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Abstract 

Facial landmarks encode critical information about 

face, which plays an important role in human 

communications. Accurate detecting and tracking facial 

landmarks have great potential value in intelligent user 

interfaces such as human-computer interactions. However, 

for face images with sever occlusions which may happen 

in real life such as hand occlusion, gesture occlusion and 

etc, detecting the facial landmarks is still a challenging 

problem. In this paper, we present a robust facial 

landmark detection method for image with occlusions 

based on Restricted Boltzmann Machine (RBM). We first 

present a face shape prior model which is constructed 

based on RBM to model the spatial shape patterns of the 

face. The detection process is accomplished by 

combining the prior shape model with the image 

measurements of facial landmarks. The low accuracy 

image measurements can be refined by the shape 

information embedded in the prior model. For the 

landmarks with severe occlusions, we firstly evaluate and 

determine the facial landmark occlusions, and replace 

their image measurements. The new image measurements 

are then fed into the prior model as evidence to predict 

the true locations. Evaluation on 3 databases demonstrates 

that the proposed method can detect facial landmarks 

accurately under severe occlusion, and achieved 

significant improvement over the current state of the art 

methods. 

Keywords: Facial landmark detection, Restricted 

Boltzmann Machine, Occlusion detection 

1 Introduction 

Face is a powerful and immediate means for human 
beings to communicate their emotions, intentions, and 
opinions [1], and hence face related analysis based on 
visual modality has been investigated to boost human 
computer interaction (HCI) experience. Facial 

landmarks detection is usually the initial step and 
groundwork for face related analysis. Because of the 
great potential application value in human computer 
interactions, facial landmarks detection has been 
explored for several decades. However, most current 
facial landmarks detection research works are based on 
controlled environment where ideal illumination, high 
resolution images and desirable viewpoint are available. 
When tested under various types of real scenes, 
especially when there are severe face occlusions, their 
performance drops severely. In this paper, we 
introduce a robust facial landmarks detection method 
which can deal with severe face occlusions. 

Generally, facial landmarks detection technologies 
could be classified into two categories: model free and 
model-based algorithms. Model free approaches are 
general purpose point detector without the prior 
knowledge of the object. Each landmark is usually 
detected individually by performing a local search for 
the best matching position. In contrast to model free 
approaches, model based methods, such as Active 
Shape Model (ASM) [2], Active Appearance Model 
(AAM) [3], etc., focus on explicitly modeling the 
shape of objects. The model-based methods utilize 
much more prior knowledge on face to realize an 
effective detection and achieve great performance on 
face images with moderate facial expression changes 
under slight occlusions. However, they tend to fail 
when there are severe occlusions on the faces in the 
real-world applications. 

The existing research on dealing with occlusions 
tries to reconstruct the occluded part by two kinds of 
information: temporal information and spatial 
information. The temporal model [4] capture the 
dynamic information of each frame in an image 
sequence. The limitation for this kind method is that 
the query image sequence must contain non-occluded 
face images in the beginning, and the expressions must 
change smoothly. The spatial models usually employ 
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pre-trained shape model to captures the spatial 
relations, either local spatial relationship among sets of 
facial landmarks [5] or global spatial relationship 
among all landmarks [6-7]. 

The spatial model based methods usually combine 
the face shape patterns with the image measurements 
of facial landmarks. Image measurements are usually 
obtained by independent detector, and are fed into the 
prior model as evidence. The prior model can refine 
the image measurements with low accuracy by the 
spatial information embedded in the prior model. 
However, for facial landmarks with severe occlusions, 
their measurements may be far away from the true 
locations, and we refer this kind the landmarks as 
corruptions (outliers). When there are corruptions, the 
optimization process can refine the corrupted 
landmarks measurements, but at the same time the 
landmarks with high accuracy may be draw away from 
the true locations. 

In this paper, we present a new strategy for facial 
landmarks detection under severe occlusions which is 
shown in Figure 1. We first construct a face shape prior 
model based on Restricted Boltzmann Machine (RBM) 
to capture the spatial patterns of face shape. Then the 
facial landmark measurements are obtained by an 
independent detector, i.e., LEAR in [6] is used in this 
work. We firstly evaluate and determine the corruption 
landmarks caused by occlusions. Then we replace the 
corruption measurements by sampling results of the 
pre-built RBM based prior model. Eventually, the new 
image measurements are fed to the prior model as 
evidence to predict the true locations of facial 
landmarks. We detect 19 facial landmarks in this work 
as shown in Figure 2. 

The remainder of this paper is organized as follows. 
In Section 2, we present a brief review of the related 
works. Then, we present the RBM based face shape 
prior model in Section 3. Section 4 describes the 
corruptions prediction and replacement method and 
Section 5 presents the facial landmark true locations 
inference method. Experimental evaluations are 
presented in Section 6. Section 7 concludes the paper. 

2 Related Work 

Facial landmarks are prominent feature points 
surrounding facial components, which encode critical 
information about face shape and face shape 
deformation. Automatic facial landmarks detection and 
tracking is always a challenging problem, especially on 
face with occlusions [8-10]. Obviously, model free 
methods which search and detect each facial landmark 
individually fail to deal with occlusion problems. In 
contrast to model free approaches, statistical model-
based methods, such as Active Shape Model (ASM) [2] 
and Active Appearance Model (AAM) [3], focus on 
explicitly modeling the shape of objects. The ASM 
model constrains the face shape to vary only in ways 

 

Figure 1. The flowchart of the proposed method 

 

Figure 2. The 19 facial landmarks detected in this 
work 

that have been learnt in a set of labeled training 
examples. The shape of a face is represented by a set of 
facial point coordinates. During training process, 
Principle Component Analysis (PCA) is employed to 
represent the shape variations in a linear subspace. 
AAM model further improves the ASM model by 
building linear generative models to capture both shape 
and appearance variations of faces.  

However, with the strong assumption that the face 
shapes follow a Gaussian distribution, ASM can be 
constrained into a linear subspace. Similarly, AAM and 
other variations of ASM can also be modeled by a 
Gaussian distribution. Therefore, it is difficult for the 
ASM and its variations to model faces with various 
expressions. 

In [11], Valstar and Martinez combine Support 
Vector Regression and Markov Random Fields to 
increase the accuracy and robustness of the facial 
landmarks detection. To handle the facial expression 
and pose variations, work [11] first learns mappings 
from the local area of a feature landmark to the true 
location, and then employs Markov Random Fields to 
constrain the search space. Nevertheless, it is still 
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linear model that can only deal with moderate changes. 
Different from holistic methods that predict the 

facial landmark locations from all the facial images, 
Huang and Liu [5] presented separate Gaussian models 
for every single shape component to model more 
detailed local shape deformations. Work [5] built a 
Gaussian process latent variable model in which the 
latent node controls the shape variations and models 
the nonlinear interrelationships over shape components. 
In addition, an illumination-robust feature and an 
efficient sub-window search technique make the 
system [5] can handle not only images with 
exaggerated expressions and slight shading variation 
but also images with occlusion and heavy shadows.  

Recently, due to the nonlinear nature of Restricted 
Boltzmann Machines (RBM) and their variants, 
researchers find that this kind of methods are more 
suitable for capturing the large variations of objects 
shape. In [7], Deep Boltzmann Machines (DBM) based 
model is proposed to capture the face shape variations 
due to facial expressions for near-frontal view face. 
However, the face occlusions often result in gross 
errors or outliers which distort results detected by the 
shape model based methods. To handle this, a normal 
attempt is to employ the Bayesian inference [12] to 
optimize the detected landmarks. A generative model 
is built to maximize a posterior of observations [13]. 
Each landmark may have several candidate positions, 
and the shape is reconstructed based on their 
probability. [7] use the Bayesian inference to combine 
the face shape prior models with image measurements 
of facial feature points. 

Another attempt is to combine the temporal 
information with the shape model. In [4], the facial 
features are tracked by incorporating temporal 
information through video streams and spatial 
information between feature points. The MRF based 
spatial relationship is used to bind the feature points 
and prevent possible drifts occurring due to occlusions. 
The linear temporal model captures the temporal 
behavior of each facial feature point. In addition, a 
Gabor feature based occlusion detector is developed 
and spatial constraints are utilized to prevent drifts 
because of occlusions. 

As we known, for images with occlusions, face 
shape prior model can draw the corrupt measurements 
close to the true points. However, for severe occlusions, 
the measurements with high accuracy may be drawn 
away from the true locations because of optimization 
on the whole shape. Therefore, more recently, 
researchers try to qualify the measurements and just 
refine the corrupt measurements without changing the 
measurement with high accuracy. The work proposed 
in [6] presented a novel facial landmark detector 
algorithm that uses an estimation-based approach that 
employs Local Evidence Aggregated Regression 
(LEAR). Work [6] combines a regression based 
approach with a probabilistic graphical model-based 

face shape model. They propose to extend the 
regression based model to provide a quality measure of 
each prediction, and use the MRF based shape model 
to restrict and correct the sampling region. 

3 Methods 

3.1 RBM based Shape Prior Model  

Facial landmark detection accuracy and robustness 
can be improved by incorporating the face shape prior 
model. Recent research shows that the Restricted 
Boltzmann Machines (RBM) and their variants are able 
to model high-order shape patterns. The RBM is a kind 
of undirected graphical model which contains a 
bipartite structure with two kinds of stochastic nodes: 
the visible and hidden layer nodes [14]. For RBM, 
there is no connection within the layer while nodes 
between layers are fully connected with undirected 
links. 

In this paper, we construct a face shape prior model 
based on RBM (as shown in Figure 3) to explicitly 
capture the face shape patterns. The visible (observation) 

nodes { }
i
v  are the coordinates of facial landmark 

locations, normalized according to the locations of eyes, 

denoted as 
1, 1, 2, 2, 19, 19,

v , , , , , ,
t

x y x y x y
p p p p p p⎡ ⎤= ⎣ ⎦… . The 

hidden nodes { }jh  with binary states are connected to 

all visible nodes and therefore are used to model the 
face spatial patterns. Since the visible data are 
continuous, the Gaussian Bernoulli RBM (GB-RBM) 
[15] are employed for modeling continuous data. The 
total energy function of the proposed shape prior 
model is defined in (1): 

 

Figure 3. RBM based shape prior model 

 ( ) ( )
21

v,h
2

i i ij i j j j

i ij j

E v b W v h c hθ = − − −∑ ∑ ∑  (1) 

where { }, ,W b cθ =  are the parameters. 
ij

W  measures 

the compatibility between visible node 
i
v  and latent 

node 
j

h . 
i
b  and 

j
c  are the biases of the visible and 

latent units respectively. 
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The distribution of the facial landmarks (visible 
units) is calculated by marginalizing over all the 

hidden units with (2), where ( )Z θ  is the normalizing 

constant. 

 ( )
( )

( )

v,h

v

E

h
e

P
Z

θ

θ
θ

−

=

∑
 (2) 

Given the training data { }
1

N

i i
v

=

, the parameters are 

learned by maximizing the log likelihood with (3): 

 ( ) ( ) ( )*

1

1
argmax ; log v

N

i

i

L L P
Nθ

θ θ θ θ

=

= = ∑  (3) 

The gradient with respect to $\theta$ can be written 
in (4): 

 
( )

( ) ( )h v, h,vp p

L E E

θ θ

θ

θ θ θ

∂ ∂ ∂
= −

∂ ∂ ∂
 (4) 

where .

p
 represents expectation over distribution p . 

It is difficult to directly calculate equation (4) since it 

involves inferring ( )h,vP  which is intractable. Hence 

we approximate it with contrastive divergency 
algorithm (CD) [15]. The basic idea is to approximate 

( )h,vP  with a one step Gibbs sampling from data. 

3.2 Corruptions Prediction and Replacement 

Given the pre-built shape prior model in the above 
section, we employ an independent feature point 
detector to get the image measurements, which can be 
then combined with the prior model to predict the true 
locations of the facial landmarks. The image 
measurements will be refined by the spatial patterns 
embedded in the shape model. However, for face 
images with severe occlusions, the image 
measurements for the occluded parts may be far away 
from the true locations, which are referred as 
corruptions. In this case, if we use the spatial 
relationships embedded in the pre-built face shape 
model to radically correct the measurements, it may 
draw the corrupted measurements close to the true 
position, but at the same time the measurements with 
high accuracy may be pulled away from the true 
positions. To overcome this problem, work [6] 
provided a quality measure of each prediction before 
correcting the measurements, and use a linear shape 
model (i.e., regression-based approaches) to just only 
restrict and correct the corruptions. 

In this paper, we propose a new strategy to handle 
the corruption problem which can be summarized as 
four steps: 

(1) The state of art facial landmark detector [6] 
is used to exact image measurements which are 
then used as evidence to predict the true positions. 

The measurements can be expressed as v
M
=  

1, 1, 2, 2, 19, 19,
, , , , , ,

t

xm ym xm ym xm ym
p p p p p p⎡ ⎤⎣ ⎦… . 

(2) We propose a method to estimate the quality of 
the measurements, and predict the corruptions 
(outliers). 

(3) Pre-built shape prior model is employed to re-
produce measurements for corruptions found in step 2. 

In this way, we can get the new measurements v
Mnew

 

without corruptions. 

(4) The new measurements v
Mnew

 are then fed to the 

prior model as evidence to predict the true location: 

( )
v

v̂ = arg max v v
Mnew

P . 

To predict the corruption, we first collect images 
without occlusions, and manually label the 19 facial 
landmarks we are going to detect. The normalized 

training data can be expressed as { }
1

v

N

i i=
, which are 

used to train the shape prior model constructed in Sec. 
3.1. Then we collect images with severe occlusions, 

and get the image measurements { }
1

v

M

Mi i=
 for these 

images by the independent detector. The visible nodes 

of the shape prior model are initialized as v
Mi

. Then 

the MCMC-based Gibbs-sampling method is used to 
reconstruct the measurements that fit the model. It’s 
worth mentioning that we just do one time Gibbs-
sampling to make sure the samples of visible nodes are 
slight deformations, but the differences for the 
corrupted feature points are obvious. In this way, we 
get the one time Gibbs-sampling results for the 

occluded images { }
1

v

M

Ri i=
. We compute the differences 

between v
Mi

 and v
Ri

 which are then used to train a 

linear classifier to predict the occluded parts. 
Once we have predicted the occluded parts of a 

query image, we employ the pre-built shape prior 
model to produce new samples to replace the image 
measurements for the corruptions. The samples are 
generated via the pre-built RBM based model by 
several times MCMC-based Gibbs-sampling. For each 
time reconstruction, we only update the visible nodes 
for occluded parts and the visible nodes for other parts 
are kept the same as the original image measurements. 
In this way, we replace the image measurements for 
the corruptions and get the new image measurements 

v
Mnew

. For facial landmarks that are not occluded, the 

elements of v
M

 and v
Mnew

 are same. But for the 

occluded parts, we replace their measurements as the 

corresponding elements in v
Mnew

. Hence there is no 

outliers in v
Mnew

, and we can combine v
Mnew

 with the 

prior model to predict the true locations of facial 
landmarks. 
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3.3 Facial Landmark Detection Based on 

Prior Model 

The accuracy and robustness of facial landmark 
detection can be improved by incorporating the face 
shape prior model. Given the new image measurements 

v
Mnew

, facial landmark detection can be expressed as 

an optimization problem: 

( ) ( ) ( )
v v

v̂ = arg max v v arg max v v v
Mnew Mnes

P P P=  (5) 

( )v v
Mnes

P  is the likelihood of the image 

measurements, and normally can be modeled by 
multivariate Gaussian distribution: 

 ( )
( )

( ) ( )11
v v v v

2

1

22

1
v v

2

t

Mnew l Mnew

Mnes k

l

P e

π

−

− − Σ −

−

=

Σ

 (6) 

Where 
l

Σ  is the covariance matrix that can be 

estimated from the training data. 

( )vP  is the prior distribution of the facial landmarks 

modeled by the pre-built shape model based on RBM. 

However, it is difficult to analytically formulate ( )vP  

from the learned model. Hence we propose to estimate 

this prior probability numerically via sampling. ( )vP  

is also assumed as multivariate Gaussian distribution. 
Based on the sampled data from the shape prior model, 
we estimate the prior probability by calculating the 

mean vector 
p

µ  and covariance matrix 
p

Σ . Since the 

likelihood probability is also multivariate Gaussian, the 
true locations of facial landmarks can be estimated by: 

 ( ) ( )
1

1 1 1 1
v v

T

l p p p l Mnewµ
−

− − − −

= Σ + Σ Σ + Σ  (7) 

4 Results and Discussion 

In this section, we evaluate the proposed method on 
three databases, i.e., FERET database [16], extended 
Cohn-Kanade (CK+) [17] database and American Sign 
Language (ASL) database [18]. FERET database 
consists of gray images of human heads with frontal 
illumination, and with little or no expression. CK+ 
database contains 593 posed facial expression videos 
from 210 adults, among which 9% are female, 81% are 
Euro-American, 13% are Afro-American and 6% are 
from other groups. Experiments on CK+ database can 
evaluate the robustness of the proposed method to 
expression changes. However, neither FERET nor 
CK+ database contain face occlusions. Hence, we 
simulate face occlusions by adding 50 40×  black 

masks for both FERET and CK+ databases. The mask 
is added to different face regions randomly for every 
image. To evaluate the robustness of the proposed 
method to spontaneous face occlusions, we also 

evaluate the proposed method on ASL database, which 
contains lots of spontaneous human gestures than cover 
parts of face. 
Evaluation metric: For evaluation, we calculate the 
error as the distance between detected facial landmarks 
and the ground truth locations normalized by the 
interocular distance: 

 2

ˆ

i i

i

I

P P

Error
D

−

=  (8) 

where
i
P  is the ith  detected facial landmark, ˆ

i
P  is the 

corresponding true location, and 
I

D  is the interocular 

distance for the corresponding frame. 
Comparison: We are going to make a comparison 
between three methods: LEAR [6], a RBM based prior 
shape model method [7], and the propsoed method. 
LEAR is an independent feature point detector which 
use no prior information, and we denote LEAR as 
“Baseline method” in the experiments. Work [7] 
constructed a prior shape model based on RBM which 
models the spatial patterns of the face. We denote the 
method presented in [7] as “RBM Prior Model” in this 
paper. We implement the Baseline method and the 
RBM Prior Model method ourselves, and try our best 
to tune the parameters. And also, we fed RBM Prior 
Model and the proposed method with the same image 
measurements got by the Baseline method. 

4.1 Evaluation on FERET Database 

We collect 900 images of 600 subjects with frontal 
face from FERET database. We randomly select 600 
images as training data and test on the remaining 300 
images. All facial points were manually annotated. We 
added 50 40×  black mask to 200 images of the 

training data which is used to train the linear classifier 
for occlusion prediction. All testing images are added 
with black mask to simulate occlusions. 

The evaluation results are shown in Table 1. From 
Table 1 we can see that, for every part of the face, the 
RBM Prior model outperforms the baseline method, 
and the proposed method achieves the best 
performance. The proposed method reduce the over all 
detection error by 52.5% and 34.5% respectively 
compared to the baseline method [6] and RBM Prior 
Model [7]. Since there are severe occlusions for the 
testing images, the baseline method cannot extract 
effective features for occluded parts, and the ability to 
model spatial patterns are also limited. Hence, the 
baseline method only achieves an overall detection 
error of 6.78. Compared to the baseline method, RBM 
Prior model combines the image measurements with 
the shape prior model, which systematically models the 
spatial patters of the face, and therefore reduces the 
overall detection error to 4.63. Through the optimization 
process of the RBM Prior model, the landmarks of 
outliers can be drawn back to the true locations 
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significantly, but at the same time, the image 
measurements with high accuracy may be pulled away 
from the true locations. For the proposed method, we 
first predict and replace the corruptions (outliers) 
caused by occlusions, and new image measurements 
with no outliers are fed to the prior model. In this way, 
the overall detection error are further reduced to 3.22 
on FERET database. 

Table 1. Evaluation results under occlusions on 
FERET database 

Method Eyebrow Eye Nose Mouth Average 

Baseline method [15] 5.28 5.94 7.11 8.70 6.78 

RBM Prior model [16] 3.26 3.55 5.20 6.57 4.63 

Proposed method 2.28 1.97 3.37 5.25 3.22 

 
Figure 4 demonstrates the cumulative error distribution 

for compared methods on FERET database. From 
Figure 4 we can see that the performance of the 
proposed method is significantly better than that the 
the baseline method and RBM Prior model. We also 
list some testing images with detected landmarks in 
Figure 5. From Figure 5 we can see that, for the 
occluded parts, the detection accuracy of the proposed 
method is better than that of the compared methods. 

4.2 Evaluation on Extended CK Database 

We also test the proposed method on CK+ database 
to evaluate the robustness of our model under varying 
facial expressions. CK+ database includes 593 sequences 
from 123 subjects that cover 7 basic facial expressions 
including anger, disgust, fear, happiness, sadness, 
surprise, and contempt. The image sequence varies in 
duration (i.e. 10 to 60 frames) and expression develops 
from onset (neutral frame) to peak intensity. We 
manually label the last five frames of each sequence to 
train the proposed model. We adopt leave-one-subject-
out cross validation strategy, and for testing, we 
manually add 50 40×  black mask to every query image. 

The evaluation results are shown in Table 2 and 
Figure 6. From Table 2 we can see that, for every face 
region, the proposed method achieves the best 
performance. RBM Prior model decreases the overall 
detection error by 22.3% because of modeling the 
spatial patterns of face. In addition, the proposed 
method further improves the detection performance by 
16.6% compared to RBM Prior model. Figure 6 shows 
the detection error for different facial expressions, and 
we can see the proposed method can decrease the 
detection error for all facial expressions. 

 

Figure 4. Cumulative error distribution for compared 
methods on FERET database 

 

(a) Images without occlusions 

 

(b) Baseline method 

 

(c) RBM Prior model 

 

(d) The proposed method 

Figure 5. Testing image with detected landmarks on 
FERET database 

Table 2. Evaluation results under occlusions on CK+ 
database 

Method Eyebrow Eye Nose Mouth Average 

Baseline method [15] 8.04 7.93 8.85 9.31 8.43 

RBM Prior model [16] 6.21 6.02 6.94 7.45 6.55 

Proposed method 5.13 5.28 5.34 6.04 5.46 
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Figure 6. Detection errors for different facial expressions 
on CK+ database 

4.3 Evaluation on ASL Database 

We also evaluate the proposed method on ASL 
database, which contains spontaneous expressions and 
sign language of human. These sing language 
accompanied with gesture often causes face occlusions. 
To test the generalization ability, we trained the 
proposed model and the compared methods on images 
collected from FEERA database. The experimental 
results are shown in Table 3. 

Table 3. Evaluation results on ASL database 

Method Eyebrow Eye Nose Mouth Average 

Baseline method [15] 7.82 6.83 7.64 8.70 7.85 

RBM Prior model [16] 5.15 4.32 5.98 7.29 5.63 

Proposed method 4.53 3.39 5.39 5.87 4.82 

 
From Table 3 we can see that, similar to cases on 

FEERA and CK+ database, RBM Prior model 
outperforms the baseline method, and the proposed 
method achieves the best performance on every local 
part of the face. RBM Prior model reduces the average 
detection error of baseline model from 7.85 to 5.63, 
and the proposed method further reduces the average 
detection error to 4.82. We also list some images with 
detected facial landmarks from ASL database in Figure 
7. From Figure 7 we can see that the proposed method 
improves the detection results of the baseline method. 
And also, we expect more improvement if there are 
severe occlusions. 

5 Conclusion 

In this paper, we propose a prior shape model based 
method for facial landmark detection under occlusion. 
The prior shape model is constructed based on 
Restricted Boltzmann Machines (RBM) to model the 
spatial patters of the face. We propose a liner classifier 
to predict the corruptions (outliers) first, and then 
replace the corruptions based on sampling from the 
shape model. The new image measurements with no 
corruptions are fed to the prior shape model to predict 
the true locations of the facial landmarks. Experimental 
results on three databases demonstrate the superiority 
of the proposed method. 

 

(a) Baseline method 

 

(b) The proposed method 

Figure 7. Evaluation results on ASL Database 

The improvements compared to the baseline method 
mainly comes from two aspects: firstly, the corruptions 
of the image measurements are replaced which 
eliminates the ill effects to the optimization process. 
Secondly, the face spatial patters systematically 
embedded in the prior model can help refine the 
erroneous image measurements.  
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