
On Phalanx Graph Search Number 1189

On Phalanx Graph Search Number

Ondřej Navrátil1, Sanpawat Kantabutra2, Sheng-Lung Peng1

1 Department of Computer Science and Information Engineering, National Dong Hwa University, Taiwan
2 Computer Engineering Department, Chiang Mai University, Thailand

navratil@gms.ndhu.edu.tw, sanpawat@alumni.tufts.edu, slpeng@ndhu.edu.tw*

*Corresponding Author: Ondřej Navrátil; E-mail: navratil@gms.ndhu.edu.tw

DOI: 10.3966/160792642020072104027

Abstract

We introduce an extension of the Connected Graph

Search, called Phalanx Graph Search, which inherently

emerges from the nature of certain applications. We

discuss its key properties, prove NP-hardness of the

problem on general graphs and introduce a linear-time

algorithm for the class of trees. We exploit our analysis to

examine the Minimum Phalanx Graph Search Spanning

Tree Problem, again showing its hardness and

investigating efficiency of certain approximations. We

discuss some of our findings in relation to other search

variants.

Keywords: Phalanx graph searching, Connected graph

searching, Spanning tree

1 Introduction

In the field of graph theory, graph search is a famous

problem with a variety of interpretations in contexts

such as search and rescue operations, fugitive capture

(or capture evasion on the contrary), or area

decontamination. Despite the wide range of

applications, the problem definition itself is precise and

compact. This provides a fine ground for theoretical

analysis of its properties.

Let (,)G V E= be a connected simple graph and

{ , }u v E∈ be an edge. We will use (,)T V E= if the

graph G is a tree. Furthermore, let , ,
n n n

C K P denote a

cycle, a complete graph, and a path graph on n vertices,

respectively.

A search strategy S on G is a sequence of following

operations:

(1) Put a searcher on a vertex, or

(2) Remove a searcher from a vertex, or

(3) Slide a searcher on vertex along an edge { , }u v .

Any search strategy is subject to the following

restrictions:

‧ At the beginning, all e E∈ are contaminated, and

‧ After the last step of S, all e E∈ are clear, and

‧ A clear edge { , }u v gets recontaminated if, at any

step of S, there is a contaminated edge { , }u v′ ′ and a

path u v′ ′→ without a searcher on any of the path

vertices.

Moreover, there are three major variants with

regards to the process of clearing an edge { , }u v E∈ by

S:

(1) Node-search – both ,u v are occupied by

searchers,

(2) Edge-search – searcher slides along edge { , }u v ,

(3) Mixed-search – any of the above.

The metric for comparing strategies is search

number ()s S , defined as the maximum count of

searchers in the graph at any step of S. Similarly, for

any G, we define a graph search number ()s G as:

 () min ()
s is a strategy in G

s S s G=

Any strategy with () ()s S s G= is called optimal.

The decision version of the GRAPH SEARCHING

PROBLEM is defined as follows: Given a graph G and

k N∈ , is ()s G k≤ ?

Further restrictions may be considered in the search

strategy to derive related problems. The most popular

restrictions include:

‧ Internal – a searcher, once put, is never removed,

‧ Monotone – recontamination never occurs,

‧ Connected – clear edges always induce a connected

subgraph.

The respective search numbers are denoted by ()is G ,

()ms G , ().cs G Restrictions can be arbitrarily

combined, creating e.g. (),mcs G ()mis G etc. Finally,

in applications adopting the fugitive capture

interpretation, there are invisible and visible search

variants, depending on whether the location of the

fugitive is known to the searchers.

The rest of the paper is structured as follows.

Section 2 summarizes state-of-the-art results. In

Section 3, we introduce our novel search variant,

Phalanx Graph Search, show its hardness and

investigate key properties. Section 4 aims to describe a

lower bound of a search number and finds an optimal

algorithm for the case of trees. The last section

1190 Journal of Internet Technology Volume 21 (2020) No.4

introduces a combination of Phalanx Graph Search and

Minimum Spanning TREE problems. We proceed by

proving its hardness and discuss various approximation

approaches. Further, we conclude the impact of our

results on existing search variants.

2 Related Work

GRAPH SEARCH was first mentioned in 1967 in a

speleologist journal [1] as an emergency scenario for a

case of a lost explorer. It was not until 1978 that the

problem was formalized by Parsons [2]. Subsequent

applications and interpretations followed. In [3-4],

authors addressed the problem as a strategy to clear a

set of tunnels contaminated by poisonous gas. Further,

the game is often denoted as pursuit evasion, where the

aim is to assist police in a search for a fugitive, or vice

versa [5]. Since graphs are elementary models for

networks, intruder-capture problems following the

definition of GRAPH SEARCH are studied in [6]. More

recently, applications emerged in the field of robotics

[7].

One of the most extensively studied properties of the

problem is in the field of complexity theory.

Determining whether ()s G k≤ for arbitrary G and k is

NP-complete according to [8], completed in [9].

Lapaugh [10] proved that for every graph G there is

always a monotone search strategy that uses ()s G

searchers. The problem of determining minimal search

strategies under the connectedness and/or the

internality constraint is still NP-hard in general (it

follows from the reduction in [8], as observed in [11]).

In general, connected strategies deviate further from

the original problem. In [12] authors observe that there

is a graph for which () ()mcs G cs G> , a major

distinction from the non-connected search. This

complicates the problem categorization because the

limit of the strategy size is not bounded by edge count.

Moreover, it is not known whether the decision

problem corresponding to connected search is in NP or

not. The good news though is that the authors in [11]

prove that monotony holds for trees, i.e.

() ()cs T mcs T= .

Despite the problem hardness, better results can be

achieved on certain subclasses. In [8] the authors

showed that a tree can be decomposed into a set of

paths in different levels. These paths are called avenues.

By using avenues, an optimal search strategy can be

constructed. The authors in [13-14] extended this idea

to other search variants (node and mixed search). In

addition, there are trees for which minimal internal

search strategies require (log)n nΩ moves (i.e. edge

traversal) [8].

One may assume that, like monotony or internality,

connectedness is achieved without increasing the

number of searchers for trees. This assumption is

disproved by the case of a 22-node tree T obtained

from three copies of the complete binary tree of height

2 connected to a common root. For connected search

on trees, authors in [11] introduced a linear time

algorithm for both search number and search strategy

computation. Notation of caterpillars and spines was

introduced in [15], offering better characteristics.

Caterpillars represent a connected analogy of an

avenue.

Recently, a new variant called Cooperative Graph

Search was introduced in [16]. Further, a novel Node-

Search Spanning Tree problem was defined in [17],

combining the Graph Search and Minimum Spanning

Tree problems. In all cases, authors proved NP-

hardness/completeness of the problems.

3 Phalanx-Search Number

After defining the problem and giving some

background, we proceed to compare its formalized

properties against some of its applications. On this

basis, we attempt to address the discrepancies.

Even though we construct search strategies with

complete information about the environment (namely

the structure of the underlying graph), performing the

strategy relies solely on individual, potentially isolated

searchers following their roles. For the search strategy

to succeed, it is essential to synchronize the search

steps. Manipulating the order of steps performed may

render the strategy useless, even if the affected steps

concern different searchers. Moreover, this does not

contradict searcher's perfect knowledge of the overall

strategy. The strategy itself may also be aborted

prematurely if the search goal is achieved (e.g. fugitive

was captured). Since search steps themselves may be

costly and/or hazardous, spreading this information is

vital.

From this point of view, we must require some

synchronization mechanism between the searchers.

Because a search strategy is discrete from the

definition, we may therefore assume the existence of

some common “clock” and time every action to a

certain tick, thus avoiding any potential conflict.

However, physical execution of any step (e.g. edge

slide) is rarely an atomic operation, and may require a

variable, or even beforehand unknown amount of time.

Consider the original problem application with a lost

speleologist. In this case, searchers explore narrow

corridors surrounded by massively thick rock. Clearly,

peer-to-peer wireless communication is out of

consideration. They may choose to deploy a set of

beacons in the tunnel system to overcome this

difficulty, yet this grid of beacons may need to move

along with the search strategy.

Furthermore, police/military operations may require

radio silence, or another means of undercover

limitation. To enable synchronization, a network of

short range agents may be used to maintain the

On Phalanx Graph Search Number 1191

connection between searchers.

In a similar way, let us look into an example of fire

fighters extinguishing a fire. Not only do the individual

searchers need to communicate in an area covered in

thick smoke, they also require a water hose supply to

support their progress. The hose length limits their

reach from a hydrant or fire engine, and in many cases,

guards need to secure hose junctions.

All of the scenarios described above suggest some

kind of connectedness in search strategies.

Eventually, let us raise questions that follow directly

from the current problem formalization. Is the cost of

searching an arbitrary large cycle still constant, i.e.

() 2
n

s C = (resp. 3) for an arbitrary n? Does contracting

edges with a degree-2 extremity (or dually - replacing

an edge by a degree-2 vertex) introduce no difference

to the search number?

To address the abovementioned inaccuracies, we

introduce a new variant of graph search.

Definition 1: We call a search strategy S a Phalanx

search strategy if and only if at each point of the

search the vertices occupied by searchers induce a

connected subgraph.

Also, denote the minimum number of searchers

needed to clear a graph G by a Phalanx strategy as

Phalanx-search number of G, or ps(G).

After formalizing our requirements, we utilize its

specifics and investigate its key properties.

3.1 Contaminated Edges

Following the reasoning we administered in the

previous section, we may require the induced subgraph

to be connected even after removing contaminated

edges. While this is trivially true for mixed- and edge-

search, since any edge in the induced graph is clear

from searcher occupation of both of its end vertices,

we focus our attention on edge-search. One might

suspect that there is always a Phalanx edge-search

strategy that satisfies such requirement. This suspicion

is easily disproved on
3

C . The optimal strategy uses 2

searchers, but requires them to be connected by a

contaminated edge at some point of the search, as

illustrated in Figure 1. This concept trivially extends to

, 3
n

C n ≥ .

Before we investigate further into this matter, we

formalize the property. Let S
V V⊆ be the set of

occupied vertices and c

E the set of clean edges at a

step of a search strategy S in G. Denote
& {{ , } | , }c s c s

E u v E u v V= ∈ ∈ .

Definition 2: We call a search strategy S a tidy

phalanx search strategy if and only if at every step of S,
S

V is connected using only clean edges, i.e. the graph
&(,)tidy S c s

G V E= is connected.

Note that we allow contaminated edges between

vertices in S
V . However, we also require the induced

subgraph to be connected even without them.

Figure 1. Phalanx strategy on
3

C inevitably uses a

contaminated edge

With the formal basis in hand, we consider the

upper-bound on the cost of tidiness in Phalanx graph

search. Fortunately, the cost is rather minor as shown

in the following proposition.

Proposition 1: For any G with ()ps G k= , there exists

a tidy phalanx strategy S with no more that 2k +

searchers.

Proof: Assume *

S to be the optimal phalanx strategy

for G. First, we obtain S as a copy of *

S . If S is not

tidy, then focus on the first step that breaks tidiness:

(a) A searcher is placed on v.

Slide an extra searcher from an occupied u to v and

remove it after placing the original searcher on v.

(b) A searcher is removed from v.

Use an extra searcher to clear all edges between

remaining S
V before removing v.

(c) A searcher slides along { , }u v .

Place an extra searcher on u, slide original searcher

along the edge, then another extra searcher clears all

edges between S
V before removing both of the extra

searchers.

Observe that in all cases we used upmost two extra

searchers. Repeat this procedure until S is tidy. Q.E.D.

Recall that it was a cycle
3

C that helped us realize

that the contaminated edges eventually may be of some

use. We attempt to particularize this observation. The

utilization of contaminated edges between searchers in

Phalanx search turns out to be conditioned by the

existence of a cycle in G. We show this by a following

result on trees.

Theorem 1: For any tree T with ()ps T k= , there is a

tidy phalanx strategy , ()t t

S s S k= .

Proof: Assume the optimal general phalanx strategy

, () .S ps S k= There are three options how a

contaminated edge can occur in the subgraph induced

by S
V :

(a) A searcher is placed on v.

Since S is a phalanx strategy, there must be an

adjacent vertex u connected by contaminated { , }e u v= .

We can replace this step in t

S by putting a searcher on

1192 Journal of Internet Technology Volume 21 (2020) No.4

u instead and sliding it along e, thus keeping it

connected by a clear edge. This concept is illustrated in

Figure 2.

Figure 2. Eliminating non-tidy placement of a searcher

(b) A searcher slides on { , }e u v= .

Assume a (solitary) searcher on u that is initially

adjacent to searcher on w via clear { , }u w , that slides

along { , }u w to eventually become adjacent to another

searcher on x via { , }v x . Since S is a phalanx strategy, x

must be also connected with w via a clear path

1
p x w= → . There is also another path

2
(, , ,)p w u v x=

that yields from the strategy step nature. We observe

that
1
p ,

2
p enclose a cycle which contradicts our

assumption that T is a tree. This situation is depicted in

Figure 3.

Figure 3. Proof of a cycle in a non-tidy slide

(c) A searcher is removed from v.

If a searcher on u was originally connected with a

clear edge { , }u v , yet after removing searcher from v is

only connected via a contaminated { , }u x , then, again,

we have a cycle, since there also must be a clear path

p u x= → .

Replace all steps that match the pattern of a) by a

tidy analogy. Q.E.D.

We cease our exploration of edge search and tidiness

cost here. As marginal as the property itself may seem,

we deem it useful when comparing Phalanx search to

the connected search variant.

3.2 Complexity

According to existing literature, the vast majority of

search problems on general graphs is proven to be NP-

complete or NP-hard. Here we will restrict our research

on node-search, although we conjecture that similar

proofs may be constructed for the remaining search

variants. Our main result is described in the following

theorem.

Theorem 2: Let (,)G V E= be an arbitrary connected

graph. The decision problem ()ps G k≤ is NP-hard

for the node-search variant.

Before providing the proof itself, we examinate an

augmented version of G. Let (,)G V E′ ′ ′= be an

extension of G with an extra universal vertex u, namely:

 { }V V u′ = ∪

 {{ , | }E E u v v V′ = ∈∪

An example of augmenting G into G′ is illustrated

in Figure 4. The extra universal vertex u will assist us

in bridging any strategy into a Phalanx strategy without

altering the original problem nature.

Figure 4. Augmentation of G into G′

Lemma 1: () 1 ()ps G k s G k′ < + ⇔ <

Proof: We will show that both implications hold.

(a) () 1 ()ps G k s G k′ < + ⇒ <

Since () 1ps G k′ < + , there is some Phalanx strategy
*

S such that *() 1ps S k< + . First, realize that any

hypothetical steps performed in *

S before placing a

searcher on u have no effect, since any unguarded

edges will be immediately recontaminated from edges

incident to u. In a similar way, removing a searcher

from u before clearing the entire graph recontaminates

all of edges without searchers on both end vertices.

Therefore, we can assume that placing a searcher on u

is the first step in *

S , and that this searcher is never

removed until the end of the strategy.

Given that *() 1ps S k< + , we can create a search

strategy S in G from *

S by omitting the extra searcher

on u which immediately yields ()s G k< .

(b) () 1 ()ps G k s G k′ < + ⇐ <

Since ()s G k< , there is some search strategy *

S in

G such that *()s S k< . Create a search strategy S ′ by

putting a searcher on u in the first step and then

following the steps of *

S . This strategy is a Phalanx-

strategy since every pair of searchers is always

On Phalanx Graph Search Number 1193

connected through u, and uses exactly *() 1 1s S k+ < +

searchers. Q.E.D.

Proof (of Theorem 2): We can prove the problem

hardness by reduction from classical Graph Search

Problem to Phalanx Graph Search Problem, which

directly follows from Lemma 1. Q.E.D.

Knowing that the decision version of our problem is

NP-hard, we may wish to provide an upper bound on

its hardness as well. In order to show membership in

NP, we can either try to find a reduction to another

problem from NP, or design an NP algorithm following

the popular guessing and checking scheme. For the

latter one, an obvious choice for certificate would be a

sequence of edges representing the order in which they

are cleared. However, we cannot assume the size of the

certificate without studying the effects of

recontamination on Phalanx Search. We remind the

reader that the cost of monotony posed as an open

problem for both edge search and connected search

variants for years, surprisingly leading to diverse

results for both. Therefore, we leave this problem open

for future research.

4 The Case of Trees

In this section, we consider a subclass of graphs,

namely trees, and investigate respective complexity of

phalanx search. Once again, we will focus on node-

search variant and show that a better result can be

achieved on trees.

4.1 Lower Bound for ps T()

We start by introducing an infinite class of trees

which we deem to be a deciding component for a lower

bound of Phalanx search number on trees.

Definition 3: We denote an Urchin graph
k

U as a

tripod graph with 3 2k − vertices where distances

between pairs of leaves are equal.

An example of
k

U for certain values of k is shown

in Figure 5. A crucial property of urchin
k

U is

described in the following lemma.

Figure 5. Urchin graphs (from left):
3

U ,
4

U ,
5

U

Lemma 2: For 3, () .
k

k ps U k≥ =

Proof: First, we use a strategy that traverses from one

leaf towards the degree-3 central vertex, then stretches

a chain of k searchers towards another leaf, keeping a

guard on the center, and eventually traverses from the

center towards the last leaf. Therefore, ()
k

ps U k≤ .

Furthermore, we observe that any phalanx strategy

using fewer than k searchers cannot keep clear more

than one of the edges incident to urchin leaves.

Assume that at some point of the search, exactly one of

the leaf-incident edges is clear. In order to clear other

leaf-incident edge, we need searchers on both of its end

vertices. However, since the distance from the leaf to

k
c is k, the central vertex has to be left unguarded and

causes recontamination of the previously cleared leaf-

incident edge from the remaining leaf. Hence,

()
k

ps U k≥ . The Lemma holds. Q.E.D.

We exploit the observation described in Lemma 2 to

generalize the lower bound that determines ()ps T .

Theorem 3: For a tree T and 3k ≥ , ()ps T k= if and

only if:

 { }max
i

U is a subgraph of G

k i= (1)

That is,
k

U is the largest urchin subgraph of T.

Proof: ()ps T k≥ directly follows from the proof of

Lemma 2. Further, we will construct a phalanx strategy

with k searchers to clear T. Assume that the urchin
k

U

has degree-3 central vertex c. Vertex c separates T into

a number of branches rooted at c. Two branches
1 2
,

c c

T T

with height
1,2

()c

h T k≥ , one branch
3

c

T with
3

()ch T k=

and an arbitrary amount of other branches c

i
T with

()c
i

h T k≤ . Any other composition either generates

1k
U

+
, or averts existence of

k
U . See Figure 6 for the

decomposition of T into these branches.

Figure 6. Decomposition of sample tree T into

branches

We start creating our strategy around the path

between the deepmost leaves
1,2
u of

1,2

c

T . This path

marks the search avenue. Observe that the number of

searchers needed to clear a rooted tree, i.e. a branch

rooted at some of the avenue vertices, is delimited by

its height. Every non-path branch ,v x

T rooted at some

path vertex v is guaranteed to be no higher than k, since

for the existence of a branch ,v x

T with height k≥ we

have these contradictions:

1. If v is on path
1
u c→ and

1
(,)d u v k≤ , then

1
u is

1194 Journal of Internet Technology Volume 21 (2020) No.4

not the deepmost vertex in
1

c

T .

2. If v is on path
1
u c→ and

1
(,)d u v k> , then v is a

central vertex of
1k

U
+

 with branches 1
,, ,

, ,

v uv x v c

T T T ,

each of which has height > k.

3. Analogic situation appears when v is on
2

c u→ .

From here, it is easy to see that our strategy will

proceed along the path
1 2
u u→ , clearing the non-path

branches at each avenue node. Q.E.D.

We mark several important consequences of our

findings.

Corollary 1. Urchin
k

U defines the lower bound for

Phalanx node-search number on trees.

Corollary 2. For any tree T on 4n ≥ vertices,

2
() ()

3

n
ps T

+
≤ , or more generally () ()ps T O n∈ and

this boundary is tight.

Corollary 3. For any tree , () ()T ps T mps T= .

4.2 Algorithm for ps T()

Knowing the patterns to look for, we proceed by

designing an algorithm to determine ()ps T in tractable

time. Our goal is to find the central vertex of the

largest urchin
k

U , as suggested by Equation 1. We will

denote c

k the degree of maximum urchin
c

k
U that has

c as a central vertex and is a subgraph of T. First, we

observe that any vertex c, value of c

k is determined by

the following equation:

1,2,3 1,2,3

max{ | , () }c C C
k i N T h T i= ∈ ∃ ≥ (2)

That is, the degree of the maximum urchin centered

at c is the height of the 3rd highest branch of T rooted

at c.

Hence, we will adjust the existing tree-sweep

algorithm to determine c

k for every vertex of T. Later,

we determine the search number:

 () max{ | }cps T k c V= ∈ (3)

The concept is described in Algorithm 1. The core

task of the algorithm is to calculate [][]h u v , i.e. the

height of every ,u v

T branch. Initially, we calculate the

degree of each node and enqueue leaves into Q. We

will utilize the value of []d v as the number of

incoming edges for which the height of the respective

subtree rooted at v has not been calculated yet. Every

time new [][]h u v is calculated, []d v is decreased.

Once []d v reaches 1, we are able to calculate [][]h u v

for the only vertex u where [][]h u v is still unknown.

As []d v reaches zero, all of the outgoing [][]h v u can

be completed.

Algorithm 1. Calculate ps T()

Input: Tree T V,E= ()

Data: Queue Q, arrays hV V d V[][], []

Result: ps T()

/* Initialize d v h v[], [] */

for ∈v V do ∈ ←d v[] 0 ;

for ∈ ∈e u,v E{ } do {

d u[]+ + ;

d v[]+ + ;

← ←h u,v h v,u[] [] 1− ;

}

/* Select leaves */

for ∈v V such that d v[] = 1 do {

enqueue the only edge v,u() to Q ;

}

/* Calculate h v v[][] */

while ()u,v = dequeue Q do {

← ∈ ∧ ≠
in

E h w u w u E w v{ , } ;

← ∪
in

h u v E[,] 1+max({0}) ;

d v[]− − ;

if { d v[] 1= } then

 enqueue the only v w(,) with =h w v[,] 1− to Q;

else if d v[] 0= then

 enqueue all of the v w(,) with =h v w[,] 1− to Q;

}

/* Heights of the branch subtrees for each node

 are in h u v[][] */

{ }
∈

←
v

v V
c argmax k ;

return c;

For the calculation of [][]h v u , we take the maximal

[][],h x v x u≠ increased by 1, or a value of 1 if no such

x exists. Eventually, we use Equations 2 and 3 to

determine the center vertex of the maximum urchin.

When analyzing the algorithm complexity, we

observe that each for cycle is directed either by m or n.

For the core while cycle, every edge is inserted to the

queue Q exactly twice (once for each direction), and

the adjacency list of each node is explored no more

than twice (once when [] 1d v = , once when [] 0d v =).

Since for any tree T, 1 ()m n O n= − ∈ , we derive the

complexity of our algorithm to be ()O n .

Also, it is trivial to retrieve the avenue used to

construct phalanx strategy S from Algorithm 1 by

locating c and backtracing the highest branches for

1 2
,u u .

4.3 Urchins and Avenues

In the previous section, we discussed the class of

urchin subgraphs and its ()ps T . It appears vital to ask

whether the maximal urchin
k

U is unique in a given

On Phalanx Graph Search Number 1195

tree; that is, whether the vertex with maximal c

k is

unique. A simple example illustrated in Figure 7 shows

that the maximal urchin
k

U is not necessarily unique.

The concept of multiple urchins can be scaled in an

obvious way. Nevertheless, we present a different

observation with regards to multiple urchins of the

same size.

Figure 7. Centers of two
3

U in a single , () 3T ps T =

Proposition 2: For any tree T with ()ps T k= , the

centers , ,...
k k
c c′ of maximal urchins , ,...

k k
U U ′ lay on a

simple path.

Proof: By contradiction. Consider three , ,
k k k

U U U′ ′′

with , ,
k k k
c c c′ ′′ as their respective centers. If the centers

do not lay on a path, there must be some distinct vertex

v such that each the center resides in a different branch

rooted at v. Observe that all of the centers have at least

two branches excluding v with height at least k. Hence,

these centers along with their branches create an at

least 1k + high branch at v. This makes v a center
1k

c
+

of
1k

U
+

, which contradicts our assumption that
k

U is

the maximum urchin. The situation is illustrated in

Figure 8. Q.E.D.

Figure 8:
1k

U
+

 is formed from , ,
k k k
c c c′ ′′ , with its

branches
1,2,3
T

From here, we have a clear idea of the Phalanx

version of avenues or avenue systems, which control

optimal search strategies for all major variants of graph

searching on trees. In Phalanx search, the avenue is a

path that traverses through all of the center of the

largest urchin subgraphs, and for which the distance to

every nonpath vertex is no more than ()ps T .

5 Minimum Spanning Trees

Since we expect that the Phalanx Search Problem

can find applications in various areas of network

security and incident containment, we proceed to

combine it with the famous Minimum Spanning Tree

(MST) Problem, which is a valuable tool in the field of

network design. In order to simplify the following

analysis, we will omit some very small graphs that are

exceptions to the general rules.

We extend our previous research with the following

definition:

Definition 4: Given an integer 2k ≥ , the k-Phalanx

Search Spanning Tree Problem (k-PSSTP) is defined as

follows:

For a given graph G, does G have a spanning tree

T with ()ps T k≤ ?

We assume that this problem may find application in

network security design and evaluation.

5.1 Complexity

Despite the existence of a linear algorithm for

()ps T and an almost linear-time algorithm for

()MST G , we present the following theorem.

Theorem 4: k-PSSTP is NP-hard.

Proof: We will construct a reduction from the

HAMILTONIAN PATH PROBLEM (HPP) to k-PSSTP.

First, we construct an augmented graph G′ by

attaching a
1k

P
−

 every vertex in G. We claim that there

is a Hamiltonian Path (HP) in G if and only if G′ has a

Spanning Tree T, ()ps T k= .

First, realize that if there is a HP in G, this path,

along with the attached paths, forms an ST in G′ . The

HP can become the avenue of our search strategy, and

since all of the non-avenue branches (namely, the

augmented paths) are of height k, the search strategy

will deploy no more than k searchers.

Conversely, if there exists some spanning tree T in G

and a Phalanx strategy S of T with k searchers, we

claim that its avenue contains all of the vertices from G,

thus forming a HP in G. For the purpose of

contradiction, we assume that the avenue does not

contain all of the vertices from G. This implies that at

least one vertex in G is not in the avenue. Furthermore,

there must exist some vertex c that connects each one

of some vertices
1 2
, ,v v and

3
v in G in a distinct branch

rooted at c. In Figure 9,
1
v and

2
v are on the avenue but

3
v is not. Since there are k-1 vertex paths attached to

all of the vertices
1 2
, ,v v and

3
v , the three branches are

both of height k≥ and c forms a center
1k

c
+

 of a
1k

U
+

in T. By Theorem 3, T is not k-searchable, which is a

contradiction. Thus, we consider our reduction to be

complete. Q.E.D.

1196 Journal of Internet Technology Volume 21 (2020) No.4

Figure 9. Formation of
1k

U
+

, augmented path nodes

dashed

Further, it is straightforward to show membership of

k-PSSTP in NP.

Proposition 3: k-PSSTP is in NP.

Proof: We design a simple “guessing and checking”

algorithm. First, nondeterministically guess the 1n −

edges E E′ ⊆ that will be represent the spanning tree.

As for the checking phase, verify that []G E′ is

connected and contains all vertices (thus also acyclic

and forms a spanning tree). Use Algorithm 1 and return

YES if ([])ps G E k′ ≤ . Q.E.D.

We are ready to conclude our investigation of the

problem complexity.

Corollary 4. k-PSSTP is in NP-complete.

5.2 Approximating Minimum PSSTP

Previous research suggests using BSTree/Graph

Center as a (log)O n approximation of node search

spanning tree problem. With respect to this

approximation, we have the following observation.

Proposition 4: There are graphs on 3 2, 3k k− ≥

vertices for which the BSTree/Graph Center

approximation creates
k

U , while the optimal Phalanx

search spanning tree is a Hamiltonian path

3 2 3 2
, () 2.

k k
P ps P

− −

=

Proof: Assume a
2 1k

C
−

 with a
1k

P
−

 attached to one of

its vertices, c. Alternatively, take
k

U and connect two

of its leaves by an edge, producing the same graph.

Clearly, c is the graph center, breadth first search tree

originating from c creates
k

U , yet there is a HP
3 2k
P

−

in the original graph, which implies
3 2

() 2.
k

ps P
−

= See

Figure 10 for an example. Q.E.D.

Figure 10. Graph combining
5

C with
2
P spawning

3
U on BFS

Observe that for the case investigated, the optimal

solution is the best possible case on vertices (2-

searchable spannig tree), yet the approximation reaches

the upper bound of tree search number on vertices

defined in Corollary 2. Therefore, in the worst case, we

get the worst possible approximation ratio.

The discourse why the same approximation that

yields a “satisfactory” (log)O n optimization for the

node-search strategy yields a less desirable ()O n

approximation for Phalanx search is answered not by

the specifics of Phalanx search, but rather by the size

of the lower bounds on search numbers for both. For

unconditioned node-search, the search number of a tree

is bounded logarithmically, i.e. () (log)s T O n∈ , while

for phalanx search, this boundary is linear,

() ()ps T O n∈ . Dually, the size of the minimum

obstacle for unconditioned node search on trees grows

exponentially with the search number (k-searchable

tree contains 3 copies of 1k − searchable tree), while

the same obstacle for Phalanx search grows linearly

(extending urchin by 3 extra vertices increases the

search number).

To prove our point, we take subtree gadget , 4
k

T k ≥

as defined in [7]. Mark c to be the central vertex and

consider it a root of k
T . Furthermore, let

1
v be the i-th

vertex visited by level-order traversal of k
T . Create an

augmented graph k
T by adding an edge between each

1
,
i i
v v

+
 that lay on the same level. Eventually, delete the

edge
3 4

{ , }v v . An example of k
T is illustrated in Figure

11.

Figure 11. k
T , deleted edge dotted, added edges

dashed

Theorem 5: Vertex c is still center of k
T . Furthermore,

there is a HP in k
T , therefore () 2k

s T = , but the

breadth first search tree from vertex c produces k
T .

Proof: Clearly, c is still the center of k
T since the

distance from any other vertex to either the leftmost or

the rightmost vertex in the lowest level is always larger

than the tree height.

Moreover, our HP can start with
3 2 1 4
, , ,v v v c v= .

Then, iteratively descend into the leftmost/rightmost

vertex of the next level and traverse all of its vertices

using the augmented edges, until arriving at the last

vertex.

Finally, since all of the edges added during the

augmentation process connect vertices on the same

level and thus with the same distance from c, they do

On Phalanx Graph Search Number 1197

not interfere with construction of BST from c. Q.E.D.

Hence we conclude that the approximation factor of

BSTree/Graph Center is not a consequence of

suitability of this approximation, but rather of the order

of growth of the lower bound on the search number.

Instead of finding another, more suitable

approximation, we make other observation of the

spanning trees. For both k-SSTP [17] and k-PSSTP, we

used reduction from Hamiltonian Path Problem to

prove its hardness. Hamiltonian Path Problem is a

specific case of the Longest Path Problem, which is

notoriously famous for being tremendously difficult to

approximate. While we do not have a clear link to this

problem on hand, we provide some evidence to support

our conjecture.

Definition 5: For any G, we define the k-Maximum

Phalanx Search Spanning Tree Problem (k-MxPSSTP)

as follows: Is there a spanning tree T of G such that

()ps T k≥ ?

It comes with no surprise that this dual problem is

hard as well.

Theorem 6: The k-MxPSSTP is NP-hard.

Proof: Denote n the number of vertices in G. Create

augmented G+ by adding a
2 1n
P

+
 and connecting the

(1)n + -th (middle) vertex
1n

P
+

 of the path with every

other vertex in the original G. Figure 12 illustrates this

process.

Figure 12. Augmented G+ for a sample graph G on

five vertices, augmentation in dashed stroke

It is easy to see that there is a HP in G if and only if

there is a spanning tree T + in , () 1G ps T n
+ +

= + . The

Hamiltonian Path finalizes the third branch of
1n

U
+

centered at
1n

p
+

. Q.E.D.

The interesting part about this problem is the fact

that it directly extends to the longest path problem.

Corollary 5: Any approximation of MsPSSTP in G+

is an approximation of the Longest Path problem in G.

Hence the boundaries for graph search spanning

trees and their approximations are yet to be established.

6 Conclusion

In this article we have addressed a potential problem

between some graph searching problems and their real-

life counterparts by introducing a novel search variant,

Phalanx Graph Search. We believe that its main

distinction in its simplicity has the potential to

outperform existing versions of graph searching in

various applications. We have also introduced the

connection of this search problem with minimum

spanning trees, extending previous results and setting

up new milestones and observations.

There are numerous directions for future research.

Most importantly, the effect of monotony on Phalanx

Search Number is currently unknown. Furthermore, its

relation to connected search and the tidiness property

could be explored. In addition, we suggest that a

combination with other restrictions as well as binding

Phalanx Search Number in the graph search problem

hierarchy may yield valuable insights.

Finally, let us highlight one inspiring remark of our

research. We have shown that certain properties and

concepts applicable to other search variants have their

counterparts in Phalanx Search. Moreover, the Phalanx

Search analogies are often smaller and simpler, which

makes them easier to define and examine. Therefore,

we believe that Phalanx Search, so to say, bears many

characteristics of the original search variants, yet in a

much more humble garment. Therefore, studying

problems that are open for other search variants on

Phalanx Search and later translating the results into the

original search variant may help further the progress of

the state of the art knowledge in this field.

Acknowledgements

This research is partially funded by the Thailand

Research Fund grant number RSA6080029. The

second author is thankful for this support.

References

[1] R. Breisch, An Intuitive Approach to Speleotopology,

Southwestern Cavers, Vol. VI, pp. 72-78, June, 1967.

[2] T. D. Parsons, Pursuit-evasion in a Graph, in: Y. Alavi, D. R.

Lick (Eds.), Theory and Applications of Graphs, Lecture

Notes in Mathematics, Springer, Berlin, Heidelberg, 1978, pp.

426-441.

[3] P. A. Golovach, Equivalence of Two Formalizations of a

Search Problem on a Graph, Vestnik Leningradskogo

Universiteta Seriya Matematika Mekhanika Astronomiya, pp.

10-14, March, 1989.

[4] P. A. Golovach, A Topological Invariant in Pursuit Problems,

Differential Equations, Vol. 25, No. 6, pp. 657-661, May,

1989.

[5] M. Maamoun, H. Meyniel, On a Game of Policemen and

Robber, Discrete Applied Mathematics, Vol. 17, No. 3, pp.

307-309, June, 1987.

[6] L. Blin, P. Fraigniaud, N. Nisse, S. Vial, Distributed Chasing

of Network Intruders, in: P. Flocchini, L. Gąsieniec (Eds.),

Structural Information and Communication Complexity,

1198 Journal of Internet Technology Volume 21 (2020) No.4

Lecture Notes in Computer Science, Springer, Berlin,

Heidelberg, 2006, pp. 70-84.

[7] M. Kress, K. Y. Lin, R. Szechtman, Optimal Discrete Search

with Imperfect Specificity, Mathematical Methods of

Operations Research, Vol. 68, No. 3, pp. 539-549, December,

2008.

[8] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, C. H.

Papadimitriou, The Complexity of Searching a Graph,

Journal of the ACM, Vol. 35, No. 1, pp. 18-44, January, 1988.

[9] L. M. Kirousis, C. H. Papadimitriou, Searching and Pebbling,

Theoretical Computer Science, Vol. 47, pp. 205-218, January,

1986.

[10] A. S. LaPaugh, Recontamination Does Not Help to Search a

Graph, Journal of the ACM, Vol. 40, No. 2, pp. 224-245,

April, 1993.

[11] L. Barriere, P. Flocchini, P. Fraigniaud, N. Santoro, Capture

of an Intruder by Mobile Agents, Proceedings of the

Fourteenth Annual ACM Symposium on Parallel Algorithms

and Architectures, Winnipeg, Manitoba, Canada, 2002, pp.

200-209.

[12] B. Yang, D. Dyer, B. Alspach, Sweeping Graphs with Large

Clique Number, Discrete Mathematics, Vol. 309, No. 18, pp.

5770-5780, September, 2009.

[13] S.-L. Peng, C.-W. Ho, T.-S. Hsu, M.-T. Ko, C.-Y. Tang, A

Linear-Time Algorithm for Constructing an Optimal Node-

Search Strategy of a Tree, Computing and Combinatorics,

Taipei, Taiwan, 1998, pp. 279-289.

[14] S.-L. Peng, A Study of Graph Searching on Special Graphs,

Ph.D. Thesis, National Tsing Hua University, Hsinchu,

Taiwan, 1999.

[15] L. Barriere, P. Flocchini, F. V. Fomin, P. Fraigniaud, N.

Nisse, N. Santoro, D. M. Thilikos, Connected Graph

Searching, Information and Computation, Vol. 219, pp. 1-16,

October, 2012.

[16] C.-F. Lin, O. Navrátil, S.-L. Peng, On the Cooperative Graph

Searching Problem, Structured Object-Oriented Formal

Language and Method, Xi’An, China, 2017, pp. 39-47.

[17] N. Juneam, O. Navrátil, S.-L. Peng, On the Node Searching

Spanning Tree Problem, Journal of Computers, Vol. 29, No.

1, pp. 160-165, February, 2018.

Biographies

Ondřej Navrátil is a Ph.D. Candidate

at NDHU, Taiwan, graduated Master

in Mathemathical Methonds in CS at

FIT BUT, Czechia. Expertise in

Graph Theory, Complexity and

Formal Languages. Experienced full

stack developer, currently working as

a C++ developer for Monet+, Czechia.

Sanpawat Kantabutra earned his

Ph.D. in Theoretical Computer Science

from Tufts University in the United

States of America. He is currently an

associate professor in the Theory of

Computation Group in Chiang Mai

University, Chiang Mai, Thailand, and

a Thailand Research Fund scholar.

Sheng-Lung Peng is a Professor at

Department of Computer Science and

Information Engineering at National

Dong Hwa University, Taiwan. He

received the Ph.D. degree in

Computer Science from the National

Tsing Hua University, Taiwan. He is

an honorary Professor of Beijing Information Science

and Technology University, China, and a visiting

Professor of Ningxia Institute of Science and

Technology, China. He is also an adjunct Professor of

Mandsaur University, India. Dr. Peng has edited

several special issues at journals, such as Soft

Computing, Journal of Internet Technology, Journal of

Real-Time Image Processing, International Journal of

Knowledge and System Science, MDPI Algorithms,

and so on. His research interests are in designing and

analyzing algorithms for Bioinformatics,

Combinatorics, Data Mining, and Networks areas in

which he has published over 100 research papers.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

