
CloudIoT-based Jukebox Platform: A Music Player for Mobile Users in Café 1363

CloudIoT-based Jukebox Platform:

A Music Player for Mobile Users in Café

Byungseok Kang1, Joohyun Lee2, Ovidiu Bagdasar1, Hyunseung Choo2

1 School of Electronics, Computing and Mathematics, University of Derby, UK
2 College of Information and Communication Engineering, Sungkyunkwan University, South Korea

b.kang@derby.ac.uk, joohyun7@skku.edu, o.bagdasar@derby.ac.uk, choo@skku.edu*

*Corresponding Author: Hyunseung Choo; E-mail: choo@skku.edu

DOI: 10.3966/160792642020092105012

Abstract

Contents services have been provided to people in a

variety of ways. Jukebox service is one of the contents

streaming which provides an automated music-playing

service. User inserts coin and presses a play button, the

jukebox automatically selects and plays the record. The

Disk Jockey (DJ) in Korean cafeteria (café) received

contents desired of customer and played them through the

speakers in the store. In this paper, we propose a service

platform that reinvented the Korean café DJ in an

integrated environment of IoT and cloud computing. The

user in a store can request contents (music, video, and

message) through the service platform. The contents are

provided through the public screen and speaker in the

store where the user is located. This allows people in the

same location store to enjoy the contents together. The

user information and the usage history are collected and

managed in the cloud. Therefore, users can receive

customized services regardless of stores. We compare our

platform to exist services. As a result of the performance

evaluation, the proposed platform shows that contents can

be efficiently provided to users and adapts IoT-Cloud

integrated environments.

Keywords: Cloud computing, Internet of things,

Location-based service, Multimedia services,

Real-time sharing service

1 Introduction

Users have been served contents in various offline

ways for a long time. Examples of typical services are

Jukebox and DJ. Jukebox existed a lot from 1940s to

1960s, especially in the 1950s. Jukebox has records so

that when users insert a coin, they can listen to the

music. Users can listen music with higher volume and

better sound quality through Jukebox. In Korea, DJs in

music café stores called “Dabang” were popular during

the 1970s and 1980s. The café DJ shares music and

messages to the users in the store. The music is played

with the public speaker of the store. People in the same

store could enjoy it together through these services.

Jukebox and DJ services show that users enjoy not

only contents but also sharing with others in the same

location.

Advances in cloud computing become possible to

provide personalized online streaming services based

on cloud [1]. It can also provide a lot of contents.

However, users have difficulty in selecting the contents

that suits them from a lot of contents. A lot of research

has been proposed on algorithms and systems that

recommend user preferences as a solution to these

problems [2-5]. In particular, a cloud-based

recommendation system recommends contents based

on an age, location, usage history, and preferences [6-

7]. However, such a system is only a recommendation

and does not guarantee the satisfaction of the user. It is

also hard to offer a personal online streaming service

that user can enjoy with other users in real-time. A

platform for ensuring user satisfaction and for users to

enjoy contents with others has become necessary.

In cloud media DJ service, the most important factor

is how to replace the music café DJ. This is because DJ

had led the music café. We use a cloud server instead

of the DJ. The song which was played by DJ is

replaced by the streaming REST API of the music and

videos service provider. The behavior of users who

requested the song by letter or speech directly to the DJ

is replaced by the application such as the Android and

web one. The sound of music requested is heard

through speakers in the café and the stories of

customers is seen through the screen in the café.

This paper proposes and implements a cloud

jukebox platform that reinvent a DJ of a music café.

We propose and implement a new service platform that

was not previously available. The platform is based on

an integrated environment of Internet of Things (IoT)

and cloud computing. Based on a single cloud, services

provided by this platform allow users to request

contents services directly. User information and usage

history are collected and analyzed in the cloud. Even

when the users visit other stores, they can receive

customized contents services based on their

information and previous usage history. We analyze

1364 Journal of Internet Technology Volume 21 (2020) No.5

and evaluate the services of the proposed platform,

focusing on the functional aspects. The platform

provides four main services. Types of services are

music, video, message, and combined service. All

services on the platform are based on the location of

users. It also combines the advantages of online

streaming and offline services to provide O2O

streaming services. User can share contents with other

users in real time through the platform and receive

scalability and convenience services through speakers

and screens.

The remainder of this paper is organized as follows.

In Section 2, we review the basic concept of IoT and

Cloud computing. Section 3 presents a proposed

platform. Implementation and the evaluation are

discussed in Section 4 and 5, respectively. In section 6,

we conclude this paper.

2 Related Work

With the development of mobile devices and the

cloud, various kinds of offline services that people

have been handling is replaced by online ones. In the

past, Korean music café DJ performed the role of

playing music requested and reciting the story of

customers. We replace this offline service with an

online one consisting of a public cloud, a streaming

server, a streaming client, and a mobile device. In this

section, we introduce state-of-the-arts of cloud,

streaming and web services.

2.1 Recent Internet of Things and Cloud

Computing

Internet of Things (IoT) is a technology that allows

communication between objects by connecting to the

Internet with sensor and communication functions. The

kind of object include a user device, home appliance,

and the like things. Objects connected by the Internet

exchange and analyze data. Cloud computing provides

an environment where IT services such as storing data

and providing contents are available anytime,

anywhere. It also provides large scale capacity and

processing by using servers on the Internet. IoT

technology has limited processing capacity and storage

problems. This leads to performance and security

problems.

A solution to these problems is presented to

integrate IoT with cloud computing. The technology

that combines IoT and cloud computing is called

CloudIoT [8]. This new paradigm provides many

services and applications to users. In recent years, the

two themes have been popular and researched.

Integrated research and application programs are also

actively being proposed. In general, the infinite

capabilities and resources of the cloud can solve the

problems of the IoT: storage, processing, and

communication. CloudIoT paradigm can lead to big

advances in life and activity of human [9]. Multimedia

applications based on this paradigm provide efficient

services and build new businesses [10].

In the cloud system, virtual machine plays an

important role. It features a virtualization of the

operating system using hypervisor on existing physical

hardware. It is separated from the host operating

system, because the operating system is virtualized.

Therefore, it is possible to use an operating system

different from that of the host operating system, and

the host and other VMs can be safely maintained even

when one VM is attacked due to the structure separated

from the host operating system. However, there are

disadvantages as well. The amount of disk space

required to virtualize an operating system is very large.

In addition, once it is a virtualized operating system,

there are performance penalties compared to the host

operating system.

2.2 Online and Offline DJ

Disk Jockey is a person who leads listeners to music.

In Korea, music cafeterias were popular in the 1960s

and 1980s. The person who plays the music in the

music café is called DJ. In addition, DJ has become

universal in the world. It can be easily seen at festivals

where contents can be enjoyed all over the world.

These DJ services can be classified as offline DJs

working offline and online DJs working online.

Typically, offline DJ works radio, dance club, etc. On

the other hand, online DJ works as an internet

broadcaster and music streamer. The description of

each DJ is as follows.

Offline DJ is a person who plays the music recorded

in real time to users located in the same store. Typical

DJ types are digital radio DJ and club DJ. Radio DJ is

a basic DJ who can listen to music from the station.

Radio DJ plays music on a digital radio station. Club

DJ plays a variety of music in clubs and encourages

people to dance. Club DJs also reassemble their music

and let listeners hear it. They act as a mediator for the

music recorded to the users and recreate the music.

Users can enjoy more music with DJ.

Online DJ is a person who broadcasts online. It is

usually called broadcaster, and it is called BJ

(Broadcasting Jockey) in Korea. They get popularity

from users and attempt to build new businesses. With

the development of mobile devices and online

streaming services, the number of online DJs who

provide contents has also increased. As the number of

users enjoying contents increases, the service area of

DJs is also increasing. Their prospects are also high.

2.3 Streaming Services

The service for streaming the music can be classified

into an on-demand method and a streaming radio

method. On demand is a way for users to select and

listen to music. The streaming radio method

automatically selects and plays the music on the

CloudIoT-based Jukebox Platform: A Music Player for Mobile Users in Café 1365

platform. The on-demand method allows a user to

select a music to listen to, store it in a personal folder,

and listen at any time. In addition, the user can edit the

number of times of playback and the order of the music

according to the user’s preference. However, the user

lacks a curating system to listen to and listen to

unfamiliar music.

On the other hand, the streaming radio service

recommends various genres of music, and users can

access new music. It can also be used as a free service

based on advertisements. However, it is difficult to

listen only to a user’s favorite music, and the number

of times of play back and order of music are limited.

Currently, streaming radio service is gaining popularity

in overseas music market. Streaming radio-based

services can create various business models when

many users are secured.

Currently, many companies around the world

provide streaming services. A typical music streaming

service is Apple music, and is a global music streaming

service released by Apple in the U.S. [11]. A typical

video streaming service is YouTube [12]. It is Google

free video sharing site, a global platform that allows

users to create and share video contents. YouTube

helps and provides customized contents for over 1

billion users [13]. In recent years, cloud-based

streaming services have been one of the core

innovations in digital streaming service. Many music

providers like Apple, Amazon, Google and Microsoft

are currently offering cloud-based streaming services.

The advantage of cloud-based streaming services is

that users can store and easily access the contents [14].

Cloud-based streaming services are actively researched,

and applications that provide contents to users are also

developed. Users receive a variety of contents and

services. However, users have difficulty in selecting

their preferred services in a lot of contents. Contents

providers need a way to effectively inform users a lot

of contents. The competitiveness of contents providers

is determined by providing contents that users prefer.

Algorithm and applications for providing customized

contents to users are being studied [15-16].

2.4 Native Web Application

Recently, mobile device gives tremendous of

services to the human being [17]. The ability to access

the Internet anytime and anywhere with a smartphone

rather than a desktop is one of the greatest

achievements of recent times. We can communicate

with external services at any time via a smartphone and

save our data unlimited in external spaces. In addition,

the quality of wireless network communications is

evolving very quickly, making the advance of mobile

devices faster [18]. The application services evolved

together as mobile devices advanced. Now, most of the

online services like banking, shopping, booking can be

run as smartphone applications. The application

services are expected to take a large portion in the IT

era in the future.

The applications that run mostly on mobile devices

are native and web ones [19]. Native applications run

directly on mobile operating systems without going

through another execution environment. These features

make native applications perform faster and can gain

most of permissions on mobile devices. However, there

is a disadvantage in native applications. It is platform

dependent so the native applications developed for

Android platform cannot be executed on other

operating systems such as iOS. Web applications run

through web view in web browsers. Therefore, it has

lower performance than native applications. However,

the HTML5 [20] standard used on the web is compliant

with all of the web browsers. If a developer creates a

web application, users can run it on any platform

without any operating system limitations using web

browsers. An application developer should choose the

right application style, keeping in mind the scenarios in

which the applications they want to develop, how

much their funds, and how much performance they

need.

3 Proposed Platform

Cloud jukebox is an online service that changed the

music café, a proven offline service in Korea long ago.

Café customers can use the mobile or web application

to access the service. When a customer requests a

music, a video, or a message through the application in

a café, the requested contents are played in the café

where the customer is located currently. Customers can

listen to their own playlists in cafeterias, not playlists

of the owner of the café. Customers can share music,

videos and stories with their friends and co-workers in

the café. In addition, the café automatically plays the

music that the customer previously requested, even if

the customer does not request it using the customized

recommendation function. The customer is satisfied

with the service and may become a regular customer of

the café.

3.1 Platform Overview

Cloud Media DJ (CMDJ) provides customized

contents services for mobile users in an integrated

environment of IoT and cloud computing [21-22]. The

platform consists of user device, cloud, streaming

client, public screens and speakers. There are devices

of users, streaming clients, public screens and speakers

in one store. The cloud is external. User select for

contents want to receive in stores where they are

located, and provided it as public screens and speakers.

The user receives one or more of the music, the video,

and the messaging services. The user device is a

communication device that uses applications in the

network environment. For example, user devices could

be a smart phone, tablet device, or a laptop. The cloud

1366 Journal of Internet Technology Volume 21 (2020) No.5

is a server that can manage all stores. It is possible to

manage all stores with one cloud. The platform builds

cloud based on Google cloud platform. Cloud consists

of operation server and streaming servers. The

operation server collects user information and performs

analysis. The detailed functions of the operation server

are described in the following paragraphs. Streaming

server is an external affiliated server with contents data.

For example, it could be Spotify or YouTube which

hold and provide music and video. Depending on the

type of contents requested by the user, the streaming

server provides the contents data. The streaming server

that provides the music and the streaming server that

provides the video may differ and include multiple

affiliate streaming servers.

The streaming client is located in the store, receives

contents data, and transmits it to the public IoT devices

[23-24]. The streaming client is a server that receives

streaming data in a store. It connects the cloud with the

screen and speaker. In this platform, it is implemented

as a web page based on HTML which is highly usable

and light. The screens and the speakers connect with

the streaming client to play the contents received by

the streaming client. It is also implemented as an

HTML-based web page and runs with minimal

hardware requirements. Figure 1 shows the overall

structure of platform. The platform allows a single

cloud to manage multiple stores. When a user requests

contents desired through the application, the cloud

collects the contents data requested. The collected data

is sent to a streaming server, and the contents data is

transmitted to a streaming client at a store where the

user is located. The streaming client transmits the

contents to the public screens and speakers, so that the

contents to be played. Streaming client can be

implemented with minimum specifications so it can be

used lightly in stores. Users in the same store receive

contents services through public screens and speakers.

Figure 1. Basic structure of cloud jukebox platform.

Our system covers multiple spaces. Each space has

certain number of IoT equipment

A cloud consists of an operation server and a

streaming server. The operation server of platform

mainly performs user information collection and

analysis functions. Figure 2 shows the structure of the

operation server. The operation server consists of

device communication, user data storage, information

analysis, and contents recommendation. Device

communication is an interface with a user device. The

interface service as the communication module that the

user device can access. Device communication sends

and receives user information between user devices

and user data storage. User data storage stores user

information and usage history. Information analysis

part analyzes and integrates user data in operation

servers. After that, this data is transmitted to the content

recommendation module. Contents recommendation

transmits the contents list to the streaming server so

that the contents are played.

Figure 2. Structure of operation server

3.2 Service Design

The proposed platform provides four main services.

The types of services are music, video, messaging, and

combined service, and perform the following

operations. We have designed the services that can be

provided through this platform. These are the services

that users can provide through this platform. The

following paragraphs describe each service and its

operation and scenarios.

3.2.1 Music Streaming Service

Music streaming service provides the music that

users want to listen in the store where the user is

located. Users request services by searching and

selecting the music they want through the application.

The components for music streaming service are the

user device, operation server, streaming server,

streaming client, public screens, and speakers. The

operation server and the streaming server can provide

services to the store. The streaming client, screen, and

speaker exist in the store. Operation server and

streaming server serve all stores. Streaming client,

public screens, and speakers are in each store. The user

can view music related information on user device or

public screen. In addition, the user searches for a music

desired and directly select for it. The selected music is

provided to the public speakers of the store where the

user is located, and the music information is provided

CloudIoT-based Jukebox Platform: A Music Player for Mobile Users in Café 1367

to the screens. The music information includes a title, a

singer, and an album photo. The user is provided with

a music directly selected on the speakers. It allows

users to provide customized music and share the music

with other users in real time. Also, the store manager

automatically provides customized music services

without having to manage the music playing lists. Store

managers can exclude music genres that they do not

like or music that many people do not like.

3.2.2 Video Streaming Service

The video streaming service provides the video

desired by the user. The video is played on the public

screens and speakers in the store where the user is

located. The service provides with various videos

including music video, by public speakers and screens.

Components for video streaming service include user

device, operation server, streaming server, streaming

client, screens, and speakers. The video streaming

service is the same as the music streaming service, but

the streaming server is different. The streaming server

must be a server capable of providing video. For

example, there is YouTube. The user searches for

videos desired in the application or the web at the store,

request directly. The video requested by the user is

played on the screens and speakers of the store where

the user is located. Users receive customized video

service by receiving the video requested as a public

speaker and a screen. In addition, store manager

automatically provides video service that users can

satisfy without having to manually control the video

playing list.

3.2.3 Messaging Service

The messaging service is a service that allows users

to request a message and receive it on a public screen.

Users request to a message that they want to leave or

share with the people in the store. This message is

displayed on the screen. Messaging service provides

users to share information about simple messages or

special events with people who is in the same store.

Messaging services display simultaneously with music

or video if user wants. Unlike other services, the

messaging service does not require a streaming server

and is simple. When a user enters a store, the user

requests for the message desired through the mobile

application or web. This allows the user to use it for

the purpose of the event or for sharing with people in

the same store. In addition, the store manager can

automatically customized messaging service to satisfy

the user and view comments that people leave in the

store.

4 Implementations

We develop platform based on the Google cloud

platform using an API that provides music and video.

The API used is provided by Spotify and YouTube. As

a result of the implementation, the user requests a

desired music, video, and message. The data requested

is provided to the public screen and speaker of the

store through the operation server and the streaming

server.

4.1 Cloud Media DJ Service

The CMDJ service is an online service in which

when a café customer requests music, videos, or

messages, the requested contents are played in the café

where the customer is located currently. The customer

can request the contents using the Android or web

application, and the contents are played on the screen

and the speakers in the café. Café customers can listen

to music they want instead of music played at random

in the café, and owners of cafeterias can make the

foundation to change normal customers to their regular

customers. Our service does not have a process of café

selection because it automatically recognizes locations

through our applications. After running the application,

users can request the contents they want in the café

with only two or three touches. Also, since the request

history of customers is always saved, the music that

has been requested in the other cafeterias appears on

the recommendation list or is automatically played in

the currently located café. Furthermore, by using the

service, music and stories can be shared with the

people who came together, not by themselves. Since

the cloud web server has a web application to be used

in cafeterias, a café owner can have a content playback

environment on a mobile or a laptop without having a

separate device.

CMDJ service provides music streaming function

and videos streaming function that allow the customer

wants to play music and video requested in the café.

When a café customer selects music or videos from

popular charts or search that in the application,

streaming will be done in real time in the café. This is

the core of the proposed service, and replaces the

biggest role of the DJ of music café, such as music and

videos playback. Café customers can request their

messages to show on the café screen. Simply put, our

service has the function of a message board. When a

café customer writes some sentences through the

application, the sentences appears on the café screen. It

replaces the role of music café DJ who recite the story

of customers. With this feature, customers can share

their stories with other customers in cafeterias.

Political and sensational words within the messages of

customers are automatically excluded by words

filtering.

1368 Journal of Internet Technology Volume 21 (2020) No.5

The screens in the café display of the music list

when the music is playing, and the video as full screen

when the video is playing. Customers may want to

request music and show their messages at the same

time, or want to include their messages in the video.

The proposed service is able to accept for both music

and messages or videos and messages at the same time.

If there are music list and messages at the same time in

the screen, the messages take up most of the screen,

instead of a music list. If there are video and messages

at the same time in the screen, the message is displayed

as a large caption on the top of the video. Customers

can express their stories with appropriate contents

through the service. The messages displayed appear for

a few seconds depending on their length and then

disappear.

4.2 Platform Organization and Service Scenario

DJ service runs on the proposed platform with cloud,

streaming server, streaming client, and user devices.

Cloud is the most important component that connects

cafeterias (streaming client) to customers and

streaming server. Streaming server includes music and

videos service providers. It provides streaming

contents to streaming client. This client plays the

contents received from streaming server. Café

customers can request contents what they want through

a mobile or web application on their devices. Contents

information requested from an application on a

smartphone is transmitted to streaming server via cloud,

and this server streams contents to streaming client.

Users can freely choose between android (mobile)

and web applications in the café. When requesting

contents from android application, it becomes TCP

socket client role, and when requesting contents from

web application, it becomes web client role. Cloud has

TCP socket server, web server, and DB server. TCP

socket server is used to communicate with android

applications. Web server is used to provide web

application of contents request to a user device and to

provide web application of contents streaming to the

client. Finally, database is responsible for storing all

the information of users, contents request history and

the café information. Streaming server is a content

providing company and we selected famous two

companies. We selected Spotify as a music provider

and YouTube as a video provider. Streaming client

starts from running a web application. When owners of

cafeterias accesses web server in cloud, the

corresponding web application is executed and the

contents is streamed through the web page. Any device

can open this web page without limitations. When

customers launch an android or web application via

user devices, it is immediately connected to cloud

through socket or web socket communication in the

background. You can see the details of each step in

Figure 3.

Figure 3. Main scenario of cloud media DJ service. The service scenario consists four main steps

First, the users select the contents in a list of popular

contents that can be requested through an application

or search the contents what they want, the information

of the contents, current café information, and customer

information are transmitted to cloud. The data is

transmitted as a UTF-8 string through socket or web

socket communication, and is JavaScript Object

Notation (JSON) type. The protocol is the most

important data that determines which method in cloud

to execute. The remaining data contains the contents

information, current café information, and the user

information in order. The data is received in JSON

type and can be distinguished into each role in cloud.

Second, cloud is always running as a role to manage

all the components of proposed platform. It receives

the data in JSON type and confirms what data was

CloudIoT-based Jukebox Platform: A Music Player for Mobile Users in Café 1369

transmitted through the protocol data. The protocol

exists in a variety of categories, such as request for

new contents, deleting the contents requested,

searching for contents by title or artist names, changing

the user information, and collecting previous contents

requested list. It is now assumed that this is a new

contents request protocol. Each data except protocol is

divided into contents information, current café

information, and the user information and stored in

temporary variables. A cloud stores these in the

contents request history table in database. This history

can be viewed through the previous contents protocol

and used for customized recommendations.

DB storage is completed, the REST API provided by

streaming server is used. Music that matches the

contents information is searched using “Get a Track

End point” of Spotify Web API, and the videos are

searched using “Search: list Endpoint” of YouTube

Data API. Since cloud is implemented as Node.js

platform, both Spotify and YouTube REST APIs use

JavaScript libraries. Using these APIs, cloud can get

the search results back in JSON type. Cloud collects

the streaming address of contents requested from the

returned JSON data.

Third, cloud transmits the streaming address of

contents requested and the information of user who

request contents to streaming client corresponding to

current café information received from the customer.

Cloud transmits data in JSON type, and includes the

protocol data received when collecting data from user

devices. Streaming client distinguishes functions by the

protocol and executes appropriate functions. Since

cloud received new contents request protocol that we

assumed earlier, streaming client play the contents

using the streaming address on the web page.

Finally, the contents playback using streaming

address on the web page in streaming client is divided

into two methods. The first is music playback using the

HTML5 “video” tag. The HTML5 video tag has a

“SRC” attribute. If SRC attribute is given streaming

address received from cloud, music is streamed. It is

important to make real-time response when the

contents request come in. Since the video tag of

HTML5 has a source playback completion event, when

the current music is ended, streaming client

sequentially plays the next contents collected by

streaming client. YouTube video playback using the

YouTube IFrame player API. This player provides API

to load and play YouTube videos using HTML5

“iframe” tags. unlike the video tag, there is no SRC

attribute and there is a “videoId” attribute. Users of

API can input the unique ID of the YouTube video

what users want to see. Using the API, developers can

implement the ability to play and stop YouTube videos

in real time. It also allows developers to set the size of

the video to be output, and collects the “onStateChange”

event when the playback is complete. When the current

video playback ends, the next video is played

sequentially, because of this event.

Streaming client must be able to output messages

contents in addition to music and videos contents. The

output of messages contents is relatively simple

because it is not streaming like music and videos.

Streaming client print the sentences using the JAVA

query (JQuery) library and CSS. The JQuery library

coordinates output times of messages contents. CSS

makes to display messages as full screen without

impacting existing other web components through

“position: absolute” and “z-index” attributes. When

music or videos contents is being played, the messages

contents request may arrive. Streaming client detects

the music or a video being played and outputs the

messages to the appropriate location. If the music is

playing, messages will show in full screen, but if a

video is playing, messages will show on top of the

video. Streaming client use flag variables of JavaScript

to determine the playback status of the contents, and

output the messages to the appropriate location in web

page using CSS.

4.3 Client Server Communication

A cloud runs as a single instance within the Google

Compute Engine. Google Compute Engine is a core

service of Google Cloud Platform. When the user pays

the money, it provides the virtual machine of the

desired specification. The virtual machine specification

the user set once can be changed at any time and this is

more secure than the physical server of normal users.

Because it is provided by Google which is the IT

conglomerate. Regional settings of Google Compute

Engine allow users to set the geographical location

where their proposed service will work. Using

appropriate regional settings, users can use the virtual

machine faster. In addition, Google Compute Engine

supports firewalls, history functions, self-monitoring

tools, security scan, and SSH, making it easier to

prepare and maintain than physical servers.

A cloud of the proposed platform exists as a virtual

machine in Google compute engine, and consists of

TCP socket server, web server and DB Server. TCP

socket server and web server run on the Node.js

platform. Node.js is a server process execution

environment platform suitable for interactive programs.

DB Server uses MySQL database management system.

TCP socket server running in Node.js is

implemented as net module which is the basic module

of Node.js. The net module provides TCP socket server

and TCP socket client functions. In the proposed

platform, only the TCP socket server function of net

module is used to communicate with the socket API of

the android application. If developers create a TCP

server by setting the port numbers in the “net” module,

users can connect to the TCP socket server through the

IP address and port numbers of cloud by using the

socket API of the android application as a client.

Web server is implemented using express module.

1370 Journal of Internet Technology Volume 21 (2020) No.5

This module contains various convenient modules in a

package so that developers can easily create web server.

If developers create a web server by setting the port

numbers with this module, users can connect to the

web application using the web browser. CMDJ service

requires a real time communication method in order to

receive the contents request of users. In this case, the

communication used is a web socket. The web socket

can be implemented using the web socket module in

Node.js. Like the net module, it provides web socket

server and client functions. Only web socket server is

used in our proposed platform, because web

applications used by user devices and streaming client

assume the role of web socket client. Since web socket

server can be created based on web server by default, it

follows port numbers of web server. Web applications

can be web socket clients using the Web Socket (WS)

protocol of program library. In Node.js, clients can

connect through the IP address and port numbers of

web server created using express module.

DB server can query, insert, modify and delete the

data by using the MySQL module of Node.js when

MySQL is installed. Android applications cannot be

directly connected to MySQL for some security

reasons. Therefore, most android applications connect

to the DB through the backend web, but Node.js has a

MySQL module that acts as a back end. User Devices

receive the request of DB related through socket

communication, executes the SQL statement with the

MySQL module in cloud, and returns results to user

devices.

We propose the container structure as a way to

minimize the virtual computing costs used by Google

compute engine, rationalize performance, and increase

server stability. If the server is divided into as many

containers as the number of cafeterias, even if the error

occurs in a café, it does not affect the other cafeterias.

It also combines the event driven features of Node.js,

which only work when an event occurs and the features

of a container that uses just as much computing

resources as needed with process virtualization, so that

just one instance of Google compute engine can

operate the proposed platform stably. For example, we

assume that five users in café “A” request the contents.

The contents request data is transmitted to a container

divided into café “A”. There are 199 containers in a

cloud, but the contents are only processed in this café.

And the other 199 containers do not work and do not

use computing resources. As a result, café “A”

container has the same performance as a server state

without dividing into the container. The Node.js server

process, which is implemented all the functions of the

proposed service, is packaged as a Docker image.

Using that image, hundreds or even thousands of

containers can be generated in a single line of code,

depending on virtual machine specifications. Therefore,

in cloud, Node.js server processes including TCP

socket server, web server, and DB communication

back end (not DB Server) are divided into containers,

and the number of this containers corresponding to the

number of cafeterias exists. The reason the DB Server

itself is not included in the container is related to the

contents request of customers. The customer should be

able to see all the contents that they have requested so

far from their current location no matter which café

they request their contents. For example, when a user

requests the contents history of the user from the

cafeteria “A”, if the history does not contain the

contents which is requested in other café, it will be a

recommendation that is dependent on café “A” only,

not a user customized recommendation. Thus, there is

only one DB server in cloud, which means that all the

contents request history is stored in a unified space.

Streaming client is displayed when a web browser is

connected to a café web server separated by a container.

Each café web server that exists in cloud provides a

web application that acts as Streaming client to the web

browser. Since the web server exists for each café,

there is no worry that the contents requested will be

played in wrong places, and even if there is a problem

in one Streaming client, it does not affect any other

clients.

5 Experimental Evaluation

We implement and evaluate CMDJ based on one

cloud and two streaming servers (Spotify API,

YouTube API). We performed three functional

evaluations and one performance evaluation based on

the implemented platform. Functional evaluation was

compared with famous streaming service, streaming

service type, and DJ service centered on services

provided by this platform. Performance evaluation tests

how many times the platform can provide fast service

to concurrent users.

5.1 Functional Evaluation

Based on the results of the implementation, the

platform compares and evaluates several functions

according to three different factors. We compare the

CMDJ with the international famous streaming

services.

Most popular international streaming services are

Apple Music and YouTube. These are typical

streaming services with many users. Users can search

for contents and see the ranking of popular contents

through all three services. In addition, the user receives

contents preferred through the service. Apple Music

requires a monthly fee, but proposed platform and

YouTube are free. But YouTube also has a monthly

subscription on the condition that it does not see the

advertisement. Unlike the other two services, the

proposed platform provides services based on the

location and enables real-time sharing with people in

the same store. Apple Music and YouTube provide

CloudIoT-based Jukebox Platform: A Music Player for Mobile Users in Café 1371

music and video services, but the platform provides not

only music and video, but also messages and combined

services. In Apple Music and YouTube, personal

service users and recipients of services are matched.

This platform allows a large number of users in the

same store to receive services even if there is only one

user. We can confirm that this platform is the only

platform that can enjoy contents service and share with

many users.

The second is a comparison based on the type of

streaming service. A streaming service is classified

into a personal streaming service, a café streaming

service, and a proposed platform as a service. A

personal streaming service is a method of using a

streaming service through a device of user alone. It is

the user enjoying the streaming service through the

mobile device alone. Café streaming service is a

service provided to users in café stores. If the user

normally goes to the store, he or she receives the

contents. In the case of personal streaming service and

proposed platform, a user searches contents and view a

list of popular contents. In addition, these two service

cases provide the user with the contents preferred, and

the user provides the service based on the usage history.

This leads to a customized streaming service.

Therefore, the user can be satisfied. The streaming

service provided at the store lacks these functions.

Although automatic, customized streaming services are

difficult. And users of personal streaming service

cannot share it with others in real time. The proposed

platform provides not only music and video, but also

combined services and messages. Finally, if a user uses

a personal streaming service, the service recipient is

only one. On the other hand, the CMDJ and the café

streaming service can have many service recipients

regardless of the number of users.

The third functional evaluation compares proposed

platform and DJ services. DJ types are classified as

online and offline. Online DJ is a person who

broadcasts and services on the Internet. Offline DJ is a

person who provides services in the same local place.

We compare the CMDJ with two DJ services. The

proposed platform and Online DJ allow users to

browse contents and view popular contents lists.

Online and offline DJ provide service to users from

one DJ. The contents list to be provided is determined

by a DJ. Therefore, it is difficult to provide a service

considering the satisfaction of the user and the usage

history. On the other hand, the proposed platform

allows users to create playlists considering satisfaction

of user and usage history. Also, it is possible to provide

a combined service of two contents which are not

provided by other DJs. The proposed platform can

provide various contents considering user satisfaction

compared to other services. CMDJ has advantages of

online and offline DJ, and it can be confirmed that it

integrates online service and offline service. This can

lead to O2O services.

5.2 Performance (Non-functional) Evaluation

We implemented a single server structure, which is

the most common server structure, to measure the

performance of our proposed platform. A single server

structure is one in which a TCP socket server, a web

server, and a DB server are existed in a single instance

of Google compute engine. A TCP socket server and a

web server communicate with all the cafeterias, and a

DB server stores all the information. The instance

specification of Google compute engine set to 4 vCPUs

and 16 GB memory.

The proposed platform uses container technology on

one instance of Google compute engine to provides

communication servers as many as the number of

cafeterias. As mentioned in previous section, the TCP

socket server and web server are included in containers

that exist as many as the number of cafeterias. One

TCP socket server and one web server communicate

with only one streaming client. A DB server stores all

the information, just like a single server structure. The

instance specification is same with the single server

structure which written above as 4 vCPUs and 16 GB

memory.

We assume that there are 200 cafeterias which use

the proposed service, and a large number of customers

each request one content. Figure 4. shows the response

time which when completing the request process for

the content in cloud, and shows the computing

resources usage rate of cloud. The response time of the

content request is used to determine if the customer

who use the proposed service will feel uncomfortable

when large traffic occurs. The usage rate of computing

resources is used to determine if a cloud can use the

instance of Google compute engine as efficiently as

possible. Since Spotify and YouTube REST APIs

cannot be used for performance measurement, we

decided to implement sample data of Spotify contents

in external space and use this sample data instead.

As a result of measuring the performance of the two

structures, there are advantages and disadvantages of

each structure. The latency graph shows that the using

container structure has an overwhelmingly shorter

response time than the single server structure. This can

reduce latency by as less as 25% to as much as 75% in

large traffic. Figure 5. shows that the using container

structure efficiently uses CPU and memory by as less

as two times to as much as fourteen times compared to

a single server structure. Contrary, this indicates that a

single server structure does not require high

specification. The single server structure sometimes

causes data loss in large-scale traffic because a large

amount of contents request data is received by one

server and data collision occurs. This is the reason why

the response time is high. The proposed platform is a

platform suitable for the using container structure

because stability, high efficiency and short response

time are the top priority in the service for the

customers of cafeterias.

1372 Journal of Internet Technology Volume 21 (2020) No.5

Figure 4. Network latency in 200 cafeterias

Figure 5. Cloud hardware resources usage in 200 cafeterias

6 Conclusion

We develop a cloud-based platform for automatic

customized contents. We also analyzed the service

platform based on the implementation results. The

proposed platform provides automatic customized

streaming service and convenient service through

public screen and speaker. The user can conveniently

receive the service and can share with the users in the

same store. CMDJ also showed that it can provide

more convenient interface by comparing features with

other streaming services. In addition, this platform is

compared with streaming service type and DJ service.

As a result, our platform has the advantages of each

streaming service and confirmed that it is a service that

connects online and offline. Finally, we show that

CMDJ process numerous concurrent users quickly

based on the cloud. We confirmed that this platform

can process many request data in an efficient time and

provide service. It can be handled flexibly by cloud.

In the future, we will add functions to provide music

and video according to detailed user information. Only

the contents services requested by the user is played on

public screen and speaker. Currently, there is a need

for a content streaming platform service that can

guarantee user satisfaction [25-28]. We will study

recommendation algorithms to play when users do not

request contents. We will research and develop this

platform to enable customized music and video based

on user information or user contents usages.

CloudIoT-based Jukebox Platform: A Music Player for Mobile Users in Café 1373

Acknowledgments

This work was supported in part by the Ministry of

Science and ICT and Ministry of Education, South

Korea, through G-ITRC under Grant IITP-2020-2015-

0-00742 and in part by the Korean Government (MSIT)

through AI Graduate School Support Program under

Grant 2019-0-00421.

References

[1] F. Aznoli, N. J. Navimipour, Cloud Services

Recommendation: Reviewing the Recent Advances and

Suggesting the Future Research Directions, Journal of

Network and Computer Applications, Vol. 77, pp. 73-86,

January, 2017.

[2] J. Bobadilla, F. Ortega, A. Hernando, A. Gutiérrez,

Recommender Systems Survey, Knowledge-based Systems,

Vol. 46, pp. 109-132, July, 2013.

[3] J. Lu, D. Wu, M. Mao, W. Wang, G. Zhang, Recommender

System Application Developments: A Survey, Decision

Support Systems, Vol. 74, pp. 12-32, June, 2015.

[4] H. C. Chen, A. L. Chen, A Music Recommendation System

Based on Music and User Grouping, Journal of Intelligent

Information Systems, Vol. 24, no. 2-3, pp. 113-132, March,

2005.

[5] H. C. Chen, A. L. Chen, A Music Recommendation System

Based on Music Data Grouping and User Interests, 10th

International Conference on Information and Knowledge

Management, Atlanta, USA, 2001, pp. 231-238.

[6] M. F. Alhamid, M. Rawashdeh, H. Dong, M. A. Hossain, A.

Alelaiwi, A. El Saddik, RecAm: A Collaborative Context-

aware Framework for Multimedia Recommendations in an

Ambient Intelligence Environment, Multimedia Systems, Vol.

22, No. 5, pp. 587-601, October, 2016.

[7] P. J. Lin, S. C. Chen, C. H. Yeh, W. C. Chang,

Implementation of a Smartphone Sensing System with Social

Networks: A Location-aware Mobile Application, Multimedia

Tools and Applications, Vol. 74, No. 19, pp. 8313-8324,

October, 2015.

[8] S. M. Babu, A. J. Lakshmi, B. T. Rao, A Study on Cloud

Based Internet of Things: CloudIoT, IEEE Global Conference

on Communication Technologies (GCCT), Thuckalay, India,

2015, pp. 60-65.

[9] A. Botta, W. De Donato, V. Persico, A. Pescapé, Integration

of Cloud Computing and Internet of Things: A Survey,

Future Generation Computer Systems, Vol. 56, pp. 684-700,

March, 2016.

[10] W. Zhu, C. Luo, J. Wang, S. Li, Multimedia Cloud

Computing, IEEE Signal Processing Magazine, Vol. 28, No.

3, pp. 59-69, May, 2011.

[11] K. Tae Hyun, L. Jae Ik, Music Streaming Service UI Case

Study, Korea Science and Technology Forum, Vol. 24, pp.

159-171, 2016.

[12] K. Pires, G. Simon, YouTube Live and Twitch: A Tour of

User-generated Live Streaming Systems, 6th ACM

Multimedia Systems Conference, Portland, USA, 2015, pp.

225-230.

[13] G. Chatzopoulou, C. Sheng, M. Faloutsos, A First Step

Towards Understanding Popularity in YouTube, IEEE

INFOCOM, San Diego, USA, 2010, pp. 1-6.

[14] J. H. Lee, R. Wishkoski, L. Aase, P. Meas, C. Hubbles,

Understanding Users of Cloud Music Services: Selection

Factors, Management and Access Behavior, and Perceptions,

Journal of the Association for Information Science and

Technology, Vol. 68, No. 5, pp. 1186-1200, May, 2017.

[15] W. P. Lee, G. Y. Tseng, Incorporating Contextual

Information and Collaborative Filtering Methods for

Multimedia Recommendation in a Mobile Environment,

Multimedia Tools and Applications, Vol. 75, No. 24, pp.

16719-16739, December, 2016.

[16] J. Yang, H. Wang, Z. Lv, W. Wei, H. Song, M. Erol-Kantarci,

B. Kantarci, S. He, Multimedia Recommendation and

Transmission System Based on Cloud Platform, Future

Generation Computer Systems, Vol. 70, pp. 94-103, May,

2017.

[17] Q. Bi, G. L. Zysman, H. Menkes, Wireless Mobile

Communications at the Start of the 21st Century, IEEE

Communications Magazine, Vol. 39, No. 1, pp. 110-116,

January, 2001.

[18] S. Kumar, Mobile Communications: Global Trends in the

21st Century, International Journal of Mobile

Communications, Vol. 2, No. 1, pp. 67-86, May, 2004.

[19] A. Charland, B. Leroux, Mobile Application Development:

Web vs. Native, Queue, Vol. 9, No. 4, pp. 20, April, 2011.

[20] G. Anthes, HTML5 Leads A Web Revolution,

Communications of the ACM, Vol. 55, No. 7, pp. 16-17, July,

2012.

[21] B. Kang, D. Kim, H. Choo, Internet of Everything: A Large-

scale Autonomic IoT Gateway, IEEE Transactions on Multi-

Scale Computing Systems, Vol. 3, No. 3, pp. 206-214, July-

September, 2017.

[22] B. Kang, H. Choo, An SDN-enhanced Load-balancing

Technique in the Cloud System, Journal of Supercomputing,

Vol. 74, No. 11, pp. 5706-5729, November, 2018.

[23] B. Kang, H. Choo, An Energy-Efficient Routing Scheme by

using GPS information for Wireless Sensor Networks,

International Journal of Sensor Networks, Vol. 26, No. 2, pp.

136-143, January, 2018.

[24] S. Yeoum, B. Kang, J. Lee, H. Choo, Channel and Timeslot

Co-Scheduling with Minimal Channel Switching for Data

Aggregation in MWSNs, Sensors, Vol. 17, No. 5, pp. 1-16,

May, 2017.

[25] A. J. Molina, J. Kim, H. Koo, B. Kang, I. Ko, A

Semantically-based Task Model and Selection Mechanism in

Ubiquitous Computing Environments, International

Conference on Knowledge-Based and Intelligent Information

and Engineering Systems, Santiago, Chile, 2009, pp. 829-837.

[26] B. Kang, K. Yoo, Spontaneous Service Provision in Cyber-

Physical Interaction Environments, 7th International

Conference on Computer and Communications Management,

Bangkok, Thailand, 2019, pp. 258-262.

1374 Journal of Internet Technology Volume 21 (2020) No.5

[27] Y. Xiao, Z. Fan, C. Tan, Q. Xu, W. Zhu, Attribute Inference

by Link Strength Modeling in Online Social Networks with

User Tags, Journal of Internet Technology, Vol. 21, No. 3, pp.

689-699, May, 2020.

[28] C. Huang, Y. Guo, The Demodulating and Encoding Heritage

(DEH) Platform for Mobile Digital Culture Heritage (M-

DCH), Journal of Internet Technology, Vol. 21, No. 3, pp.

765-781, May, 2020.

Biographies

Byungseok Kang received the B.S.

degree in computer engineering from

Sejong University, Korea, in 2006, the

M.S. degree in electrical and

electronics engineering from Korea

University, Korea, in 2008, and the Ph.D. degree in

electronics and computer science from the University

of Southampton, U.K., in 2015. He is currently an

assistant professor in the Electronics, Computing and

Mathematics, University of Derby, Derby, UK. His

research interests include cloud computing, IoT,

wired/wireless networking, sensor networking, mobile

computing, network security protocols, and simulations/

numerical analysis.

Joohyun Lee received the B.S. degree

in computer system engineering from

Sahmyook University, Korea, in 2017,

the M.S. degree in information and

communication engineering from

Sungkyunkwan University, Korea, in 2019. Her

research interests include cloud computing, mobile

computing, and internet of things.

Ovidiu Bagdasar received Ph.D. in

Mathematics from the University of

Nottingham, U.K. in 2011, and Babeş

-Bolyai University in 2015. He is an

Associate Professor in Mathematics at

the University of Derby, U.K., where

he leads the MSc Big Data Analytics programme. He is

a Fellow of the Institute of Mathematics and its

Applications (FIMA), and Senior Fellow of the Higher

Education Academy (FHEA). His research is at the

boundary between Mathematics and Computer Science,

encompassing areas like number theory, optimization,

computational, discrete and applied mathematics, data

science and algorithms.

Hyunseung Choo received the B.S.

degree in mathematics from

Sungkyunkwan University, Korea, in

1988, the M.S. degree in computer

science from the University of Texas

at Dallas, USA, in 1990, and the Ph.D.

degree in computer science from the

University of Texas at Arlington, USA, in 1996. Since

1998, he has been with the College of Information and

Communication Engineering, Sungkyunkwan University,

and has been a Professor and the Director of the

Convergence Research Institute. Since 2005, he has

been the Director of the Intelligent HCI Convergence

Research Center. He has authored over 200 papers in

international journals and refereed conferences. His

research interests include wired/wireless/optical

embedded networking, mobile computing, and grid

computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

