
ACO-HCO: Heuristic Performance Tuning Scheme for the Hadoop MapReduce Architecture 1151

ACO-HCO: Heuristic Performance Tuning Scheme for the

Hadoop MapReduce Architecture

Chiang-Lung Liu1, Hsiang-Fu Lo2, Wei-Tsong Lee3

1 Department of Electrical and Electronic Engineering, Chung Cheng Institute of Technology,

National Defense University, Taiwan
2 Chemical Systems Research Divisions, Chung-Shan Institute of Science and Technology, Taiwan

3 Department of Electrical Engineering, Tamkang University, Taiwan

{chianglung.liu, superalf }@gmail.com, wtlee@mail.tku.edu.tw*

*Corresponding Author: Chiang-Lung Liu; E-mail: chianglung.liu@gmail.com

DOI: 10.3966/160792642020072104023

Abstract

Hadoop MapReduce is a widely-used cloud computing

technology for big data processing. However, the Hadoop

configuration parameters settings can significantly

change the execution performance. Manual adjustment of

the Hadoop parameters will be a time consuming and

difficult task. In this paper, we propose ACO-HCO, a

Hadoop configuration tuning scheme for MapReduce

applications. We use MapReduce applications job history

records to generate specific job profiles. Based on these

profiles, an objective function for execution time is

constructed with gene expression programming algorithm

by mining the correlation among the core Hadoop

configuration parameters and input data size. Leveraging

the objective function, an ACO-based configuration

optimizer is able to heuristically search for the optimal

configuration for a given application. Experimental

results show that ACO-HCO enhances the performance

of Hadoop significantly compared with the default

configuration. Moreover, ACO-HCO performs better

than heuristic approach and the cost-based model in

Hadoop performance tuning.

Keywords: Hadoop performance tuning, Ant colony

optimization algorithm, Gene expression

programming

1 Introduction

MapReduce is a programming model for processing

massive amounts of data on large clusters. Hadoop is

the most popular open source MapReduce framework

from the Apache Software Foundation [1]. The

Hadoop MapReduce has over 190 configuration

parameters, and overall performance is highly affected

by these parameters’ values. Because tuning Hadoop

application specific performance requires expert

knowledge and experience in Hadoop configuration [2],

using the default or a set of best practices settings [3-4]

to different applications generates unexpected

performance results. Therefore, an algorithm that

performs automatic Hadoop configuration tuning is

required to improve the performance of the Hadoop

MapReduce architecture.

The main focus of this work is to develop a novel

approach based on ant colony optimization (ACO) [5],

called ACO-based Hadoop Configuration Optimization

(ACO-HOC), by heuristically searching the better

Hadoop configuration parameters for a given MapReduce

application. ACO-HOC outperforms existing cost-

based tuning approaches, Starfish model [6]. ACO-

HOC does not assume on the processing time of per-

stage and the correlations between Hadoop configurable

parameters. Previously proposed cost-based models [6]

usually suppose the execution time of each processing

stage to be constant, at the very time that Hadoop

adjust configuration settings; linear regression statistical

models [7] typically deem that the interrelation between

configuration parameters is linear. Differently, ACO-

HCO assumes and identifies that Hadoop configuration

parameters exhibit non-linear relations with each other.

Additionally, Liao et al. [8] propose a genetic

algorithm approach, called Gunther, to directly

searches the suitable Hadoop configuration for a

specific application. However, Gunther is short of an

objective function in the proposed genetic algorithm.

Moreover, Gunther repeatedly execute the given

Hadoop application for each loop of the genetic

algorithm, which is inefficient and unrealistic while

accelerating actual Hadoop applications processing the

big input datasets. In contrast to Gunther, ACO-HCO

is much efficient for adopting a performance models to

predict execution time with an ACO-based algorithm.

The rest of the paper is organized as follows. Section

2 describes the related work. In Section 3, the detail of

the proposed ACO-HOC scheme is described. Section

4 explains the experimental setup and discuss the

performance results; Finally, we conclude in Section 5.

1152 Journal of Internet Technology Volume 21 (2020) No.4

2 Related Work

2.1 MapReduce and Hadoop

The overall MapReduce model is depicted in Figure

1. The process sequence can be given as follows: (A)

the master node assigns the worker nodes with Map

and Reduce tasks; (B) the MapReduce system divides

all the input files into multiple splits and stores them in

blocks so that the worker nodes of Map tasks can

locally read the required data blocks; (C) during the

Map phase, the worker nodes complete their tasks and

store the Map results as intermediate files onto the

worker node’s local hard disks and wait for the other

worker nodes in the Map phase to finish their tasks; (D)

after the worker nodes of Reduce phase receive

notification of completion from all the worker nodes of

Map phase, they remotely read the results and execute

the Reduce function after collating and sorting the

results; (E) finally, the worker nodes of Reduce phase

generate output files of Reduce tasks and store them in

the distributed file system.

Figure 1. MapReduce model [9-10]

2.2 Hadoop Configuration Parameters

Apache Hadoop is an open source project from the

Apache Software Foundation and is an implementation

of the MapReduce model. By considering Apache

Hadoop version 0.20.2 as an example, amounts of

configurable parameters are used to tune the execution

status of Map tasks and Reduce tasks.

Table 1 summarizes some of the Hadoop parameters

with a description of their usage. These parameters are

related to the execution performance. Different types

of correlations are observed between these parameters.

Some parameters exhibit positive correlations between

each other; for example, when the JVM heap size is

increased (mapred.child.java.opt), the upper limit for

the memory buffer size (io.sort.mb) in the Map sorting

stage is also increased; further, some parameters

exhibit negative correlations between them. Although

tuning certain parameters can help to reduce the costs

in a certain area, it may also increase the costs in

another area as the byproduct. For example, if the Map

task output results are compressed, the amount of data

that is transmitted from the Map tasks to the Reduce

tasks as well as the I/O and network transmission costs

are reduced; however, the compression and extraction

process adds an additional load onto the CPU resources.

2.3 Gene Expression Programming

Gene expression programming (GEP) [11] is

popular in data exploration applications for

investigating internal correlations between various

parameters. GEP exhibits the variability and flexibility

of the tree structures in genetic programming (GP) and

the simple linear independent fixed length coding of

genetic algorithms (GAs). Furthermore, GEP is

significantly faster than both GP and GAs and uses

relatively simpler coding and is more advantageous

while solving complex problems. In this paper, we use

GEP method to analyze the complex relation between

the major Hadoop parameters.

Table 1. Summary of the major Hadoop parameters

Configuration parameters Default value Description

io.sort.factor 10 The number of streams that can be merged while sorting.

io.sort.mb 100 The in-memory buffer size allocated to each task.

io.sort.spill.percent 0.8
A threshold which determines when to run the spill procedure,

transferring the in-memory data into the local storage.

mapred.reduce.tasks 1 The number of reduce task(s) configured for a Hadoop job.

mapred.tasktracker.map.tasks.maximum 2 The number of map slots configured on each worker node.

mapred.tasktracker.reduce.tasks.maximum 2 The number of reduce slots configured on each worker node.

mapred.child.java.opts 200 The maximum size of the physical memory of JVM for each task.

mapred.job.shuffle.input.buffer.percent 0.7
The amount of memory in percentage allocated to a reducer to

save map outputs during the shuffle procedure.

mapred.reduce.parallel.copies 5 The number of parallel data transfers in the reduce phase.

mapred.compress.map.output False Compression rate of map task outputs.

mapred.output.compress False Compression rate of reduce task outputs.

ACO-HCO: Heuristic Performance Tuning Scheme for the Hadoop MapReduce Architecture 1153

3 ACO-HCO Design

3.1 Overview

ACO-HCO is a probabilistic performance tuning

method that locates optimal Hadoop configuration

solutions by moving through a parameter space

resenting all possible solutions for a given application

running on a Hadoop cluster to attain optimized

performance. The architecture of ACO-HCO is shown

in Figure 2. For a given application that need to be

optimized, we first collect the settings of core Hadoop

parameters and the total processing times with small

input data sizes by a job profiler [12]. The resulting

profile is used to train the GEP model in the GEP

algorithm, which is ultimately used to predict the

execution time of given application. Using a GEP

guided model for execution time, it is practical to

combine ACO approach to search the huge Hadoop

parameter space to find the optimized parameters. The

main components of ACO-HCO are described in detail

in the following subsections.

Hadoop Job Profiler

GEP Training Dataset

ACO-HCO Profiling ACO-HCO Modeling ACO-HCO Searching
Industrial

Environment

GEP Algorithm

Small

Input

Data

Hadoop

Job

Random

Generated

Parameters

Hadoop Cluster

ACO

Algorithm

Hadoop

Configurations

For Optimized

Performance

Hadoop

Application

Big Input

Data

Hadoop Cluster

Randomly sample

Heuristic search

GEP guided

Model for

Execution Time

Figure 2. Architecture of ACO-HCO

3.2 ACO-HCO Modeling

The Hadoop application execution time can be

depicted in Equation (1) where p0, p1,…, pn are the core

Hadoop configurable parameters. Table 2 shows 10

important Hadoop parameters we investigate in this

paper. The data types of each parameters in Table 2

determine the corresponding GEP method mathematic

functions. Then, GEP algorithm extract the correlation

among these parameters from Training dataset.

Table 2. Important Hadoop parameters used in GEP

GEP

variables
Hadoop core parameters

Data

type

p0 io.sort.factor integer

p1 io.sort.mb integer

p2 io.sort.spill.percent float

p3 mapred.reduce.tasks integer

p4 mapred.tasktracker.map.tasks.maximum integer

p5 mapred.tasktracker.reduce.tasks.maximum integer

p6 mapred.child.java.opts integer

p7 mapred.job.shuffle.input.buffer.percent float

p8 mapred.reduce.parallel.copies integer

p9 input data size (GB) integer

0 1 2

(, , , ,)
n

ET f p p p p= … (1)

GEP algorithm employs p0, p1,…, pn as inputs of

combined mathematical functions and then maintain

and develop a linear chromosome within the evolution

process. At the same time, the linear chromosome

constructs an expression tree and generates a form of

f(p0, p1,…., pn) to compute estimated execution time

and compare it with the real execution time. GEP

outputs a ultimate form of f(p0, p1,…., pn) at the

termination of evolution procedure and the predicted

execution time is the closest to the real working time.

Figure 3 shows the design of the GEP algorithm.

The training dataset generated from Hadoop job

profiler is the input of GEP algorithm. We run 360

experiments on a Hadoop cluster to establish the

training dataset. We adjust the configurable parameter

values by hand and operate each application three

times and compute the mean processing times. In

Figure 3, Lines 1 to 5 set the first-generation

initialization of 500 chromosomes, which stand for 500

probable correlations among different Hadoop core

parameters. Lines 8 to 29 run an evolution procedure in

which each loop indicates a generation of the evolution

procedure. An expression tree is transformed from

each chromosome. Lines 11 to 17 compute the utility

value of a chromosome. GEP generates a predicted

Hadoop job processing time and then compares it with

the real Hadoop job processing time for each training

data. If the comparing result is less than a predefined

bias interval, the current chromosome utility value will

be added by 1.

We set the bias interval as 50 seconds to allow a

maximum of 10% of the error space for considering the

Hadoop job real processing time. Line 18 indicates that

the evolution loop ends in an ideal condition when the

utility value is equal to the amount of training datasets.

On the contrary, Lines 20 to 23 show that the evolution

procedure follows, GEP will save the chromosome

with the best utility value. Lines 24 to 25 indicate that

GEP take a genetically modified operation to the

current generation for producing variations of the next

generation chromosomes at the termination of each

generation. We changed the amount of generations

from 20000 to 80000 in the evolution procedure of

GEP and discovered that the chromosome quality (the

ratio of the utility value to the amount of training

datasets) was at last larger than 90%. Therefore, we set

the amount of generations as 80000. After 80000

generations, GEP produces Equation (2), standing for a

correlation between the estimated execution time and

the important Hadoop parameters listed in Table 2.

0 1 9 7 6 10 6

0 8 3 1 5 2 1

6 4 8 9

(, , ,) () ((1/ log () mod

((() ()), (,())))

() ()

f x x x x x sqrt x

sqrt x x x x pow x x x

x x x x

= = × + +

× + × +

+ + × +

…

(2)

1154 Journal of Internet Technology Volume 21 (2020) No.4

Input: Hadoop job training dataset generated by the Hadoop Job Profiler;

Output: The correlation between Hadoop job execution time and configurable parameters;

1. FOR i=1 TO population size DO

2. construct chromosome (i) by combining the mathematic function and Hadoop parameter GEP variables;

3. utility (i)=0;

4. i++;

5. ENDFOR

6. best chromosome = chromosome (1);

7. best utility = 0;

8. WHILE x < final generation amount DO

9. FOR a = 1 TO population size DO

10. Transform chromosome (a) into expression tree (a);

11. FOR b = 1 TO the amount of training datasets DO

12. compute the predicted Hadoop job processing time for case (b)

13. IF ABS (timeDiff) < bias interval THEN

14. utility (a)++;

15. ENDIF

16. b++;

17. ENDFOR

18. IF utility (a)=the amount of Hadoop job training datasets THEN

19. best chromosome =Chromosome (a) GOTO 29;

20. ELSE IF utility (a) > best utility THEN

21. best chromosome = Chromosome (a);

22. best utility = utility (a);

23. ENDIF

24. Take replication, selection and genetic operation on chromosome (a) in proportion;

25. Adopt the adjusted chromosome (a) to replace the original one;

26. a++;

27. ENDFOR

28. x++;

29. ENDWILE

30. Return best chromosome

Figure 3. GEP algorithm implementation

3.3 ACO-HCO Searching

The proposed ACO-HCO scheme use ACO to tune

Hadoop parameter settings in this section. We take

Equation (2) generated by the GEP algorithm as a

fitness function in ACO-HCO searching phase.

ACO is a type of evolutionary computational

algorithms proposed by Dorigo et al. in 1997. ACO

algorithm is designed by observing the foraging

behavior of ant colonies. ACO is a type of multi-point

search (multiple ants) algorithm and is not a single-

point search strategy. In addition to the positive

feedback that is obtained by increasing the pheromone

concentration for solutions that exhibit a better

performance, a negative feedback that reduces the

pheromone concentration for solutions that perform

poorly has also been observed. ACO manages two

kinds of conflicting searching behavior, exploration

and exploitation. Exploration is an algorithm’s ability

to search broadly through the problems search space

and exploitation is an algorithm’s ability to search

locally around good solutions that have been found

previously.

In this paper, we adjust ACO algorithm to deal with

the Hadoop platform parameter optimization problem

as follows: (1) each search node corresponds to one

Hadoop platform parameter; (2) the expected value for

an ant’s selection of the subsequent Hadoop parameter

node determines the length of the run time, that is, the

lesser the predicted execution time as calculated by the

GEP guided Model for execution time, the more is the

probability that the path will be preferred by the ant.

The expected values of node selection are set based on

each Hadoop parameter values listed in Table 3.

The process of ACO-HCO searching is described as

following.

Step 1. Initialization and configuration of the ACO

parameter. Set the upper limit for the application run

time (tmax), number of ants (S), initial pheromones (τ0),

the relative importance of exploitation versus

exploration (q0), pheromone decay parameter (ρ), the

relative importance of the trail (α), and the relative

importance of the visibility (β).

Step 2. Establish the optimal parameter node path. In

the initial state, S ants are randomly placed on the

Hadoop parameter nodes. Each ant will begin from its

current node and use the conversion rule for

calculating the subsequent node to be visited and will

eventually complete a full journey step by step. The

conversion rules are as Equation (3).

ACO-HCO: Heuristic Performance Tuning Scheme for the Hadoop MapReduce Architecture 1155

Table 3. Hadoop platform parameter values used in ACO-HCO

Hadoop parameters Values Explanations

p0 10-230 Empirically.

p1 65-100 According to the input dataset block size. We employ 64MB block size in Hadoop.

p2 0.6-0.85 Empirically.

p3 1-16 According to the total amount of reduce slots configured in a Hadoop cluster.

p4 1-3 According to the condition of a worker node.

p5 1-3 According to the condition of a worker node.

p6 180-6000 According to the actual RAM of cluster node and the p1 value.

p7 0.70-0.85 Empirically.

p8 1-10 Empirically.

p9 The input dataset

size in MB

User defined.

() 0max {[()] [] },

,

s
u J i iu iu

ij

t if q q
J

P otherwise

α β
τ η

∈
⎧ × ≤⎪

= ⎨
⎪⎩

 (3)

Js(i) is the set of neighboring nodes that have not yet

been visited by ant S located at node i. For nodes that

do not belong to Js(i) or for nodes that have already

been visited, the probability of selection of the node is

0. This design prevents the ants from revisiting a node;

τiu (t) is the pheromone concentration in the segment (i,

u) at time t, and
iu

η is the expected value for the

selection of the parameter value candidate as illustrated

in Equation (4).. q is a random number between (0, 1),

q0 is a set parameter, 0≦q0≦1, maxxf() is used to find

the node u with the highest pheromone concentration (τ)

and the lowest predicted run time cost (η) in the GEP

guided object function, while p is the probability of

selecting the subsequent node and can be obtained

using Equation (5).

0 1 2 9

1/ (, , , ,)
iu

f x x x xη = … (4)

()

[()] []
()

[()] []
s

ij ijs

ij

ij ij

u j i

t
p t

t

α β

α β

τ η

τ η

∈

×

=

×∑
 (5)

When q > q0, although the pheromone concentration

is high and the probability of selecting the node with

the shortest predicted runtime is high, an ant will still

select a node randomly even though there is a node

with higher pheromone concentration and a higher

probability of a shorter path. Hence, the node with the

highest probability is not always selected; therefore, it

is still possible for ants to travel to another node. Thus,

this behavior is biased toward exploration. When q ≦

q0, the ants must select the node with the highest

concentration of pheromones (the shortest predicted

execution time); this behavior is biased toward

exploitation.

Step 3. Local update of the pheromone concentration.

When an ant searches for a feasible solution and passes

through an edge (i, j), it will update the pheromone

concentration for the edge once to prevent other ants

from converging on a local solution and to increase the

diversity in path search. The extent of the update has

nothing to do with the performance or the selection

results of the current ant. The calculation equation can

be given as Equation (6).

0

(1) (1) ()
ij ij
t tτ ρ τ ρτ+ = − + (6)

where ρ is the pheromone decay ratio parameter,

(1)ρ− is the residual pheromone factor, and 0 < ρ < 1.

At the same time, regional update methods are also

used so that the concentration of pheromones on the

traversed path is reduced, which reduces the attraction

of ants to a traversed path. This encourages ants to find

new paths and prevents them from limiting the solution

to a narrow definition. Return to step 2 until each ant

produces a complete path.

Step 4. Global Update pheromone. Once all ants have

completed traversing a path, the global update for the

pheromones will be performed to reinforce the

pheromone concentration of the current optimal path.

The calculation is presented in Equation (7). Only the

ants that have performed well can leave pheromones

behind. This is because a design that only adds

pheromones to the current optimal solution will help

the ants to find the optimal solution as soon as possible.

However, the optimal current path may not necessarily

have been found by the current ant but may have been

found by a previous ant.

 (1) (1) ()
ij ij ij
t tτ ρ τ ρ τ+ = − + Δ (7)

Let path (i, j) ∈ T+. Thus, Δτij = Q / L+; otherwise

Δτij = 0; further, T+ is the optimal path that has been

found previously, and L+ is the total runtime for the

previous best path. Q is a parameter that represents the

intensity of pheromones. This parameter will affect the

speed of convergence to a certain degree. Generally, it

is set to 100.

Step 5. Update the optimal path. If min {Ls} < L+, L+ =

Ls and T+ = Ts, where Ls is the total length of the path

found by ant S, Ts is the optimal path found, L+ is the

run time of the current optimal path, and T+ is the

current optimal path. After updating the optimal path,

the updated time is t = t + 1.

1156 Journal of Internet Technology Volume 21 (2020) No.4

Step 6. Test stop condition. The ACO stop condition is

generally set when the upper time limit (tmax) is reached,

i.e., when t ≥ tmax; at this time, T+ is the optimal path

that has been found, and L+ is its total run time;

otherwise, return to step 2.

Using the aforementioned ACO-HCO searching

process, a path with the highest pheromone

concentration will be observed. The combination of

nodes that is traversed by the path represents the

optimal parameter values for the Hadoop platform. We

considered all the optimal parameter values and

verified it on the same Hadoop cluster; further, we

compared those results with the test results obtained

from the optimal parameters using other Hadoop

parameter optimization methods to verify the

improvements of ACO-HCO.

4 Performance Evaluation

4.1 Experimental Setup

The experimental platform consists of one Intel

Xeon server machine equipped with 32 GB memory

and an E5-2600 3.20 GHz quad-core processor. We

use the same virtual machines (VMs) environments as

the Starfish optimizer runs Hadoop applications for fair

comparison. Virtualization is constructed by using

VMware ESXi v5.1. We use six VMs with the same

hardware specifications (2 vCPUs, 4 GB memory and

4 TB hard disk storage) and setup them as Hadoop

work nodes. Each VM adopts CentOS 6.1 and Hadoop

0.20.2 CDH3.

We set up a Hadoop cluster in VMs with one Name

Node and seven Data Nodes including the Name Node.

The experimental Hadoop cluster adopts 64 MB data

block and replication level 2 data block.

We use two representative Hadoop applications (i.e.,

WordCount and Sort) and one specific Hadoop

application, MR-based Least Significant Bit (LSB)

[13-14]. We also use Hadoop TeraGen and

RandomWriter applications to generate four input data

sets (5 GB, 10 GB, 15 GB and 20 GB). WordCount is

CPU-intensive job; Both Sort and MR-based LSB are

disk and memory intensive.

We use the GEP algorithm tool GeneXproTools

(standard version 5.0.3883) software [15] to construct a

GEP guided model for Execution time of Hadoop Job.

The other parts of ACO-HOC can implement on a

different VM or an independent machine when it runs

the collected profiles indirectly.

The parameters used in the ACO algorithm

implementation are consist of the max simulation

runtime limit (tmax = 60), number of ants (S = 10),

initial value of the pheromone (τ0 = 0.0001), the

relative importance of exploitation versus exploration

(q0 = 0.85), evaporation rate (ρ = 0.95), the relative

importance of the trail (α = 2), and the relative

importance of the visibility (β = 1). Table 4 and Table

5 separately presents the ACO-HCO and the heuristic

approach (RoT) suggested configuration values for a

Hadoop job for different input data size. Table 6 and

Table 7 respectively show the suggested configuration

values from the Starfish model for both applications.

Table 4. Suggested configuration values from the ACO-HCO scheme

Hadoop parameter name Suggested configuration values

input dataset (GB) 5 10 15 20

io.sort.factor 235 226 212 154

io.sort.mb 102 91 102 90

io.sort.spill.percent 0.86 0.71 0.70 0.75

mapred.reduce.tasks 15 8 11 8

mapreduce.tasktracker.Map.tasks.maximum 3 2 2 2

mapreduce.tasktracker.Reduce.tasks.maximum 3 2 2 2

mapred.child.java.opts 275 330 418 549

mapReduce.reduce.shuffle.input.buffer.percent 7 7 7 7

mapred.reduce.parallel.copies 11 8 7 8

Table 5. Suggested configuration values based on industry rule-of-thumb (RoT)

Hadoop parameter name Suggested configuration values

io.sort.factor 25

io.sort.mb 250

io.sort.spill.percent 0.8

mapred.reduce.tasks 14

mapReduce.tasktracker.map.tasks.maximum 3

mapreduce.tasktracker.reduce.tasks.maximum 3

mapred.child.java.opts 600

input.buffer.percent 0.7

mapred.reduce.parallel.copies 20

mapred.compress.map.output True

mapred.output.compress False

ACO-HCO: Heuristic Performance Tuning Scheme for the Hadoop MapReduce Architecture 1157

Table 6. Suggested WordCount application configuration values from the Starfish system

Hadoop parameter name Suggested configuration values

input dataset (GB) 5 10 15 20

io.sort.mb 117 129 128 120

io.sort.factor 35 50 17 76

mapred.reduce.tasks 32 128 176 192

shuffle.input.buffer.percentage 0.43 0.72 0.63 0.83

min.num.spills.for.combine 3 3 3 3

io.sort.spill.percent 0.86 0.85 0.79 0.85

io.sort.record.percent 0.23 0.33 0.33 0.31

mapred.job.shuffle.merge.percent 0.86 0.85 0.83 0.69

mapred.inmem.merge.threshold 660 816 827 765

mapred.job.reduce.input.buffer.percent 0.42 0.43 0.60 0.77

Table 7. Suggested Sort application configuration values from the Starfish system

Hadoop parameter name Suggested configuration values

input dataset (GB) 5 10 15 20

io.sort.mb 110 127 109 123

io.sort.factor 48 35 54 27

mapred.reduce.tasks 48 112 160 176

shuffle.input.buffer.percentage 0.76 0.66 0.63 0.88

io.sort.spill.percent 0.84 0.68 0.87 0.82

io.sort.record.percent 0.21 0.15 0.23 0.11

mapred.job.shuffle.merge.percent 0.77 0.88 0.89 0.76

mapred.inmem.merge.threshold 393 787 783 972

mapred.job.reduce.input.buffer.percent 0.65 0.63 0.52 0.79

4.2 Experimental Results and Analysis

The performance comparison of proposed ACO-

HOC with the default, Starfish and heuristic approach

(RoT) are discussed in this section. We run WordCount

and Sort applications on the experimental Hadoop

cluster to deal with four different input dataset sizes

ranging from 5 GB to 20 GB. Moreover, the input data

for the MR-based LSB application contained 1,500

image files (Lena.bmp), which were used to compare

the performances of information hiding and

information extraction. We executed each application

three times with the ACO-HCO suggested parameter

values, and computed the mean execution times. Figure

4 and Figure 5 separately display the WordCount and

Sort applications performance comparison results.

Figure 4. Performance comparison of WordCount

Figure 5. Performance comparison of Sort

In Figure 4, the proposed ACO-HCO enhances

WordCount application performance by a mean of 49%

in each different input data sizes compared to the

default settings, 34% compared to RoT settings, and

10% compared to Starfish model settings. The

significant performance advancement reaches 53%

when increasing WordCount application input data size

to 20 GB for ACO-HCO. In Figure 5, the ACO-HCO

improves Sort application performance by a mean of

37% over the default settings, 30% over RoT settings,

and 20% over the Starfish model settings. The

significant performance improvement attains 44%

when increasing Sort application input data size to 20

GB for ACO-HCO.

1158 Journal of Internet Technology Volume 21 (2020) No.4

The proposed ACO-HCO scheme considers both the

equipment specifications and the input data size and

then suggests configuration values for each application.

The RoT settings merely evaluate the equipment

specifications (i.e., CPUs and actual RAM) and omits

the input data size. The Starfish model also evaluates

both the equipment specifications and the input data

size. However, the Starfish model overrates the amount

of reduce tasks. Such as the Starfish model suggested

WordCount application with 192 reduce tasks and Sort

application with 176 reduce tasks when increasing

input data size to 20 GB. A large amount of reduce

tasks increases storage utilization through task

parallelization but spends more time setting for these

reduce tasks. RoT work disregards the input data size;

as a result, the RoT used the same suggested

configuration values for each input data as displayed in

Table 5.

Figure 6 shows performance results of MR-based

LSB application for information embedding and

extraction. The performance improvement of the ACO-

HCO on the MR-based LSB application for embedding

process and extraction process is on average 6% over

the RoT work and 3% over the Starfish model.

Because the input data of the MR-based LSB

application is image type content, it cannot be divided

into segments as the text type content of WordCount

and Sort application input data. Then, the key-value

pair of MR-based LSB application during the Map

phase then generates the entire image content as the

“value,” and consumes plenty of IO processing time

for accessing and writing the file onto the local hard

disk. Therefore, the performance results of ACO-HOC

is significantly reduced.

Experimental results show that ACO-HCO

significantly improves the Hadoop performance

compared to the default settings. In addition, it is

superior to both RoT work and the previously proposed

cost-based method, Starfish model, in Hadoop

performance tuning.

Figure 6. Performance comparison of MR-based LSB

5 Conclusions

Evaluating a Hadoop job with the default

configuration values can result in performance

problems. Hadoop performance tuning is a challenging

issue due to the huge amount of Hadoop configurable

parameters. The existing analytical models with

impractical assumptions automatically adjust the

Hadoop configuration values may decrease the overall

model’s accuracy and the expected performance

enhancements.

In this paper, we propose a novel architecture, ACO-

HCO, to tune Hadoop performance by using GEP-

guided fitness function that stands for a correlation

between the execution time and Hadoop configuration

parameters. The proposed ACO-based optimizer can

efficiently search the optimized parameter settings and

notably enhances Hadoop performance comparing with

the default settings. Experiment results show that the

ACO-HCO provides better improvements than those

provided by the existing representative works

including the heuristic approach (RoT) and the Starfish

model in Hadoop performance tuning.

Acknowledgements

This study was partially supported by the National

Industrial Development Foundation, Taipei, Taiwan.

References

[1] T. White, Hadoop: The Definitive Guide, 4th Ed., O’Reilly

Media, Inc., 2015.

[2] H. Herodotou, S. Babu, Profiling, What-if Analysis, and Cost-

based Optimization of MapReduce Programs, Proceedings of

the VLDB Endowment, Vol. 4, No. 11, pp. 1111-1122, August,

2011.

[3] Cloudera Developer Blog, 7 Tips for Improving MapReduce

Performance, http://blog.cloudera.com/blog/2009/12/7-tips-

for-improving-MapReduce-performance/.

[4] Intel, Optimizing Apache Hadoop Deployments, http://www.

intel.com/content/www/us/en/cloud-computing/cloud-computing-

optimizing-hadoop-deployments-paper.html.

[5] M. Dorigo, L. M. Gambardella, Ant Colony System: A

Cooperative Learning Approach to the Traveling Salesman

Problem, IEEE Transactions on Evolutionary Computation,

Vol. 1, No. 1, pp. 53-66, April, 1997.

[6] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B.

Cetin, S. Babu, Starfish: A Self-tuning System for Big Data

Analytics, Proceedings of the 5th Conference on Innovative

Data Systems Research (CIDR ’11), Asilomar, CA, 2011, pp.

261-272.

[7] H. Yang, Z. Luan, W. Li, D. Qian, MapReduce Workload

Modeling with Statistical Approach, Journal of Grid

Computing, Vol. 10, No. 2, pp. 279-310, June, 2012.

[8] G. Liao, K. Datta, T. L. Willke, Gunther: Search-based Auto-

tuning of MapReduce, in: F. Wolf, B. Mohr, D. Mey (Eds.),

ACO-HCO: Heuristic Performance Tuning Scheme for the Hadoop MapReduce Architecture 1159

19th International Conference on Parallel Processing, Berlin,

Heidelberg, 2013, pp. 406-419.

[9] J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing

on Large Clusters, 6th Conference on Symposium on Operating

Systems Design and Implementation, San Francisco, CA,

2004, pp. 137-150.

[10] W. T. Lee, M. Z. Wu, H. W. Wei, F. Y. Yu, Y. S. Lin,

Dynamically Iterative MapReduce, Journal of Internet

Technology, Vol. 14, No. 6, pp. 953-962, November, 2013.

[11] C. Ferreira, Gene Expression Programming: A New Adaptive

Algorithm for Solving Problem, Complex System, Vol. 13, No.

2, pp. 87-129, March, 2001.

[12] Starfish Hadoop Log Analyzer, https://www.cs.duke.edu/

starfish/release.html.

[13] H. F. Lo, F. H. Liu, W. T. Lee, C. L. Liu, Y. C. Chou, A.

Anpalagan, Applications Transformation Model for

MapReduce Information Hiding, Journal of Internet

Technology, Vol. 18, No. 1, pp. 157-164, January, 2017.

[14] C. F. Lee, J. J. Shen, K. L. Hou, F. W. Hsu, A High-

performance Computing Method for Photographic Mosaics

Upon the Hadoop Framework, Journal of Internet Technology,

Vol. 20, No. 5, pp. 1343-1358, September, 2019.

[15] GeneXproTools, http://www.gepsoft.com/gxpt.htm.

Biographies

Chiang-Lung Liu received the B.S.

degree in electrical engineering from

the Chung Cheng Institute of

Technology (CCIT), Taiwan, in 1988,

the M.S. degree in information

management from the National

Defense Management College,

Taiwan, in 1995, and the Ph.D. degree in electronic

engineering from CCIT, National Defense University,

in 2002. Since 2003, he has been with the Department

of Electrical Engineering at CCIT, where he is

currently a professor. His research interests include

cryptography, steganography, steganalysis, multimedia

security, image processing, and cloud computing.

Hsiang-Fu Lo received B.S. and M.S.

degree in Computer Science from

Management College of National

Defense University, Taiwan, in 2000

and 2004, and the Ph.D. degree in

electronic engineering from CCIT,

National Defense University, in 2016.

He served Chemical Systems Research Divisions,

Chung-Shan Institute of Science and Technology

(CSIST), Taiwan. as assistant researcher (2016-08).

His research interests include Wireless Video

Transmission, Cloud Computing and Computer

Networks.

Wei-Tsong Lee received B.S., M.S.

and Ph.D. degrees in Electrical

Engineering from National Cheng

Kung University, Tainan, Taiwan. In

2003, he joined the department

members of Electrical Engineering of

Tamkang University, Taiwan, as

associate professor, and reached

professor in 2007. From 2010, he is the chairman of

Electrical Engineering Department. His research

interests are Embedded System, Computer

Architecture, Micro-processor Interface and Computer

Networks.

1160 Journal of Internet Technology Volume 21 (2020) No.4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

