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Abstract 

We introduce an extension of the Connected Graph 

Search, called Phalanx Graph Search, which inherently 

emerges from the nature of certain applications. We 

discuss its key properties, prove NP-hardness of the 

problem on general graphs and introduce a linear-time 

algorithm for the class of trees. We exploit our analysis to 

examine the Minimum Phalanx Graph Search Spanning 

Tree Problem, again showing its hardness and 

investigating efficiency of certain approximations. We 

discuss some of our findings in relation to other search 

variants. 

Keywords: Phalanx graph searching, Connected graph 

searching, Spanning tree 

1 Introduction 

In the field of graph theory, graph search is a famous 

problem with a variety of interpretations in contexts 

such as search and rescue operations, fugitive capture 

(or capture evasion on the contrary), or area 

decontamination. Despite the wide range of 

applications, the problem definition itself is precise and 

compact. This provides a fine ground for theoretical 

analysis of its properties.  

Let ( , )G V E=  be a connected simple graph and 

{ , }u v E∈  be an edge. We will use ( , )T V E=  if the 

graph G is a tree. Furthermore, let , ,
n n n

C K P  denote a 

cycle, a complete graph, and a path graph on n vertices, 

respectively. 

A search strategy S on G is a sequence of following 

operations:  

(1) Put a searcher on a vertex, or  

(2) Remove a searcher from a vertex, or  

(3) Slide a searcher on vertex  along an edge { , }u v .  

Any search strategy is subject to the following 

restrictions: 

‧ At the beginning, all e E∈  are contaminated, and 

‧ After the last step of S, all e E∈  are clear, and 

‧ A clear edge { , }u v  gets recontaminated if, at any 

step of S, there is a contaminated edge { , }u v′ ′  and a 

path u v′ ′→  without a searcher on any of the path 

vertices. 

Moreover, there are three major variants with 

regards to the process of clearing an edge { , }u v E∈  by 

S:  

(1) Node-search – both ,u v  are occupied by 

searchers, 

(2) Edge-search – searcher slides along edge { , }u v , 

(3) Mixed-search – any of the above. 

The metric for comparing strategies is search 

number ( )s S , defined as the maximum count of 

searchers in the graph at any step of S. Similarly, for 

any G, we define a graph search number ( )s G  as: 

 ( ) min ( )
s is a strategy in G

s S s G=  

Any strategy with ( ) ( )s S s G=  is called optimal. 

The decision version of the GRAPH SEARCHING 

PROBLEM is defined as follows: Given a graph G and 

k N∈ , is ( )s G k≤ ?  

Further restrictions may be considered in the search 

strategy to derive related problems. The most popular 

restrictions include: 

‧ Internal – a searcher, once put, is never removed, 

‧ Monotone – recontamination never occurs, 

‧ Connected – clear edges always induce a connected 

subgraph. 

The respective search numbers are denoted by ( )is G , 

( )ms G , ( ).cs G  Restrictions can be arbitrarily 

combined, creating e.g. ( ),mcs G  ( )mis G  etc. Finally, 

in applications adopting the fugitive capture 

interpretation, there are invisible and visible search 

variants, depending on whether the location of the 

fugitive is known to the searchers. 

The rest of the paper is structured as follows. 

Section 2 summarizes state-of-the-art results. In 

Section 3, we introduce our novel search variant, 

Phalanx Graph Search, show its hardness and 

investigate key properties. Section 4 aims to describe a 

lower bound of a search number and finds an optimal 

algorithm for the case of trees. The last section 
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introduces a combination of Phalanx Graph Search and 

Minimum Spanning TREE problems. We proceed by 

proving its hardness and discuss various approximation 

approaches. Further, we conclude the impact of our 

results on existing search variants. 

2 Related Work 

GRAPH SEARCH was first mentioned in 1967 in a 

speleologist journal [1] as an emergency scenario for a 

case of a lost explorer. It was not until 1978 that the 

problem was formalized by Parsons [2]. Subsequent 

applications and interpretations followed. In [3-4], 

authors addressed the problem as a strategy to clear a 

set of tunnels contaminated by poisonous gas. Further, 

the game is often denoted as pursuit evasion, where the 

aim is to assist police in a search for a fugitive, or vice 

versa [5]. Since graphs are elementary models for 

networks, intruder-capture problems following the 

definition of GRAPH SEARCH are studied in [6]. More 

recently, applications emerged in the field of robotics 

[7]. 

One of the most extensively studied properties of the 

problem is in the field of complexity theory. 

Determining whether ( )s G k≤  for arbitrary G and k is 

NP-complete according to [8], completed in [9]. 

Lapaugh [10] proved that for every graph G there is 

always a monotone search strategy that uses ( )s G  

searchers. The problem of determining minimal search 

strategies under the connectedness and/or the 

internality constraint is still NP-hard in general (it 

follows from the reduction in [8], as observed in [11]). 

In general, connected strategies deviate further from 

the original problem. In [12] authors observe that there 

is a graph for which ( ) ( )mcs G cs G> , a major 

distinction from the non-connected search. This 

complicates the problem categorization because the 

limit of the strategy size is not bounded by edge count. 

Moreover, it is not known whether the decision 

problem corresponding to connected search is in NP or 

not. The good news though is that the authors in [11] 

prove that monotony holds for trees, i.e. 

( ) ( )cs T mcs T= . 

Despite the problem hardness, better results can be 

achieved on certain subclasses. In [8] the authors 

showed that a tree can be decomposed into a set of 

paths in different levels. These paths are called avenues. 

By using avenues, an optimal search strategy can be 

constructed. The authors in [13-14] extended this idea 

to other search variants (node and mixed search). In 

addition, there are trees for which minimal internal 

search strategies require ( log )n nΩ  moves (i.e. edge 

traversal) [8]. 

One may assume that, like monotony or internality, 

connectedness is achieved without increasing the 

number of searchers for trees. This assumption is 

disproved by the case of a 22-node tree T obtained 

from three copies of the complete binary tree of height 

2 connected to a common root. For connected search 

on trees, authors in [11] introduced a linear time 

algorithm for both search number and search strategy 

computation. Notation of caterpillars and spines was 

introduced in [15], offering better characteristics. 

Caterpillars represent a connected analogy of an 

avenue. 

Recently, a new variant called Cooperative Graph 

Search was introduced in [16]. Further, a novel Node-

Search Spanning Tree problem was defined in [17], 

combining the Graph Search and Minimum Spanning 

Tree problems. In all cases, authors proved NP-

hardness/completeness of the problems. 

3 Phalanx-Search Number 

After defining the problem and giving some 

background, we proceed to compare its formalized 

properties against some of its applications. On this 

basis, we attempt to address the discrepancies. 

Even though we construct search strategies with 

complete information about the environment (namely 

the structure of the underlying graph), performing the 

strategy relies solely on individual, potentially isolated 

searchers following their roles. For the search strategy 

to succeed, it is essential to synchronize the search 

steps. Manipulating the order of steps performed may 

render the strategy useless, even if the affected steps 

concern different searchers. Moreover, this does not 

contradict searcher's perfect knowledge of the overall 

strategy. The strategy itself may also be aborted 

prematurely if the search goal is achieved (e.g. fugitive 

was captured). Since search steps themselves may be 

costly and/or hazardous, spreading this information is 

vital. 

From this point of view, we must require some 

synchronization mechanism between the searchers. 

Because a search strategy is discrete from the 

definition, we may therefore assume the existence of 

some common “clock” and time every action to a 

certain tick, thus avoiding any potential conflict. 

However, physical execution of any step (e.g. edge 

slide) is rarely an atomic operation, and may require a 

variable, or even beforehand unknown amount of time. 

Consider the original problem application with a lost 

speleologist. In this case, searchers explore narrow 

corridors surrounded by massively thick rock. Clearly, 

peer-to-peer wireless communication is out of 

consideration. They may choose to deploy a set of 

beacons in the tunnel system to overcome this 

difficulty, yet this grid of beacons may need to move 

along with the search strategy. 

Furthermore, police/military operations may require 

radio silence, or another means of undercover 

limitation. To enable synchronization, a network of 

short range agents may be used to maintain the 
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connection between searchers. 

In a similar way, let us look into an example of fire 

fighters extinguishing a fire. Not only do the individual 

searchers need to communicate in an area covered in 

thick smoke, they also require a water hose supply to 

support their progress. The hose length limits their 

reach from a hydrant or fire engine, and in many cases, 

guards need to secure hose junctions. 

All of the scenarios described above suggest some 

kind of connectedness in search strategies. 

Eventually, let us raise questions that follow directly 

from the current problem formalization. Is the cost of 

searching an arbitrary large cycle still constant, i.e. 

( ) 2
n

s C =  (resp. 3) for an arbitrary n? Does contracting 

edges with a degree-2 extremity (or dually - replacing 

an edge by a degree-2 vertex) introduce no difference 

to the search number? 

To address the abovementioned inaccuracies, we 

introduce a new variant of graph search. 

Definition 1: We call a search strategy S a Phalanx 

search strategy if and only if at each point of the 

search the vertices occupied by searchers induce a 

connected subgraph. 

Also, denote the minimum number of searchers 

needed to clear a graph G by a Phalanx strategy as 

Phalanx-search number of G, or ps(G).  

After formalizing our requirements, we utilize its 

specifics and investigate its key properties. 

3.1 Contaminated Edges 

Following the reasoning we administered in the 

previous section, we may require the induced subgraph 

to be connected even after removing contaminated 

edges. While this is trivially true for mixed- and edge-

search, since any edge in the induced graph is clear 

from searcher occupation of both of its end vertices, 

we focus our attention on edge-search. One might 

suspect that there is always a Phalanx edge-search 

strategy that satisfies such requirement. This suspicion 

is easily disproved on 
3

C . The optimal strategy uses 2 

searchers, but requires them to be connected by a 

contaminated edge at some point of the search, as 

illustrated in Figure 1. This concept trivially extends to 

, 3
n

C n ≥ . 

Before we investigate further into this matter, we 

formalize the property. Let S
V V⊆  be the set of 

occupied vertices and c

E  the set of clean edges at a 

step of a search strategy S in G. Denote 
& {{ , } | , }c s c s

E u v E u v V= ∈ ∈ . 

Definition 2: We call a search strategy S a tidy 

phalanx search strategy if and only if at every step of S, 
S

V  is connected using only clean edges, i.e. the graph 
&( , )tidy S c s

G V E=  is connected. 

Note that we allow contaminated edges between 

vertices in S
V . However, we also require the induced 

subgraph to be connected even without them. 

 

Figure 1. Phalanx strategy on 
3

C  inevitably uses a 

contaminated edge 

With the formal basis in hand, we consider the 

upper-bound on the cost of tidiness in Phalanx graph 

search. Fortunately, the cost is rather minor as shown 

in the following proposition. 

Proposition 1: For any G with ( )ps G k= , there exists 

a tidy phalanx strategy S with no more that 2k +  

searchers. 

Proof: Assume *

S  to be the optimal phalanx strategy 

for G. First, we obtain S as a copy of *

S . If S is not 

tidy, then focus on the first step that breaks tidiness: 

(a) A searcher is placed on v. 

Slide an extra searcher from an occupied u to v and 

remove it after placing the original searcher on v. 

(b) A searcher is removed from v. 

Use an extra searcher to clear all edges between 

remaining S
V  before removing v. 

(c) A searcher slides along { , }u v . 

Place an extra searcher on u, slide original searcher 

along the edge, then another extra searcher clears all 

edges between S
V  before removing both of the extra 

searchers. 

Observe that in all cases we used upmost two extra 

searchers. Repeat this procedure until S is tidy. Q.E.D. 

Recall that it was a cycle 
3

C  that helped us realize 

that the contaminated edges eventually may be of some 

use. We attempt to particularize this observation. The 

utilization of contaminated edges between searchers in 

Phalanx search turns out to be conditioned by the 

existence of a cycle in G. We show this by a following 

result on trees. 

Theorem 1: For any tree T with ( )ps T k= , there is a 

tidy phalanx strategy , ( )t t

S s S k= .  

Proof: Assume the optimal general phalanx strategy 

, ( ) .S ps S k=  There are three options how a 

contaminated edge can occur in the subgraph induced 

by S
V : 

(a) A searcher is placed on v. 

Since S is a phalanx strategy, there must be an 

adjacent vertex u connected by contaminated { , }e u v= . 

We can replace this step in t

S  by putting a searcher on 
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u instead and sliding it along e, thus keeping it 

connected by a clear edge. This concept is illustrated in 

Figure 2. 

 

Figure 2. Eliminating non-tidy placement of a searcher 

(b) A searcher slides on { , }e u v= . 

Assume a (solitary) searcher on u that is initially 

adjacent to searcher on w via clear { , }u w , that slides 

along { , }u w  to eventually become adjacent to another 

searcher on x via { , }v x . Since S is a phalanx strategy, x 

must be also connected with w via a clear path 

1
p x w= → . There is also another path 

2
( , , , )p w u v x=  

that yields from the strategy step nature. We observe 

that 
1
p , 

2
p  enclose a cycle which contradicts our 

assumption that T is a tree. This situation is depicted in 

Figure 3. 

 

Figure 3. Proof of a cycle in a non-tidy slide 

(c) A searcher is removed from v. 

If a searcher on u was originally connected with a 

clear edge { , }u v , yet after removing searcher from v is 

only connected via a contaminated { , }u x , then, again, 

we have a cycle, since there also must be a clear path 

p u x= → . 

Replace all steps that match the pattern of a) by a 

tidy analogy. Q.E.D. 

We cease our exploration of edge search and tidiness 

cost here. As marginal as the property itself may seem, 

we deem it useful when comparing Phalanx search to 

the connected search variant. 

3.2 Complexity 

According to existing literature, the vast majority of 

search problems on general graphs is proven to be NP-

complete or NP-hard. Here we will restrict our research 

on node-search, although we conjecture that similar 

proofs may be constructed for the remaining search 

variants. Our main result is described in the following 

theorem. 

Theorem 2: Let ( , )G V E=  be an arbitrary connected 

graph. The decision problem ( )ps G k≤  is NP-hard 

for the node-search variant. 

Before providing the proof itself, we examinate an 

augmented version of G. Let ( , )G V E′ ′ ′=  be an 

extension of G with an extra universal vertex u, namely: 

 { }V V u′ = ∪   

 {{ , | }E E u v v V′ = ∈∪   

An example of augmenting G into G′  is illustrated 

in Figure 4. The extra universal vertex u will assist us 

in bridging any strategy into a Phalanx strategy without 

altering the original problem nature. 

 

Figure 4. Augmentation of G into G′  

Lemma 1: ( ) 1 ( )ps G k s G k′ < + ⇔ <  

Proof: We will show that both implications hold. 

(a) ( ) 1 ( )ps G k s G k′ < + ⇒ <  

Since ( ) 1ps G k′ < + , there is some Phalanx strategy 
*

S  such that *( ) 1ps S k< + . First, realize that any 

hypothetical steps performed in *

S  before placing a 

searcher on u have no effect, since any unguarded 

edges will be immediately recontaminated from edges 

incident to u. In a similar way, removing a searcher 

from u before clearing the entire graph recontaminates 

all of edges without searchers on both end vertices. 

Therefore, we can assume that placing a searcher on u  

is the first step in *

S , and that this searcher is never 

removed until the end of the strategy. 

Given that *( ) 1ps S k< + , we can create a search 

strategy S in G from *

S  by omitting the extra searcher 

on u which immediately yields ( )s G k< . 

(b) ( ) 1 ( )ps G k s G k′ < + ⇐ <  

Since ( )s G k< , there is some search strategy *

S  in 

G such that *( )s S k< . Create a search strategy S ′  by 

putting a searcher on u in the first step and then 

following the steps of *

S . This strategy is a Phalanx-

strategy since every pair of searchers is always 
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connected through u, and uses exactly *( ) 1 1s S k+ < +  

searchers. Q.E.D. 

Proof (of Theorem 2): We can prove the problem 

hardness by reduction from classical Graph Search 

Problem to Phalanx Graph Search Problem, which 

directly follows from Lemma 1. Q.E.D.  

Knowing that the decision version of our problem is 

NP-hard, we may wish to provide an upper bound on 

its hardness as well. In order to show membership in 

NP, we can either try to find a reduction to another 

problem from NP, or design an NP algorithm following 

the popular guessing and checking scheme. For the 

latter one, an obvious choice for certificate would be a 

sequence of edges representing the order in which they 

are cleared. However, we cannot assume the size of the 

certificate without studying the effects of 

recontamination on Phalanx Search. We remind the 

reader that the cost of monotony posed as an open 

problem for both edge search and connected search 

variants for years, surprisingly leading to diverse 

results for both. Therefore, we leave this problem open 

for future research. 

4 The Case of Trees 

In this section, we consider a subclass of graphs, 

namely trees, and investigate respective complexity of 

phalanx search. Once again, we will focus on node-

search variant and show that a better result can be 

achieved on trees. 

4.1 Lower Bound for ps T( )  

We start by introducing an infinite class of trees 

which we deem to be a deciding component for a lower 

bound of Phalanx search number on trees. 

Definition 3: We denote an Urchin graph 
k

U  as a 

tripod graph with 3 2k −  vertices where distances 

between pairs of leaves are equal.  

An example of 
k

U  for certain values of k is shown 

in Figure 5. A crucial property of urchin 
k

U  is 

described in the following lemma. 

 

Figure 5. Urchin graphs (from left): 
3

U , 
4

U , 
5

U  

Lemma 2: For 3, ( ) .
k

k ps U k≥ =   

Proof: First, we use a strategy that traverses from one 

leaf towards the degree-3 central vertex, then stretches 

a chain of k searchers towards another leaf, keeping a 

guard on the center, and eventually traverses from the 

center towards the last leaf. Therefore, ( )
k

ps U k≤ .  

Furthermore, we observe that any phalanx strategy 

using fewer than k searchers cannot keep clear more 

than one of the edges incident to urchin leaves. 

Assume that at some point of the search, exactly one of 

the leaf-incident edges is clear. In order to clear other 

leaf-incident edge, we need searchers on both of its end 

vertices. However, since the distance from the leaf to 

k
c  is k, the central vertex has to be left unguarded and 

causes recontamination of the previously cleared leaf-

incident edge from the remaining leaf. Hence, 

( )
k

ps U k≥ . The Lemma holds. Q.E.D. 

We exploit the observation described in Lemma 2 to 

generalize the lower bound that determines ( )ps T . 

Theorem 3: For a tree T and 3k ≥ , ( )ps T k=  if and 

only if: 

 { }max
i

U is a subgraph of G

k i=  (1) 

That is, 
k

U  is the largest urchin subgraph of T. 

Proof: ( )ps T k≥  directly follows from the proof of 

Lemma 2. Further, we will construct a phalanx strategy 

with k searchers to clear T. Assume that the urchin 
k

U  

has degree-3 central vertex c. Vertex c separates T into 

a number of branches rooted at c. Two branches 
1 2
,

c c

T T  

with height 
1,2

( )c

h T k≥ , one branch 
3

c

T  with 
3

( )ch T k=  

and an arbitrary amount of other branches c

i
T  with 

( )c
i

h T k≤ . Any other composition either generates 

1k
U

+
, or averts existence of 

k
U . See Figure 6 for the 

decomposition of T into these branches. 

 

Figure 6. Decomposition of sample tree T into 

branches 

We start creating our strategy around the path 

between the deepmost leaves 
1,2
u  of 

1,2

c

T . This path 

marks the search avenue. Observe that the number of 

searchers needed to clear a rooted tree, i.e. a branch 

rooted at some of the avenue vertices, is delimited by 

its height. Every non-path branch ,v x

T  rooted at some 

path vertex v is guaranteed to be no higher than k, since 

for the existence of a branch ,v x

T  with height k≥  we 

have these contradictions: 

1. If v is on path 
1
u c→  and 

1
( , )d u v k≤ , then 

1
u  is 
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not the deepmost vertex in 
1

c

T . 

2. If v is on path 
1
u c→  and 

1
( , )d u v k> , then v is a 

central vertex of 
1k

U
+

 with branches 1
,, ,

, ,

v uv x v c

T T T , 

each of which has height > k. 

3. Analogic situation appears when v is on 
2

c u→ . 

From here, it is easy to see that our strategy will 

proceed along the path 
1 2
u u→ , clearing the non-path 

branches at each avenue node. Q.E.D. 

We mark several important consequences of our 

findings. 

Corollary 1. Urchin 
k

U  defines the lower bound for 

Phalanx node-search number on trees. 

Corollary 2. For any tree T on 4n ≥  vertices, 

2
( ) ( )

3

n
ps T

+
≤ , or more generally ( ) ( )ps T O n∈  and 

this boundary is tight. 

Corollary 3. For any tree , ( ) ( )T ps T mps T= . 

4.2 Algorithm for ps T( )  

Knowing the patterns to look for, we proceed by 

designing an algorithm to determine ( )ps T  in tractable 

time. Our goal is to find the central vertex of the 

largest urchin 
k

U , as suggested by Equation 1. We will 

denote c

k  the degree of maximum urchin 
c

k
U  that has 

c as a central vertex and is a subgraph of T. First, we 

observe that any vertex c, value of c

k  is determined by 

the following equation:  

 
1,2,3 1,2,3

max{ | , ( ) }c C C
k i N T h T i= ∈ ∃ ≥  (2) 

That is, the degree of the maximum urchin centered 

at c is the height of the 3rd highest branch of T rooted 

at c. 

Hence, we will adjust the existing tree-sweep 

algorithm to determine c

k  for every vertex of T. Later, 

we determine the search number:  

 ( ) max{ | }cps T k c V= ∈  (3) 

The concept is described in Algorithm 1. The core 

task of the algorithm is to calculate [ ][ ]h u v , i.e. the 

height of every ,u v

T  branch. Initially, we calculate the 

degree of each node and enqueue leaves into Q. We 

will utilize the value of [ ]d v  as the number of 

incoming edges for which the height of the respective 

subtree rooted at v has not been calculated yet. Every 

time new [ ][ ]h u v  is calculated, [ ]d v  is decreased. 

Once [ ]d v  reaches 1, we are able to calculate [ ][ ]h u v  

for the only vertex u where [ ][ ]h u v  is still unknown. 

As [ ]d v  reaches zero, all of the outgoing [ ][ ]h v u  can 

be completed.  

 

 

Algorithm 1. Calculate ps T( )  

Input: Tree T V,E= ( )  

Data: Queue Q, arrays hV V d V[ ][ ], [ ]  

Result: ps T( )  

/* Initialize d v h v[ ], [ ]  */ 

for ∈v V  do ∈ ←d v[ ] 0 ; 

for ∈ ∈e u,v E{ }  do { 

d u[ ]+ + ;  

d v[ ]+ + ; 

← ←h u,v h v,u[ ] [ ] 1− ; 

} 

/* Select leaves */ 

for ∈v V  such that d v[ ] = 1  do { 

enqueue the only edge v,u( )  to Q ; 

} 

/* Calculate h v v[ ][ ]  */ 

while ( )u,v  = dequeue Q do { 

← ∈ ∧ ≠
in

E h w u w u E w v{ [ , ]( , ) } ; 

← ∪
in

h u v E[ , ] 1+max({0} ) ; 

d v[ ]− − ; 

if { d v[ ] 1= } then  

    enqueue the only v w( , )  with =h w v[ , ] 1−  to Q; 

else if d v[ ] 0=  then 

      enqueue all of the v w( , )  with =h v w[ , ] 1−  to  Q; 

} 

/* Heights of the branch subtrees for each node  

 are in h u v[ ][ ]  */ 

{ }
∈

←
v

v V
c argmax k ; 

return c; 

 

For the calculation of [ ][ ]h v u , we take the maximal 

[ ][ ],h x v x u≠  increased by 1, or a value of 1 if no such 

x exists. Eventually, we use Equations 2 and 3 to 

determine the center vertex of the maximum urchin. 

When analyzing the algorithm complexity, we 

observe that each for cycle is directed either by m or n. 

For the core while cycle, every edge is inserted to the 

queue Q exactly twice (once for each direction), and 

the adjacency list of each node is explored no more 

than twice (once when [ ] 1d v = , once when [ ] 0d v = ). 

Since for any tree T, 1 ( )m n O n= − ∈ , we derive the 

complexity of our algorithm to be ( )O n . 

Also, it is trivial to retrieve the avenue used to 

construct phalanx strategy S from Algorithm 1 by 

locating c and backtracing the highest branches for 

1 2
,u u . 

4.3 Urchins and Avenues 

In the previous section, we discussed the class of 

urchin subgraphs and its ( )ps T . It appears vital to ask 

whether the maximal urchin 
k

U  is unique in a given 
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tree; that is, whether the vertex with maximal c

k  is 

unique. A simple example illustrated in Figure 7 shows 

that the maximal urchin 
k

U  is not necessarily unique. 

The concept of multiple urchins can be scaled in an 

obvious way. Nevertheless, we present a different 

observation with regards to multiple urchins of the 

same size. 

 

Figure 7. Centers of two 
3

U  in a single , ( ) 3T ps T =  

Proposition 2: For any tree T with ( )ps T k= , the 

centers , ,...
k k
c c′  of maximal urchins , ,...

k k
U U ′  lay on a 

simple path. 

Proof: By contradiction. Consider three , ,
k k k

U U U′ ′′  

with , ,
k k k
c c c′ ′′  as their respective centers. If the centers 

do not lay on a path, there must be some distinct vertex 

v such that each the center resides in a different branch 

rooted at v. Observe that all of the centers have at least 

two branches excluding v with height at least k. Hence, 

these centers along with their branches create an at 

least 1k +  high branch at v. This makes v a center 
1k

c
+

 

of 
1k

U
+

, which contradicts our assumption that 
k

U  is 

the maximum urchin. The situation is illustrated in 

Figure 8. Q.E.D. 

 

Figure 8: 
1k

U
+

 is formed from , ,
k k k
c c c′ ′′ , with its 

branches 
1,2,3
T  

From here, we have a clear idea of the Phalanx 

version of avenues or avenue systems, which control 

optimal search strategies for all major variants of graph 

searching on trees. In Phalanx search, the avenue is a 

path that traverses through all of the center of the 

largest urchin subgraphs, and for which the distance to 

every nonpath vertex is no more than ( )ps T . 

5 Minimum Spanning Trees 

Since we expect that the Phalanx Search Problem 

can find applications in various areas of network 

security and incident containment, we proceed to 

combine it with the famous Minimum Spanning Tree 

(MST) Problem, which is a valuable tool in the field of 

network design. In order to simplify the following 

analysis, we will omit some very small graphs that are 

exceptions to the general rules. 

We extend our previous research with the following 

definition: 

Definition 4: Given an integer 2k ≥ , the k-Phalanx 

Search Spanning Tree Problem (k-PSSTP) is defined as 

follows: 

For a given graph G, does G  have a spanning tree 

T with ( )ps T k≤ ? 

We assume that this problem may find application in 

network security design and evaluation. 

5.1 Complexity 

Despite the existence of a linear algorithm for 

( )ps T  and an almost linear-time algorithm for 

( )MST G , we present the following theorem. 

Theorem 4: k-PSSTP is NP-hard. 

Proof: We will construct a reduction from the 

HAMILTONIAN PATH PROBLEM (HPP) to k-PSSTP. 

First, we construct an augmented graph G′  by 

attaching a 
1k

P
−

 every vertex in G. We claim that there 

is a Hamiltonian Path (HP) in G if and only if G′  has a 

Spanning Tree T, ( )ps T k= . 

First, realize that if there is a HP in G, this path, 

along with the attached paths, forms an ST in G′ . The 

HP can become the avenue of our search strategy, and 

since all of the non-avenue branches (namely, the 

augmented paths) are of height k, the search strategy 

will deploy no more than k searchers. 

Conversely, if there exists some spanning tree T in G 

and a Phalanx strategy S of T with k searchers, we 

claim that its avenue contains all of the vertices from G, 

thus forming a HP in G. For the purpose of 

contradiction, we assume that the avenue does not 

contain all of the vertices from G. This implies that at 

least one vertex in G is not in the avenue. Furthermore, 

there must exist some vertex c that connects each one 

of some vertices 
1 2
, ,v v  and 

3
v  in G in a distinct branch 

rooted at c. In Figure 9, 
1
v and 

2
v  are on the avenue but 

3
v  is not. Since there are k-1 vertex paths attached to 

all of the vertices 
1 2
, ,v v  and 

3
v , the three branches are 

both of height k≥  and c forms a center 
1k

c
+

 of a 
1k

U
+

 

in T. By Theorem 3, T is not k-searchable, which is a 

contradiction. Thus, we consider our reduction to be 

complete. Q.E.D. 
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Figure 9. Formation of 
1k

U
+

, augmented path nodes 

dashed 

Further, it is straightforward to show membership of 

k-PSSTP in NP. 

Proposition 3: k-PSSTP is in NP. 

Proof: We design a simple “guessing and checking” 

algorithm. First, nondeterministically guess the 1n −  

edges E E′ ⊆  that will be represent the spanning tree. 

As for the checking phase, verify that [ ]G E′  is 

connected and contains all vertices (thus also acyclic 

and forms a spanning tree). Use Algorithm 1 and return 

YES if ( [ ])ps G E k′ ≤ . Q.E.D. 

We are ready to conclude our investigation of the 

problem complexity. 

Corollary 4. k-PSSTP is in NP-complete. 

5.2 Approximating Minimum PSSTP 

Previous research suggests using BSTree/Graph 

Center as a (log )O n  approximation of node search 

spanning tree problem. With respect to this 

approximation, we have the following observation. 

Proposition 4: There are graphs on 3 2, 3k k− ≥  

vertices for which the BSTree/Graph Center 

approximation creates 
k

U , while the optimal Phalanx 

search spanning tree is a Hamiltonian path 

3 2 3 2
, ( ) 2.

k k
P ps P

− −

=  

Proof: Assume a 
2 1k

C
−

 with a 
1k

P
−

 attached to one of 

its vertices, c. Alternatively, take 
k

U  and connect two 

of its leaves by an edge, producing the same graph. 

Clearly, c is the graph center, breadth first search tree 

originating from c creates 
k

U , yet there is a HP 
3 2k
P

−

 

in the original graph, which implies 
3 2

( ) 2.
k

ps P
−

=  See 

Figure 10 for an example. Q.E.D.  

 

Figure 10. Graph combining 
5

C  with 
2
P  spawning 

3
U  on BFS 

Observe that for the case investigated, the optimal 

solution is the best possible case on  vertices (2-

searchable spannig tree), yet the approximation reaches 

the upper bound of tree search number on  vertices 

defined in Corollary 2. Therefore, in the worst case, we 

get the worst possible approximation ratio. 

The discourse why the same approximation that 

yields a “satisfactory” (log )O n  optimization for the 

node-search strategy yields a less desirable ( )O n  

approximation for Phalanx search is answered not by 

the specifics of Phalanx search, but rather by the size 

of the lower bounds on search numbers for both. For 

unconditioned node-search, the search number of a tree 

is bounded logarithmically, i.e. ( ) (log )s T O n∈ , while 

for phalanx search, this boundary is linear, 

( ) ( )ps T O n∈ . Dually, the size of the minimum 

obstacle for unconditioned node search on trees grows 

exponentially with the search number (k-searchable 

tree contains 3 copies of 1k −  searchable tree), while 

the same obstacle for Phalanx search grows linearly 

(extending urchin by 3 extra vertices increases the 

search number). 

To prove our point, we take subtree gadget , 4
k

T k ≥  

as defined in [7]. Mark c to be the central vertex and 

consider it a root of k
T . Furthermore, let 

1
v  be the i-th 

vertex visited by level-order traversal of k
T . Create an 

augmented graph k
T  by adding an edge between each 

1
,
i i
v v

+
 that lay on the same level. Eventually, delete the 

edge 
3 4

{ , }v v . An example of k
T  is illustrated in Figure 

11. 

 

Figure 11. k
T , deleted edge dotted, added edges 

dashed 

Theorem 5: Vertex c is still center of k
T . Furthermore, 

there is a HP in k
T , therefore ( ) 2k

s T = , but the 

breadth first search tree from vertex c produces k
T . 

Proof: Clearly, c is still the center of k
T  since the 

distance from any other vertex to either the leftmost or 

the rightmost vertex in the lowest level is always larger 

than the tree height. 

Moreover, our HP can start with 
3 2 1 4
, , ,v v v c v= . 

Then, iteratively descend into the leftmost/rightmost 

vertex of the next level and traverse all of its vertices 

using the augmented edges, until arriving at the last 

vertex. 

Finally, since all of the edges added during the 

augmentation process connect vertices on the same 

level and thus with the same distance from c, they do 
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not interfere with construction of BST from c. Q.E.D. 

Hence we conclude that the approximation factor of 

BSTree/Graph Center is not a consequence of 

suitability of this approximation, but rather of the order 

of growth of the lower bound on the search number. 

Instead of finding another, more suitable 

approximation, we make other observation of the 

spanning trees. For both k-SSTP [17] and k-PSSTP, we 

used reduction from Hamiltonian Path Problem to 

prove its hardness. Hamiltonian Path Problem is a 

specific case of the Longest Path Problem, which is 

notoriously famous for being tremendously difficult to 

approximate. While we do not have a clear link to this 

problem on hand, we provide some evidence to support 

our conjecture.  

Definition 5: For any G, we define the k-Maximum 

Phalanx Search Spanning Tree Problem (k-MxPSSTP) 

as follows: Is there a spanning tree T of G such that 

( )ps T k≥ ? 

It comes with no surprise that this dual problem is 

hard as well. 

Theorem 6: The k-MxPSSTP is NP-hard. 

Proof: Denote n the number of vertices in G. Create 

augmented G+  by adding a 
2 1n
P

+
 and connecting the 

( 1)n + -th (middle) vertex 
1n

P
+

 of the path with every 

other vertex in the original G. Figure 12 illustrates this 

process.  

 

Figure 12. Augmented G+  for a sample graph G on 

five vertices, augmentation in dashed stroke 

It is easy to see that there is a HP in G if and only if 

there is a spanning tree T +  in , ( ) 1G ps T n
+ +

= + . The 

Hamiltonian Path finalizes the third branch of 
1n

U
+

 

centered at 
1n

p
+

. Q.E.D. 

The interesting part about this problem is the fact 

that it directly extends to the longest path problem. 

Corollary 5: Any approximation of MsPSSTP  in G+  

is an approximation of the Longest Path problem in G. 

Hence the boundaries for graph search spanning 

trees and their approximations are yet to be established. 

6 Conclusion 

In this article we have addressed a potential problem 

between some graph searching problems and their real-

life counterparts by introducing a novel search variant, 

Phalanx Graph Search. We believe that its main 

distinction in its simplicity has the potential to 

outperform existing versions of graph searching in 

various applications. We have also introduced the 

connection of this search problem with minimum 

spanning trees, extending previous results and setting 

up new milestones and observations. 

There are numerous directions for future research. 

Most importantly, the effect of monotony on Phalanx 

Search Number is currently unknown. Furthermore, its 

relation to connected search and the tidiness property 

could be explored. In addition, we suggest that a 

combination with other restrictions as well as binding 

Phalanx Search Number in the graph search problem 

hierarchy may yield valuable insights. 

Finally, let us highlight one inspiring remark of our 

research. We have shown that certain properties and 

concepts applicable to other search variants have their 

counterparts in Phalanx Search. Moreover, the Phalanx 

Search analogies are often smaller and simpler, which 

makes them easier to define and examine. Therefore, 

we believe that Phalanx Search, so to say, bears many 

characteristics of the original search variants, yet in a 

much more humble garment. Therefore, studying 

problems that are open for other search variants on 

Phalanx Search and later translating the results into the 

original search variant may help further the progress of 

the state of the art knowledge in this field. 
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