
A Flexible Electronic Data Exchange Framework Based on Consortium Blockchain 1313

A Flexible Electronic Data Exchange Framework Based on

Consortium Blockchain

Nai-Wei Lo, Sheng-Chiang Chen, Shou-Chun Chang

Department of Information Management, National Taiwan University of Science and Technology, Taiwan

nwlo@cs.ntust.edu.tw, D9916910@mail.ntust.edu.tw, M10509101@mail.ntust.edu.tw*

*Corresponding Author: Nai-Wei Lo; E-mail: nwlo@cs.ntust.edu.tw

DOI: 10.3966/160792642020092105008

Abstract

With the rise of Internet-based services and platforms

to address and support system scalability, data security,

service trustability and user privacy protection, it is hard

for traditional electronic data exchange systems based on

centralized architecture and private network to serve

enterprises and organizations well. In this study, an

electronic data exchange framework based on consortium

blockchain is proposed to support Internet-based flexible

decentralized electronic data exchange service. By

adopting blockchain and decentralized public key

infrastructure technologies, the proposed framework

natually achieves system scalability, service trustability,

data security and user privacy protection. A system

prototype is constructed to evaluate the performance of

the proposed framework. The experimental results show

that the prototype can generate 60 data exchange

contracts per second; it is around 5 million data exchange

volume in 24 hours.

Keywords: Consortium blockchain, Smart contract, EDI,

Quorum, Decentralized Public key

infrastructure

1 Introduction

The earliest study regarding EDI [1] began in the

1970s. Because information systems used by

organizations vary, the formats of generated data differ.

Thus, manually converting the data format during data

exchange is necessary. After the data are converted,

they are manually imported into the organization’s

information system. These duplications and cumbersome

tasks create major obstacles in business processes.

Therefore, organizations seek to optimize such processes

and reduce data exchange costs through EDI. With the

development of EDI applications, the American

National Standards Institute (ANSI) developed a more

versatile standard in 1979, namely ANSI X12, which is

mainly used by domestic organizations in the United

States (US). Other regions use the United Nations/

Electronic Data Interchange for Administration,

Commerce and Transport (UN/EDIFACT) standard

developed by the UN Economic Commission for

Europe (ECE) in 1986, which has become the

international standard ISO 9735:1988 [2].

Electronic Data Interchange (EDI) has not been

widely used since its initial development in the 1990s

because the cost of creating exchange systems and

mechanisms is high, and the subsequent maintenance

costs are considerable. Basically, only large organizations

have the ability to create exchange systems [3].

Together with their centralized architecture, the

stability and data security of such systems are greatly

doubted.

One example is the electronic exchange of official

data between government agencies. Take the electronic

data exchange system of the government of the

Republic of China for example; through the establishment

of 58 exchange centers in various counties and cities,

more than 20,000 units are provided for the exchange

of electronic data [4]. In addition, the identity of each

is determined by the certificate issued by the

Government Certificate Authority based on the

Government Public Key Infrastructure [5-6]. However,

the process of electronic data exchange is not fully

encrypted [4], which means that official data can be

stolen easily. In 2016, the government began to

promote a new generation of national, shared, official

electronic data exchange systems to establish a fully

encrypted system [7]. The new generation of official

electronic exchange systems has been online since

2018 and is expected to fully replace the original

generation in 2019. Although the new generation of

systems has introduced full encryption and removed

the eClient design, the overall framework is based on a

centralized design wherein a single point of failure

(SPOF) and domain name system hijacking problems

remain difficult to solve.

The rapid development of blockchain technology

has led to numerous innovative services [8], and the

most widely known application is cryptocurrencies.

The emergence of Bitcoin [9] in 2008 allowed the

public to gain a preliminary understanding of

blockchain, the main characteristics of which are

decentralization, distributed ledgers and data

immutability. The blockchain technology uses hash

1314 Journal of Internet Technology Volume 21 (2020) No.5

values, timestamps, and digital signatures to ensure

that data are immutable and achieve decentralization

through distributed ledgers. Each node has a complete

ledger, and thus, SPOF and data monopoly problems

are not of concern. The blockchain is connected by a

bunch of blocks according to the hash values of the

previous block. Each block contains the hash value of

the previous block and multiple transaction records. In

addition, the block contains a timestamp to avoid

double-spending attacks, which is used to prove the

data validity in a certain time because the calculated

hash value must be unique. With these mechanisms,

the hash values will not match as long as the data of

any block in the chain have been tampered with; thus,

the data almost certainly cannot be tampered with once

they are saved in the blockchain. After the block

containing transaction data is created, it will be

released to each node through an end-to-end

mechanism. Miners will start to perform block content

verification and calculate the hash value. After

verification, the block will be added to the blockchain.

A fast miner can obtain some rewards (i.e., Bitcoin), a

consensus process called “proof of work.”

Ethereum [10] emerged in 2014 and was termed

Blockchain 2.0 technology. It created a new term,

smart contract, which allowed more complex programs

to save and execute on a blockchain to form a shared

computing environment consisting of many nodes.

After a smart contract is written through Solidity, it is

converted into bytecode by a Solidity compiler and

deployed to the blockchain. Once the contract is

successfully deployed, a contract address can be

obtained to operate or call functions inside the contract.

Regardless of whether it is a deployment contract or

contract call function, it will cost a unit called gas, the

amount required of which is calculated based on the

complexity of the contract or function. Hence, infinite

loops can be avoided because the contract will be

terminated if the gas is insufficient when the function

is executed, and it will not always consume computing

resources of the node. In addition, the gas price must

be set. The node will first select a high price

transaction to compute; if the price is set too low, it

may never be executed. The execution environment of

smart contracts is called the Ethereum virtual machine.

Each node executes a smart contract operation through

the Ethereum virtual machine, and thus, the gas

mechanism is required to ensure that node computing

resources are not abused. When a transaction to operate

a smart contract occurs, all nodes work in parallel and

obtain a consensus before returning the result. This

mechanism ensures that the smart contract has a fault

tolerance mechanism and zero downtime, and most

crucially, the state change after execution of the smart

contract still possesses the data immutability

characteristic.

The data on a blockchain are public and each node

has a copy, which poses a great threat to data privacy.

Under Ethereum’s public blockchain, the content of

smart contracts is also open, indicating that anyone can

retrieve their data and decompile their source code.

Kosba et al. [11] proposed a solution to solve the smart

contract code disclosure problem, namely Hawk. With

this technology, the programming of smart contracts

can be divided into public and private contracts: a

public contract is executed by the node of the

blockchain (similar to Ethereum’s smart contract),

whereas a private contract is executed by the manager.

This means that users must entrust a manager to

execute an off-chain private contract to ensure that the

data are not disclosed. The open source project

Quorum [12] led by J.P. Morgan Chase applied a

similar concept by adding private transaction functions

on the basis of Ethereum. A transaction manager was

used to handle privacy, and public and private

transactions were dealt with separately [13].

After the emergence of permissioned blockchains,

the transparency problem in the original blockchain

was solved. Among numerous applications, data is

usually valuable or confidential and unlikely to be

shared publicly. Therefore, it is difficult to use in a

blockchain that is transparent and immutable. However,

through a permissioned blockchain, data disclosure can

be avoided and the advantages of data immutability

and decentralization are provided. With the

development of such technologies, the research

direction has begun to extend to more complex

intellectual assets and smart contracts. Moreover, the

application areas are not limited to the financial

industry but extend to governments and the medical,

art, and culture industries.

The nature of blockchain technology can alleviate

the problems of EDI systems. It can reduce the risk of

exchange system downtime through decentralization,

avoid inconsistent data exchange through its data

immutability characteristics, and save exchange

records in the chain to prevent exchange records not

being recognized or maliciously falsified or forged, as

well as increase credibility for both parties.

When blockchain technology is adopted as system

infrastructure, digital identities of users should have a

corresponding solution to fit in blockchain architecture.

Bakre et al. [14] proposed using blockchain technology

to save identity data and allow users self-sovereignty

over such data. Diebold [15] proposed a method for

managing identity data using Ethereum-based smart

contracts, allowing users to deposit their digital

identity into the contract and save their actual identity

data in the InterPlanetary File System (IPFS) [16].

Jung et al. [17] proposed a blockchain-based name

resolution service to provide a query for the

correspondence between IoT device IDs and IP

addresses. Decentralized Public Key Infrastructure

(DPKI) service [18] is proposed to avoid attacks

utilizing the weakness of conventional PKI services.

There are discussions on the disadvantages of

A Flexible Electronic Data Exchange Framework Based on Consortium Blockchain 1315

blockchain technology and the corresponding impact to

application systems that adopt blockchain infrastructure

[19-21]. The major concerns on blockchain technology

are high energy consumption, wasting computing

power, requiring huge data replication space (for each

network node), insufficient user privacy protection,

selfish miner problem, user authentication and user key

privacy. However, most of those concerns can be

alleviated or ellimated by utilizing consortium

blockchain to control the number and quality of mining

nodes and adopting distributed or decentralized

security mechanisms to achieve user privacy protection,

identity protection and user authentication. The

proposed framework actually uses consortium

blockchain structure along with Quorum package and

DPKI service.

The objective of this study was to alleviate the

difficulties encountered in conventional EDI (e.g., high

establishment costs and no full encryption mechanism

leading to data leakage or SPOF problems) through the

characteristics of blockchain technology. Exchange

operations are executed via a permissioned blockchain

network through a privacy mechanism that only allows

relevant recipients to obtain the exchanged data in

private transactions, as well as ensures that only one

physical file exists in the entire exchange system for

legitimate recipients to download. This reduces the risk

of files being hacked, and only the exchange records

are saved on the blockchain to avoid the rapid

expansion of node data.

This study proposed a flexible electronic data

exchange framework based on consortium blockchain

technology, which has the following characteristics

that can be used to solve the risks that a centralized

exchange system may face:

‧ Decentralized exchange framework: This reduces

the SPOF risk.

‧ Decentralized identity recognition mechanism: This

prevents identity data being controlled by either

party and reduces the risk of man-in-the-middle

attacks.

‧ Data immutability: This ensures that the data

exchange of either party is not subject to malicious

tampering.

‧ Data confidentiality: This only allows individuals in

the exchange and data to be known by the true

recipient.

‧ Flexible exchange framework: This can establish

intra- or inter-organizational exchange networks

according to requirements, as well as establish

mixed-situation exchange networks.

‧ Data security: Encrypted data will not flow through

the entire exchange network and will only exist in

the sender’s system for legitimate recipients to

download, thereby reducing the risk of being hacked.

‧ Easy management: This framework provides an easy

mechanism to manage the exchange network inside

and outside the organization.

The exchange framework proposed by this study can

not only be used for electronic data exchange. It also

allows internal units of general organizations to

exchange data and can expand the data exchange

between related organizations; for example, data

exchange between various government ministries,

members of industrial alliance organizations, and large

organizations’ subsidiaries and parent organizations. In

addition, the framework can be integrated into more

complex applications, such as direct data exchange

between internal units of different organizations.

2 Framework Architecture

The system uses Quorum as its underlying exchange

network as well as the eXchange agent (XAgent) proxy

service to operate the blockchain nodes for exchange

operations. According to the application context, the

system can be divided into intra-organizational, inter-

organizational, and mixed exchange structures.

The unit structure in each scenario is identical. Each

unit has a Quorum node and an XAgent proxy service,

and users can send and receive files through XAgent.

The physical exchanged file only exists in the XAgent

when file exchange is executed, and will not exist in

the blockchain network. After receiving the contract,

the recipient will call the smart contract to obtain the

file address to download it from the sender’s XAgent.

‧ XAgent: This is a file exchange proxy service,

which provides users or programs to send and

receive files through the blockchain from a web

interface or Web API; it manages the exchanged

files in a unified manner and is responsible for

storing or retrieving them in a file isolation area.

‧ Quorum node: This is the Quorum blockchain node,

which is responsible for executing smart contracts

and handling blockchain transactions.

‧ File manager: This is responsible for the file (or data)

management of smart contracts; it is a private smart

contract and responsible for saving correspondence

between exchanged files’ hash values and contract

addresses.

Under the exchange scenarios within an organization,

all exchange units are assumed to belong to the same

organization or a subsidiary, and can be used for data

exchange between each business department within the

organization or between the parent and subsidiary

company.

The management node will be served by the main

business group or parent company (Unit 1 in Figure 1),

whereas other business groups or subsidiaries are

general nodes. The identity between nodes is managed

by the eXchange Manager (XM). After an internal

network is established, the management node will

create an XM and notify all nodes to register their

identities. The node uses the XM to confirm the

1316 Journal of Internet Technology Volume 21 (2020) No.5

identity of the creator or recipient when files are sent

and received. During XM data management, the

management node can change or delete all data in the

XM to control the members inside the exchange

network, whereas a general node can only update its

own identity data.

Figure 1. Intra-organizational data exchange structure

in the blockchain-based framework

In an inter-organizational context, each node represents

the management node of the organization. This

framework design only allows management nodes to

create exchange nodes between organizations. The

identification of each is no longer achieved through an

XM; instead, it is achieved using a DPKI service to

confirm the identity of each, as shown in Figure 2.

Figure 2. Inter-organizational data exchange structure

in the blockchain-based framework

Members of this exchange network are collectively

referred to as alliance organizations, and they will

recommend an initiating organization to establish an

external exchange network according to agreements

between them. All organizations first register their own

organization data into the DPKI service, and the

initiating organization registers an identity for the

external exchange network in the service. After

registration, it will retrieve the Decentrialized Identifier

(DID) of the exchange network and send it to other

alliance organizations to join the exchange network.

When joining the exchange network, each organization

retrieves the DID Descriptor Object (DDO) from the

DPKI service through the DID of the exchange

network and establishes a connection according to the

XAgent service in the DDO.

In the DDO of the exchange network, the public key

of all alliance organizations in the exchange network is

saved as a limitation of the exchange network’s

members. If the public key of an organization does not

exist in the DDO, it cannot participate in the exchange

process because other alliance organizations cannot

retrieve it from the DDO for verification; thus, file

sending and receiving cannot be performed.

Combining the aforementioned structures can

achieve a more complete exchange mechanism. In

Figure 3, the XAgent of Organization A has an intra-

Quorum node and two inter-Quorum nodes, whereas

Organization B only has inter-nodes, and the exchange

of internal units may use the old exchange system.

Figure 3. Mixed data exchange structure in the

blockchain-based framework

Organization C has an intra-node and an inter-node.

The intra-node consists of Units 1, 2, and 3, and the

management node is served by Unit 1. When an

internal unit wants to send a file to the alliance

organizations, an XM can be used to query which

external alliance organizations are file-exchangeable

and then forward the file to the external alliance

organization through the management node’s XAgent

(Unit 1). The characteristics of this structure are

organized as follows.

‧ The management node’s XAgent can only have one

intra-node but multiple inter-nodes.

‧ The general node’s XAgent can only have one intra-

node.

‧ The XM of the internal exchange network can

provide an internal unit to query which

exchangeable external alliance organizations there

are.

‧ When the management node’s XAgent creates an

inter-node, it synchronically updates the data back to

the XM.

‧ Each blockchain network is independent of each

other; therefore, if an organization wants to send

files outside of itself, it must forward them through

the management node’s XAgent.

This framework consists of three smart contracts:

Electronic Data eXchange (EDX), File Manager (FM)

and eXchange Manager. The EDX contains the hash

value, encryption key, file download API location, and

recipient lists of files and attachments, which can be

A Flexible Electronic Data Exchange Framework Based on Consortium Blockchain 1317

used for identity control in the data exchange. When

recipients wish to download a file, the contract will

confirm whether the recipient exists in the contract’s

recipient list, and a null value will be returned if he or

she does not. When recipients use the file’s hash value

to call download API to retrieve data, the sender’s

XAgent will pass these data to the contract for identify

confirmation. If the identities do not match, the file

will not be returned, whereas if they do match, the

physical file and signature are returned, ensuring that

the returned file is indeed returned by the sender.

In addition, a function that allows the sender to

terminate the exchange is provided. It can only be

called by the creator of contract. Once it is terminated,

all functions in the contract will only return null values.

Therefore, even if the recipient has a file’s hash value

and a download API location, the sender’s XAgent will

fail to confirm the identity of the recipient, and thus no

data will be returned. Moreover, the contract provides

a function to recover the exchange, which also can

only be called by the contract creator. After the

exchange is recovered, the function of the contract will

return to its original value.

Under this mixed structure, a forwarding exchange

contract will exist when an internal unit wants to send

a file to external alliance organizations or directly to

the internal unit of alliance organizations. Because the

internal and external exchange networks are

independent, the XAgent acts as an intermediary. The

forwarding exchange contract indicates that when an

internal unit wants to send a file to an alliance

organization, the internal unit will create an internal

exchange contract and pass it to the management node.

The management node’s XAgent will then create an

external exchange contract and forward it to the

alliance organization. The external exchange contract

is the forwarding one. After the management node

forwards the exchange contract deployment, the

address of the forwarding contract will be saved to the

internal exchange contract for subsequent use.

File Manager contract is mainly responsible for

saving the correspondence between the exchange

contract and physical file, allowing the XAgent to

query the physical file and corresponding exchange

contract address. The internal storage structure is

constructed as dictionary, whereas key is the hash

value of the exchanged file, and value is the address of

the exchange contract. Quorum node manager default

is the contract creator, which can delete or recover the

corresponding record. In addition, it provides a transfer

function for the manager and retains flexibility for

subsequent maintenance or account replacement.

Exchange Manager contract is generally used for

internal exchange to confirm the identity of each unit

and query the public key and account number of the

node to which the unit belongs. Mixed structure

provides query of which alliance organizations exist.

Internal node can directly send a file to the

management node, and the management node forwards

it to external alliance organizations. In the receiving

process, the recipient can also determine whether the

sender still exists in the internal exchange network.

Files cannot be retrieved if the sender has been

removed from the network.

Data creator can maintain the data that he has

created to meet the needs of replacing public key or

account. In addition, node manager can force deletion

or recovery of node data, allowing the management

node to have the authority to control the nodes that are

internally exchanged. As for the data of external

exchange organization alliance, it is also maintained by

the management node. After completing the

establishment of inter-organizational exchange

network, relevant alliance organization data will be

saved in the contract for internal nodes to query. When

changes occur in the members of alliance organizations,

data can be updated to the contract.

XAgent is the core role in the entire exchange

framework. It is responsible for transforming complex

blockchain operations into simple web operations as

well as providing APIs for third-party programming. It

is mainly responsible for communicating with the

blockchain nodes and sending and receiving data, and

moreover, it is responsible for forwarding files under

the mixed structure. Furthermore, it is in charge of

saving exchange files to a physical file isolation area.

The isolation area can be a file server of a completely

different computer or a folder on the same computer’s

hard disk, which is selected according to the needs of

organization. Larger organizations may have the ability

to establish independent file servers to provide

improved security and independence, whereas smaller

organizations can only split a small portion of the hard

disk to create a file isolation area.

In the entire exchange process, the actual encrypted

exchange file will only exist in the file isolation area of

the sender’s XAgent, and will not be saved in the

blockchain network. The recipient downloads the

actual exchange file through the API provided by the

sender’s XAgent. Through this mechanism, preventing

files from flowing through the entire exchange network

and reducing the risk of brute-force attacks are possible.

System permissions of XAgent are divided into

general and management nodes. In addition to the

functions of exchange process and file storage, the

management node provides the function of establishing

and maintaining the exchange network, which allows

organizations to create an intraexchange node and an

infinite number of interexchange nodes. Moreover, it

serves as a bridge for transferring the intraexchange

network to an interexchange network, and provides a

more complete exchange mechanism.

Originally, intra-organizational identity verification

mechanisms were achieved through XM, which is

managed by the management node. However, in the

context of inter-organizational or mixed structures, a

1318 Journal of Internet Technology Volume 21 (2020) No.5

single alliance organization cannot be fully trusted or

left alone to manage the XM because each organization

may be in a competitive or mutually beneficial

relationship. Therefore, in an inter-organizational or

mixed structure, the framework uses a DPKI service to

handle the identity verification mechanism. In the

DPKI service, identity data between the alliance

organizations are not controlled by any of them; thus,

malicious tampering or falsified identities can be

avoided.

This framework does not establish a DPKI service of

its own, but rather allows members of the external

exchange network to freely agree on which DPKI

service to use. The initiating organization of the

external exchange network will record the agreed

DPKI service used by its alliance organization to

identify data of the exchange network; thus, the

alliance organizations in the exchange network use the

same DPKI service.

The organization’s identity data must include the

public key for signatures, signature verification

algorithm, and XAgent service endpoint. The identity

of the exchange network must include the DPKI

service endpoint, XAgent service endpoint of the

initiating organization, and public key and signature

verification algorithm for each alliance organization

within the exchange network. When executing the

receiving operation, the public key in the identity data

can be used to determine whether the alliance

organization still exists in the external exchange

network, because changes may occur in the alliance

organization. When an organization is removed, the

identity of the exchange network can ensure it can no

longer download any exchange files.

3 Data Exchange Process

The proposed data exchange framework is very

flexible. It can support three general scenarios: intra-

organizational case, inter-organizational case, and

mixed case. To simplify our explanation for the data

exchange operation process of the proposed framework,

only inter-organizational case is addressed in this study.

3.1 Inter-organizational Data Exchange

Initialization

Under an inter-organizational data exchange

network, the identity verification mechanism changes

from an XM to a DPKI service because each

organization must have a physical identity. As shown

in Figure 4, All organizations must first register their

information with the DPKI service; if it is the initiating

organization of the exchange network, it must register

the exchange network’s identity with the DPKI service

and pass the identity DID to other alliance

organizations, allowing them to use this DID to

retrieve the identity DDO of the exchange network

from the DPKI service to join the shared exchange

network. After all the members of the exchange

network create an inter-Quorum node, they can join the

specific exchange network through the service

endpoints in the DDO. After joining, they can establish

an FM that can only be accessed by its own node for

exchange use. The detailed process is as follows:

Figure 4. Flow chart of inter-organizational data

exchange initialization

(1) Initialize the exchange network: Join the

exchange network based on negotiation results of the

alliance members.

(2) Register its own organization’s information to

the DPKI service: Registration must be performed first

because the identity of the external exchange network

is managed by the DPKI service.

(3) Initiating organization registers the exchange

network data to the DPKI service: This organization is

also the administrator of the exchange network; thus,

the exchange network identity must be registered to the

DPKI service.

(4) Retrieve the identity DDO through the DPKI

service after obtaining the DID of the exchange

A Flexible Electronic Data Exchange Framework Based on Consortium Blockchain 1319

network: Alliance organizations can use this DID to

retrieve the identity DDO.

(5) Join the exchange network after interexchange

node creation: Join the exchange network according to

the service address in the exchange network’s identity

data.

(6) Establish a private FM: Similar to the function of

inter-organizational initialization, which is for

exchange purposes.

3.2 Inter-organizational Data Outbound

Process

Figure 5 presents the inter-organizational outbound

process, i.e., a user sends a file or a set of data through

the framework to a receiver located at another

organization. Different to intra-organizational

outbound process, identity verification uses the DPKI

service instead of the XM. The process is similar

except that the identity verification process and intra-

organizational scenarios are different. Users must first

generate an encryption key to encrypt and compress

the exchange file through the AES algorithm.

Subsequently, they call the XAgent to retrieve the

identity DDO of alliance organizations using the DID

of the alliance organization to query the DPKI service.

Under this scenario, the XAgent may connect to

multiple exchange networks of the alliance

organizations. However, only one intra-organizational

exchange network is required. Therefore, users are

required to specify which exchange network DDO is to

be retrieved when calling for the XAgent. After the

DDO is retrieved, a recipient list is generated

according to the requirements for use in generating

exchange contracts. After the exchange contract is

compiled, it is deployed to the inter-organizational

exchange network through the Quorum node, and the

address of the contract is retrieved after successful

deployment. Subsequently, this address is saved in the

node’s FM for subsequent file downloading to verify

the recipient’s identity. The detailed steps are as

follows:

(1) Generate an encryption key to encrypt and

compress the file: After the user generates the

encryption key, the AES algorithm is used to encrypt

and compress the file.

(2) Query the recipient data: The user can query the

recipient data through the XAgent according to his or

her requirements.

(3) Query the DPKI service: The XAgent will query

the alliance organizations’ identity DDO through the

DPKI service according to the DIDs of the exchange

network and alliance organizations.

(4) Generate a recipient list: A recipient list can be

generated after the user receives the recipient data.

(5) Upload the file and recipient list: The user passes

the encrypted exchange file and recipient list to the

XAgent for outbound operation.

(6) XAgent executes the outbound contract.

Figure 5. Inter-organizational data outbound process

3.3 Inter-organizational Data Inbound Process

Figure 6 presents the inter-organizational inbound

process, i.e., a user receives a file or a set of data

through the framework, in which the data is sent by a

user located at another organization. Users execute an

inbound operation through the XAgent, and the

XAgent retrieves EDX data from the Quorum node and

adds a signature to the hash value of the exchange file.

The signature and hash value are sent to the download

API, the XAgent of the sender will perform

verification after receiving the request, and the public

key of the recipient is retrieved from the signature.

After the public key is retrieved, the exchange network

DID recorded in its own setting is used to retrieve the

exchange network identity DDO through the DPKI

service. Moreover, whether the public key exists in the

exchange network’s identity DDO is checked, and if

the identity is confirmed, the recipient is indeed a

member of this external exchange network.

Subsequently, the file’s hash value is inserted into the

FM to query the corresponding EDX address, and this

address is used to verify whether the recipient exists in

the recipient list in the EDX. After verification is

passed, the exchange file is retrieved from the file

isolation area, and the file’s hash value is compared to

ensure the file has not been maliciously tampered with.

A signature is added to the hash value of the correct

file and is returned to the XAgent of the recipient.

After the exchange file is received, the recipient’s

XAgent will perform verification and retrieve the

public key of the sender to confirm that the sender still

exists in the exchange network. Finally, the file is

decrypted to complete the inbound process. The

detailed steps are as follows:

(1) Execute an inbound operation: The user executes

an inbound operation through the XAgent.

(2) Query the EDX address: The XAgent retrieves

the relevant EDX address through monitoring the

exchange network.

(3) Execute the “prepare download parameters” step.

1320 Journal of Internet Technology Volume 21 (2020) No.5

Figure 6. Inter-organizational data inbound process

(4) Pass signature and file hash values to the

sender’s XAgent for file downloading: Call the

download API through the Web API.

(5) Sender verifies the signature and extracts the

recipient’s account: This step confirms the recipient’s

identity and avoids the forged identity problem.

(6) The sender queries the exchange network DDO

through the DPKI service: The sender queries the

exchange network identity DDO through the DPKI

service using the exchange network DID in the setting.

(7) Query whether the recipient exists through the

exchange network DDO: This confirms whether a

public key exists in the DDO after retrieving the

exchange network identity DDO.

(8) Retrieve the corresponding EDX address through

the FM: These data are saved in the FM during

outbound, and the sent request is invalid if a record is

not found.

(9) Confirm the recipient’s identity according to the

EDX address: The IsRecipient function in EDX is

called for confirmation.

(10) Retrieve the physical file from the isolation area

and compare hash values: The file is verified again to

avoid tampering after it is saved.

(11) Add a signature to the hash value and return it

to the recipient with the exchange file: This ensures

that the file is indeed returned by the sender.

(12) Recipient checks and extracts the sender’s

public key: After the signature verification is passed,

the sender’s public key is extracted from the signature.

(13) Recipient queries the exchange network DDO

through the DPKI service: The is performed using the

exchange network DID in the setting.

(14) Query the existence of the sender through the

exchange network DDO: This step confirms whether

the public key exists in the DDO after retrieving the

exchange network identity DDO.

(15) File decryption: Decrypt the file after

confirming the file source.

4 Prototype Implementation and Analysis

The framework prototype uses Quorum 2.0.2 as its

underlying blockchain network, and underlying

Quorum is a core of Ethereum, with additional

mechanisms added to handle privacy problems. During

the data exchange process, data should only be

received by the recipient. However, all data are open

on Ethereum, which risks brute-force attacks even if

the data are encrypted. Therefore, Quorum’s privacy

mechanism is required to ensure the data are received

by only the true recipient. Another benefit of Quorum

is that it is almost compatible with all the existing

Ethereum structure; thus, many resources can be

shared mutually. The XAgent is a web application

written in the ASP.NET Core framework, allowing

users to send and receive files directly through the web

page. Furthermore, it provides Web API to allow third-

party applications to be integrated directly. Because it

uses .NET Core [22], it also supports cross-platform

application and can be installed on Windows, Linux,

and macOS. Communicating components with

blockchain uses Nethereum [23], which is also based

on .NET Core, allowing users to directly operate

Quorum in .NET without having to go through the

frontend using Web3.js [24]. In the context of internal

exchange, identity management is handled through the

XM, and the XAgent allows users to interact with the

XM through a web interface. However, in the case of

external exchange or a mixed structure, the DPKI

service is used instead. To communicate with the DPKI

service, it is necessary to retrieve the data from each

DPKI service through a Universal Resolver [25], but

only Java and Python are used in the currently

implemented version.

For the experimental environment, an Ubuntu 16.04

operating system environment with Intel Xeon E5-

2620v4 CPU, 4GB memory and 50GB hard disk space

was utilized, and the Quorum nodes and XAgents were

run internally through Dockers. Data exchange

transaction requests were generated by another

independent computer, which was directly connected

to the framework prototype. The request generation

server is built with Windows 10 operating system, Intel

i5-6200U CPU, 16GB memory and 240GB SSD.

Adopted software packages are Quorum 2.0.2, Docker

17.12.1-ce3, Docker Compose 1.17.1, Node.js v8.10.0

and .NET Core 2.0. Numerous transaction requests

were outbound from the request generation server to

the framework prototype in the experimental

environment through a multithreading asynchronous

method to simulate the simultaneous exchange of files

in numerous units.

The system experiment was divided into two parts:

the first was a prototype stress test, which simulated

numerous concurrent exchange contract deployment

requests as well as tested the limit of how many

requests could be processed per second; the second

A Flexible Electronic Data Exchange Framework Based on Consortium Blockchain 1321

was a test of the intra-organizational exchange process,

which disassembled each process, conducted

independent testing, and finally integrated the testing

of the entire process.

4.1 Prototype Stress Test

The stress test scenario was designed as follows:

1000 users simultaneously generate different exchange

contracts to execute outbound operations. They

simultaneously press the outbound button on the

XAgent of their own unit to make XAgent issue a

request for a deployment contract to the Quorum node.

This test contains four scenarios with the number fo

recipients increased from one to four gradually.

Each test scenario was conducted five times to get

the experimental results in average. The experimental

results are shown in Figure 7 to Figure 10. Figure 7

shows the total number of created blocks increases

when the number of recipients increases. The increase

of the total number of recipients involved in a message

exchange has obvious impact on the Quorum

processing speed as shown in Figure 8. In Figure 9, it

shows that the block creation speed is relatively stable

when adding more recipients. In general, approximately

19.16 to 19.47 blocks were created per second. Notice

that a transaction is created when deploying a contract

into the Quorum blockchain network. Therefore, the

number of transactions is equivalent to the number of

contract deployments in Figure 10. The average

number of transactions per second was 60.82 as shown

in Figure 10. In Figure 10, the processing efficiency

was considerably reduced when the number of

recipients increased. This is because the number of

created blocks were increased when the number of

recipients increased as shown in Figure 7. However,

since the block generation speed was relatively stable

as shown in Figure 9, it indicates that more time is

required to generate all blocks when the number of

recipients increases. As the Quorum network has the

same processing capability on verifying and

committing transactions through consensus agreement,

longer time for committing all transactions is required

when the total number of blocks increases. In summary,

when the number of recipients increases, Quorum

network requires more time to complete the same

amount of transactions (i.e., contract deployment).

Therefore, the number of transactions per secend will

be reduced as shown in Figure 10.

4.2 Intra-organizational Exchange Process

Testing

The outbound process can be split into exchange file

uploading and exchange contract generation; both were

tested separately before testing the entire outbound

process.

Figure 7. The bar chart of total number of created

blocks based on different number of recipients

Figure 8. The bar chart of the transaction processing

time based on different number of recipients

Figure 9. The bar chart of the number of created

blocks per second based on different number of

recipients

Figure 10. The bar chart of the total number of

transactions per second based on different number of

recipients

1322 Journal of Internet Technology Volume 21 (2020) No.5

The process of exchange file uploading included the

time spent on file uploading to the XAgent, computing

time of the hash value, and time spent to save the file

in the isolation area. To test the effect of file size on

processing time, different file sizes are used: 100 KB,

500 KB, 1 MB, 5 MB, 10 MB, 30 MB, and 50 MB.

Each file size was tested five times. The average

processing time of file upload for each file size is

shown in Figure 11. Notice that most of processing

time is spent during the step of file uploading to the

XAgent. Therefore, depending on the network

bandwidth of the XAgent-installed node, the average

processing time for file upload process might vary

accordingly. Assume the network bandwidth of the

XAgent-installed node is fixed, then the processing

time of file upload is longer if the file size is larger in

general.

Figure 11. The average processing time for file upload

process

The stress test for data exchange contract generation

speed is set to different scenarios: 1, 5, 10, 30, 50, 100,

200, 400, 800, 1600, and 3200 recipients. The average

results of each scenario after five executions are

summarized in Figure 12.

Figure 12. The average processing time for data

exchange contract generation

For the outbound process test, timing began from the

moment the contract was compiled. The test deployed

the contract to the blockchain and retrieved the

contract address, and then registered the

correspondence between the exchange file and contract

address to the FM (two registrations, text and

attachment registrations each). Four test scenarios were

established depending on the number of recipients, and

the settings were similar to the stress tests. Figure 13

presents the test results.

Figure 13. The average processing time of the data

outbound process

For the inbound process test, timing began from

when the exchange contract was received. The time

was only counted upon receipt of the contract until

identity verification and exchange file downloading,

but did not include the time required to download and

verify the file and source. Four test scenarios were

established according to the number of recipients, and

the settings were similar to the stress tests. Figure 14

presents the test results.

Figure 14. The average processing time of the data

inbound process

Figure 11 presents the results of file upload

processing. The results indicated that the larger the file

size, the longer the processing time that was required.

The exchange contract generation test produced the

same result as shown in Figure 12, and more recipients

required a longer compilation time. Finally, in the

whole process of outbound and inbound test results as

shown in Figure 13 and Figure14, no apparent

difference was found. On average, the outbound and

inbound operations could be completed in

approximately 563 and 853 ms; that is, if the file

upload and download times were not calculated, only

1.4 seconds were required to complete the outbound

and inbound of the file (data).

A Flexible Electronic Data Exchange Framework Based on Consortium Blockchain 1323

5 Conclusion

Traditional EDI operation between organizations has

typically been handled by a centralized system.

Although this system can avoid the SPOF problem

through a cluster concept, it faces high risks of

exchange records being tampered with. In recent years,

the emergence of blockchains has led to more research

on decentralization. The use of distributed ledgers can

prevent data from being monopolized by a particular

unit, and also make it possible for both exchange

parties to establish a trustable exchange relationship

without the witness of a third party.

This study intended to improve the inter- and intra-

organizational electronic data exchange system with

consortium blockchain framework. Through resolving

the shortcomings of the previous centralized

framework using blockchain characteristics and

Quorum’s data confidentiality processing, the physical

file (or data) no longer has to flow through the entire

exchange network, thereby reducing the possibility of

it being hacked and decrypted. Smart contracts can

help to ensure that only the real recipient can retrieve

the exchange files from the sender. The exchange

framework can be divided into the data exchange of

intra-organizational, inter-organizational, and mixed

structures to meet various exchange requirements. The

performance testing results on the system prototype

have shown that at least 60 exchange contracts could

be deployed per second, and up to 5,000,000 contracts

could be deployed per day, which is sufficient for the

data exchange requirements between general

organizations.

Acknowledgments

The authors acknowledge the support from Taiwan

Information Security Center (TWISC) and Ministry of

Science and Technology, Taiwan, under the Grant

Numbers MOST 108-2221-E-011-063, MOST 108-

2221-E-011-065, and MOST 108-2218-E-011-021.

References

[1] National Institute of Standards and Technology, FIPS PUB

161-2, Electronic Data Interchange (EDI), https://web.archive.

org/web/20080511043940/https://www.itl.nist.gov/fipspubs/fi

p161-2.htm, 1996.

[2] International Organization for Standardization, ISO 9735:

1988, Electronic Data Interchange for Administration,

Commerce and Transport (EDIFACT) – Application Level

Syntax Rules, https://www.iso.org/standard/17592.html, 1988.

[3] S. Scala, R. McGrath Jr., Advantages and Disadvantages of

Electronic Data Interchange an Industry Perspective,

Information & Management, Vol. 25, No. 2, pp. 85-91,

August, 1993.

[4] K.-W. Lai, Suggestions for Improvement on Information

Security of the Electronic Official Document Exchange

System, Archives Semiannual, Vol. 13, No. 2, pp. 4-17, June,

2014.

[5] C.-W. Wu, H.-L. Shan, W.-C. Wang, D.-M. Shieh, M.-H.

Chang, E-government Electronic Certification Services in

Taiwan, International Workshop for Asian Public Key

Infrastructures, Taipei, Taiwan, 2002, pp. 1-8.

[6] C.-M. Ou, H.-L. Shan, C.-T. Ho, Government PKI

Deployment and Usage in Taiwan, Information & Security:

An International Journal, Vol. 15, No. 1, pp. 39-54, 2004.

[7] K.-W. Lai, Research of the Technical Issues for Integration

between the Official Document Exchange System and

Official Document Management Systems in Government

Agencies, Archives Semiannual, Vol. 16, No. 2, pp. 84-91,

December, 2017.

[8] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, H. Wang, Blockchain

Challenges and Opportunities: A Survey, International

Journal of Web and Grid Services, Vol. 14, No. 4, pp. 352-

375, October, 2018.

[9] S. Nakamoto, Bitcoin: A Peer-to-peer Electronic Cash System,

http://www.bitcoin.org/bitcoin.pdf, 2009.

[10] Ethereum, Ethereum Whitepaper: A Next-Generation Smart

Contract and Decentralized Application Platform, https://

github.com/ethereum/wiki/wiki/White-Paper, 2018.

[11] A. Kosba, A. Miller, E. Shi, Z. Wen, C. Papamanthou, Hawk:

The Blockchain Model of Cryptography and Privacy-

Preserving Smart Contracts, The 37th IEEE Symposium on

Security and Privacy, San Jose, CA, USA, 2016, pp. 839-858.

[12] J.P. Morgan Chase, Quorum Whitepaper, https://github.com/

jpmorganchase/quorum-docs/blob/master/Quorum%20White

paper%20v0.1.pdf, 2016.

[13] J.P. Morgan Chase, Quorum: A Permissioned Implementation

of Ethereum Supporting Data Privacy, https://github.com/

jpmorganchase/quorum, 2018.

[14] A. Bakre, N. Patil, S. Gupta, Implementing Decentralized

Digital Identity using Blockchain, International Journal of

Engineering Technology Science and Research, Vol. 4, No.

10, pp. 379-385, October, 2017.

[15] Z. Diebold, Self-sovereign Identity Using Smart Contracts on

the Ethereum Blockchain, Master Thesis, University of

Dublin, Dublin, Ireland, 2017.

[16] J. Benet, IPFS-Content Addressed, Versioned, P2P File

System, https://arxiv.org/abs/1407.3561, 2014.

[17] M.-Y. Jung, W.-S. Kim, S.-H. Chung, J.-W. Jang, A

Blockchain-based ID/IP Mapping and User-friendly Fog

Computing for Hyper-connected IoT Architecture, Journal of

Information Communication Technology and Digital

Convergence, Vol. 2, No. 2, pp. 12-19, December, 2017.

[18] C. Allen, A. Brock, V. Buterin, J. Callas, D. Dorje, C.

Lundkvist, P. Kravchenko, J. Nelson, D. Reed, M. Sabadello,

G. Slepak, N. Thorp, H. T. Wood, Decentralized Public Key

Infrastructure, https://github.com/WebOfTrustInfo/rebooting-

the-web-of-trust/blob/master/final-documents/dpki.pdf, 2015.

[19] J. Golosova, A. Romanovs, The Advantages and Disadvantages

of the Blockchain Technology, IEEE 6th Workshop on

1324 Journal of Internet Technology Volume 21 (2020) No.5

Advances in Information, Electronic and Electrical

Engineering, Vilniaus Apskritis, Lithuania, 2018, pp. 1-6.

[20] V. Gatteschi, F. Lamberti, C. Demartini, C. Pranteda, V.

Santamaria, To Blockchain or Not to Blockchain: That is the

Question, IT Professional, Vol. 20, Issue 2, pp. 62-74,

March/April, 2018.

[21] N. Baygin, M. Baygin, M. Karakose, Blockchain Technology:

Applications, Benefits and Challenges, The 1st International

Informatics and Software Engineering Conference, Ankara,

Turkey, 2019, pp. 1-5.

[22] Microsoft, NET Core, https://docs.microsoft.com/zh-tw/

dotnet/core, 2018.

[23] Nethereum, Ethereum .NET Cross Platform Integration

Library, https://github.com/Nethereum/Nethereum, 2018.

[24] Ethereum, Ethereum JavaScript API, https://github.com/

ethereum/web3.js, 2018.

[25] Decentralized Identity Foundation, Universal Resolver

Implementation and Drivers, https://github.com/decentralized-

identity/ universal-resolver, 2018.

Biographies

Nai-Wei Lo received his Ph.D. from

State University of New York at

Stony Brook, USA, in 1998. He is

currently a Professor and the

Chairman of Department of

Information Management, National

Taiwan University of Science and

Technology, Taipei, Taiwan. His research interests

include blockchain security, IoT security, and Web

technology.

Sheng-Chiang Chen received his

master degree from National Taiwan

University of Science and Technology,

Taiwan, in 2005. He is currently a

doctoral candidate of School of

Management in National Taiwan

University of Science and Technology.

His research interests include supply chain

management, information security, and blockchain

technology.

Shou-Chun Chang received his

master degree in Information

Management from National Taiwan

University of Science and Technology

in 2018. His research interests include

blockchain, information security and

Internet of Things.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

