
A Decentralized System for Medical Data Management via Blockchain 1335

A Decentralized System for Medical Data Management

via Blockchain

Qingzhu Yang1,2, Qiao Liu1,2, Hairong Lv1,2,3

1 Department of Automation, Tsinghua University, China
2 Bioinformatics Division, Beijing National Research Centre for Information Science and Technology, China

3 AIHealthX, Inc., China

yangqz@tsinghua.edu.cn, liu-q16@mails.tsinghua.edu.cn, lvhairong@tsinghua.edu.cn*

*Corresponding Author: Hairong Lv; E-mail: lvhairong@tsinghua.edu.cn

DOI: 10.3966/160792642020092105010

Abstract

With the rapid advance of data science, massive

medical data are managed in data centers which may

cause surveillance and security issues. This calls for

building a secure data management system. In this paper,

we propose a decentralized system for medical data

management, to address the challenge of data privacy

protection during data sharing between network nodes,

leveraging the blockchain technology. We propose

protocols to achieve this and normalize data format

recorded on the blockchain. The entities of our system

include users, contributing data; edge data hub (EDH)

nodes, used for storing users’ data (an EDH stores one

user’s data and is controlled by the corresponding user);

service nodes, with the ability to analyze user data and

customers that need the analysis of the data. To protect

data privacy in the EDH, we use a secure computing

platform (SCP) to process data. Furthermore, data request

from a service with high credibility is more likely to be

permitted by the EDH. Data authenticity is guaranteed by

checking the hash value recorded on the blockchain.

Moreover, we reduce the off-blockchain storage space

leveraging the data sparsity. Our system thus enables data

sharing, authenticity, privacy protection and storage

space reduction, shedding lights on building a

developable and secure data-driven world.

Keywords: Blockchain, Medical data, Data sharing,

Data privacy, Storage

1 Introduction

Massive data are continually being collected and

dissected, resulting in innovation and growth of data

economics [1]. Data are collected and analyzed by

organizations and companies for personalizing services,

predicting the future direction and more [1]. Data are

important substances in the economy [2]. There is also

an unprecedented development in human medical data,

including phenomic, anatomic, physiologic and

biologic information [3]. Human can now be quantified

by methods of medical examination and treatments,

scans, sensors, sequencing and laboratory tests [4].

Medical data are critical for both treatment and

research. It is reported that public health and

biomedical researchers have been analyzing data to

capacitate precision medicine to exploit new treatments

and control public health risks from a lot of sources [5].

With the development of the data-promoted society,

user privacy has become a growing public concern [1].

At present, the medical data are mostly stored,

managed and distributed by a few large centralized

data centers. Unfortunately, the centralized data

storage based on data centers has a lot of privacy and

security issues. As the data centers take full control of

all the data they stored, the data owner lose most or

even all the control over the data [1]. Moreover, if a

hacker gets access to the data center, he can access all

the data simultaneously and the whole system may

break down [6].

In order to conquer various issues of the centralized

data storage systems, several methods have been

developed. The decentralized systems are explored

where data are stored and managed by independent

nodes. Data are retrieved by authorized queries and

transferred through the internet based on encryption.

However, there is not a consistent view of current

status in these systems which enforces the authorized

key to be forever stored [6]. Recently, blockchain has

been investigated, allowing the participants to

exchange information securely through a publicly

verifiable ledger, without a data center [7]. This system

has been successfully implemented as a cryptocurrency

known as the bitcoin [1, 8]. It has been proposed to

apply blockchain technologies to overcome the

forementioned barriers. There are already several

blockchain-based systems that were proposed for

managing medical data. Medrec [9] is a decentralized

record management system to handle electrical medical

records (EMRs) based on the blockchain technology. It

can manage authentication, confidentiality and data

sharing when handling sensitive information.

MeDShare [10] is another blockchain-based system

that addresses the issue of medical data sharing among

1336 Journal of Internet Technology Volume 21 (2020) No.5

in a trust-less environment. The design of MeDShare

employs the smart contracts and an access control

mechanism. In [11], the authors proposed a secure and

trustable EMR data management and sharing system

using the blockchain technology. This is one of the few

works to implement a prototype that has been proven

to ensure privacy and fine-grained access control.

Although several blockchain-based systems were

proposed for the purpose of medical data sharing or

management, many previous works lack a detailed

description of the technical protocol. In the majority of

current studies, some form of data will be delivered

from the request node after the request is permitted.

The solution of the data leakage needs further

investigation. Meanwhile, the efficient use of storage

needs to be considered when the capacity is inadequate.

In this paper, leveraging blockchain technology, we

propose a decentralized data management system

focusing on medical data sharing, privacy protection,

and storage saving, which contains both the blockchain

and off-blockchain storage. In this system, medical

data are stored in edge data hubs (EDHs), and each

EDH is fully controlled by its owner who contributes

the data. The public blockchain is adopted in our

system. The Proof of Work (PoW) algorithm is used

for consensus [8, 12-13]. Data access is permitted by

the owner of each EDH. The organizations, such as

gene companies, could access the data via the

permission by the owner of each EDH. The EDH can

return the data or the computed result run by the

algorithm provided by the service through the secure

computing platform (SCP). Thus data privacy and

algorithm privacy can be protected by the SCP. The

hash values of the data are also stored on the

blockchain against tampering. Detailed protocols for

data management and normalized formats of data

stored on the blockchain are demonstrated in our

system. To reduce the storage space, an off-blockchain

storage method based on the sparse theory is used. Our

proposed system can effectively prevent data leakage

when the data analysis request is permitted and reduce

the off-blockchain storage while maintaining as much

medical data information as possible. Our system

demonstrates a framework including data sharing,

access permission, data protection, data tamper-

proofing and data storage space reduction via the

blockchain technology and the sparse theory. We

present our work not only as a significant solution for

medical data management, but also an important

attempt to build a medical data network for secure and

open data sharing in the society leveraging the

blockchain technology.

2 Related Work

2.1 Centralized Data Management

Centralized data management in authentication and

authorization has been investigated recently [14-15].

These schemes depend on a completely-trusted central

server to perform authentication, and authentication

services. Considering the rapid development of

medical systems and the extreme increase of medical

data, it is not feasible to deal with large amounts of

data by a centralized server. High latency or blocking

may be caused by overloaded queries [6, 16].

Moreover, the accident of a single point is a big

issue for a centralized network. The more data, the

more likely it is to be the target of a hacker attack. If

the system is occupied by an attacker, the authorization

of the whole system will be destroyed.

2.2 Decentralized Data Management

To deal with the problems of centralization,

decentralized systems for establishing trust

relationships, authentication and authorization are

investigated. In the Web of trust [17] and CCN [18], a

decentralized peer-to-peer trust model is performed. In

this model, a node, which is identified by a public key,

can deliver a signature of another public key for

demonstrating authority for trust. The identity does not

rely on any central authority. However, a uniform

scope of the current status cannot be built in these

systems. For instance, a Web of Trust key server

cannot testify the existence of a revocation as a key is

always reserved [6]. [19] proposed secure multiparty

computation-based protocols for collaborative computing

of medical data while protecting each participant’s

privacy. It does not rely on the blockchain technology,

lacking the advantage of blockchain-based consensus

and non-tampering. [20] demonstrated a data

management framework with fine-grained access

control. It also described a way to give the calculated

answers to the service questions instead of the

metadata. It lacked the advantage of blockchain. The

SCP in our work is similar in concept to the

SafeAnswers in it. In our work, the SCP is closely tied

to the blockchain, service protocols, and transactions in

our system. We also provide related executing

protocols and a complexity analysis for the SCP

execution.

2.3 Decentralized Data Management via

Blockchain

Recently, blockchain has played an increasingly

important role in decentralized data management [9].

In [1], blockchain protocols for data authorization

management are used, ensuring fine-grained access

control. In [4], the blockchain based technologies for

helping manage the use of medical data is suggested.

However, no summary of technical work or detailed

method is demonstrated in this work. In [6, 9-10, 21],

blockchain is used for managing data. However,

although access control for data is considered, some

form of data will be delivered if data request is

A Decentralized System for Medical Data Management via Blockchain 1337

permitted and no further protection is designed to

prevent data leakage. [22] implemented the blockchain

for data management with access control. A sandbox

model is used to isolate the applications running in the

personal data center from the personal data. The

applications are mainly used as personal tools such as

communication software, rather than controlling the

data flowing from the personal data center. [23] also

proposed a system for data management leveraging the

blockchain with fine-grained access control. [9]

proposed a blockchain based approach for medical data

permission management. They record entities, entity

relations, and data permissions, while an off-

blockchain store are used to store the raw data. In our

work, we also use the blockchain to record entities, and

store the real data in an off-blockchain manner. But our

system also considers data analysis, privacy protection

in the data analysis stage, and recording of the whole

interactions between entities, credibility mechanisms.

These are integrated into an inseparable system.

In this paper, we refer to the previous ideas and

exploit our innovative work towards data sharing, data

storage space reduction, data privacy protection and

data tamper-proofing via blockchain and sparsity-based

compression.

3 System Overview

For our system, the major entities that constitute our

system are (1) users, who own data and can update it to

the EDHs; (2) edge data hub (EDH) nodes for storing

data from the corresponding users; (3) service nodes,

the entities (usually organizations) with the ability to

analyse personal data, such as the hospitals, gene

companies and more, (4) customers, the entities that

need the analysis of personal data, as shown in Figure

1. We adopt the public blockchain in our system. The

block content includes the data hash values, the

transactions, the credibility scores, and so on (section

4.1.2 gives the details).

Figure 1. The scheme of the decentralized system for

data management

Our framework is designed as follows. The user

uploads the data to the corresponding EDH. The EDH

maintains a key-value store for the collected data. The

collected user data can be compressed to reduce the

storage space in the EDH. The hash values of the

related data in the EDH are also recorded on the

blockchain, hence guaranteeing the data integrity. A

customer can request a service for some analysis. The

service then retrieves personal data from the EDH,

either directly or by SCP execution, depending on the

EDH’s policy, then performs the analysis, and then

returns it to the customer. A typical diagram for the

node interaction is shown in Figure 2. The whole

transaction process will be recorded on the blockchain.

After the process, all the participants can give

credibility scores to each other on the blockchain, e.g.

based on the quality of analysis. Section 4.4 gives the

details. Compared with some previous blockchain

based systems where the data permissions are recorded

on the blockchain, in our system the permissions are

dynamically determined by the EDH, which is more

flexible.

Figure 2. A schematic diagram that shows the network

nodes share data using blockchain to protect privacy

In the following sections, we describe the designed

protocols of our system.

4 The Network Protocol

4.1 Building Blocks

4.1.1 Entities

The related entities include users, EDH nodes,

service nodes and the customers.

The user represents the individual in the network.

Each user can store his data on his own EDH node, and

can also enjoy services from the service nodes. Each

user holds a private/public key pair (Usk, Uvk) and is

uniquely identified by Uvk.

The EDH node is a reliable storage server for the

1338 Journal of Internet Technology Volume 21 (2020) No.5

user. Each EDH node corresponds to a user and is fully

controlled by the user. The data stored in EDH can be

viewed as a collection of key-value pairs, and can be

indexed using keys. The key is a string similar to the

unix path, e.g. /EHR/hospital/20101010, and the value

is a tuple of the form (DataTypeGUID, Data,

MetadataTypeGUID, Metadata). The value description

is given in section 4.1.2, where the Data/Metadata

items are replaced by DataHash/MetadataHash. The

EDH nodes are usually deployed in reliable servers,

and one reliable server can run several EDH instances.

In fact, each EDH node is uniquely related to the user

by his public key Uvk.

Service nodes provide various services in the

network, e.g. data analysis, data providing. Each

service node holds a private/public key pair (Ssk, Svk)

and is uniquely identified by Svk. A service is usually

run by a known organization, e.g. a company.

The customer represents the individual or the

organization, requesting a service to provide the health

data analysis. Each customer holds a private/public key

pair (Csk, Cvk) and is uniquely identified by Cvk.

4.1.2 Blockchain Content

The blockchain is used to record and formulate the

elements related to the network, consisting of a train of

blocks. Blocks are appended to the blockchain

according to a consensus among most nodes of the

system. As shown in Figure 3, each block contains a

block header and body [16, 23-24]. Each block header

is actually a standard blockchain header [16, 23-24].

Figure 3. Structure of the blockchain

In this paper, to normalize the data format recoded

on the blockchain, meaningful and signed records with

predefined schemas are stored in the body of the block.

The records in our paper are analogous to the

transactions in the body mentioned in [16, 23-24], to

avoid ambiguity with the transaction records described

in section 4.1.2. The EDH node reads the records to

determine if a service is permitted to a special key or

not. The users or services can create their own data

type declaration to support new types of data. To

ensure data consistency, the users or services can store

the hash values of private data through a type of record.

The general form of a record is as follows:

The record header includes the record id, public

key of the record writer, the writing time and the

record type. The record id identifies each record and is

generated automatically by the blockchain.

The record body is the content of the record, and

the actual organization of the content depends on the

record type.

The record is always written by a user, an EDH, a

service or a customer, signed with the corresponding

private key (with a special signature field). There are

several record types.

The identity declaration record includes the name

and a human readable description of the identity, and

the public key of the identity is already in the record

header. The identity may be the user, the service or the

customer. In our system, each user, service and

customer has a unique identity and every identity

informs about its existence by the way of declaration.

In this way, we do not actually distinguish the user, the

service or the customer at the identity level. An

identity may be either a user, a service, or a customer

depending on its activities. Note that the identity

declaration is always the first record of a role (a user, a

service, or a customer), which is guaranteed by the

blockchain.

An official organization can declare itself as an

entity, such as the FDA (U.S. Food and Drug

Administration). And the public keys of these

organizations should be well known.

The EDH declaration record includes the public

key of the EDH for a user whose public key is already

revealed in the header, and the address (e.g. URL) of

the EDH. A user can declare his EDH address multiple

times, and the latest declaration overrides the previous

ones.

The data type declaration record includes the

globally unique identifier of the data type (GUID), and

a human readable description. Note that the public key

of the type publisher is already shown in the header.

The data type publisher is usually an official

organization (such as the FDA). Standard medical

items such as the height, the weight, or various medical

tests, should have their own types and be published by

standard organization entities (such the FDA). The data

type declaration can actually represent any type of data

(including both the meaning and data schema) as well

as how to use them. The data type GUIDs should not

repeat, which is guaranteed by the blockchain.

The data hash record is an array of key-value pairs

corresponding to the key-value store in the EDH, as

described in section 4.1.1. The value has the tuple form

(DataTypeGUID, DataHash, MetadataTypeGUID,

MetadataHash), where DataTypeGUID refers to the

GUID declared in the data type declaration record

which specifies what the data means, DataHash is the

hash value of the actual data, and MetadataHash

corresponds to the metadata containing some

additional data, e.g. when and where the tests were

taken, whose type (can be viewed as the schema of the

data) is also declared in a data type declaration record,

and is identified by MetadataTypeGUID (which is also

declared in the data type declaration record). To ensure

A Decentralized System for Medical Data Management via Blockchain 1339

against tampering, if the service is permitted to the data,

it will calculate the data hash value and compare with

the hash value recorded on the blockchain. The data

hash value record must be written by the corresponding

user or its latest EDH. Note that a user may write

records for the same key multiple times, and only the

last one is considered valid.

The transaction record includes the parent

transaction record id (PTRI), the transaction type, the

transaction data type GUID and the transaction data

hash. The transaction data type GUID refers to the

GUID declared in the data type declaration record.

Each interaction between the components of the system

is recorded as one or more transactions on the

blockchain. A complete transaction process may

consist of several steps (e.g. a custom request a service

for analysis), and each step is recorded with a

transaction record. These steps are linked with PTRI,

where the first step have a null PTRI. Transaction type

depends on the application. For example, when a

customer requests the service, it writes a

REQ_SERVICE transaction with a null PTRI and

proper transaction data hash conforming to the type

GUID. When the service completes the request, it

writes a COMPLETE_SERVICE transaction with

PTRI pointing to the previous one, and the data hash of

the returned query result. And the customer writes an

ACK_COMPLETE_SERVICE to acknowledge its

reception of the analysis result. During the data

acquisition process with an EDH, the service and the

EDH may stagger the REQ_DATA/REQ_SCP,

ACK_DATA/ACK_SCP, and RET_DATA/RET_SCP

transaction records (see section 4.4 for details).

The credibility score record includes public key of

the identity it gives, the credibility score, and an array

of transaction ids the score based on. Participants in a

transaction can score each other, as discussed in

section 4.4.

4.1.3 Secure Computing Platform

The service may request data directly from the EDH

or request to execute a data analysis program (the SCP

program) on the EDH，depending on the EDH local

policy. The former is more flexible, but has the risk of

leaking the user’s privacy. In the latter case the process

is executed on the SCP (Secure Computing Platform).

The SCP is designed as follows. The service needs to

prepare the executable code to analyze data and

provide it to run in the EDH. The file can only access

authorized personal information. The verified

processed results can also be returned back to the

service by the restricted execution environment. The

actual implementation may refer to mature systems

such as the JavaScript in the browser. During execution,

when the code wants to access EDH data in the form of

a key, e.g. weight of the people, it needs to call a

special built-in function. The execution environment

then executes the real data access through the data

access agent. The data access agent will check the

privilege, and reject or return the real data. Section 4.4

gives more details.

4.2 Storage Method

We utilize a method to reduce the off-blockchain

storage cost leveraging the sparsity of the data.

Suppose that a user collects a type of health data (e.g.

heart health indicators) over time, and the result for

each time can be described by a vector D, then we have

a series of vectors
1 2
, , ,

T
D D D… . We first encode

each
i

D to get a sparse and low-dimensional vector

, 1, 2, ,
i

E i T= … using the sparse autoencoder method

[25], and the sequence , 1, 2, ,
i

E i T= … to get a matrix

M whose th
i column is

i
E , and then we can compress

M leveraging the sparse theory [26]. For self-

containment we briefly describe the two major

compressing steps, and the reader may refer to [25] and

[26] for details.

The first step associates an encoder-decoder pair

with each (1, 2,)
i

D i = … . Each encoder-decoder pair

corresponds to a type of health data, and we assume a

particular health data type. The encoded user data
i

E

can be obtained as ()
i

Encode D , which ensures that the

dimension of ()
i

Encode D is much smaller than the

dimension of
i

D , that is, dim(() dim())
i i

Encode D D� .

The decoder is used for recovering encoded data while

maintaining the original information as much as

possible ((()).
i i

Decode Decode D D≈ The sparse

autoencoder takes the advantages of sparse coding

which makes most of nodes in hidden layers under

inactive states by adding constraints to the outputs of

hidden layers. Assume that the loss function of

traditional autoencoder is (,)JT W b , where ,W b are

the model parameters (following the notations in [25]).

The loss function of the sparse autoencoder is defined

as
1

ˆ(,) (,) (||)
n

sparse i

i

J W b J W b KLβ ρ ρ
=

= + ∑ [25]. Note

that β is the sparsity penalty weight, n is the number

of hidden units, term ˆ

i
ρ refers to the average

activation of the autoencoder’s hidden unit i , ρ is a

constant which controls the sparsity, and is usually set

to a small value (e.g. 0.05ρ = as in [25]), ˆ(||)
i

KL ρ ρ

is the Kullback-Leibler (KL) divergence between two

Bernoulli random variables with mean ρ and ˆ

i
ρ

respectively [25]. The KL divergence is a common

function to measure how similar two distributions are,

and in our case it reveals the sparseness of the

activations. We adopt the outputs of hidden layers as

the sparse encoded representation ()
i i

E Encode D=

regarding the input user data
i

D .
i

E is usually more

1340 Journal of Internet Technology Volume 21 (2020) No.5

sparse than
i

D as it contains lots of zeros, and can be

regarded as an informative and efficient transformation

of the original data. The encoder-decoder pairs are

computed and stored in the EDH.

We further transform the encoded sequence

, 1, 2, ,
i

E i T= … in a more efficient way by the low

rank and sparse matrix recovery. We concatenate them

to a matrix M as described above, and our goal is to

represent M A K= + , where K is the error matrix and

assumed to be even more sparsely supported than M ,

and A is a low rank matrix. Storing these matrices will

consume less space than the original matrix M. The

solving process of low rank matrix A and error matrix

K can be regarded as an optimization problem

through the RPCA method, and the optimization

problem can be summarized as
,

min ()
A K

rank A +

0
|| || ,K subj M A Kγ = + where γ is the sparsity

control coefficient [26]. The reader may refer to [26]

for the optimization details.

Once the low rank matrix A is obtained, it can be

easily represented by multiplication of two low-

dimension matrices which can save storage space. The

sparsity of matrix K can also help save storage space.

The second step is optional as sometimes we only have

data for one or only a few time points.

Figure 4 shows an example of the storage content on

and off the blockchain. When a user updates some type

of health data for many time points to the EDH, it

computes the compressed format and only store the

low rank matrix A and the sparse error matrix K .

Figure 4. Date storage

The compression is transparent to the clients, and on

the blockchain only the hash of the decoded data is

stored. The user or the service does not need to know

the exitance of compression.

We only apply the sparsity based compressed

storage to the numeric data, and it is optional, as

sometimes some data is critical and any form of

compression is not acceptable. And in these cases, we

just store the original data and use the lossless

compression methods.

4.3 Relationship with Smart Contracts

Currently our system does not contain a smart

contract component. In our system design, the

interaction behaviors between the blockchain and

components, such as writing the records, are

maintained by the miner nodes. This is because we

mainly focus on the medical applications, and the

direct approach helps to improve the system efficiency.

In fact our system can be either built on dedicated

miners or on general blockchain systems. So this

interaction mechanism can also be implemented by a

general blockchain system (such as the Ethereum) with

the corresponding smart contracts, and it is easy to

translate the protocol described in our paper to the

corresponding smart contracts. In our future work, we

will also consider establishing our framework on a

universal blockchain and translate the protocols to

smart contracts, as it is easier to promote the system

based on a universal blockchain.

4.4 Protocols

Here we give the detailed descriptions of the core

protocols.

The user updates the collected data to the EDH. The

EDH maintains an off-blockchain key-value store. A

customer requests a service to provide the health data

analysis for a user. The service then finds the

corresponding EDH, and requests for data or SCP

execution based on the EDH’s local policy, fully

controlled by the user. The EDH node will decide the

permission based on its local policy controlled by the

user, with information of the service, e.g. the

credibility of the service recorded on the blockchain. If

the check passes, the EDH will return the data or the

SCP execution result to the service. The details of the

interactions between the service and the EDH is given

in protocol 1. After retrieving the required data from

the EDH, the service can get the analysis result and

then sends it to the customer, and finishes the whole

transaction. After the whole process, all the

participants can score each other. The average of the

credibility the service received in a time period, such

as a month, could be regarded as the credibility of the

service. If the EDH wants to check the credibility of

one service, it can query the credibility scores recorded

on the blockchain.

Some nodes in the system not only participate in

data sharing, but also append blocks to maintain the

ledger, on the principle of voluntariness, as blockchain

‘miners’. These nodes apply the PoW consensus to

compete to solve a cryptographic puzzle for the

ownership of new blocks [13, 27]. The latest

blockchain status is then broadcasted to the network by

the winning node. Other nodes then update their status

accordingly.

A typical system flow is shown in Figure 5 and the

corresponding description of each step is illustrated as

A Decentralized System for Medical Data Management via Blockchain 1341

follows:

Figure 5. A case demonstrating the flow of the system

(1) The user collects the data from a gene company.

(2) The user collects the data from a hospital.

(3) The user updates the data to the EDH.

(4) The EDH compresses the data and updates the

key-value store for the data. Then it writes the

corresponding data hash record on the blockchain.

(5) A customer requests a service to provide the

health data analysis for a user. It first writes the

corresponding REQ_SERVICE transaction record

(record A) with data hash of the request content, and

then sends the request to the service.

(6) The service receives the request. It first verifies

the REQ_SERVICE transaction record, and finds the

user’s EDH from the blockchain.

(7) To begin the analysis, the service writes a

BEGIN_SERVICE transaction record (record B, with

PTRI pointing to record A).

(8) The service begins the data request process with

the EDH, with the corresponding transaction records

1, 1, 1, , , ,, , , , , , ,
a b c n a n b n c

C C C C C C… where n denotes the

number of interactions, See Protocol 1 for details.

(9) Based on the data from the EDH (either directly

returned data or the SCP execution result), the service

gets the final analysis result, and return it to the

customer. It also writes a COMPLETE_SERVICE

transaction record D (with PTRI pointing to record

,n b
C).

(10) The customer receives the analysis result and

writes the ACK_COMPLETE_SERVICE transaction

record E (with PTRI pointing to record D) to

acknowledge its reception.

(11) All the participants in the process can write the

credibility score record for each other. For example,

the customer can evaluate the service’s quality based

on the analysis result, and the service can evaluate the

EDH’s quality based on the acquired data.

Protocol 1. Process that a service connects to an EDH

and asks for some data

1. The service connects to an EDH and setup a secure

tunnel.

2. The service shows its public key Svk.

3. The EDH sends a random string T to service.

4. The service sends the signature S of T with its

private key Ssk.

5. The EDH verifies T with public key Svk, and closes

the tunnel if it is incorrect.

6. The EDH checks the legality of the service, e.g.

checks the credibility of the service from the

blockchain, and evaluates the legality according to

its local policy. If the check fails, it will close the

tunnel.

7. The EDH determines the interaction mode, either

the direct data acquisition or it needs an SCP

execution (see section 4.1.3).

8. Run the data acquisition loop using protocol 2 for

the former case and protocol 3 for the later one.

Protocol 2. Direct data acquisition

Performs the loop until service closes the tunnel.

(a) The service determines the required keys, and

writes the REQ_DATA transaction record
,i a

C

with the hash of the required keys of the data

acquisition, and PTRI pointing to the previous one

during the whole process (similar for the later

PTRIs). Note that i is the loop counter ranges from

1 to n (the total loop steps).

(b) The service sends a request to the EDH including

the required keys.

(c) The EDH receives the request, verifies it from the

blockchain, checks the local key permissions

controlled by the user, returns the query results

(return null if the check fails), and writes the

RET_DATA transaction record
,i b

C .

(d) The service receives the returned data, verifies the

data using the hash on the blockchain, and writes

the ACK_DATA transaction record
,i c

C . The

process will end if the verification fails.

Protocol 3. SCP data acquisition

Performs the loop until service closes the tunnel.

(a) The service determines the required output keys

for the SCP program, and writes the REQ_SCP

transaction record
,i a

C with the hash of the

required output keys of the SCP execution, and

PTRI pointing to the previous one during the

whole process (similar for the later PTRIs). Note

that i is the loop counter ranges from 1 to n (the

total loop steps).

(b) The service sends a request to the EDH including

the scp program and its output keys.

(c) The EDH receives the request, verifies it from the

blockchain, checks the local key permissions (to

verify if the SCP can return the output keys),

executes the SCP program, fetches and verifies its

output key-value pairs, writes the RET_SCP

1342 Journal of Internet Technology Volume 21 (2020) No.5

transaction record
,i b

C , and sends the output back

to the service. If any exception occurs during the

execution, the EDH will record and return the

error immediately. A RET_SCP transaction record

,i b
C with the error will also be recorded.

(d) The service receives the returned data or error,

verifies it and writes the ACK_SCP transaction

record
,i c

C . The process will end if the verification

fails.

Here we give more details on the SCP execution

(step c) of Protocol 3. Recall that each user holds a

private/public key pair (,)
sk vk

U U . The user data stored

in the EDH can be viewed as a collection of key-value

pairs, and a value can be indexed uniquely by its key.

We first list utility functions in Protocol 4, and then

the execution in Protocol 5.

Protocol 4. Utility functions

1. check_access_valid (,
vk

S key): bool // An EDH

specific function which determines whether the

service
vk

S has the right to access the key.

2. find_keys (,
vk

S key_pattern: Regex): KeyCollection

// It returns all keys satisfying key_pattern, and with

the property check_access_valid (,
vk

S .) = true. The

Regex represents the regular expression class.

3. access_data (,
vk

S key): AccessDataResult // If

service
vk

S has the right to access the key, it returns

the corresponding value, else it throws an

exception. The AccessDataResult is the data class

for the value result.

4. execute_code (,
vk

S code): ExecutionResult // A

code execution function that executes the code in a

restricted environment, with the ability to access the

granted EDH data on the SCP. The code will

execute, access permitted data, analyze it, and

return the result as the ExecutionResult data class.

For simplicity, currently we restrict the code to be

the JavaScript code, which will be compiled to byte

codes before execution. The two functions the code

can access are find_keys and access_data, with the

vk
S parameter fixed. The returned ExecutionResult

must be an array of key-value pairs, verified by the

EDH to protect privacy.

Protocol 5. SCP execution

1. Get
vk

S from the communication channel.

2. if (!check_access_valid(,
vk

S EXECUTE_CODE))

throw Error (“Service cannot execute code”); //

EXECUTE_CODE is a special key used to indicate

whether a service can execute code.

3. return execute_code (,
vk

S code). //The code is

provided by the service node for analyzing data.

4.5 Complexity Analysis

We analyze the EDH execution time complexity in

our system, including the process of the data query and

the code execution. For the access_data function in

Protocol 4, we prebuild a hash table in the EDH for the

key/value store, and the complexity of such an

operation is (1)O . For the regular expression search

among the keys, we use the compressed generalized

suffix tree structure, which takes ()O n time to

construct, where n is the sum of all the key lengths [28].

It costs ()O m time for inserting or deleting a key with

length m. For a substring query (regular expression in

the form .* .*S , where S is a normal substring to find),

it takes ()O m occ+ time [28], where ()m lenth S= and

occ is the number of occurrences. The second scenario

is the range query, e.g. get all the keys in range (in

string alphabet order), the complexity can also be

described by ()O m occ+ , where m is the sum of

lengths of the two strings and occ is the number of

keys in the range. This kind of query is useful for filter

keys according to categories, e.g. medical records in

hospital A from 2019.10.1 to 2019.10.31 are described

by range (/EHR/hospitalA/20191001, /EHR/hospitalA/

20191031). For the wildcard queries, we can split the

string by the * and ? characters, and query each part

using the suffix tree, and then merge them. The overall

complexity is ()O m occ′+ where m is the wildcard

query length and occ′ is the sum for all the located

candidates for each part. There is also a faster wildcard

searching algorithm with the complexity ()O m occ+ ,

where occ is the total number of occurrences [29], but

it has a higher space complexity. For general regular

expressions the complexity is sublinear in n [28]. And

there are also fast algorithms for other subclasses of

regular expressions, e.g. [30]. In general, in most of

our situations where the queries are limited to the

substring/range queries and the query length m is

bounded, the complexity is approximately ()O occ .

The overall running time complexity is ()
C

O L +

* Qq N , where
C
L is the count of executed byte code

instructions, q is the number of key queries using

regular expressions, and QN is the average time

complexity for each query as described above.

Generally speaking, * Qq N is proportional to the

number of returned keys in most cases, which is often

bounded by the number of executed byte code

instructions, as generally the code will traverse among

the returned keys. The overall time complexity can be

considered as ()
C

O L for most scenarios, which is

A Decentralized System for Medical Data Management via Blockchain 1343

quite acceptable.

4.6 Incentive Mechanism

Medical stakeholders are incentivized to participate

in the system by the advantages of the system. And the

users can store information in a decentralized system to

take full control of the data. Meanwhile, once the data

including the hash value, the transactions and so on are

stored on the blockchain, they are immutable and

persistent. This property enables the system to store

evidence for the whole activity history.

Furthermore, we motivate medical stakeholders,

such as researchers and so on, to actively participate in

the maintenance of the ledger. The first incentive

mechanism is the credit award, the ledger maintainers

can get some credibility scores in a bitcoin-like

mechanism. The credibility is important in most of the

data transactions, and the participants need certain

amount of credibility to retrieve the data, so this

incentive is important and quite attractive. The second

incentive mechanism is the direct data award similar to

the bounty query in [9]. When an EDH finishes writing

the RET_DATA (return data) transaction record, it

may also write a reward data transaction record

including the reward query (e.g. the average weight of

people during a period on the same EDH server, and

the data privacy can be controlled by the users) and the

result hash. When the block including the transaction is

later mined, the miner then gets the reward. It then

sends a query to the EDH and the EDH can identify the

miner from the blockchain (the miner public key will

be kept in the block), and then returns the data to it.

5 Conclusion

Here we introduce a new decentralized system for

private medical data sharing and access control. Our

system enables not only data sharing between EDH

and medical institutions while retaining data privacy,

but also the reduction of storage space. To respect data

privacy, SCP is used to run the executable code

provided by the service in the EDH without private

data leakage. The hash values of data are stored on the

blockchain to ensure that accessed data is tamper proof.

To reduce storage space, we utilize an off-blockchain

storage method leveraging the data sparsity. Since the

blockchain ledger is tamper proof, it keeps an auditable

history of the medical data accesses.

The system we propose is comprehensive, accessible

and credible. Our system can not only effectively

prevent data leakage by SCP when the data analysis

request is permitted, but also reduce off-blockchain

storage while maintaining as much medical data

information as possible. In our system, meaning

records with predefined schemas is proposed, which

can normalize data format stored on the blockchain.

Our system can save the storage cost, which makes it

feasible to collect the massive medical data. Taking the

key properties of decentralization, our system does not

rely on a centralized entity but lots of participating

entities which can avoid the failure of a single point.

Through our system, companies can access large

amounts of data to provide personalized services.

Researchers can access large-scale medical data, which

will help discover wide-reaching patterns in order to

achieve progress in precision medicine.

As in this paper we mainly focus on the high-level

system design, perhaps the most straightforward future

work is to provide an efficient implementation for the

proposed system and deploy it in the real world. As we

use a public blockchain, the underlying mechanism is

very similar to the bitcoin blockchain, which provides

a good reference for the implementation. The

blockchain related part of the proposed protocols

should be verified and guaranteed directly by the

blockchain miners. Another possible future work is to

rely on a universal blockchain with smart contract

support, as mentioned in the previous section.

Improving credibility evaluation is also a potential

research direction. The disadvantage of our system is

the lack of intelligent analysis of credibility. With the

development of machine learning, we can further

improve the evaluation with machine learning methods.

Acknowledgments

This work was supported in part by the National

Natural Science Foundation of China under Grant no.

U1736210, 31501081, and in part by the Next-

generation Platform of Data Sharing and Privacy

Protection of Tsinghua-Fuzhou Data Technology

Research Institute under Grant no. TFIDT2018004.

References

[1] G. Zyskind, O. Nathan, A. Pentland, Decentralizing Privacy:

Using Blockchain to Protect Personal Data, 2015 IEEE

Security and Privacy Workshops (Spw), San Jose, CA, USA,

2015, pp. 180-184.

[2] Personal Data: The Emergence of a New Asset Class, An

Initiative of the World Economic Forum, January, 2011,

http://www3.weforum.org/docs/WEF_ITTC_PersonalDataNe

wAsset_Report_2011.pdf.

[3] E. J. Topol, Individualized Medicine from Prewomb to Tomb,

Cell, Vol. 157, No. 1, pp. 241-253, March, 2014.

[4] L. J. Kish, E. J. Topol, Unpatients-Why Patients Should Own

Their Medical Data, Nature Biotechnology, Vol. 33, No. 9, pp.

921-924, September, 2015.

[5] U. S. D. o. HHS, Report on Health Information Blocking,

REPORT TO CONGRESS, April, 2015, https://www.healthit.

gov/sites/default/files/reports/info_blocking_040915.pdf.

[6] M. P. Andersen, J. Kolb, K. Chen, G. Fierro, D. E. Culler, R.

A. Popa, WAVE: A Decentralized Authorization System for

1344 Journal of Internet Technology Volume 21 (2020) No.5

IoT via Blockchain Smart Contracts, Technical Report No.

UCB/EECS-2017-234, December, 2017.

[7] J. Evans, Bitcoin 2.0: Sidechains and Ethereum and Zerocash,

oh My!, https://techcrunch.com/2014/10/25/bitcoin-2-0-

sidechains-and-zerocash-and-ethereum-oh-my/, 2014.

[8] S. Nakamoto, Bitcoin: A Peer-to-peer Electronic Cash System,

https://bitcoin.org/bitcoin.pdf, 2008.

[9] A. Azaria, A. Ekblaw, T. Vieira, A. Lippman, MedRec: Using

Blockchain for Medical Data Access and Permission

Management, Proceedings 2016 2nd International Conference

on Open and Big Data - Obd 2016, Vienna, Austria, 2016, pp.

25-30.

[10] Q. Xia, E. B. Sifah, K. O. Asamoah, J. B. Gao, X. J. Du, M.

Guizani, MeDShare: Trust-Less Medical Data Sharing

Among Cloud Service Providers via Blockchain, IEEE

Access, Vol. 5, pp. 14757-14767, July, 2017.

[11] A. Dubovitskaya, Z. Xu, S. Ryu, M. Schumacher, F. Wang,

Secure and Trustable Electronic Medical Records Sharing

Using Blockchain, AMIA Annual Symposium Proceedings

Archive, Vol. 2017, pp. 650-659, April, 2018.

[12] F. Tschorsch, B. Scheuermann, Bitcoin and Beyond: A

Technical Survey on Decentralized Digital Currencies, IEEE

Communications Surveys & Tutorials, Vol. 18, No. 3, pp.

2084-2123, Third Quarter, 2016.

[13] M. Jakobsson, A. Juels, Proofs of Work and Bread Pudding

Protocols, IFIP TC6/TC11 Joint Working Conference on

Secure Information Networks: Communications and

Multimedia Security, Leuven, Belgium, 1999, pp. 258-272.

[14] B. C. Neuman, T. Ts’o, Kerberos - An Authentication Service

for Computer Networks, IEEE Communications Magazine,

Vol. 32, No. 9, pp. 33-38, September, 1994.

[15] K. Zeilenga, Lightweight Directory Access Protocol (LDAP):

Technical Specification Road Map, RFC 4510, June, 2006.

[16] Z. Yang, K. Yang, L. Lei, K. Zheng, V. Leung, Blockchain-

based Decentralized Trust Management in Vehicular

Networks, IEEE Internet of Things, Vol. 6, No. 2, pp. 1495-

1505, April, 2019.

[17] G. Caronni, Walking the Web of Trust, IEEE 9th

International Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises, Gaithersburg,

MD, USA, 2000, pp. 153-158.

[18] V. Jacobson, D. K. Smetters, J. D. Thornton, M. Plass, N.

Briggs, and. Braynard, Networking Named Content,

Communications of the ACM, Vol. 55, No. 1, pp. 117-124,

January, 2012.

[19] M. Marwan, A. Kartit, H. Ouahmane, A Cloud Based

Solution for Collaborative and Secure Sharing of Medical

Data, International Journal of Enterprise Information

Systems (IJEIS), Vol. 14, No. 3, pp. 128-145, July-September,

2018.

[20] Y. A. d. Montjoye, E. Shmueli, S. S. Wang, A. S. Pentland,

openPDS: Protecting the Privacy of Metadata through

SafeAnswers, Plos One, Vol. 9, No. 7, e98790, July, 2014.

[21] K. Fan, S. Y. Wang, Y. H. Ren, H. Li, Y. T. Yang, MedBlock:

Efficient and Secure Medical Data Sharing via Blockchain,

Journal of Medical Systems, Vol. 42, No. 8, Article number:

136, August, 2018.

[22] H. Yin, D. C. Guo, K. Wang, Z. X. Jiang, Y. Q. Lyu, J. Xing,

Hyperconnected Network: A Decentralized Trusted

Computing and Networking Paradigm, IEEE Network, Vol.

32, No. 1, pp. 112-117, January-February, 2018.

[23] S. P. Wang, Y. L. Zhang, Y. L. Zhang, A Blockchain-Based

Framework for Data Sharing with Fine-grained Access

Control in Decentralized Storage Systems, IEEE Access, Vol.

6, pp. 38437-38450, June, 2018.

[24] Z. B. Zheng, S. A. Xie, H. N. Dai, X. P. Chen, H. M. Wang,

Blockchain Challenges and Opportunities: A Survey,

International Journal of Web and Grid Services, Vol. 14, No.

4, pp. 352-375, October, 2018.

[25] A. Ng, Sparse Autoencoder, https://web.stanford.edu/

class/cs294a/sparseAutoencoder_2011new.pdf, 2011.

[26] J. Wright, A. Ganesh, S. Rao, Y. Peng, Y. Ma, Robust

Principal Component Analysis: Exact Recovery of Corrupted

Low-Rank Matrices by Convex Optimization, Neural

Information Processing Systems, Vancouver, Canada, 2009,

pp. 1-9.

[27] D. Qin, C. X. Wang, Y. M. Jiang, RPchain: A Blockchain-

Based Academic Social Networking Service for Credible

Reputation Building, International Conference on Blockchain,

Seattle, WA, USA, 2018, pp. 183-198.

[28] P. Weiner, Linear Pattern Matching Algorithms, 14th Annual

Symposium on Switching and Automata Theory, Iowa City,

Iowa, USA, 1973, pp. 1-11.

[29] P. Bille, I. L. Gørtz, H. W. Vildhøj, S. Vind, String Indexing

for Patterns with Wildcards, in: F. V. Fomin, P. Kaski (Eds.),

Algorithm Theory – SWAT 2012. SWAT 2012. Lecture Notes

in Computer Science, Vol. 7357, Springer, Berlin, Heidelberg,

2012, pp. 283-294.

[30] R. A. Baeza-Yates, G. H. Gonnet, Fast Text Searching for

Regular Expressions or Automaton Searching on Tries,

Journal of the ACM, Vol. 43, No. 6, pp. 915-936, November,

1996.

Biographies

Qingzhu Yang received the Ph.D.

degree from University of Chinese

Academy of Sciences in 2013. She is

an assistant researcher at the

Department of Automation, Tsinghua

University. Her research interest

covers statistics analysis, machine

learning and bioinformatics.

Qiao Liu received the B.E. degree in

ShenYuan Honors College, Beihang

University, China, in 2016. He is

currently pursuing the Ph.D. degree

with the Department of Automation,

Tsinghua University, China. He joined

the MOE Key laboratory of

Bioinformatics since 2016. His research interests

A Decentralized System for Medical Data Management via Blockchain 1345

include applied machine learning, biomed and

bioinformatics.

Hairong Lv received the Ph.D.

degree from Tsinghua University in

2007. He is currently an associate

researcher at the Department of

Automation, Tsinghua University. His

research interest covers artificial

intelligence and blockchain. He is corresponding

author of this paper.

1346 Journal of Internet Technology Volume 21 (2020) No.5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

