. Wang, X. C. Chen, Z. X. Luo, Z. G. Song,

Multiple Task-driven Face Detection Based on Super-

resolution Pyramid Network, Journal of Internet Technology,

Vol. 20, No. 4, pp. 1263-1272, July, 2019.

[26] M. Najibi, P. Samangouei, R. Chellappa, L. S. Davis, SSH:

Single Stage Headless Face Detector, IEEE International

Conference on Computer Vision (ICCV), Venice, Italy, 2017,

pp. 4885-4894.

[27] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only

Look Once: Unified, Real-Time Object Detection, IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), Las Vegas, NV, USA, 2016, pp. 779-788.

[28] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Fu,

A. C. Berg, SSD: Single Shot MultiBox Detector, https://arxiv.

org/abs/1512.02325, 2016.

[29] S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, S. Z. Li,

FaceBoxes: A CPU Real-time Face Detector with High

Accuracy, 2017 IEEE International Joint Conference on

Biometrics (IJCB), Denver, CO, USA, 2017, pp. 1-9.

[30] Y. T. Chang, W. K. T. M. Gunarathne, T. K. Shih, Deep

Learning Approaches for Dynamic Object Understanding and

Defect Detection, Journal of Internet Technology, Vol. 21,

No. 3, pp. 783-790, May, 2020.

[31] Z. W. Cai, Q. F. Fan, R. S. Feris, N. Vasconcelos, A Unified

Multi-scale Deep Convolutional Neural Network for Fast

Object Detection, https://arxiv.org/abs/1607.07155, 2016.

[32] T. Lin, P. Goyal, R. Girshick, K. He, P. Dollar, Focal Loss for

Dense Object Detection, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 42, No. 2, pp. 318-

327, February, 2020.

[33] J. S. Li, I. H. Liu, C. Y. Lee, C. F. Li, C. G. Liu, A Novel

Data Deduplication Scheme for Encrypted Cloud Databases,

Journal of Internet Technology, Vol. 21, No. 4, pp. 1115-

1125, July, 2020.

[34] W. Ke, J. Chen, J. Jiao, G. Zhao, Q. Ye, SRN: Side-Output

Residual Network for Object Symmetry Detection in the Wild,

2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 302-310.

[35] X. Tang, D. K. Du, Z. Q. He, J. T. Liu, PyramidBox: A

Context-assisted Single Shot Face Detector, https://arxiv.org/

abs/1803.07737, August, 2018.

[36] W. Zhang, Z. Zhang, H. C. Chao, M. Guizani, Toward

Intelligent Network Optimization in Wireless Networking:

An Auto-learning Framework, IEEE Wireless

Communications, Vol. 26, No. 3, pp. 76-82, June, 2019.

[37] Z. Zhang, W. Zhang, F. H. Tseng, Satellite Mobile Edge

Computing: Improving QoS of High-speed Satellite-

terrestrial Networks Using Edge Computing Techniques,

IEEE Network, Vol. 33, No. 1, pp. 70-76, January/February,

2019.

[38] X. S. Jia, S. Y. Zeng, B. Pan, Y. Zhou, Fast Detection of

Research on MTCNN Face Recognition System in Low Computing Power Scenarios 1475

Target Face Based on the Improved MTCNN Network,

Computer Engineering and Science, Vol. 42, No. 7, pp. 1262-

1266, July, 2020.

[39] W. Zhang, Z. Zhang, S. Zeadally, H. C. Chao, V. C. M.

Leung, MASM: A Multiple-Algorithm Service Model for

Energy-Delay Optimization in Edge Artificial Intelligence,

IEEE Transactions on Industrial Informatics, Vol. 15, No. 7,

pp. 4216-4224, July, 2019.

Biographies

Yinggang Xie received the B.Sc.

degree in Automatic Control of

Engineering from University of

Science and Technology Beijing,

Beijing, China, in 2001, and the M.E.

and Ph.D. degrees in Control theory

and control engineering from the

University of Science and Technology Beijing, Beijing,

China, in 2003 and 2007 respectively. He is currently a

professor at the Department of Internet of things,

Beijing Information Science and Technology

University, China, His current research interests

include multiple working modes control design for

modular and reconfigurable robots, collaborative

robots, Internet of Things.

Hui Wang is currently a Master’s

degree in Beijing Information Science

and Technology University, Beijing,

China, Her current research interests

include real-time reconstruction of

unstructured scenes and multiple

working modes control design for

modular, robotic arm control, target recognition.

ShaoHua Guo received the B.Sc.

degree in Bachelor of Engineering

from the QingDao University of

Science & Technology, ShangDong,

China, in 2018. She is currently a

Master’s degree in Beijing

Information Science and Technology

University, Beijing, China, Her current research

interests include the Internet of Things, machine vision,

and face recognition.

1476 Journal of Internet Technology Volume 21 (2020) No.5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

