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Abstract 

Hadoop MapReduce is a widely-used cloud computing 

technology for big data processing. However, the Hadoop 

configuration parameters settings can significantly 

change the execution performance. Manual adjustment of 

the Hadoop parameters will be a time consuming and 

difficult task. In this paper, we propose ACO-HCO, a 

Hadoop configuration tuning scheme for MapReduce 

applications. We use MapReduce applications job history 

records to generate specific job profiles. Based on these 

profiles, an objective function for execution time is 

constructed with gene expression programming algorithm 

by mining the correlation among the core Hadoop 

configuration parameters and input data size. Leveraging 

the objective function, an ACO-based configuration 

optimizer is able to heuristically search for the optimal 

configuration for a given application. Experimental 

results show that ACO-HCO enhances the performance 

of Hadoop significantly compared with the default 

configuration. Moreover, ACO-HCO performs better 

than heuristic approach and the cost-based model in 

Hadoop performance tuning. 

Keywords: Hadoop performance tuning, Ant colony 

optimization algorithm, Gene expression 

programming 

1  Introduction 

MapReduce is a programming model for processing 

massive amounts of data on large clusters. Hadoop is 

the most popular open source MapReduce framework 

from the Apache Software Foundation [1]. The 

Hadoop MapReduce has over 190 configuration 

parameters, and overall performance is highly affected 

by these parameters’ values. Because tuning Hadoop 

application specific performance requires expert 

knowledge and experience in Hadoop configuration [2], 

using the default or a set of best practices settings [3-4] 

to different applications generates unexpected 

performance results. Therefore, an algorithm that 

performs automatic Hadoop configuration tuning is 

required to improve the performance of the Hadoop 

MapReduce architecture. 

The main focus of this work is to develop a novel 

approach based on ant colony optimization (ACO) [5], 

called ACO-based Hadoop Configuration Optimization 

(ACO-HOC), by heuristically searching the better 

Hadoop configuration parameters for a given MapReduce 

application. ACO-HOC outperforms existing cost-

based tuning approaches, Starfish model [6]. ACO-

HOC does not assume on the processing time of per-

stage and the correlations between Hadoop configurable 

parameters. Previously proposed cost-based models [6] 

usually suppose the execution time of each processing 

stage to be constant, at the very time that Hadoop 

adjust configuration settings; linear regression statistical 

models [7] typically deem that the interrelation between 

configuration parameters is linear. Differently, ACO-

HCO assumes and identifies that Hadoop configuration 

parameters exhibit non-linear relations with each other. 

Additionally, Liao et al. [8] propose a genetic 

algorithm approach, called Gunther, to directly 

searches the suitable Hadoop configuration for a 

specific application. However, Gunther is short of an 

objective function in the proposed genetic algorithm. 

Moreover, Gunther repeatedly execute the given 

Hadoop application for each loop of the genetic 

algorithm, which is inefficient and unrealistic while 

accelerating actual Hadoop applications processing the 

big input datasets. In contrast to Gunther, ACO-HCO 

is much efficient for adopting a performance models to 

predict execution time with an ACO-based algorithm.  

The rest of the paper is organized as follows. Section 

2 describes the related work. In Section 3, the detail of 

the proposed ACO-HOC scheme is described. Section 

4 explains the experimental setup and discuss the 

performance results; Finally, we conclude in Section 5. 
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2 Related Work 

2.1 MapReduce and Hadoop 

The overall MapReduce model is depicted in Figure 

1. The process sequence can be given as follows: (A) 

the master node assigns the worker nodes with Map 

and Reduce tasks; (B) the MapReduce system divides 

all the input files into multiple splits and stores them in 

blocks so that the worker nodes of Map tasks can 

locally read the required data blocks; (C) during the 

Map phase, the worker nodes complete their tasks and 

store the Map results as intermediate files onto the 

worker node’s local hard disks and wait for the other 

worker nodes in the Map phase to finish their tasks; (D) 

after the worker nodes of Reduce phase receive 

notification of completion from all the worker nodes of 

Map phase, they remotely read the results and execute 

the Reduce function after collating and sorting the 

results; (E) finally, the worker nodes of Reduce phase 

generate output files of Reduce tasks  and store them in 

the distributed file system. 

 

Figure 1. MapReduce model [9-10] 

2.2 Hadoop Configuration Parameters 

Apache Hadoop is an open source project from the 

Apache Software Foundation and is an implementation 

of the MapReduce model. By considering Apache 

Hadoop version 0.20.2 as an example, amounts of 

configurable parameters are used to tune the execution 

status of Map tasks and Reduce tasks. 

Table 1 summarizes some of the Hadoop parameters 

with a description of their usage. These parameters are 

related to the execution performance. Different types 

of correlations are observed between these parameters. 

Some parameters exhibit positive correlations between 

each other; for example, when the JVM heap size is 

increased (mapred.child.java.opt), the upper limit for 

the memory buffer size (io.sort.mb) in the Map sorting 

stage is also increased; further, some parameters 

exhibit negative correlations between them. Although 

tuning certain parameters can help to reduce the costs 

in a certain area, it may also increase the costs in 

another area as the byproduct. For example, if the Map 

task output results are compressed, the amount of data 

that is transmitted from the Map tasks to the Reduce 

tasks as well as the I/O and network transmission costs 

are reduced; however, the compression and extraction 

process adds an additional load onto the CPU resources. 

2.3 Gene Expression Programming 

Gene expression programming (GEP) [11] is 

popular in data exploration applications for 

investigating internal correlations between various 

parameters. GEP exhibits the variability and flexibility 

of the tree structures in genetic programming (GP) and 

the simple linear independent fixed length coding of 

genetic algorithms (GAs). Furthermore, GEP is 

significantly faster than both GP and GAs and uses 

relatively simpler coding and is more advantageous 

while solving complex problems. In this paper, we use 

GEP method to analyze the complex relation between 

the major Hadoop parameters. 

Table 1. Summary of the major Hadoop parameters 

Configuration parameters Default value Description 

io.sort.factor 10 The number of streams that can be merged while sorting. 

io.sort.mb 100 The in-memory buffer size allocated to each task. 

io.sort.spill.percent 0.8 
A threshold which determines when to run the spill procedure, 

transferring the in-memory data into the local storage. 

mapred.reduce.tasks 1 The number of reduce task(s) configured for a Hadoop job. 

mapred.tasktracker.map.tasks.maximum 2 The number of map slots configured on each worker node. 

mapred.tasktracker.reduce.tasks.maximum 2 The number of reduce slots configured on each worker node. 

mapred.child.java.opts 200 The maximum size of the physical memory of JVM for each task. 

mapred.job.shuffle.input.buffer.percent 0.7 
The amount of memory in percentage allocated to a reducer to 

save map outputs during the shuffle procedure. 

mapred.reduce.parallel.copies 5 The number of parallel data transfers in the reduce phase. 

mapred.compress.map.output False Compression rate of map task outputs. 

mapred.output.compress False Compression rate of reduce task outputs. 
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3 ACO-HCO Design 

3.1 Overview  

ACO-HCO is a probabilistic performance tuning 

method that locates optimal Hadoop configuration 

solutions by moving through a parameter space 

resenting all possible solutions for a given application 

running on a Hadoop cluster to attain optimized 

performance. The architecture of ACO-HCO is shown 

in Figure 2. For a given application that need to be 

optimized, we first collect the settings of core Hadoop 

parameters and the total processing times with small 

input data sizes by a job profiler [12]. The resulting 

profile is used to train the GEP model in the GEP 

algorithm, which is ultimately used to predict the 

execution time of given application. Using a GEP 

guided model for execution time, it is practical to 

combine ACO approach to search the huge Hadoop 

parameter space to find the optimized parameters. The 

main components of ACO-HCO are described in detail 

in the following subsections. 

Hadoop Job Profiler

GEP Training Dataset

ACO-HCO Profiling ACO-HCO Modeling ACO-HCO Searching
Industrial 

Environment

GEP Algorithm

Small 

Input 

Data

Hadoop

Job

Random 
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Parameters

Hadoop Cluster
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Algorithm

Hadoop 

Configurations 

For Optimized 

Performance

Hadoop

Application

Big Input 
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Randomly sample
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Figure 2. Architecture of ACO-HCO 

3.2 ACO-HCO Modeling 

The Hadoop application execution time can be 

depicted in Equation (1) where p0, p1,…, pn are the core 

Hadoop configurable parameters. Table 2 shows 10 

important Hadoop parameters we investigate in this 

paper. The data types of each parameters in Table 2 

determine the corresponding GEP method mathematic 

functions. Then, GEP algorithm extract the correlation 

among these parameters from Training dataset. 

Table 2. Important Hadoop parameters used in GEP 

GEP 

variables 
Hadoop core parameters 

Data 

type 

p0 io.sort.factor integer

p1 io.sort.mb integer

p2 io.sort.spill.percent float 

p3 mapred.reduce.tasks integer

p4 mapred.tasktracker.map.tasks.maximum integer

p5 mapred.tasktracker.reduce.tasks.maximum integer

p6 mapred.child.java.opts integer

p7 mapred.job.shuffle.input.buffer.percent float 

p8 mapred.reduce.parallel.copies integer

p9 input data size (GB) integer

 
0 1 2

( , , , , )
n

ET f p p p p= …  (1) 

GEP algorithm employs p0, p1,…, pn  as inputs of 

combined mathematical functions and then maintain 

and develop a linear chromosome within the evolution 

process. At the same time, the linear chromosome 

constructs an expression tree and generates a form of 

f(p0, p1,…., pn) to  compute estimated execution time 

and compare it with the real execution time. GEP 

outputs a ultimate form of f(p0, p1,…., pn) at the 

termination of evolution procedure and the predicted 

execution time is the closest to the real working time. 

Figure 3 shows the design of the GEP algorithm. 

The training dataset generated from Hadoop job 

profiler is the input of GEP algorithm. We run 360 

experiments on a Hadoop cluster to establish the 

training dataset. We adjust the configurable parameter 

values by hand and operate each application three 

times and compute the mean processing times. In 

Figure 3, Lines 1 to 5 set the first-generation 

initialization of 500 chromosomes, which stand for 500 

probable correlations among different Hadoop core 

parameters. Lines 8 to 29 run an evolution procedure in 

which each loop indicates a generation of the evolution 

procedure. An expression tree is transformed from 

each chromosome. Lines 11 to 17 compute the utility 

value of a chromosome. GEP generates a predicted 

Hadoop job processing time and then compares it with 

the real Hadoop job processing time for each training 

data. If the comparing result is less than a predefined 

bias interval, the current chromosome utility value will 

be added by 1. 

We set the bias interval as 50 seconds to allow a 

maximum of 10% of the error space for considering the 

Hadoop job real processing time. Line 18 indicates that 

the evolution loop ends in an ideal condition when the 

utility value is equal to the amount of training datasets. 

On the contrary, Lines 20 to 23 show that the evolution 

procedure follows, GEP will save the chromosome 

with the best utility value. Lines 24 to 25 indicate that 

GEP take a genetically modified operation to the 

current generation for producing variations of the next 

generation chromosomes at the termination of each 

generation. We changed the amount of generations 

from 20000 to 80000 in the evolution procedure of 

GEP and discovered that the chromosome quality (the 

ratio of the utility value to the amount of training 

datasets) was at last larger than 90%. Therefore, we set 

the amount of generations as 80000. After 80000 

generations, GEP produces Equation (2), standing for a 

correlation between the estimated execution time and 

the important Hadoop parameters listed in Table 2. 

0 1 9 7 6 10 6
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Input: Hadoop job training dataset generated by the Hadoop Job Profiler; 

Output: The correlation between Hadoop job execution time and configurable parameters; 

1.  FOR i=1 TO population size DO 

2.   construct chromosome (i) by combining the mathematic function and Hadoop parameter GEP variables; 

3.   utility (i)=0; 

4.   i++; 

5.  ENDFOR 

6.   best chromosome = chromosome (1); 

7.   best utility = 0; 

8.  WHILE x < final generation amount DO 

9.     FOR a = 1 TO population size DO 

10.         Transform chromosome (a) into expression tree (a); 

11.         FOR b = 1 TO the amount of training datasets DO 

12.             compute the predicted Hadoop job processing time for case (b) 

13.           IF ABS (timeDiff) < bias interval THEN 

14.               utility (a)++; 

15.           ENDIF 

16.           b++; 

17.         ENDFOR 

18.           IF utility (a)=the amount of Hadoop job training datasets THEN 

19.              best chromosome =Chromosome (a) GOTO 29; 

20.           ELSE IF utility (a) > best utility THEN 

21.             best chromosome = Chromosome (a); 

22.             best utility = utility (a); 

23.           ENDIF 

24.     Take replication, selection and genetic operation on chromosome (a) in proportion; 

25.     Adopt the adjusted chromosome (a) to replace the original one; 

26.     a++; 

27.    ENDFOR 

28.     x++; 

29.  ENDWILE 

30.   Return best chromosome 

Figure 3. GEP algorithm implementation 

3.3 ACO-HCO Searching 

The proposed ACO-HCO scheme use ACO to tune 

Hadoop parameter settings in this section. We take 

Equation (2) generated by the GEP algorithm as a 

fitness function in ACO-HCO searching phase. 

ACO is a type of evolutionary computational 

algorithms proposed by Dorigo et al. in 1997. ACO 

algorithm is designed by observing the foraging 

behavior of ant colonies. ACO is a type of multi-point 

search (multiple ants) algorithm and is not a single-

point search strategy. In addition to the positive 

feedback that is obtained by increasing the pheromone 

concentration for solutions that exhibit a better 

performance, a negative feedback that reduces the 

pheromone concentration for solutions that perform 

poorly has also been observed. ACO manages two 

kinds of conflicting searching behavior, exploration 

and exploitation. Exploration is an algorithm’s ability 

to search broadly through the problems search space 

and exploitation is an algorithm’s ability to search 

locally around good solutions that have been found 

previously.  

In this paper, we adjust ACO algorithm to deal with 

the Hadoop platform parameter optimization problem 

as follows: (1) each search node corresponds to one 

Hadoop platform parameter; (2) the expected value for 

an ant’s selection of the subsequent Hadoop parameter 

node determines the length of the run time, that is, the 

lesser the predicted execution time as calculated by the 

GEP guided Model for execution time, the more is the 

probability that the path will be preferred by the ant. 

The expected values of node selection are set based on 

each Hadoop parameter values listed in Table 3. 

The process of ACO-HCO searching is described as 

following. 

Step 1. Initialization and configuration of the ACO 

parameter. Set the upper limit for the application run 

time (tmax), number of ants (S), initial pheromones (τ0), 

the relative importance of exploitation versus 

exploration (q0), pheromone decay parameter (ρ), the 

relative importance of the trail (α), and the relative 

importance of the visibility (β). 

Step 2. Establish the optimal parameter node path. In 

the initial state, S ants are randomly placed on the 

Hadoop parameter nodes. Each ant will begin from its 

current node and use the conversion rule for 

calculating the subsequent node to be visited and will 

eventually complete a full journey step by step. The 

conversion rules are as Equation (3). 
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Table 3. Hadoop platform parameter values used in ACO-HCO 

Hadoop parameters Values Explanations 

p0 10-230 Empirically. 

p1 65-100 According to the input dataset block size. We employ 64MB block size in Hadoop. 

p2 0.6-0.85 Empirically. 

p3 1-16 According to the total amount of reduce slots configured in a Hadoop cluster. 

p4 1-3 According to the condition of a worker node. 

p5 1-3 According to the condition of a worker node. 

p6 180-6000 According to the actual RAM of cluster node and the p1 value. 

p7 0.70-0.85 Empirically. 

p8 1-10 Empirically. 

p9 The input dataset 

size in MB 

User defined. 
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Js(i) is the set of neighboring nodes that have not yet 

been visited by ant S located at node i. For nodes that 

do not belong to Js(i) or for nodes that have already 

been visited, the probability of selection of the node is 

0. This design prevents the ants from revisiting a node; 

τiu (t) is the pheromone concentration in the segment (i, 

u) at time t, and 
iu

η  is the expected value for the 

selection of the parameter value candidate as illustrated 

in Equation (4).. q is a random number between (0, 1), 

q0 is a set parameter, 0≦q0≦1, maxxf( ) is used to find 

the node u with the highest pheromone concentration (τ) 

and the lowest predicted run time cost (η) in the GEP 

guided object function, while p is the probability of 

selecting the subsequent node and can be obtained 

using Equation (5). 
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When q > q0, although the pheromone concentration 

is high and the probability of selecting the node with 

the shortest predicted runtime is high, an ant will still 

select a node randomly even though there is a node 

with higher pheromone concentration and a higher 

probability of a shorter path. Hence, the node with the 

highest probability is not always selected; therefore, it 

is still possible for ants to travel to another node. Thus, 

this behavior is biased toward exploration. When q ≦ 

q0, the ants must select the node with the highest 

concentration of pheromones (the shortest predicted 

execution time); this behavior is biased toward 

exploitation. 

Step 3. Local update of the pheromone concentration. 

When an ant searches for a feasible solution and passes 

through an edge (i, j), it will update the pheromone 

concentration for the edge once to prevent other ants 

from converging on a local solution and to increase the 

diversity in path search. The extent of the update has 

nothing to do with the performance or the selection 

results of the current ant. The calculation equation can 

be given as Equation (6). 

 
0

( 1) (1 ) ( )
ij ij
t tτ ρ τ ρτ+ = − +  (6) 

where ρ is the pheromone decay ratio parameter, 

(1 )ρ−  is the residual pheromone factor, and 0 < ρ < 1. 

At the same time, regional update methods are also 

used so that the concentration of pheromones on the 

traversed path is reduced, which reduces the attraction 

of ants to a traversed path. This encourages ants to find 

new paths and prevents them from limiting the solution 

to a narrow definition. Return to step 2 until each ant 

produces a complete path. 

Step 4. Global Update pheromone. Once all ants have 

completed traversing a path, the global update for the 

pheromones will be performed to reinforce the 

pheromone concentration of the current optimal path. 

The calculation is presented in Equation (7). Only the 

ants that have performed well can leave pheromones 

behind. This is because a design that only adds 

pheromones to the current optimal solution will help 

the ants to find the optimal solution as soon as possible. 

However, the optimal current path may not necessarily 

have been found by the current ant but may have been 

found by a previous ant. 

 ( 1) (1 ) ( )
ij ij ij
t tτ ρ τ ρ τ+ = − + Δ  (7) 

Let path (i, j) ∈  T+. Thus, Δτij = Q / L+; otherwise 

Δτij = 0; further, T+ is the optimal path that has been 

found previously, and L+ is the total runtime for the 

previous best path. Q is a parameter that represents the 

intensity of pheromones. This parameter will affect the 

speed of convergence to a certain degree. Generally, it 

is set to 100. 

Step 5. Update the optimal path. If min {Ls} < L+, L+ = 

Ls and T+ = Ts, where Ls is the total length of the path 

found by ant S, Ts is the optimal path found, L+ is the 

run time of the current optimal path, and T+ is the 

current optimal path. After updating the optimal path, 

the updated time is t = t + 1. 
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Step 6. Test stop condition. The ACO stop condition is 

generally set when the upper time limit (tmax) is reached, 

i.e., when t ≥ tmax; at this time, T+ is the optimal path 

that has been found, and L+ is its total run time; 

otherwise, return to step 2. 

Using the aforementioned ACO-HCO searching 

process, a path with the highest pheromone 

concentration will be observed. The combination of 

nodes that is traversed by the path represents the 

optimal parameter values for the Hadoop platform. We 

considered all the optimal parameter values and 

verified it on the same Hadoop cluster; further, we 

compared those results with the test results obtained 

from the optimal parameters using other Hadoop 

parameter optimization methods to verify the 

improvements of ACO-HCO. 

4 Performance Evaluation 

4.1 Experimental Setup 

The experimental platform consists of one Intel 

Xeon server machine equipped with 32 GB memory 

and an E5-2600 3.20 GHz quad-core processor. We 

use the same virtual machines (VMs) environments as 

the Starfish optimizer runs Hadoop applications for fair 

comparison. Virtualization is constructed by using 

VMware ESXi v5.1. We use six VMs with the same 

hardware specifications (2 vCPUs, 4 GB memory and 

4 TB hard disk storage) and setup them as Hadoop 

work nodes. Each VM adopts CentOS 6.1 and Hadoop 

0.20.2 CDH3.  

We set up a Hadoop cluster in VMs with one Name 

Node and seven Data Nodes including the Name Node. 

The experimental Hadoop cluster adopts 64 MB data 

block and replication level 2 data block.  

We use two representative Hadoop applications (i.e., 

WordCount and Sort) and one specific Hadoop 

application, MR-based Least Significant Bit (LSB) 

[13-14]. We also use Hadoop TeraGen and 

RandomWriter applications to generate four input data 

sets (5 GB, 10 GB, 15 GB and 20 GB). WordCount is 

CPU-intensive job; Both Sort and MR-based LSB are 

disk and memory intensive. 

We use the GEP algorithm tool GeneXproTools 

(standard version 5.0.3883) software [15] to construct a 

GEP guided model for Execution time of Hadoop Job. 

The other parts of ACO-HOC can implement on a 

different VM or an independent machine when it runs 

the collected profiles indirectly.  

The parameters used in the ACO algorithm 

implementation are consist of the max simulation 

runtime limit (tmax = 60), number of ants (S = 10), 

initial value of the pheromone (τ0 = 0.0001), the 

relative importance of exploitation versus exploration 

(q0 = 0.85), evaporation rate (ρ = 0.95), the relative 

importance of the trail (α = 2), and the relative 

importance of the visibility (β = 1). Table 4 and Table 

5 separately presents the ACO-HCO and the heuristic 

approach (RoT) suggested configuration values for a 

Hadoop job for different input data size. Table 6 and 

Table 7 respectively show the suggested configuration 

values from the Starfish model for both applications. 

Table 4. Suggested configuration values from the ACO-HCO scheme 

Hadoop parameter name Suggested configuration values 

input dataset (GB) 5 10 15 20 

io.sort.factor 235 226 212 154 

io.sort.mb 102 91 102 90 

io.sort.spill.percent 0.86 0.71 0.70 0.75 

mapred.reduce.tasks 15 8 11 8 

mapreduce.tasktracker.Map.tasks.maximum 3 2 2 2 

mapreduce.tasktracker.Reduce.tasks.maximum 3 2 2 2 

mapred.child.java.opts 275 330 418 549 

mapReduce.reduce.shuffle.input.buffer.percent 7 7 7 7 

mapred.reduce.parallel.copies 11 8 7 8 

Table 5. Suggested configuration values based on industry rule-of-thumb (RoT) 

Hadoop parameter name Suggested configuration values 

io.sort.factor 25 

io.sort.mb 250 

io.sort.spill.percent 0.8 

mapred.reduce.tasks 14 

mapReduce.tasktracker.map.tasks.maximum 3 

mapreduce.tasktracker.reduce.tasks.maximum 3 

mapred.child.java.opts 600 

input.buffer.percent 0.7 

mapred.reduce.parallel.copies 20 

mapred.compress.map.output True 

mapred.output.compress False 
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Table 6. Suggested WordCount application configuration values from the Starfish system 

Hadoop parameter name Suggested configuration values 

input dataset (GB) 5 10 15 20 

io.sort.mb 117 129 128 120 

io.sort.factor 35 50 17 76 

mapred.reduce.tasks 32 128 176 192 

shuffle.input.buffer.percentage 0.43 0.72 0.63 0.83 

min.num.spills.for.combine 3 3 3 3 

io.sort.spill.percent 0.86 0.85 0.79 0.85 

io.sort.record.percent 0.23 0.33 0.33 0.31 

mapred.job.shuffle.merge.percent 0.86 0.85 0.83 0.69 

mapred.inmem.merge.threshold 660 816 827 765 

mapred.job.reduce.input.buffer.percent 0.42 0.43 0.60 0.77 

Table 7. Suggested Sort application configuration values from the Starfish system 

Hadoop parameter name Suggested configuration values 

input dataset (GB) 5 10 15 20 

io.sort.mb 110 127 109 123 

io.sort.factor 48 35 54 27 

mapred.reduce.tasks 48 112 160 176 

shuffle.input.buffer.percentage 0.76 0.66 0.63 0.88 

io.sort.spill.percent 0.84 0.68 0.87 0.82 

io.sort.record.percent 0.21 0.15 0.23 0.11 

mapred.job.shuffle.merge.percent 0.77 0.88 0.89 0.76 

mapred.inmem.merge.threshold 393 787 783 972 

mapred.job.reduce.input.buffer.percent 0.65 0.63 0.52 0.79 

 

4.2 Experimental Results and Analysis 

The performance comparison of proposed ACO-

HOC with the default, Starfish and heuristic approach 

(RoT) are discussed in this section. We run WordCount 

and Sort applications on the experimental Hadoop 

cluster to deal with four different input dataset sizes 

ranging from 5 GB to 20 GB. Moreover, the input data 

for the MR-based LSB application contained 1,500 

image files (Lena.bmp), which were used to compare 

the performances of information hiding and 

information extraction. We executed each application 

three times with the ACO-HCO suggested parameter 

values, and computed the mean execution times. Figure 

4 and Figure 5 separately display the WordCount and 

Sort applications performance comparison results. 

 

Figure 4. Performance comparison of WordCount 

 

Figure 5. Performance comparison of Sort  

In Figure 4, the proposed ACO-HCO enhances 

WordCount application performance by a mean of 49% 

in each different input data sizes compared to the 

default settings, 34% compared to RoT settings, and 

10% compared to Starfish model settings. The 

significant performance advancement reaches 53% 

when increasing WordCount application input data size 

to 20 GB for ACO-HCO. In Figure 5, the ACO-HCO 

improves Sort application performance by a mean of 

37% over the default settings, 30% over RoT settings, 

and 20% over the Starfish model settings. The 

significant performance improvement attains 44% 

when increasing Sort application input data size to 20 

GB for ACO-HCO. 
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The proposed ACO-HCO scheme considers both the 

equipment specifications and the input data size and 

then suggests configuration values for each application. 

The RoT settings merely evaluate the equipment 

specifications (i.e., CPUs and actual RAM) and omits 

the input data size. The Starfish model also evaluates 

both the equipment specifications and the input data 

size. However, the Starfish model overrates the amount 

of reduce tasks. Such as the Starfish model suggested 

WordCount application with 192 reduce tasks and Sort 

application with 176 reduce tasks when increasing 

input data size to 20 GB. A large amount of reduce 

tasks increases storage utilization through task 

parallelization but spends more time setting for these 

reduce tasks. RoT work disregards the input data size; 

as a result, the RoT used the same suggested 

configuration values for each input data as displayed in 

Table 5. 

Figure 6 shows performance results of MR-based 

LSB application for information embedding and 

extraction. The performance improvement of the ACO-

HCO on the MR-based LSB application for embedding 

process and extraction process is on average 6% over 

the RoT work and 3% over the Starfish model. 

Because the input data of the MR-based LSB 

application is image type content, it cannot be divided 

into segments as the text type content of WordCount 

and Sort application input data. Then, the key-value 

pair of MR-based LSB application during the Map 

phase then generates the entire image content as the 

“value,” and consumes plenty of IO processing time 

for accessing and writing the file onto the local hard 

disk. Therefore, the performance results of ACO-HOC 

is significantly reduced. 

Experimental results show that ACO-HCO 

significantly improves the Hadoop performance 

compared to the default settings. In addition, it is 

superior to both RoT work and the previously proposed 

cost-based method, Starfish model, in Hadoop 

performance tuning. 

 

Figure 6. Performance comparison of MR-based LSB 

5 Conclusions 

Evaluating a Hadoop job with the default 

configuration values can result in performance 

problems. Hadoop performance tuning is a challenging 

issue due to the huge amount of Hadoop configurable 

parameters. The existing analytical models with 

impractical assumptions automatically adjust the 

Hadoop configuration values may decrease the overall 

model’s accuracy and the expected performance 

enhancements.  

In this paper, we propose a novel architecture, ACO-

HCO, to tune Hadoop performance by using GEP-

guided fitness function that stands for a correlation 

between the execution time and Hadoop configuration 

parameters. The proposed ACO-based optimizer can 

efficiently search the optimized parameter settings and 

notably enhances Hadoop performance comparing with 

the default settings. Experiment results show that the 

ACO-HCO provides better improvements than those 

provided by the existing representative works 

including the heuristic approach (RoT) and the Starfish 

model in Hadoop performance tuning. 
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