
Enhanced Appearance-based Finger Detection and Tracking Using Finite State Machine Control 1087

Enhanced Appearance-based Finger Detection and Tracking

Using Finite State Machine Control

Noorkholis Luthfil Hakim1, Timothy K. Shih1, Lin Hui2

1 Department of Computer Science and Information Engineering, National Central University, Taiwan
2 Department of Innovative Information and Technology, Tamkang University, Taiwan

{koliskol, timothykshih}@gmail.com, amar0627@gms.tku.edu.tw*

*Corresponding Author: Noorkholis Luthfil Hakim; E-mail: koliskol@gmail.com

DOI: 10.3966/160792642020072104017

Abstract

Real-time finger detection and tracking systems have

been growing rapidly in the past decade. Among those

methods, Appearance-based and Model-based methods

have produced excellent results. However, the occlusion

issue is one of the main challenges in this field. In this

study, we address this issue by considering the repeating-

finite gestures of a guitar-strumming or a hand puppet

and, represent using a Finite State Machine model. Also

we proposed a novel finger pose tracking system using

FSM Model combining with the appearance-based

method.. The proposed system consists of two parts:

FSM-FT builder creates the FSM hand, and the FSM-FT

runner controls the FSM-FT system. Empirically, we

conducted an experimental study involving one sample

repeating hand gesture and our approach achieved a

significance recognition rate of 82% in the testing phase.

Keywords: Finger detection, Finger tracking, Human-

computer Interaction, Finite State Machine

1 Introduction

Finger detection and tracking recently has grown to

be more and more popular and is an essential feature of

many computer vision applications such as in [22].

Among th previous studies, most of them were

proposed under wearable devices-based [1-3], model-

based [4-6] or hand-pose-based [23], and appearance-

based or visual-based [7-9]. Wearable devices may

have the best accurate result of detecting the finger

position. However, due to its “uncomfortable” and

“expensive” devices, it cannot be used in real-life

applications. On the other hand, model-based finger

estimation works very well in estimating the finger

position and some of them can work in a real-time

system However, to implement and use such a system

in real-time home applications is an expensive and

extensive resource allocation process. Even though the

appearance-based method does not have better

accuracy compared to the other methods, it can be

easily implemented in real-life applications without

allocating many resources and a powerful machine.

Besides, the appearance-based system also has the

speed that needed in the fast-moving finger problem

due it simplifies the structure of the model.

Some finger actions used in the real-life situation

often has a repeatable structure. Guitar strumming, doll

playing manipulation such as Bu-da-chi doll or Finger-

like doll are the example of such previous mentioned

actions. The problem of detecting and tracking such a

gesture may be solved using Hand pose or Model-

based system by estimate the finger position given the

hand data to the model. However, the estimated finger

position’s result may have a significantly differ

position with the real world finger position and it will

become a problem. In 3D animation for 3D doll or

sound producing by the finger movement in virtual

guitar is an example for that. Thus, leave the real-world

position of the finger as it originated in the application

system could solve the problem. To do such work,

model the real world finger trajectory in repeatable

action in the form of FSM without changing its

position is possible. Combining the expensive model-

based system with FSM control can be a problem in

the speed of finger action in the future, thus using the

speed-strength with acceptable accuracy of the

appearance-based method is the possible option. Using

the FSM model finger trajectory in an appearance-

based method could also solve many problems that the

appearance-based method has. Such as missing fingers

by occlusion, finger jittering, miss labeling, and miss

detection.

Based on the facts, we proposed a novel finger pose

tracking system using FSM Model by combining with

the appearance-based method. The proposed solution

consisted of two parts: FSM-FT builder creates the

FSM hand, and the FSM-FT runner controls the FSM-

FT system. The first part is employed to generate the

FSM trajectory model of finger actions. The second

part is employed to produce a finger position given by

the FSM trajectory model and a new hand input data.

In this study, we call the first part as FSM-Builder and

the second one as FSM-Runner. The purpose of FSM-

1088 Journal of Internet Technology Volume 21 (2020) No.4

Builder is to represent the whole trajectory of finger

actions into several states. It clusters similar hand

gestures into one class, or we name it as Hand state.

One action should have more than one hand state and it

depends on how smooth the finger has produced by the

system. Besides, one particular FSM trajectory model

expresses one repeatable action. Each hand state has a

representation of five 3D finger positions in the 3D

world that collected by real-world data. In the second

part, the FSM-Runner concept makes the FSM

trajectory model produce the finger position by moving

from one hand state to the next hand state. This is done

based on the transition function and the new hand input

data. The hand input data consist of the 3D finger

position from the appearance-based method that we

build and its RGB hand image. The FSM-Runner

choose the correct state and the next state so, the

system could produce the correct finger position

accordingly.

In order to validate the proposed system, we conduct

an experimental study involving one sample repeating

hand gesture. Our approach achieved a significant

recognition rate during the testing phase. The rest of

this paper is structured as follows. Section 2 discusses

some related works and Section 3 presents a detail

description of the implementation of the proposed

work. Section 4 explains the experimental steps

including results, and finally Section 5 concludes the

study.

2 Related Work

2.1 Finite State Machine

Finite State Machine is one of the mature methods

that has been used for many purposes. One of them

uses to model the trajectory of movements of the

gestures. As mentioned in [10] FSM mostly used as the

recognizer. Given the input data, the feature vectors

such as trajectories will decide whether to stay at the

current state of the FSM or jump to the next state.

When reaching the final state, we can say that the

gesture completely recognized. For example, hand or

finger to recognize the gestures [11-14]. These works

give us the general idea that some repeating gestures

could be modeled by this Finite State Machine, and by

using the gesture recognition classification problem,

we are able to go through the states in the FSM model

to retrieve the finger representation from each state.

2.2 Finger Detection and Tracking

Finger detection and tracking method divided into

several kinds. There is appearance/visual based finger

detection. Such as Ren et al. works in [15] proposed

the infamous distance matrix called FEMD (Finger-

Earth Movers Distance). Then improve their work in

[16] by using the K-curvature Algorithm to find the

finger positions. Li [17] proposed to utilize the Graham

Scan algorithm for generating the convex hulls to

detect the fingers. Our previous work in [18] is

inspired us to create our enhanced finger detection

method used in this work as one of the features.

The other kind of method is a model-based approach

(generative pose). This method works by finding the

minimum error of the hand model with its angle DOF

parameters given the input depth image or a Point

cloud. These kinds of methods have produced better

accuracy results of finding the fingers compared to the

appearance model. Starting from Oikonomidis work [4]

in 2011, presented to analyze the orientation and full

articulation of human hand captured from Kinect

sensor using PSO. Then Qian [5] extends it by adding a

guided PSO step. Another example works are [19]

driven by a physics solver to generate 3D pose

estimation. While this model based or generative based

finger pose estimation (or hand pose estimation) are

have a good result, their work is too complex and need

a big amount of resource for the real-time application.

That’s why appearance based research still growing

until know.

3 Methodology

As seen in Figure 1, the complete FSM Control

system has two main algorithms: FSM-Builder and

FSM-Runner. The first algorithm is composed to create

the model of representation finger trajectory based on

sample finger action. On the other side, the latter is

used to control the position and label of the finger

based on the new input of the new data regarding the

trajectory model created by FSM-Builder. Before

discussing the two main systems in detail, we explain

the preprocessing module in the following section.

During this section, we have presented the way we

collect and preprocess the sample data to be used for

the FSM-Builder algorithm. Then, the second module

about the appearance Finger detection and Tracking

method that we proposed has explained as well.

3.1 Hand Sample Data Collections

To model the finger trajectory into FSM, one needs

to sample the specific action or gesture. In this work,

we do sample several sets of actions with all the

possible gestures needed to be act. These samples

extracted from the people whose expertise in the field.

As an instance, if we want to create the FSM trajectory

control model for guitar strumming or picking, at least

we may need people that could perform those skill well.

The data recorded consists of several parts. Those data

are the RGB images (Irgb) and depth images (Idepth).

The Point cloud data (Pc) can be extracted from the

given data and the point cloud needed in order to get

the real representation of the finger position in the 3D

world. The finger position extracted from the point

Enhanced Appearance-based Finger Detection and Tracking Using Finite State Machine Control 1089

Figure 1. System Architecture, consist of 2 main algorithms, FSM-Builder, and FSM-Runner

cloud using our proposed appearance-based finger

detection has explained in detail within the next section.

Both point cloud and finger position generated in 3-

dimensional Euclidean space consists of x, y, and z

points. Point cloud and finger are in the form of .ply

files and .txt files, respectively. In addition, the finger

files consist of a finger position in x, y, z, and its label.

During the next step, all of these finger position

samples and the label will be fixed by the help of a

human, to produce the correct labeling sample and

finger position. Because of the inability of producing

accurate results, with the proposed appearance-based

finger detection and tracking, semi-manual labeling by

the human is essential. The 3D finger selector

application has been built to help for marking and

fixing the fingers and the results of marking are in

Figure 2. Apart from that, Figure 3 presents the

interface application of 3D finger selector and this

helps the user to mark or edit the finger position faster.

(a) Point Cloud (b) Raw Finger

Tracking

(c) Fixed Finger

Figure 2. Example of fixing finger position in the

labeling section

Figure 3. The interface of 3D finger selector

application that used to fix the finger

3.2 Hand Segmentation and Arm Removal

In this section, we present the proposed appearance

based 3D finger detection and tracking from the point

cloud data that we use to extract the finger position

feature. The first step of the system is to separate hand

from the rest of the body and the background. For this

task, we used a Realsense Depth Camera and we apply

a common depth threshold value to separate the hand.

This method supports to filter out the unnecessary

points in point cloud and pixels in the RGB image

from the predefined minimum and maximum distance.

Moreover, the background and the body of the user can

be easily removed by considering the hand as the

closest object in the range. However, occasionally the

arm is still available in the range of a predefined area.

1090 Journal of Internet Technology Volume 21 (2020) No.4

To extract the hand from the arm, the central point or

middle point of the hand is needed. It computes by

averaging all of the available 3D points after removing

the background, as seen in Figure 4(a).

Let Pchand = {p1, p2… pn} as the point cloud of the

hand, while pi is the single point of the point cloud

with the n total number of the hand point cloud and pmid

is the middle point that we need to extract using the

equation (1).

 1

n

i

i

mid

p

p
n

=

=

∑
 (1)

The direction of hand detection is needed to remove

the arm region. Thus we assume that the direction of

the hand is predefined as “Up” direction, as seen in

Figure 4(a) and the opposite direction of the hand

direction will be removed. Given the palm point

position and direction “UP”, the reference point refp

iscalculated by: ref mid cp p y s y= ⋅ + ⋅ where,
c
s = scalar.

Any point in the hand point cloud bellow refp , is

removed as the condition in the equation (2).

, *0

()
, *1

i ref irem

rm i

i

p y p p
Pc A p

otherwise p

⋅ >⎧⎪
= = ⎨

⎪⎩
 (2)

The reference point
refp , in Figure 4(b) with the red

line as the visual representation, while the final result

of the arm removal is shown in Figure 4(c). This

preprocessing step results in the new point cloud rem

Pc

that can be used for the next finger extraction

algorithm.

(a) (b) (c)

Figure 4. Arm removal strategy

In the next frame, to track the direction of the hand

and it is calculated by finding the rotation degree of the

average detected fingers compared to the rotation

degree in the previous frame. The detail explanation

about the direction tracking is presented in the next

following sections.

3.3 Finger Detection

To extract the finger position from the point cloud

after the preprocessing step the system first needs to

check whether the state of the hand belongs to the

“detection” state or “tracking” state. When the hand in

the “detection” state, the system will extract the finger

position by detection algorithm. After successfully

detect the finger position, the state of the hand will

change into the “tracking” state in the next frame. In

this section, we will talk about our proposed finger

detection method briefly.

The proposed finger detection has three steps:

remove the palm’s point area, clustering finger’s point

candidates, and finding the fingertips. Let rem

Pc are the

new point cloud after preprocessing and the palm point

position can be calculated using the equation (3),

 ^ 0

n

rem

i

i

mid

p

p
n

=

=

∑
 (3)

From the palm’s middle point ^

mid
Pc detected from

the equation (3), palm candidate point can be removed

by applying the virtual sphere region in the point cloud

(see Figure 5(a)). Any points intersect with the virtual

sphere are removed using γ threshold. However, in

order to keep the meaningful points when the finger

curved, δ threshold applied to the virtual sphere.

The equation to get the virtual sphere region is

defined as follow:

0, ()

1,

rem

V
if V Pc true

Pc
otherwise

⎧ =⎪
= ⎨
⎪⎩

 (4)

^ 2 ^ 2

^

() () ()rem rem rem

c mid c mid

rem

c mid

V Pc pc x pc x pc y pc y

r and pc z pc z δ

= ⋅ − ⋅ + ⋅ − ⋅

< ⋅ − ⋅ <

(5)

We employ 2D Euclidean distance to check whether

the points are within the circle and then check the

depth difference between point clouds and the center of

hand palm using equation 5. Note that we didn’t use

the absolute value on the subtraction so that the pixels

that are further from camera than center point of hand

will be removed (In our system, we get larger z value if

the point is near to camera, it’s negative value because

we mirrored our scene from Real Sense). Using this

method, we get a new point cloud V
Pc . Moving further

K-distance clustering applied to the separated pixels or

called the finger regions, and there should be at least K

(e.g. five) clusters after the previous step, as can see in

Figure 5(b). For each point in finger regions, the 3D

Euclidean distance between any two points is

calculated, and if two points are close enough, they are

considered as the same cluster. Finally, given the

candidate points of each cluster, we calculate the score

by using equation (6) and the fingertips
hand

F can select

using the k-maximum score of the candidate point. The

result of this step is shown in Figure 5(c).

^ 2 ^ 2

^

() () ()

(() 2)

cl cl cl

i mid i mid

cl

i mid

dbf Pc p x p x p y p y

p y p y ∞

= ⋅ − ⋅ + ⋅ − ⋅

+ ⋅ − ⋅ ×

 (6)

(()),cl

hand
F Max dbf Pc= where

1 2 5
{ , , , }

hand
F f f f= … (7)

Enhanced Appearance-based Finger Detection and Tracking Using Finite State Machine Control 1091

(a) (b) (c)

Figure 5. Finger detection steps

3.4 Finger Tracking

The clustering process in finger detection spends a

long time process. To optimize the time of finger

extraction, tracking the finger position in each frame is

necessary. Thus, we propose a method for tracking the

finger position in 3D space, called the “cube region

search algorithm”. Given the
hand

F from the detection

algorithm, for each finger
i
f in

hand
F we generate 27

grid cubes region search (SC) around the previous

extracted finger position for each finger available as

seen in Figure 6. For each SC in
ijksc we find the

maximum dbf score using the previously mentioned

equation. Given V
Pc and ijksc area, the new finger

could be extracted by equation (8).

 ^ ((()))V

hand ijkF Max dbf sc Pc= (8)

Figure 6. 3D Cube search finger tracking

The system uses the previously explained finger

detection method to overcome the problem of fast

finger moving and noisy point cloud. After tracking,

the system will predict the hand direction by

calculating the available angle and decide the direction

by angle region check.

As mentioned before, this decided direction is used

for the wrist removal method. When tracking the hand,

we assume the direction is “UP” at the beginning and,

if the tracking is failed, the system will reset the

direction to the initial state and users need to adjust

their hand accordingly. Detected and tracked fingers

from the previous detection methods, then presented as

features that represent the hand.

3.5 Finger Normalization

By the equation (8), we could extract the finger

position and use it as one of the features for the FSM-

FT system. However, in some cases such as: when the

finger moving too fast, the noisy point cloud and finger

occlusion, the proposed method not able to extract the

finger properly. Thus, in the “Hand Sample Data

Collections” section, we ask humans to fix the finger

label and the missing finger position manually. This

step is crucial for the process to build the FSM

trajectory control model during the next step because

of the actual label and finger position of the hand

action that will be produced by the end of the system.

Therefore, normalization of the finger data is needed

since the hand position and size aren’t always in the

same manner, every time it recorded.

There are three steps for hand normalization. First,

subtracting each finger with its palm center point. This

step used to bring each hand in the origin position in

the axis (0, 0, and 0) concerning its palm center point.

Second, find the scale factor of each hand, which

calculated by dividing the statistical measure of the

size of the hand with its number of a finger. The third

step is to normalize the size of the hand by dividing

each finger with its scale factor. This three-step are

represented in the equations below.

Where int (, ,)palm po x y z′ ′ ′=

 (, ,) ()
i i i i i i
x y z x x y y z z′ ′ ′ ′= − − − − − (9)

2

1

(, ,)
n

i i i

i

x y z

s
n

=

′

=

∑
 (10)

 (, ,) (, ,)i i i

i i i

x y z
x y z

s s s

′′ = (11)

Given the finger sample data normalized, the FSM

trajectory control model is ready to generate. A

detailed explanation will be presented in the next

section.

3.6 FSM-FT Builder

There are several steps that need to perform in order

to transform the sequence of sample action into the

FSM model, that represent the finger trajectory of the

action itself. As we know, FSM consists of several

members. A finite of state, a finite non-empty input or

relationship between the state, and a series of transition

functions. Thus, the first step is to generate the finite of

state. In fact, the whole sample in one set of actions

can be represented as several numbers of finite states in

FSM. Those states are the cluster of the finger in hand

that has the same pose and, the famous K-means

clustering can work well to extract such states.

However, since we do not know the exact number of

the states that the sample could produce and how many

may differ from the other actions, K-means clustering

cannot be used.

As an alternative, the simple nearest neighbor

clustering with some distance threshold is performed.

1092 Journal of Internet Technology Volume 21 (2020) No.4

To cluster the finger, first, we extract features to

represent the normalize finger. The normalize finger

method is not rotation invariant and therefore, we

chose the angle as the feature to cluster the finger

sample. Moving further, we use spherical coordinate

space on the angle feature extracted with the reason

that this method is claimed to be rotation invariant.

Spherical coordinate has 3 parameters: radial distance,

polar angle, and azimuthal angle (r,θ,φ). In this case,

we only use the angle parameters, which are polar

angle and azimuth angle as features. i=1…5 (fingers).

 2 2 2

i i i i
mag x y z= + +

 1 1cos (), , tan ()i

i i

i

z y

mag x
γ θ γ ϕ− −

= = = (12)

1 1 5 5

[, , ..., ,]
s

An θ ϕ θ ϕ=

Given the angle feature vectors of each hand, the

distances of each cluster are calculated as follow

2

1
()s f f

n s c

D An An

C D T

+
= Σ −

= <

 (13)

By experimenting with the sample data, threshold

scalar (Tc) was calculated. If the distance
s

D is below

the threshold, then it labels as the same cluster
n

C and

calculates the finger centroid as the representation of

the finger in the state, which is called the “state hand”.

3.7 State Connections

The next step is to generate the transition function.

However, as shown in Figure 7, each state is not

connected to each other. To connect those states, the

relationships between states are needed. There are two

ways to form the relationship between states. The first

is using the distances between the state’s hand. The

distance can be calculated from the angle feature of the

new hand state (finger representation of each state) of

one cluster to the other and find the minimum distance

to connect it. The second way is to find the minimum

frame difference (MFD) between states. Each cluster is

already connected in the time sequence of the sample

data. Each member in each cluster belongs to a

different time frame and can be connected by using the

MFD algorithm. Thus, in this system, we used both of

these features (distance and minimum frame difference)

to feed into the classification tree. This classification

tree produces three classes as the next state, not next

state, and merge state class. To train the classification

tree, several FSM sets are created. We collected the

features from each state in each FSM and marked the

ground truth class and, then feed the training sample

into the classification tree. Below equations are the

feature extraction steps of the state hand.

1

min() 1dif s sMFD fr fr fr
+

= = − ≤ (14)

 2

1
tan ()s f fAngle dis ce D An An

+
= = Σ − (15)

Figure 7. The result of state hand creation from finger

clustering method

Given the state number, the relationship between

states, and the state hand, the state transition function

could be extracted directly. The key part of the FSM

system is the state transition. It indicates the moving

direction of the states and limits the movement of the

states.

Figure 8 is the simple sample result of FSM-

Builder’s result. We use this simple action movement

of the index and middle finger curved to the palm to

explain how the FSM-FT Builder system works.

Figure 8. The final result of FSM-Builder

3.8 FSM-FT Runner

From the FSM-Builder algorithm, the FSM model

representation has been generated complete with its

transition function. To make the FSM model run or

work, the second important algorithm, the FSM-

Runner is proposed. This algorithm is used to find the

initial state and predict the next state of the FSM model

that could extract the representation of the correct

finger position produced by the current state given the

new input data by following the state transition

function.

The generate FSM model created by FSM-Builder

has several parameters.

0
{ , , , , }

x
FSM S V q q F= , where,

1 2
{ , , ..., , }

i x
S s s s s= are the states

1 2 3
{ , , , ..., }

n
V v v s v= (i.e., hand and finger feature

vector)

0
q :

1
s

(i.e., initial sate)

and
x

q :
x
s (i.e., exit state)

Enhanced Appearance-based Finger Detection and Tracking Using Finite State Machine Control 1093

F S V= × → S (e.g., (,)
i n

F s v →
1i

s
+

), next state

function

Let FSM-Runner be the FSM control of FSM

generated by FSM-Builder. FSM-Runner takes the

current state
i
s and current camera input all

V as the

input to produce the next state
1i

s
+

. Where all
V is the

combination of hand features , , .ad hog huV V V In detail,

ad
V is the collection of vector finger angle

s
An . While

the finger position in 3D
hand

F .
hogV is the Histogram of

Gradient feature of the image rgbI and
hu

V , is the Hu

moment feature of the image
rgbI . The next state

1i
s

+

then will produce the new finger *

hand
F that represent in

the corresponding state. The combination of features

could be 2 or more features. We did some experiments

to check the best combination of features and the

results have discussed under Section 4 and Figure 9

representthe FSM system.

Figure 9. The scheme work of the FSM model with FSM-Runner algorithm

The speed of the finger may be one of the

difficulties of selecting the correct state. Thus to solve

the problem, we built the jump mechanism system that

in the case of the confidence of the system to predict

the correct state is lower than the threshold. And then

the next state prediction could be selected without a

restriction of the state transition table (using a similar

method as finding the initial state).

In this work, we implemented two kinds of

strategies to predict the next state using the SVM

model. The first strategy called the Big Tree model. It

works by training all the data among all categories,

which in this case is the hand states, in one complete

SVM model. This model is used to decide the initial

state and also the “big jump” mechanism system. The

complete strategy is in Figure 10 and by using this

strategy, the system is not allowed to restrict the

Transition function. Thus it allows the system to

produce all of the available hand poses in the FSM

model.

Figure 10. Example of FSM-Runner first strategy

The second strategy is called the Small tree model.

Instead of using one complete model of SVM

classification, we divided the model into several parts

with the number of categories is one of the states and,

its’ neighbor that connected with the corresponding

state. The depth of the neighbor connection is 1 to 2

depth of connection depends on how big the FSM

model is. From the largest tree of FSM, the longest

depth can be selected. In our sample works, we used

only 1 depth of neighbor connection. This strategy is

the main strategy that we apply to select the correct

state according to the transition function. The SVM

model that we trained produced the probability of the

prediction in each trained state during the current state.

Figure 11 is the second strategy of tree model with 2

depth of connection.

Figure 11. Example of FSM-Runner second strategy

The feature vector extracted from the input then

insert into the second SVM strategy and let the two

models that have been trained before to predict the next

state from the current state and its input. Then, the last

step for the FSM-FT Runner system is the pooling step.

1094 Journal of Internet Technology Volume 21 (2020) No.4

This pooling will take the two probability results from

three models. If both model’s result is similar, then the

system directly takes the result as the main result.

When all the results are different, the next thing to do

is fit the finger value from the two Hand state of the

two models and compare its minimum distance to the

point cloud. The Hand that has a minimum distance

with the point cloud and highest probability result will

be selected.

4 Experimental Result and Discussion

To test the robustness of our method, we conduct

several experiments. Since the unavailability of any

public dataset that closes to our works, we designed

simple finite-repeating gestures and generated its FSM

model. We used this gesture or action to test the system.

Figure 12 is a simple design of finite-repeating

gestures called counting action. We record 4 samples

of actions, which contain 300 frames for each action.

We use one of the samples to generate the FSM model

and the rest will be used for training and testing in the

FSM-Runner step. From 300 frames sequence of

counting action, we able to extract 33 hand states and

their relationship. This FSM used as the base to test our

FSM-Runner along with the rest of the sample as

mentioned before.

Figure 12. Sample finite-repeating set of gestures that

uses to test the proposed system

4.1 First Experiment Result

The first experiment is used to investigate the best

possible combination of the feature. We have three

kinds of features extracted from 3d and 2d space that

can be combined to enhance the result. There are 3

main features that we extract from the hand sample: 3D

finger position from AFD (Appearance Finger

Detection), HOG (Histogram of Oriented Gradient)

and Hu moment from 2D hand images. To test the

combination and also the robustness of our method, we

used the first strategy, the big tree model that we

mentioned before. Apart from that, 90% and 10% of

the sample data have used for training and testing,

respectively.

The results of the first experiment have shown in

Table 1 and it shows that the combination of AFD +

HOG has the best result among the other methods.

However, there is no significant difference in the

recognition rate between the other combinations.

Table 1. Results of the first experimental for selecting

a combination of features

Name of Feature Recognition rate

Only AFD 69.1%

HOG 68.4%

Hu Moment 63.3%

HOG + Hu 71.8%

AFD + HOG 75.0%

AFD + Hu 71.13%

AFD + HOG + Hu 74.2%

The result of the Big SVM tree only reach 75%

accuracy, because since we want to keep the

smoothness of the finger movement, it ends up with

many categories and classes, thus it lowers the

accuracy of detecting the class. It means that it’s hard

to distinguish the difference of the class hand created

by the FSM-Builder when the smoothness of the

gesture becomes the main concentration (lower

threshold of clustering in FSM Building).

4.2 Second Experiment Result

The second experiment is to test the Small Tree of

SVM. By using the same FSM model and sample set

from the first experiment, we trained and tested the

Small Tree of SVM using the top combination features,

resulting from the previous experiment which is AFD

+ HOG. Figure 13 illustrated the results of the

recognition rate after we tested all of the SVM models.

The average result of cross-validation gets an average

of 83.01% recognition rate while the testing gets an

average of 73% recognition rate.

Figure 13. Result of the second experiment using

Small Tree SVM method of FSM-Runner algorithm

Once more, in some parts of class or state, the

recognition rate falls to a shallowvalue. We believe this

Enhanced Appearance-based Finger Detection and Tracking Using Finite State Machine Control 1095

happens since we try to keep the smoothness of the

hand gesture, while the feature was not able to

distinguish it correctly. Therefore, it is essential to

select more additional hand features to overcome this

issue. Another reason is that, because of the difficulty

of finding training data for each specific class/state. It

ends up creating augmented synthetic data that have

not variated enough comparing to the real data

produced by a human. Moreover, smooth the finger

movement, the difficulty of creating the training data

and increase the size of classes are the main drawbacks

or limitations of this approach that we need to be

solved in the future.

4.3 Comparison with Existing Method

Previous work such as [15-17] able to extract the

finger position from the depth data similar to our

approach but they are mosly fail due to self occlusion

such as finger bending. Do to the help of tracking on

FSM model, whenever the data missing by some

occlusion, the finger position still could be extracted by

finding the neighbor hand state in the current time.

Thus, our approach never have a missing finger or

false labeling. Jittering finger also reduced since our

finger position result is a fixed. Work on [21] also use

the same approach that training RGB image of finger

using SVM as the classifier to detect the finger position.

But those approach are only work in the current hand

position and can’t get the real world finger position.

The limitation of our work is that for now is its only

work on repeating-like motion or action. By the nature

of simple FSM model and Machine learning approach

our proposed method is fast comparing any Model

based approach such as in [4, 5, 19]. Our approach

could run in Real-Time speed on the low end machine

specification. Thus, it is possible to extend our method

into embedded system.

5 Conclusion and Future Works

This work proposed a novel finger pose tracking

based FSM algorithm. The proposed method consists

of two main algorithms —first, the FSM-Builder

system, which created to extract the FSM model from

the finite-repeating action sequence. The system is

clustering the similar hand poses into one and represent

it as a state. Each state consists of a representation of

the correct finger position and the relationship with

other states. This relationship then used for the second

part of the FSM-FT system called the FSM-Runner

system. Given the FSM model from FSM-Builder, the

Runner system helps to guide the input hand images

and point cloud into the correct state of the hand hence

to produce the right finger position.

Our first experiment is to select the best combination

of features that we proposed and the result shows that

the AFD + HOG method has achieved a significant

performance compared to the other combinations. The

second experiment is to test the robustness of the small

SVM tree of the FSM-FT Runner system by using the

best combination of features. The result shows that it

gained an average of 83% recognition rate of the

system. However, in some states, the result does not

have a high accuracy rate because of the feature that

we selected was not enough to discriminate for each

class. Another reason is that it does not have enough

variation in the training data due to the difficulty of

collecting some specific classes training data.

As our future directions, we plan to improve our

research problem by selecting more features in the 3D

point cloud side using a 3D point cloud descriptor such

as a histogram of 3D facet [20], instead WFD because

of its missing data. Besides, we hope to apply optical

flow on the 2D side of data as an additional feature. It

also will increase the size of the dataset to improve the

system as well. Another promising idea is to apply

deep learning techniques, convolutional neural

networks as the FSM-FT Runner to extract the 2D

features.

Acknowledgments

We acknowledge the support of the Ministry of

Science and Technology (MOST), Taiwan, under the

grant number MOST 109-2634-F-008-008.

References

[1] D. J. Sturman, D. Zeltzer, A Survey of Glove-based Input,

IEEE Computer graphics and Applications, Vol. 14, No. 1,

pp. 30-39, January, 1994.

[2] R. Y. Wang, J. Popovic, Real-time Hand-tracking with a

Color Glove, ACM Transactions on Graphics (TOG), New

Orleans, Louisiana, USA, 2009, pp. 1-8.

[3] Y. Iwai, K. Watanabe, Y. Yagi, M. Yachida, Gesture

Recognition by Using Colored Gloves, IEEE International

Conference on Systems, Man and Cybernetics. Information

Intelligence and Systems (Cat. No. 96CH35929), Beijing,

China, 1996, pp. 76-81.

[4] I. Oikonomidis, N. Kyriazis, A. A. Argyros, Efficient Model-

based 3D Tracking of Hand Articulations Using Kinect,

British Machine Vision Conference, Dundee, UK, 2011, pp.

101.1-101.11.

[5] C. Qian, X. Sun, Y. Wei, X. Tang, J. Sun, Real-time and

Robust Hand Tracking from Depth, IEEE Conference on

Computer Vision and Pattern Recognition, Columbus, Ohio,

2014, pp. 1106-1113.

[6] Y. Zhou, G. Jiang, Y. Lin, A Novel Finger and Hand Pose

Estimation Technique for Real-time Hand Gesture Recognition,

Pattern Recognition, Vol. 49, pp. 102-114, January, 2016.

[7] J. L. Raheja, A. Chaudhary, K. Singal, Tracking of Fingertips

and Centers of Palm Using Kinect, IEEE Third International

Conference on Computational Intelligence, Modelling &

1096 Journal of Internet Technology Volume 21 (2020) No.4

Simulation, Langkawi, Malaysia, 2011, pp. 248-252.

[8] M. Vanco, I. Minarik, G. Rozinaj, Evaluation of Static Hand

Gesture Algorithms, Systems, Signals and Image Processing

(IWSSIP), Dubrovnik, Croatia, 2014, pp. 83-86.

[9] S. Manitsaris, A. Tsagaris, K. Dimitropoulos, A. Manitsaris,

Finger Musical Gesture Recognition in 3D Space Without

any Tangible Instrument for Performing Arts, International

Journal of Arts and Technology, Vol. 8, No. 1, pp. 11-29,

January, 2015.

[10] S. S. Rautaray, A. Agrawal, Vision Based Hand Gesture

Recognition for Human Computer Interaction: A Survey,

Artificial Intelligence Review, Vol. 43, No 1, pp. 1-54,

January, 2015.

[11] N.Ç. Kılıboz, U. Güdükbay, A Hand Gesture Recognition

Technique for Human-computer Interaction, Journal of

Visual Communication and Image Representation, Vol. 28,

pp. 97-104, April, 2015.

[12] P. Hong, M. Turk, T. S. Huang, Gesture Modeling and

Recognition Using Finite State Machines, Fourth IEEE

International Conference on Automatic Face and Gesture

Recognition, Grenoble, France, 2000, pp. 410-415.

[13] R. Verma, A. Dev, Vision Based Hand Gesture Recognition

Using Finite State Machines and Fuzzy Logic, International

Conference on Ultra Modern Telecommunications & Workshops,

St. Petersburg, Russia, 2009, pp. 1-6.

[14] H.-S. Yeo, B.-G. Lee, H. Lim, Hand Tracking and Gesture

Recognition System for Human-computer Interaction Using

Low-cost Hardware, Multimedia Tools and Applications, Vol.

74, No. 8, pp. 2687-2715, April, 2015.

[15] Z. Ren, J. Meng, J. Yuan, Z. Zhang, Robust Hand Gesture

Recognition with Kinect Sensor, 19th ACM International

Conference on Multimedia, Scottsdale, Arizona, USA, 2011,

pp. 759-760.

[16] Z. Ren, J. Yuan, J. Meng, Z. Zhang, Robust Part-based hand

Gesture Recognition Using Kinect Sensor, IEEE Transactions

on Multimedia, Vol. 15, No.5, pp. 1110-1120, August, 2013.

[17] Y. Li, Hand Gesture Recognition Using Kinect, IEEE

International Conference on Computer Science and Automation

Engineering, Beijing, China, 2012, pp. 196-199.

[18] N. L. Hakim, S.-W. Sun, M.-H. Hsu, T. K. Shih, S.-J. Wu,

Virtual Guitar: Using Real-time Finger Tracking for Musical

Instruments, International Journal of Computational Science

and Engineering, Vol. 18, No. 4, pp. 438-450, April, 2019.

[19] S. Melax, L. Keselman, S. Orsten, Dynamics Based 3D

Skeletal Hand Tracking, Graphics Interface 2013, Regina,

Saskatchewan, Canada, 2013, pp. 63-70.

[20] C. Zhang, X. Yang, Y. Tian, Histogram of 3D Facets: A

Characteristic Descriptor for Hand Gesture Recognition, 10th

IEEE International Conference and Workshops on Automatic

Face and Gesture Recognition (FG), Shanghai, China, 2013,

pp. 1-8.

[21] A. Sophian, D. Aini, Fingertip Detection Using Histogram of

Gradients and Support Vector Machine, Indonesian Journal

of Electrical Engineering and Computer Science, Vol. 8, No.

2, pp. 482-486, November, 2017.

[22] B. K. Chakraborty, D. Sarma, M. K. Bhuyan, K. F. MacDorman,

Review of Constraints on Vision-based Gesture Recognition

for Human-computer Interaction, IET Computer Vision, Vol.

12, No. 1, pp. 3-15, February, 2018.

[23] F. Guo, Z. He, S. Zhang, X. Zhao, Estimation of 3D Human

Hand Poses with Structured Pose Prior, IET Computer Vision,

Vol. 13, No. 8, pp. 683-690, December, 2019.

Biograpies

Noorkholis Luthfil Hakim is

currently a Ph.D. candidate in

Department of Computer Science and

Information Engineering in National

Central University, Taiwan. He

received his master degree in National

Central University, Taiwan as well. His research

interests includes, Computer vision, Image Processing,

Deep learning, Human Computer Interaction and

Interactive system.

Timothy K. Shih is a Distinguished

Professor at the National Central

University, Taiwan. He is a Fellow of

the Institution of Engineering and

Technology (IET). His research

awards, including IIAS research

award from Germany, HSSS award from Greece,

Brandon Hall award from USA, the 2015 Google

MOOC Focused Research Award.

Lin Hui received the Ph.D. degree in

Computer Science, Tamkang

University, Taiwan, in 2006. She is an

associate professor in the Department

of Innovation Information and

Technology at Tamkang University,

Taiwan. Her current research interests include

Operation Research, Data mining, Deep Learning, and

Multimedia Applications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

