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Abstract 

The fingerprint-based localization technique is one of 

the most popular indoor localization technologies. There 

are quite a few localization algorithms that use the RSS 

distance of position pairs to characterize their physical 

distance. In this paper, we introduce two coefficients to 

measure the relationship between RSS distance and 

physical distance. Based on the definition of tree-ring 

distance, we found that the characterization capability of 

RSS distance to physical distance is closely related to 

APs’ tree-ring distance. To exploit this, through an in-

depth analysis of the relationship between tree-ring 

distance and physical distance, we pointed out that the 

APs sets composed of APs at the edge positions of the 

positioning area makes the RSS distance better to 

characterize the physical distance. Further, we proposed a 

novel RSS distance calculation algorithm based on the 

comparison of tree-ring distances. In the algorithm, for 

each pairwise position, the abnormal APs are eliminated 

by the Mean+3S method, and the APs with larger tree-

ring distance are selected to participate in the calculation 

of RSS distance, namely, for different pairwise positions, 

different APs subsets of all APs are selected to participate 

in RSS distance calculation. We evaluate the algorithm in 

a simulation study and initial results show that an APs set 

with 3 APs is sufficient to guarantee very strong 

correlation (the correlation coefficient>0.8) and very high 

consistency (the consistency coefficient>0.8) between 

RSS distance and physical distance, which demonstrates 

the effectiveness and the practicability of the algorithm. 

Keywords: RSS, Indoor localization, Fingerprinting 

localization 

1 Introduction 

In the past decade, with the extensive development 

of wireless technology, the urgent need for location-

based services (LBSs) has also increasingly accelerated, 

such as personal navigation, LBS delivery, medical 

services, telehealth, etc. Indoor localization techniques 

have received considerable attention both in the 

academic and industrial areas [1-3]. So far, various 

indoor localization techniques have been developed 

based on different radio communication technologies, 

such as wireless local area networks (WLANs) [4], 

acoustic signals [5], UWB [6], RFID [7], etc. Also, 

there are localization techniques that fuse two or more 

technologies, also called signal of opportunity based 

localization [7-8]. However, due to the complexity of 

the indoor environments and the increasingly high 

requirements for localization accuracy, indoor 

localization techniques are facing more and more 

challenges [9].  

Of all the localization technologies, WLAN-based 

indoor localization is one of the most popular topics. 

According to the localization principle, it can be 

classified into localization techniques based on the 

propagation model [10], and localization techniques 

based on fingerprint [11]. For the former, the exact 

positions of access points (APs) are needed to know in 

advance, which is unrealistic in most indoor 

environments. While the latter consists of two stages, 

the offline stage samples RSS values at reference 

points (RPs) to build a fingerprint database, and the 

online stage locates a user by matching his RSS 

measurements with fingerprint through the localization 

algorithm [12]. It does not need to know the positions 

of APs, and the localization accuracy is higher [13]. In 

addition, no need to install additional infrastructure, 

low cost and easy deployment are also advantages of 

fingerprint-based localization technique. 

Among the entire fingerprint matching algorithms, 

many ones that need to consider the RSS differences of 

position pairs, such as KNN, MDS, etc. These RSS 

differences are Euclidean distances between RSS 

vectors from all APs, so the status of each AP will 

affect the ability of RSS differences to characterize the 

physical distances. However, with the rapid 

development of wireless technology and the prevalence 

of the internet of things, especially in the context of 

smart city construction, it becomes easier than ever 
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before for smart devices to receive high-quality signals 

from increasing APs in public indoor environments. 

Hence, utilizing so abundant APs to build a fingerprint 

database and locate all positions of the indoor area will 

lead to the heavy workload at the offline stage and 

inevitable localization errors at the online stage, which 

is not reality. 

In this paper, we term the ability of the RSS 

difference from an AP (or APs) to characterize the 

physical distance of a specific pairwise position as 

characterization capability. Our intuition is choosing 

appropriate APs sets can not only reduce the 

calculation intensity and complexity but also improve 

the characterization capability of RSS distance, which 

inspires us to carry out a quantitative analysis for the 

relationship between RSS distance and physical 

distance. We uncover that APs at different positions 

have different characterization capabilities to the 

physical distance of pairwise position subject to signal 

propagation laws. Abnormal APs and environmental 

changes also lead to inaccurate APs’ characterization 

capability.  

With the above factors, we present an algorithm to 

calculate the RSS distance of a specific position pair in 

the positioning area. Through the algorithm, we can 

calculate the RSS distance with stronger characterization 

capability for any pairwise position, to provide a key 

foundation for the localization algorithm based on RSS 

distance. The focus of this paper is to provide an 

optimized middleware between the fingerprint database 

and fingerprint matching algorithm for a kind of RSS 

distances based localization technique. The framework 

of the fingerprint-based indoor localization scheme and 

the role of our work (in the red box) is as shown in 

Figure 1. In the rich APs indoor application scenarios, 

all APs have the following features: 

 

Figure 1. The framework of fingerprint-based indoor localization scheme and our main work 

‧ They are deployed primarily for communication.  

‧They are not centralized management and debugging, 

or even installed by different individuals.  

‧ They are intensive and well-distributed, for high-

quality Wi-Fi signals are almost everywhere indoors.  

‧ Their positions are unknown, and they do not 

communicate with each other. 

‧ There are one or some APs that do not affect one 

position pair but are still effective for other position 

pairs, or there are some abnormal APs. 

The main contributions of the paper are summarized 

as follows:  

(1) To measure the relationship between RSS 

distance and physical distance, a correlation coefficient 

and a consistency coefficient are introduced. 

(2) We first propose the concept of tree-ring distance 

of pairwise position orienting an AP, which can 

express the contribution of the APs at different 

positions to characterize the RSS distance.  

(3) For each pairwise position, a new algorithm for 

RSS distance calculation is designed based on RSS 

tree-ring distance. In the algorithm, the abnormal APs 

are eliminated through the Mean+3S method, and the 

APs set participating in the calculation of RSS distance 

obtained by comparing the tree-ring distance.  

(4) We point out that compared with an APs set with 

APs from the center region, the edge region makes the 

RSS distance better characterize the physical distance, 

which provides the guidance for APs deployment. 

(5) By simulation study, we found that only 3 APs 

are enough to achieve a very strong correlation and a 

very high consistency between RSS distance and 

physical distance.  

The rest of the manuscript is organized as follows. 

Section 2 reviews the related work on the two stages of 

the fingerprint-based localization. Section 3 presents 
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our preliminary knowledge and introduces two 

coefficients for measuring the relationship between 

RSS distance and physical distance, and in section 4, 

observation and analysis of the relationship between 

RSS distance and physical distance is depicted in detail. 

A new RSS distance calculation algorithm is detailed 

in section 5, followed by the experiments and 

simulation in Section 6, and the conclusions of the 

paper in Section 7. 

2 Related Work 

The localization accuracy of fingerprint-based 

localization has long been the primary challenge, 

which depends on the built fingerprint databases and 

the fingerprint matching algorithm. Over the last 

decade, a lot of schemes have been proposed to reduce 

the intensity of fingerprint collection and to improve 

the accuracy of fingerprint matching algorithms.  

Based on the participation of ordinary users in data 

collection, a crowdsourcing strategy has been 

developed to reduce the work intensity of building a 

fingerprint database [14-15]. However, since the 

sample data contains no location label, the additional 

data of inertial sensor in the intelligent terminal is often 

used to estimate the unknown location label, which 

simultaneously causes issues in terms of accuracy, 

applicability, equipment heterogeneity, the additional 

power consumption of the sensor [14]. To reduce work 

intensity and improve accuracy, in [15], a LAAFU 

system has been proposed by employing implicit 

crowdsourced signals for fingerprint updates. In 

response to the heterogeneity of devices and the 

requirement of users’ intervention in traditional 

crowdsourcing, researchers in [16] proposed a new 

strategy that incorporated a new preprocessing method 

for RSS samples, an implicit crowdsourcing sampling 

technique, and a semi-supervised learning algorithm. 

The strategy reduced the demand for large quantities of 

labeled samples and achieved good localization 

accuracy. Also, to remedy periodical calibration for 

fingerprint maps and biased RSS measurements across 

devices, a gradient-based fingerprint database is 

designed in [17]. Meanwhile, based on the concept of 

the neural network, semi-supervised learning 

technology [18], or unsupervised learning technology 

[19-20] is widely applied in building a fingerprint 

database. In [21], a novel fingerprint database-built 

scheme that can adaptively adopt the proper fingerprint 

database according to the collected signals is proposed. 

Refer to the fingerprint matching algorithm, the K-

nearest neighbor (KNN) algorithm was first proposed 

in 2000 and its earliest corresponding localization 

system is the RADAR system [22], and then several 

optimized KNN algorithms are developed by other 

researchers [23-24]. For the smart building, [24] design 

a low-cost indoor positioning system based on the Wi-

Fi fingerprint embedded on the smartphones. In this 

system, online layer clustering and K-nearest neighbor 

method based on the fisher information weighting and 

differential coordinates are presented, the accuracy was 

greatly improved. As a dimensionality reduction 

technique, multi-dimensional scaling (MDS) method is 

widely used in location awareness of indoor 

environments [25-26]. To obtain the input matrix 

between nodes, the Euclidean distance of RSS vectors 

between two specific positions is usually adopted to 

characterize their physical distance [27]. To improve 

the localization accuracy, literature [28] proposed a 

localization strategy through the collaboration of 

fingerprint and assistant nodes, in which the assistant 

nodes were selected by the similarity of RSS sequences, 

and the time-of-flight ranging error was mitigated by 

an adaptive Kalman filter. Facing with various 

interference factors in the indoor environments, the 

researchers in [29] proposed a novel scheme of 

fingerprint generation, representation, and matching to 

mitigate large errors, which yields remarkable accuracy 

without incurring extra cost. And in [30], a WiFi-based 

localization model was proposed by modifying the 

large localization errors and enhancing the Gaussian 

process regression. 

3 Preliminary and Measurements 

In this section, an RSS model at the receiver and the 

measures of the relationship between RSS distance 

vector and physical distance vector are introduced 

based on several given definitions.  

3.1 Problem Statement 

Nowadays, the application scenario with a large 

number of dense APs are very common, Figure 2 

shows the RSS values collected at any position on the 

fifth floor of the school comprehensive building. It can 

be seen that the high-quality signals with RSS > - 75 

are more than 10. 

 

Figure 2. Abundant APs with high-quality signals at 

any Position 
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Subject to the propagation law of wireless signals, 

an identical physical distance dΔ  corresponds to 

vastly difference of RSS change rΔ . Figure 3 depicts 

the illustrative RSS spatial distribution of two APs, as 

seen, for the same dΔ , rΔ  is different due to the 

different directions (see Figure 3(a)) or the different 

distance (see Figure 3(b)) of the APs. Meanwhile, 

abnormal APs are inevitable in indoor environments. 

Hence, it is a very important precondition to select an 

appropriate and normal APs set to calculate the RSS 

distance for RSS distance-based localization 

technologies. 

 

(a) The different direction of APs  (b) The different distance of Aps 

Figure 3. Characterization capability diversity  

This paper aims to provide a calculation algorithm 

of RSS distance for RSS distance-based indoor 

localization techniques, which is not suitable for 

localization techniques without RSS distance or a large 

number of sufficient APs scenes. 

For the convenience of expression, the symbols used 

in the paper are shown in Table 1. 

Table 1. The symbols used in the paper 

Symbol  Symbol  

m 
The number of 

APs 
n The number of RPs 

i
F  

The fingerprint of 

position i 
F The fingerprint matrix

p

ij
d  

The physical 

distance of two 

positions 

r

ij
d  

The RSS distance of 

two positions 

p
D  

Physical distance 

vector 
r

D  RSS distance vector 

r 
Correlation 

coefficient 
c 

Consistency 

coefficient 

rΔ  
The RSS tree-ring 

distance 
dΔ  

The physical tree-ring 

distance 

D 
Distance matrix 

( , )P r
D D  

j
RΔ  

RSS tree-ring distance 

vector 

E The mean  δ  The standard deviation

 

3.2 The Log-Distance Path Loss (LDPL) 

Model 

Indoors, RSS is often affected by signal attenuation 

resulting from signal reflection, refraction, shielding, 

etc. and severe RSS fluctuation due to multipath fading 

and indoor noise. In particular, these phenomena are 

closely related to current environments. Therefore, 

considering the complexity of the indoor environments, 

the log-distance path-loss (LDPL) propagation model 

is commonly used to represent signal propagation loss 

in indoor environments, such as: 

 
0

0

( ) ( ) 10 log( )
L L

d
P d P d n X

d
σ

= + +  (1) 

where d is the distance between the transmitter and the 

receiver, measured in meter; ( )
L
P d  represents the path 

loss with a distance of d, usually measured with 

decibel-milliwatts (dBm); 
0

d  is the reference distance, 

usually 1 m, and 
0

( )
L
P d  represents the path loss when 

the reference distance is 
0

d ; n is the path loss exponent, 

which represents the growth rate of path loss with 

distance and relies on the surrounding environments 

and building type, usually varies from 2 in free space 

to 4 in indoor environments. X
σ

 is a Gaussian 

distribution random variable with a mean of zero and a 

standard deviation of σ . Considering environmental 

factors, the value of σ  generally varies between 

0~14.1 dBm. 

Assuming that the transmission power of the 

transmitter is 
T
P . From (1), the LDPL model of the 

signal strength at the receiver can be written as:  

 
0

0

( ) ( ) 10 log( )
R

d
RSSI d P d n X

d
σ

= − +  (2) 
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where 
0

( ) ( ).
R T L
P D P P d= −  From the theoretical 

model in (2), for a single AP, the RSS at the receiver is 

closely related to the distance d from the AP. 

In many indoor localization techniques, RSS 

difference between two specific positions is often used 

to characterize the physical distance between them, and 

then the RSS difference is used to take advantage of 

that to further locate the positions of users or devices. 

However, it is well known that the RSS difference 

cannot characterize the physical distance well when 

there is only one AP. Therefore, the difference of RSS 

vector under multiple APs is taken to characterize the 

physical distance between two positions. And it is 

generally believed that the more APs, the better the 

characterization effect [27]. 

3.3 The Measure of the Relationship between 

RSS Distance and Physical Distance 

Suppose there are m APs in the positioning area, for 

a position a with the coordinates ( , )
a a
x y , the RSS 

values from m APs, denoted as RSS vector 

1 2
( , , ..., )

a a am
x x x , where 

1a
x  is the RSS value received 

from the ith AP. Let’s generate the fingerprint at 

position a by associating the position coordinate with 

the RSS vector as follows: 

 
1 2

( , , , , ..., )
a a a a a am

F x y r r r=  (3) 

Further, the fingerprints at all n positions generate a 

two-dimensional fingerprint matrix, as follows:  

 
1 2

( , , )T
n

F F F F=  (4) 

where 
i

F  represents the fingerprint at the ith position, 

and F is a ( 2)n m× +  matrix. The first two columns of 

F are the coordinates of corresponding positions, and 

the last m columns are RSS vectors from m APs.  

For the position point pair ,i j< >  composed of any 

two specific position points in the positioning area, 

let’s denote the physical distance between them as p

ij
d : 

 
2 2( ) ( )p

ij i j i j
d x x y y= − + −  (5) 

Since ,

p p

ij ji
d d=  only p

ij
d , i < j is considered for all 

positions in the positioning area. Similarly, RSS 

distance is defined as follows:  

Definition 1: In a positioning area with m APs, for the 

position point pair ,i j< >  composed of any two 

specific positions, denotes the Euclidean distance 

between RSS vectors of position point pair ,i j< >  

as r

ij
d , r

ij
d  is called RSS distance orienting to the 

fingerprint of position point pair ,i j< > . Similarly, 

since ,

r r

ij ji
d d=  only ,

r

ij
d i j<  is considered, and r

ij
d  is 

calculated as follows: 

 2 2

1 1

( ) (10 log )
m m

jkr

ij ik jk k

k k ik

d
d r r n

d
δ

= =

= − = +∑ ∑  (6) 

where 
ik

d  and jkd  are the distance of points i and j 

from the kth AP, respectively, 1 .k m≤ ≤   

Further, in terms of F, the physical distance of all 

position point pair composed of n position points can 

be written in a physical distance vector as:  

 [ ], ( , , )p p

ij
D d i n j n i j= ≤ ≤ <  (7) 

Similarly, the RSS distance vector is 

 [ ], , ,
r r

ij
D d i n j n i j= ≤ ≤ <  (8) 

In the paper, to measure the characterization 

capability, there are two measures for the relationship 

between vectors p
D  and r

D , i.e. Pearson correlation 

coefficient and consistency coefficient.  

Statistically, the Pearson correlation coefficient is 

used to measure the degree of correlation (linear 

correlation) between two variables, which is defined as 

the quotient of covariance and standard deviation. 

When the quotient is 0.8-1.0, it is considered that the 

two variables are a very strong correlation. In this 

paper, the Pearson correlation coefficient is used to 

indicate the correlation between RSS distance vector 

and physical distance vector, to characterize the degree 

of linear correlation between them. It can be calculated 

from (9):  

 
1 1

2 2

1 1 1 1

( )( )

( ) ( )

n n
p p r r

ij ij

i j i

n n n n
p p r r

i i

i j i i j i

d D d D

r

d D d D

= = +

= = + = = +

− −

=

− −

∑∑

∑∑ ∑∑

 (9) 

where p
D  and r

D represent the mean value of p
D  

and r

D , respectively.  

In addition to the degree of linear correlation, it is 

usually expected that a large RSS distance corresponds 

to a large physical distance, which can be called the 

sequence consistency between two variables. In some 

techniques, correlations between variables are not 

required, as long as the sequence is consistent [27]. 

The consistency coefficient between p
D  and r

D  is 

defined as:  

 
1 , , ,

,

1 , , , 1
,

( ( ), ( ))r r p p

i j k l n ij kl ij kl
i j k l

i j k l n
i j k l

f sign d d sign d d

c
≤ ≤

< <

≤ ≤

< <

Σ − −

=
Σ

 (10) 

where ( )sign x  and ( , )f x y  are as follows:  

 

1, 0
1, ,

( ) 0, 0 , ( , )
0,

1, 0

x
if x y

sign x x f x y
else

x

>⎧
=⎧⎪

= = =⎨ ⎨
⎩⎪− <⎩

 (11) 
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When the consistency coefficient 0.8,c >  we 

consider RSS distance and physical distance to be very 

high consistent.  

The above two measures are used to measure the 

relationship between RSS distance and physical 

distance in the paper. 

4 Observation and Analysis of the 

Relationship between RSS Distance and 

Physical Distance 

In this section, after preliminary observation, the 

effect of APs’ positions on characterization capability 

is analyzed from two perspectives. 

4.1 Experiment and Observation 

Before making theoretical analysis, we conduct a 

simple simulation experiment to observe the effects of 

APs position on RSS distance of different pairwise 

position. For a 20 20m m×  indoor positioning area 

shown in Figure 4(a), set the interval of sampling 

points is 2 2m m× , including the points at the edges, 

there are 121 points where APs can be deployed. 

Considering the user’s activity habit in practice, only 

81 internal position points (excluding 40 position 

points at the edges) are used to sample RSS values and 

discuss the relationship of the pairwise position. When 

there is only one AP in the positioning area, there are 

121 alternative positions. For an AP at each position, 

we calculate the measure of relationships between RSS 

distance and physical distance of all pairwise positions. 

Among the results, the maximum and minimum 

Pearson correlation coefficients are 
max

0.5091r =  and 

min
0.0242,r =  respectively, and the maximum and 

minimum consistency coefficients are 
max

0.6547c =  

and 
min

0.4314c = , respectively. From the results, we 

can conclude that the characterization capability of 

RSS distance between two positions against the 

physical distance between them varies with the 

position of the AP. When there is only one AP in the 

positioning area, the characterization capability is very 

poor. Further, we study the cases of ( 2...10)n n =  APs 

deployed in the positioning area. When the number of 

randomly deployed APs is ( 2...10)n n = , there will be 

a total of 
121

n

C  alternative position combinations. For 

each n, randomly select 500 position combinations, 

recalculate the Pearson correlation coefficients and 

consistency coefficients between RSS distance and 

physical distance, and their maximum and minimum 

values are shown in Figure 4(b). If the APs are at the 

appropriate positions, even just 2 APs are enough to 

achieve a very strong correlation and very high 

consistency. However, if the APs are deployed at 

inappropriate positions, even 10 APs have poor 

correlation and consistency (lower than 0.8).  

For each AP number (ranging from 2 to 10), among 

the 500 position combinations, the proportion of a very 

strong correlation and very high consistency is shown 

in Figure 4(c). Obviously, as the number of APs 

increases, so does the proportion of very strong 

correlation and very high consistency. However, in all 

deployment cases, the very strong correlation and the 

very high consistency between RSS distance and 

physical distance cannot be fully ensured (100%) even 

if there are 10 APs. 

  

(a) 20m×20m indoor  

localization area 

(b) Maximum and minimum of 

correlation and consistency 

coefficient 

(c) The proportion of very strong 

correlation and very high consistency

Figure 4. Simulation results of RSS distances for different APs locations and numbers 

As seen, the positions and the quantity of APs are 

both significant factors affecting the characterization 

capability of RSS distance. The latter factor has been 

well satisfied and the former one will be discussed in 

the next. 

4.2 Physical Distance Analysis under the 

Identical RSS Distance 

Here, suppose that for an AP at a fixed position, 

when the RSS distance of a position pair is known, we 
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discuss the corresponding physical distance. 

For the convenience of analysis, with O as the center, 

construct the inner and outer circles with a radius of 

1 2 1 2
, ( )d d d d< , respectively. We define the tree-ring 

distance as follows:  

Definition 2: When an AP is located in the center O, A 

and B are respectively located on the inner and outer 

circumference, for the point pair ( , )A B , the absolute 

value of RSS difference received from the AP is called 

the point pair ( , )A B ’s RSS tree-ring distance orienting 

to the AP, and is denoted as ( , )r A BΔ . Also, the radius 

difference of inner and outer circles is called the point 

pair ( , )A B ’s physical tree-ring distance and is denoted 

as ( , )d A BΔ . Obviously, the physical tree-ring 

distance and the RSS tree-ring distance are 

corresponding one by one. 

Remark 1: RSS tree-ring distance is the RSS 

difference orienting to a single AP, while RSS distance 

is a comprehensive measure of the RSS differences of 

all APs in a given environment.  

When there is only one AP in the positioning area, 

RSS tree-ring distance and RSS distance of point pairs 

( , )A B  are equal, i.e. ( , ) r

AB
r A B dΔ = , and no matter 

how the positions of points A and B change on the 

inner and outer circumference, the RSS tree-ring 

distance and the physical tree-ring distance remain 

unchanged, and what changed is only the actual 

physical distance of point pairs ( , )A B . Therefore, by 

studying the relationship between physical distance 

and physical tree-ring distance, we can get the change 

rule of physical distance under an identical RSS tree-

ring distance. 

Now, for an AP located at point O, let’s consider the 

relationship between physical distance and physical 

tree-ring distance of point pair ( , )A B . In Figure 5(a), 

connect OA, assume that the extension line of OA 

intersects with the outer circumference at point B′ , 

and the reverse extension line of OA intersects with the 

outer circumference at point B′′ . Then, the difference 

between physical distance p

ABd  and physical tree-ring 

distance ( , )d A BΔ  increases with θ  ( θ  is the 

included angle between OA and OB). Their 

relationship can be expressed as: 

 2 2 2

1 2 1 2
( ) 2p

ABd d d d d conθ= + −  (12) 

Rearrange (12) to obtain (13): 

 
2 2

1 2
( ) ( ) 2 (1 cos )(0 )p

ABd d d d θ θ π− Δ = − ≤ ≤   (13) 

Then, we draw the following conclusions from (13): 

(1) The quadratic difference of physical distance 
p

ABd  and physical tree-ring distance dΔ  of point pair 

( , )A B  monotonically increase with θ ;  

(2) As shown in Figure 5(b), when 0θ = , point B 

coincides with point B′ , the physical distance p

ABd  is 

equal to physical tree-ring distance dΔ , i.e. 

2 1

p

ABd d d d= Δ = − , the AP is just on the reverse 

extension line of AB. In this case, the position 

relationship between ( , )A B and the AP is optimal, and 

RSS distance between them is the most accurate 

characterization to the physical distance; 

(3) As shown in Figure 5(c), when θ π= , point B 

coincides with point B′′ , and the quadratic difference 

of physical distance p

ABd  and physical tree-ring 

distance dΔ  is the maximum, i.e. 
1

2
p

ABd d d− Δ = , and 

the AP is just on line AB. In this case, the 

characterization capability of RSS distance against 

physical distance ( , )A B  is the poorest.  

 
  

(a) The common case (b) The best case (c) The worst case 

Figure 5. The position change case of point pair ( , )A B  under the identical RSS distance 

Note that, when 
1
d  is very small, that is, point A is 

close enough to the AP, the physical distance p

ABd  for 

any point A and point B is approximately equal to 

physical tree-ring distance ( , )d A BΔ , then, the RSS 

distance can characterize all physical distance ( , )A B  

well.  
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In sum, for an AP in the positioning area, the 

physical distance characterized by the identical RSS 

distance is not equal except there exists an AP near one 

point of the point pair. 

4.3 RSS Distance Analysis under the Identical 

Physical Distance  

Now, from another perspective, assume that the 

physical distance of (A, B) is determined, i.e. 
0

p

ABd d= , 

we discuss the changes of RSS distance generated by 

APs at different positions.  

Suppose the position point pair (A, B) is fixed, an 

AP at point O. With O as the center, construct inner 

and outer circles with the radius of 
OA

d  and 
OB

d , 

respectively. Connect OB to intersect with the inner 

circumference at point A′ , connect OA to intersect 

with the outer circumference at point B′ , as shown in 

Figure 6(a). From the foregoing discussion, 
p p

AB ABd d d
′

= = Δ , that is, p

A Bd
′

 is the physical tree-ring 

distance of position point pair (A, B). As discussed 

above, by studying the changes of ( , )d A BΔ  orienting 

different positions of APs, we can obtain the changes 

of RSS distance. 

For AA B′Δ , the following equation holds: 

 
0

( , ) 2 sin
2

p

A B OAA B d d d
θ

′

Δ = = − −  (14) 

From (14), we can conclude that:  

(1) The physical tree-ring distance ( , )d A BΔ  

monotonically decreases with (0 )θ θ π≤ ≤ , and the 

smaller θ  is, the bigger the physical tree-ring distance 

( , )d A BΔ  is and the closer it get to 
0

d ; 

(2) When 0θ = , the AP is on the extension line of 

BA, point A′  coincides with point A and point B′  

coincides with point B, 
0

d dΔ = . In this case, RSS 

distance of position point pair ( , )A B  has the optimal 

characterization capability against physical distance 

(Figure 6(b)).  

(3) When θ π= , the AP is located on the line of AB. 

In this case, 
0

2
OA

d d dΔ = − , the characterization 

capability of RSS distance against physical distance is 

the poorest (Figure 6(c)).  

 

(a) The Common Case (b) The Best Case (c) The Worst Case 

Figure 6. The position change case of point pair (A, B) for the determined physical distance 

Note that when 
OA

d  is very small, that is, the AP is 

close enough to point A, the physical tree-ring distance 

dΔ (A, B) is approximately equal to physical distance 

0
d , then, the RSS distance generated by any AP close 

enough to A can characterize the physical distance (A, 

B) well. In sum, if an AP at different positions of the 

positioning area, the RSS distance is not equal for the 

same position pair except the AP is near one position 

of the position pair. 

5 RSS Distance Calculation Algorithm 

Based on Tree-ring Distance References 

In this section, the way of APs deployment and 

selection are first summarized, and then an algorithm 

for calculating the RSS distance of each position pair is 

presented. 

5.1 Deployment and Selection of APs in 

Different Application Scenarios 

For a position point pair(A, B) with known physical 

distance and an AP at position point O, suppose that 

the distance between the AP and position point A is 

OA
d  and 

OA
d < p

OA
d , construct a circle with point A as 

the center and 
OA

d  as the radius, as shown in Figure 7. 

So, for an AP at any position on the circumference, the 

RSS value collected at position A is identical in theory, 

but the RSS value at position B is diversity. As a result, 

for an AP at different positions, the RSS distance of the 

same position point pair (A, B) are different. According 

to the foregoing analysis, the optimal and poorest 

characterization capability of RSS distance to physical 

distance corresponds to that AP at point O′  and point 

O′′ , respectively. Hence, we can conclude that when 

an AP is located on or near the line of the position  
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Figure 7. The effect of APs position on RSS distance 

for the fixed-point pair (A, B)  

point pair (A, B), the corresponding RSS distance has 

the poor characterization capability to the physical 

distance, that is, the RSS distance is small, while when 

an AP is located on the same side of line AB, the 

corresponding RSS distance has good characterization 

capability, that is, the RSS distance is large. However, 

near the line of point pair (A, B) is exactly the region 

where APs is deployed to facilitate communication. 

Therefore, for the position point pair (A, B), we must 

select the “right” APs set with suitable positions from 

the rich APs to calculate the RSS distance. 

Overall, for a position pair, it is more appropriate to 

select APs who make the tree-ring distance of the 

position pair larger. The above analysis shows that 

these APs should be on the same side of the pairwise 

position and the smaller the deviation from the 

extension line connecting of the two positions, the 

better it is. Also, we should exclude the large RSS tree-

ring distance caused by the abnormal APs. For any 

pairwise position, all RSS tree-ring distance orienting 

to all APs are normally distributed. To make the results 

clearer and easier to observe, we have deployed 20 

APs in the positioning area, Figure 8 shows the RSS 

tree-ring distance distribution when the physical 

distance is 2 meters and 4.5 meters respectively. Hence, 

it is reasonable to use Means+3S to eliminate abnormal 

APs. 

  

(a) The physical distance is 2m (b) The physical distance is 4.5m 

Figure 8. The RSS tree-ring distance distribution 

Here, we summarize the guidance for APs 

deployment and selection as follows: 

(1) For some special application scenarios, such as 

telecare and telehealth, APs are installed mainly for 

positioning, the edge triangle deployment makes the 

overall effect better.  

(2) For the indoor environments where many APs 

already exist, the guidance for selecting APs is to 

select the APs that make the RSS tree-ring distance of 

a position pair larger. 

5.2 Tree-ring Distance Based RSS Distance 

Calculation Algorithm 

Based on the foregoing analysis, we know that when 

an AP is located on or near the line of a position pair, 

the RSS tree-ring distance is small (because the 

physical tree-ring distance corresponds to the RSS tree-

ring distance, in this section, RSS tree-ring distance is 

used for discussion), that is, the RSS tree-ring distance 

of the AP has a weak ability to characterize its physical 

distance, so the AP is not recommended for 

participating in the calculation of RSS distance. 

Besides, to avoid large RSS tree-ring distance caused 

by abnormal APs in the complex indoor environments, 

the method of Mean+3S is used to eliminate them.  

For an indoor positioning area with m APs and n 

RPs, the distance matrix of all RPs’ pairwise positions 

is written as ( , )p r
D D D= , where p

D  is the physical 

distance vector as defined in (7) and r

D is the RSS 

distance vector as defined in (8) . So, the element of D 

is as follows:  

 2( , ) ( , )(1 , , )p r p r

j ii ii n
D D D D D j C i i

′ ′

′= = ≤ ≤  (15) 



1432 Journal of Internet Technology Volume 21 (2020) No.5 

 

where p

ii
d

′

 and r

ii
d

′

 represent the physical distance and 

RSS distance of position point pair ( , )i i′ of the ith and 

the i′ th RP, respectively, and the relationship between 

i and j satisfies 
1

1

( ) ( 1)
i

t

j n t i
−

=

′= − + −∑ 。 

To got r

D , the APs involved in calculating 
r

ii
d

′

according to (8) need to be determined first. Now, 

by comparing the difference of RSS tree-ring distance 

orienting to each APs, we present an algorithm to 

select the right APs. The calculation process of r

ii
d

′

 is 

exactly the process in which APs compete to 

participate in calculating RSS distance.  

Firstly, RSS tree-ring distance vector of point pair 

( , )i i′  orienting to all APs is denoted as follows: 

 

2

1 2
( , , ) (1 , , )

j m n
R r r r j C i i′Δ = Δ Δ Δ = ≤ ≤  (16) 

where (1 )
k
n k mΔ < <  represents the RSS tree-ring 

distance of position point pair ( , )i i′  orienting to the 

kth AP.  

Then, the elements in vector 
j

RΔ  are sorted in 

descending order, and the sorted vector is denoted as: 

 
1 2

( , , )
j m

R r r rΔ = Δ Δ Δ�

� � �  (17) 

Further, the mean and standard deviation of 
j

RΔ �  are 

calculated by (18) and (19), respectively: 

 
1

( )
m

j k

k

E R r

=

Δ = Δ∑�

�  (18) 

 
1

2 2

1

1
( ) ( ( ( )) )

m

j k j

k

R r e R
m

δ

=

Δ = Δ − Δ∑� �

�  (19) 

Next, for 
j

RΔ � , the difference between the header 

element and the mean value is calculated to determine 

whether it exceeds three times the standard deviation. 

If it is, the corresponding APs will be eliminated. Then, 

again, calculate the mean, the standard deviation, the 

difference between the header element and the mean of 

remaining RSS tree-ring distance vector, and judge it. 

So repeatedly, until their difference does not exceed 

three times the standard deviation.  

Finally, for the final vector 
j

RΔ � , select the first 
0
t  

values, and calculate RSS distance r

ii
d

′

 of position pair 

( , )i i′  according to formula (6). For a position pair r

j
D , 

the flow chart of the RSS distance calculation 

algorithm is described in Figure 9. 

Similarly, we can obtain the RSS distance of all 

RPs’ pairwise position. 

Remark 2: As for 
0
,t  it depends on the actual 

environments. In the common indoor environments of 

section 5, 
0

3,t =  which meets the requirements of 

correlation and consistency between RSS distance and 

physical distance. 

 

Figure 9. The flow chart of the RSS distance calculation algorithm 
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Remark 3: Some references distinguish the degree of 

participation of APs by setting the weights of APs [8, 

27]. Unlike these studies, we believe that the same APs 

have different effects on different position pairs. 

Therefore, it makes sense to identify different APs set 

for the different pairwise position. 

6 Simulations and Experiment 

Here, we conduct some simulation experiments to 

evaluate the algorithm. The experimental parameters 

and presets are described in Table 2.  

Table 2. The parameters and presets of the experiments 

Simulation Platform MATLAB 

Positioning Area 
2

20 20 400 m× =
 

Interval of APs 2 2m m×  
Propagation Model LDPL  

The Number of APs 

10, randomly deployed, 57 

alternative positions (red dots in 

Figure 10) 

The Number of RPs 

81, internal position points 

(excluding 40 position points at 

the edges) 

 

Note that, to simulate the real indoor environments, 

we calculate multiple propagation paths between the 

transmitter (AP) and the receiver (smart device at an 

RP), including one direct path and six wall reflection 

paths. Considering the influence of multiple reflections 

is small, it is ignored. 

We divided the simulated indoor environment into 

100 grids. There is a total of 121 cross points, see 

Figure 10. 81 internal position points are used as the 

reference points, which form 2

91
3240C =  position point 

pairs. 

 

Figure 10. The alternative deployment positions for 

APs 

Due to the autonomy and flexibility of APs 

deployment in public indoor environments, there are 

10

57
C  kinds of APs deployments combinations 

theoretically. We take 500 of them as randomly 

selected APs position combinations. Note that it is 

reasonable to have about 5 APs in 400 2
m  indoor 

environments.  

In the realistic scenario, it is reasonable to have 5 

APs in the 2
400m  However, in our simulation, when 5 

APs are randomly deployed in 57 positions for 500 

times, it is easy to generate the uneven distribution of 

APs, which is inconsistent with the actual situation. 

Moreover, in the case of ensuring the uniform 

distribution of APs, we only select three of them to 

participate in the calculation of RSS distance. 

Therefore, redundant APs do not affect the simulation 

effect. 

For each APs position combinations, we calculate 

the RSS distance of all pairwise positions in two cases, 

that is, (1) select 3 APs from 10 APs randomly, and (2) 

select 3 APs according to the algorithm proposed in 

this paper. Then, the 500-correlation coefficient and 

the consistency coefficient are shown in Figure 11. As 

seen, in 500 cases, using the proposed algorithm, the 

correlation coefficient and consistency coefficient 

between RSS distance and physical distance are both 

greater than 0.8, that is, RSS distance and physical 

distance are very strong correlation and very high 

consistent. In contrast, when the 3 APs are randomly 

selected, only a small part of the 500 cases, RSS 

distance and physical distance are very strong 

correlation and very high consistent. Through the 

statistics of the results, the proportion of very strong 

correlation and very high consistency in 500 cases is 

only 20.8% and 14.4% respectively. 

Since the efficiency and quality of the RSS distance 

provided, the higher the efficiency and accuracy of the 

corresponding localization algorithm. Considering the 

complexity and APs numbers of the indoor 

environments, we suggest that at least 3 APs are 

selected for RSS distance calculation in the actual 

localization process, i.e. 
0

3t ≥  in the algorithm process. 

Furthermore, to demonstrate the edge deployment of 

APs makes the overall effect better, for the 

experiments in section 4.1, we repeat the simulation of 

the number of APs 3n =  for 10 times. For each 

simulation, we record the positions of APs set when 

the relationship coefficient is maximum and minimum 

in 500 repeated experiments. We find that the APs 

positions of the maximum correlation coefficient and 

the maximum consistency coefficient are the same, so 

is the case of the minimum value. The 10 groups of 

positions are shown in Figure 12. Obviously, for the 

combination of the optimal positions, all positions are 

evenly distributed in the edge positions (see Figure 

12(a)), while for the combination of poor positions, 

they are mostly concentrated in the center region of the 

positioning area (see Figure 12(b)). 
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(a) Comparison of the correlation coefficient (b) Comparison of consistency coefficient 

Figure 11. The Comparison of the Proposed Algorithm-based Selection and Random Selection for 3 APs 

  

(a) The optimal positions combination of 3 APs (b) The poor position combinations of 3 APs 

Figure 12. The positions of APs subset 

7 Conclusions 

In this paper, we propose an algorithm regarding the 

improvement and optimization of RSS distance 

calculation, which can improve the key steps of all 

localization technologies based on RSS distance. Next, 

we will verify the improvement effect of the proposed 

algorithm in the corresponding RSS distance based 

localization techniques. Also, the future work includes 

(1) The improved fingerprint collection and updating 

algorithms to reduce work intensity; (2) The 

improvement of location accuracy with additional 

auxiliary equipment, such as Bluetooth, RFID, infrared 

and various sensors and so on; (3) The customized 

application services with different location accuracy 

according to different scene requirements. 
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