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Abstract 

Real-time finger detection and tracking systems have 

been growing rapidly in the past decade. Among those 

methods, Appearance-based and Model-based methods 

have produced excellent results. However, the occlusion 

issue is one of the main challenges in this field. In this 

study, we address this issue by considering the repeating-

finite gestures of a guitar-strumming or a hand puppet 

and, represent using a Finite State Machine model. Also 

we proposed a novel finger pose tracking system using 

FSM Model combining with the appearance-based 

method.. The proposed system consists of two parts: 

FSM-FT builder creates the FSM hand, and the FSM-FT 

runner controls the FSM-FT system. Empirically, we 

conducted an experimental study involving one sample 

repeating hand gesture and our approach achieved a 

significance recognition rate of 82% in the testing phase. 

Keywords: Finger detection, Finger tracking, Human-

computer Interaction, Finite State Machine 

1 Introduction 

Finger detection and tracking recently has grown to 

be more and more popular and is an essential feature of 

many computer vision applications such as in [22]. 

Among th previous studies, most of them were 

proposed under wearable devices-based [1-3], model-

based [4-6] or hand-pose-based [23], and appearance-

based or visual-based [7-9]. Wearable devices may 

have the best accurate result of detecting the finger 

position. However, due to its “uncomfortable” and 

“expensive” devices, it cannot be used in real-life 

applications. On the other hand, model-based finger 

estimation works very well in estimating the finger 

position and some of them can work in a real-time 

system However, to implement and use such a system 

in real-time home applications is an expensive and 

extensive resource allocation process. Even though the 

appearance-based method does not have better 

accuracy compared to the other methods, it can be 

easily implemented in real-life applications without 

allocating many resources and a powerful machine. 

Besides, the appearance-based system also has the 

speed that needed in the fast-moving finger problem 

due it simplifies the structure of the model. 

Some finger actions used in the real-life situation 

often has a repeatable structure. Guitar strumming, doll 

playing manipulation such as Bu-da-chi doll or Finger-

like doll are the example of such previous mentioned 

actions. The problem of detecting and tracking such a 

gesture may be solved using Hand pose or Model-

based system by estimate the finger position given the 

hand data to the model. However, the estimated finger 

position’s result may have a significantly differ 

position with the real world finger position and it will 

become a problem. In 3D animation for 3D doll or 

sound producing by the finger movement in virtual 

guitar is an example for that. Thus, leave the real-world 

position of the finger as it originated in the application 

system could solve the problem. To do such work, 

model the real world finger trajectory in repeatable 

action in the form of FSM without changing its 

position is possible. Combining the expensive model-

based system with FSM control can be a problem in 

the speed of finger action in the future, thus using the 

speed-strength with acceptable accuracy of the 

appearance-based method is the possible option. Using 

the FSM model finger trajectory in an appearance-

based method could also solve many problems that the 

appearance-based method has. Such as missing fingers 

by occlusion, finger jittering, miss labeling, and miss 

detection.  

Based on the facts, we proposed a novel finger pose 

tracking system using FSM Model by combining with 

the appearance-based method. The proposed solution 

consisted of two parts: FSM-FT builder creates the 

FSM hand, and the FSM-FT runner controls the FSM-

FT system. The first part is employed to generate the 

FSM trajectory model of finger actions. The second 

part is employed to produce a finger position given by 

the FSM trajectory model and a new hand input data. 

In this study, we call the first part as FSM-Builder and 

the second one as FSM-Runner. The purpose of FSM-
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Builder is to represent the whole trajectory of finger 

actions into several states. It clusters similar hand 

gestures into one class, or we name it as Hand state. 

One action should have more than one hand state and it 

depends on how smooth the finger has produced by the 

system. Besides, one particular FSM trajectory model 

expresses one repeatable action. Each hand state has a 

representation of five 3D finger positions in the 3D 

world that collected by real-world data. In the second 

part, the FSM-Runner concept makes the FSM 

trajectory model produce the finger position by moving 

from one hand state to the next hand state. This is done 

based on the transition function and the new hand input 

data. The hand input data consist of the 3D finger 

position from the appearance-based method that we 

build and its RGB hand image. The FSM-Runner 

choose the correct state and the next state so, the 

system could produce the correct finger position 

accordingly.  

In order to validate the proposed system, we conduct 

an experimental study involving one sample repeating 

hand gesture. Our approach achieved a significant 

recognition rate during the testing phase. The rest of 

this paper is structured as follows. Section 2 discusses 

some related works and Section 3 presents a detail 

description of the implementation of the proposed 

work. Section 4 explains the experimental steps 

including results, and finally Section 5 concludes the 

study. 

2 Related Work 

2.1 Finite State Machine 

Finite State Machine is one of the mature methods 

that has been used for many purposes. One of them 

uses to model the trajectory of movements of the 

gestures. As mentioned in [10] FSM mostly used as the 

recognizer. Given the input data, the feature vectors 

such as trajectories will decide whether to stay at the 

current state of the FSM or jump to the next state. 

When reaching the final state, we can say that the 

gesture completely recognized. For example, hand or 

finger to recognize the gestures [11-14]. These works 

give us the general idea that some repeating gestures 

could be modeled by this Finite State Machine, and by 

using the gesture recognition classification problem, 

we are able to go through the states in the FSM model 

to retrieve the finger representation from each state.  

2.2 Finger Detection and Tracking 

Finger detection and tracking method divided into 

several kinds. There is appearance/visual based finger 

detection. Such as Ren et al. works in [15] proposed 

the infamous distance matrix called FEMD (Finger-

Earth Movers Distance). Then improve their work in 

[16] by using the K-curvature Algorithm to find the 

finger positions. Li [17] proposed to utilize the Graham 

Scan algorithm for generating the convex hulls to 

detect the fingers. Our previous work in [18] is 

inspired us to create our enhanced finger detection 

method used in this work as one of the features.  

The other kind of method is a model-based approach 

(generative pose). This method works by finding the 

minimum error of the hand model with its angle DOF 

parameters given the input depth image or a Point 

cloud. These kinds of methods have produced better 

accuracy results of finding the fingers compared to the 

appearance model. Starting from Oikonomidis work [4] 

in 2011, presented to analyze the orientation and full 

articulation of human hand captured from Kinect 

sensor using PSO. Then Qian [5] extends it by adding a 

guided PSO step. Another example works are [19] 

driven by a physics solver to generate 3D pose 

estimation. While this model based or generative based 

finger pose estimation (or hand pose estimation) are 

have a good result, their work is too complex and need 

a big amount of resource for the real-time application. 

That’s why appearance based research still growing 

until know. 

3 Methodology 

As seen in Figure 1, the complete FSM Control 

system has two main algorithms: FSM-Builder and 

FSM-Runner. The first algorithm is composed to create 

the model of representation finger trajectory based on 

sample finger action. On the other side, the latter is 

used to control the position and label of the finger 

based on the new input of the new data regarding the 

trajectory model created by FSM-Builder. Before 

discussing the two main systems in detail, we explain 

the preprocessing module in the following section. 

During this section, we have presented the way we 

collect and preprocess the sample data to be used for 

the FSM-Builder algorithm. Then, the second module 

about the appearance Finger detection and Tracking 

method that we proposed has explained as well. 

3.1 Hand Sample Data Collections 

To model the finger trajectory into FSM, one needs 

to sample the specific action or gesture. In this work, 

we do sample several sets of actions with all the 

possible gestures needed to be act. These samples 

extracted from the people whose expertise in the field. 

As an instance, if we want to create the FSM trajectory 

control model for guitar strumming or picking, at least 

we may need people that could perform those skill well. 

The data recorded consists of several parts. Those data 

are the RGB images (Irgb) and depth images (Idepth). 

The Point cloud data (Pc) can be extracted from the 

given data and the point cloud needed in order to get 

the real representation of the finger position in the 3D 

world. The finger position extracted from the point  
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Figure 1. System Architecture, consist of 2 main algorithms, FSM-Builder, and FSM-Runner 

cloud using our proposed appearance-based finger 

detection has explained in detail within the next section. 

Both point cloud and finger position generated in 3-

dimensional Euclidean space consists of x, y, and z 

points. Point cloud and finger are in the form of .ply 

files and .txt files, respectively. In addition, the finger 

files consist of a finger position in x, y, z, and its label. 

During the next step, all of these finger position 

samples and the label will be fixed by the help of a 

human, to produce the correct labeling sample and 

finger position. Because of the inability of producing 

accurate results, with the proposed appearance-based 

finger detection and tracking, semi-manual labeling by 

the human is essential. The 3D finger selector 

application has been built to help for marking and 

fixing the fingers and the results of marking are in 

Figure 2. Apart from that, Figure 3 presents the 

interface application of 3D finger selector and this 

helps the user to mark or edit the finger position faster. 

   

(a) Point Cloud (b) Raw Finger 

Tracking 

(c) Fixed Finger 

Figure 2. Example of fixing finger position in the 

labeling section 

 

Figure 3. The interface of 3D finger selector 

application that used to fix the finger 

3.2 Hand Segmentation and Arm Removal 

In this section, we present the proposed appearance 

based 3D finger detection and tracking from the point 

cloud data that we use to extract the finger position 

feature. The first step of the system is to separate hand 

from the rest of the body and the background. For this 

task, we used a Realsense Depth Camera and we apply 

a common depth threshold value to separate the hand. 

This method supports to filter out the unnecessary 

points in point cloud and pixels in the RGB image 

from the predefined minimum and maximum distance. 

Moreover, the background and the body of the user can 

be easily removed by considering the hand as the 

closest object in the range. However, occasionally the 

arm is still available in the range of a predefined area. 
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To extract the hand from the arm, the central point or 

middle point of the hand is needed. It computes by 

averaging all of the available 3D points after removing 

the background, as seen in Figure 4(a).  

Let Pchand = {p1, p2… pn} as the point cloud of the 

hand, while pi is the single point of the point cloud 

with the n total number of the hand point cloud and pmid 

is the middle point that we need to extract using the 

equation (1).  

 1

n

i

i

mid

p

p
n

=

=

∑
  (1) 

The direction of hand detection is needed to remove 

the arm region. Thus we assume that the direction of 

the hand is predefined as “Up” direction, as seen in 

Figure 4(a) and the opposite direction of the hand 

direction will be removed. Given the palm point 

position and direction “UP”, the reference point refp  

iscalculated by: ref mid cp p y s y= ⋅ + ⋅  where, 
c
s  = scalar. 

Any point in the hand point cloud bellow refp , is 

removed as the condition in the equation (2).  

 
, *0

( )
, *1

i ref irem

rm i

i

p y p p
Pc A p

otherwise p

⋅ >⎧⎪
= = ⎨

⎪⎩
 (2) 

The reference point 
refp , in Figure 4(b) with the red 

line as the visual representation, while the final result 

of the arm removal is shown in Figure 4(c). This 

preprocessing step results in the new point cloud rem

Pc  

that can be used for the next finger extraction 

algorithm.  

   

(a) (b) (c)  

Figure 4. Arm removal strategy 

In the next frame, to track the direction of the hand 

and it is calculated by finding the rotation degree of the 

average detected fingers compared to the rotation 

degree in the previous frame. The detail explanation 

about the direction tracking is presented in the next 

following sections. 

3.3 Finger Detection 

To extract the finger position from the point cloud 

after the preprocessing step the system first needs to 

check whether the state of the hand belongs to the 

“detection” state or “tracking” state. When the hand in 

the “detection” state, the system will extract the finger 

position by detection algorithm. After successfully 

detect the finger position, the state of the hand will 

change into the “tracking” state in the next frame. In 

this section, we will talk about our proposed finger 

detection method briefly.  

The proposed finger detection has three steps: 

remove the palm’s point area, clustering finger’s point 

candidates, and finding the fingertips. Let rem

Pc  are the 

new point cloud after preprocessing and the palm point 

position can be calculated using the equation (3),  

 ^ 0

n

rem

i

i

mid

p

p
n

=

=

∑
 (3) 

From the palm’s middle point ^

mid
Pc  detected from 

the equation (3), palm candidate point can be removed 

by applying the virtual sphere region in the point cloud 

(see Figure 5(a)). Any points intersect with the virtual 

sphere are removed using γ  threshold. However, in 

order to keep the meaningful points when the finger 

curved, δ  threshold applied to the virtual sphere.  

The equation to get the virtual sphere region is 

defined as follow: 

 
0, ( )

1,

rem

V
if V Pc true

Pc
otherwise

⎧ =⎪
= ⎨
⎪⎩

 (4) 

^ 2 ^ 2

^

( ) ( ) ( )rem rem rem

c mid c mid

rem

c mid

V Pc pc x pc x pc y pc y

r and pc z pc z δ

= ⋅ − ⋅ + ⋅ − ⋅

< ⋅ − ⋅ <

(5) 

We employ 2D Euclidean distance to check whether 

the points are within the circle and then check the 

depth difference between point clouds and the center of 

hand palm using equation 5. Note that we didn’t use 

the absolute value on the subtraction so that the pixels 

that are further from camera than center point of hand 

will be removed (In our system, we get larger z value if 

the point is near to camera, it’s negative value because 

we mirrored our scene from Real Sense). Using this 

method, we get a new point cloud V
Pc . Moving further 

K-distance clustering applied to the separated pixels or 

called the finger regions, and there should be at least K 

(e.g. five) clusters after the previous step, as can see in 

Figure 5(b). For each point in finger regions, the 3D 

Euclidean distance between any two points is 

calculated, and if two points are close enough, they are 

considered as the same cluster. Finally, given the 

candidate points of each cluster, we calculate the score 

by using equation (6) and the fingertips 
hand

F  can select 

using the k-maximum score of the candidate point. The 

result of this step is shown in Figure 5(c). 

 

^ 2 ^ 2

^

( ) ( ) ( )

(( ) 2)

cl cl cl

i mid i mid

cl

i mid

dbf Pc p x p x p y p y

p y p y ∞

= ⋅ − ⋅ + ⋅ − ⋅

+ ⋅ − ⋅ ×

 (6) 

( ( )),cl

hand
F Max dbf Pc=  where 

1 2 5
{ , , , }

hand
F f f f= …  (7) 
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(a) (b) (c)  

Figure 5. Finger detection steps 

3.4 Finger Tracking 

The clustering process in finger detection spends a 

long time process. To optimize the time of finger 

extraction, tracking the finger position in each frame is 

necessary. Thus, we propose a method for tracking the 

finger position in 3D space, called the “cube region 

search algorithm”. Given the 
hand

F  from the detection 

algorithm, for each finger 
i
f  in 

hand
F  we generate 27 

grid cubes region search (SC) around the previous 

extracted finger position for each finger available as 

seen in Figure 6. For each SC in 
ijksc  we find the 

maximum dbf score using the previously mentioned 

equation. Given V
Pc  and ijksc  area, the new finger 

could be extracted by equation (8). 

 ^ ( ( ( )))V

hand ijkF Max dbf sc Pc=  (8) 

 

Figure 6. 3D Cube search finger tracking 

The system uses the previously explained finger 

detection method to overcome the problem of fast 

finger moving and noisy point cloud. After tracking, 

the system will predict the hand direction by 

calculating the available angle and decide the direction 

by angle region check. 

As mentioned before, this decided direction is used 

for the wrist removal method. When tracking the hand, 

we assume the direction is “UP” at the beginning and, 

if the tracking is failed, the system will reset the 

direction to the initial state and users need to adjust 

their hand accordingly. Detected and tracked fingers 

from the previous detection methods, then presented as 

features that represent the hand. 

3.5 Finger Normalization 

By the equation (8), we could extract the finger 

position and use it as one of the features for the FSM-

FT system. However, in some cases such as: when the 

finger moving too fast, the noisy point cloud and finger 

occlusion, the proposed method not able to extract the 

finger properly. Thus, in the “Hand Sample Data 

Collections” section, we ask humans to fix the finger 

label and the missing finger position manually. This 

step is crucial for the process to build the FSM 

trajectory control model during the next step because 

of the actual label and finger position of the hand 

action that will be produced by the end of the system. 

Therefore, normalization of the finger data is needed 

since the hand position and size aren’t always in the 

same manner, every time it recorded. 

There are three steps for hand normalization. First, 

subtracting each finger with its palm center point. This 

step used to bring each hand in the origin position in 

the axis (0, 0, and 0) concerning its palm center point. 

Second, find the scale factor of each hand, which 

calculated by dividing the statistical measure of the 

size of the hand with its number of a finger. The third 

step is to normalize the size of the hand by dividing 

each finger with its scale factor. This three-step are 

represented in the equations below. 

Where int ( , , )palm po x y z′ ′ ′=  

 ( , , ) ( )
i i i i i i
x y z x x y y z z′ ′ ′ ′= − − − − −  (9) 

 

2

1

( , , )
n

i i i

i

x y z

s
n

=

′

=

∑
 (10) 

 ( , , ) ( , , )i i i

i i i

x y z
x y z

s s s

′′ =  (11) 

Given the finger sample data normalized, the FSM 

trajectory control model is ready to generate. A 

detailed explanation will be presented in the next 

section. 

3.6 FSM-FT Builder 

There are several steps that need to perform in order 

to transform the sequence of sample action into the 

FSM model, that represent the finger trajectory of the 

action itself. As we know, FSM consists of several 

members. A finite of state, a finite non-empty input or 

relationship between the state, and a series of transition 

functions. Thus, the first step is to generate the finite of 

state. In fact, the whole sample in one set of actions 

can be represented as several numbers of finite states in 

FSM. Those states are the cluster of the finger in hand 

that has the same pose and, the famous K-means 

clustering can work well to extract such states. 

However, since we do not know the exact number of 

the states that the sample could produce and how many 

may differ from the other actions, K-means clustering 

cannot be used.  

As an alternative, the simple nearest neighbor 

clustering with some distance threshold is performed. 
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To cluster the finger, first, we extract features to 

represent the normalize finger. The normalize finger 

method is not rotation invariant and therefore, we 

chose the angle as the feature to cluster the finger 

sample. Moving further, we use spherical coordinate 

space on the angle feature extracted with the reason 

that this method is claimed to be rotation invariant. 

Spherical coordinate has 3 parameters: radial distance, 

polar angle, and azimuthal angle (r,θ,φ). In this case, 

we only use the angle parameters, which are polar 

angle and azimuth angle as features. i=1…5 (fingers). 

 2 2 2

i i i i
mag x y z= + +  

 1 1cos ( ), , tan ( )i

i i

i

z y

mag x
γ θ γ ϕ− −

= = =  (12) 

 
1 1 5 5

[ , , ..., , ]
s

An θ ϕ θ ϕ=   

Given the angle feature vectors of each hand, the 

distances of each cluster are calculated as follow 

 
2

1
( )s f f

n s c

D An An

C D T

+
= Σ −

= <

 (13) 

By experimenting with the sample data, threshold 

scalar (Tc) was calculated. If the distance 
s

D  is below 

the threshold, then it labels as the same cluster 
n

C  and 

calculates the finger centroid as the representation of 

the finger in the state, which is called the “state hand”. 

3.7 State Connections 

The next step is to generate the transition function. 

However, as shown in Figure 7, each state is not 

connected to each other. To connect those states, the 

relationships between states are needed. There are two 

ways to form the relationship between states. The first 

is using the distances between the state’s hand. The 

distance can be calculated from the angle feature of the 

new hand state (finger representation of each state) of 

one cluster to the other and find the minimum distance 

to connect it. The second way is to find the minimum 

frame difference (MFD) between states. Each cluster is 

already connected in the time sequence of the sample 

data. Each member in each cluster belongs to a 

different time frame and can be connected by using the 

MFD algorithm. Thus, in this system, we used both of 

these features (distance and minimum frame difference) 

to feed into the classification tree. This classification 

tree produces three classes as the next state, not next 

state, and merge state class. To train the classification 

tree, several FSM sets are created. We collected the 

features from each state in each FSM and marked the 

ground truth class and, then feed the training sample 

into the classification tree. Below equations are the 

feature extraction steps of the state hand. 

 
1

min( ) 1dif s sMFD fr fr fr
+

= = − ≤  (14) 

 2

1
tan ( )s f fAngle dis ce D An An

+
= = Σ −   (15) 

 

Figure 7. The result of state hand creation from finger 

clustering method 

Given the state number, the relationship between 

states, and the state hand, the state transition function 

could be extracted directly. The key part of the FSM 

system is the state transition. It indicates the moving 

direction of the states and limits the movement of the 

states. 

Figure 8 is the simple sample result of FSM-

Builder’s result. We use this simple action movement 

of the index and middle finger curved to the palm to 

explain how the FSM-FT Builder system works. 

 

Figure 8. The final result of FSM-Builder 

3.8 FSM-FT Runner 

From the FSM-Builder algorithm, the FSM model 

representation has been generated complete with its 

transition function. To make the FSM model run or 

work, the second important algorithm, the FSM-

Runner is proposed. This algorithm is used to find the 

initial state and predict the next state of the FSM model 

that could extract the representation of the correct 

finger position produced by the current state given the 

new input data by following the state transition 

function. 

The generate FSM model created by FSM-Builder 

has several parameters. 

0
{ , , , , }

x
FSM S V q q F= , where, 

1 2
{ , , ..., , }

i x
S s s s s=  are the states 

1 2 3
{ , , , ..., }

n
V v v s v=  (i.e., hand and finger feature 

vector) 

0
q : 

1
s

 

(i.e., initial sate)
 

and 
x

q : 
x
s  (i.e., exit state) 
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F S V= × → S  (e.g., ( , )
i n

F s v →
1i

s
+

), next state 

function 

Let FSM-Runner be the FSM control of FSM 

generated by FSM-Builder. FSM-Runner takes the 

current state 
i
s  and current camera input all

V  as the 

input to produce the next state 
1i

s
+

. Where all
V  is the 

combination of hand features , , .ad hog huV V V  In detail, 

ad
V  is the collection of vector finger angle 

s
An . While 

the finger position in 3D 
hand

F . 
hogV  is the Histogram of 

Gradient feature of the image rgbI  and 
hu

V , is the Hu 

moment feature of the image 
rgbI . The next state 

1i
s

+
 

then will produce the new finger *

hand
F  that represent in 

the corresponding state. The combination of features 

could be 2 or more features. We did some experiments 

to check the best combination of features and the 

results have discussed under Section 4 and Figure 9 

representthe FSM system. 

 

Figure 9. The scheme work of the FSM model with FSM-Runner algorithm 

The speed of the finger may be one of the 

difficulties of selecting the correct state. Thus to solve 

the problem, we built the jump mechanism system that 

in the case of the confidence of the system to predict 

the correct state is lower than the threshold. And then 

the next state prediction could be selected without a 

restriction of the state transition table (using a similar 

method as finding the initial state). 

In this work, we implemented two kinds of 

strategies to predict the next state using the SVM 

model. The first strategy called the Big Tree model. It 

works by training all the data among all categories, 

which in this case is the hand states, in one complete 

SVM model. This model is used to decide the initial 

state and also the “big jump” mechanism system. The 

complete strategy is in Figure 10 and by using this 

strategy, the system is not allowed to restrict the 

Transition function. Thus it allows the system to 

produce all of the available hand poses in the FSM 

model. 

 

Figure 10. Example of FSM-Runner first strategy 

The second strategy is called the Small tree model. 

Instead of using one complete model of SVM 

classification, we divided the model into several parts 

with the number of categories is one of the states and, 

its’ neighbor that connected with the corresponding 

state. The depth of the neighbor connection is 1 to 2 

depth of connection depends on how big the FSM 

model is. From the largest tree of FSM, the longest 

depth can be selected. In our sample works, we used 

only 1 depth of neighbor connection. This strategy is 

the main strategy that we apply to select the correct 

state according to the transition function. The SVM 

model that we trained produced the probability of the 

prediction in each trained state during the current state. 

Figure 11 is the second strategy of tree model with 2 

depth of connection.  

 

Figure 11. Example of FSM-Runner second strategy 

The feature vector extracted from the input then 

insert into the second SVM strategy and let the two 

models that have been trained before to predict the next 

state from the current state and its input. Then, the last 

step for the FSM-FT Runner system is the pooling step. 
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This pooling will take the two probability results from 

three models. If both model’s result is similar, then the 

system directly takes the result as the main result. 

When all the results are different, the next thing to do 

is fit the finger value from the two Hand state of the 

two models and compare its minimum distance to the 

point cloud. The Hand that has a minimum distance 

with the point cloud and highest probability result will 

be selected.  

4 Experimental Result and Discussion 

To test the robustness of our method, we conduct 

several experiments. Since the unavailability of any 

public dataset that closes to our works, we designed 

simple finite-repeating gestures and generated its FSM 

model. We used this gesture or action to test the system. 

Figure 12 is a simple design of finite-repeating 

gestures called counting action. We record 4 samples 

of actions, which contain 300 frames for each action. 

We use one of the samples to generate the FSM model 

and the rest will be used for training and testing in the 

FSM-Runner step. From 300 frames sequence of 

counting action, we able to extract 33 hand states and 

their relationship. This FSM used as the base to test our 

FSM-Runner along with the rest of the sample as 

mentioned before. 

 

Figure 12. Sample finite-repeating set of gestures that 

uses to test the proposed system 

4.1 First Experiment Result 

The first experiment is used to investigate the best 

possible combination of the feature. We have three 

kinds of features extracted from 3d and 2d space that 

can be combined to enhance the result. There are 3 

main features that we extract from the hand sample: 3D 

finger position from AFD (Appearance Finger 

Detection), HOG (Histogram of Oriented Gradient) 

and Hu moment from 2D hand images. To test the 

combination and also the robustness of our method, we 

used the first strategy, the big tree model that we 

mentioned before. Apart from that, 90% and 10% of 

the sample data have used for training and testing, 

respectively. 

The results of the first experiment have shown in 

Table 1 and it shows that the combination of AFD + 

HOG has the best result among the other methods. 

However, there is no significant difference in the 

recognition rate between the other combinations. 

Table 1. Results of the first experimental for selecting 

a combination of features 

Name of Feature Recognition rate 

Only AFD 69.1% 

HOG 68.4% 

Hu Moment 63.3% 

HOG + Hu 71.8% 

AFD + HOG 75.0% 

AFD + Hu 71.13% 

AFD + HOG + Hu 74.2% 

 

The result of the Big SVM tree only reach 75% 

accuracy, because since we want to keep the 

smoothness of the finger movement, it ends up with 

many categories and classes, thus it lowers the 

accuracy of detecting the class. It means that it’s hard 

to distinguish the difference of the class hand created 

by the FSM-Builder when the smoothness of the 

gesture becomes the main concentration (lower 

threshold of clustering in FSM Building). 

4.2 Second Experiment Result 

The second experiment is to test the Small Tree of 

SVM. By using the same FSM model and sample set 

from the first experiment, we trained and tested the 

Small Tree of SVM using the top combination features, 

resulting from the previous experiment which is AFD 

+ HOG. Figure 13 illustrated the results of the 

recognition rate after we tested all of the SVM models. 

The average result of cross-validation gets an average 

of 83.01% recognition rate while the testing gets an 

average of 73% recognition rate. 

 

Figure 13. Result of the second experiment using 

Small Tree SVM method of FSM-Runner algorithm 

Once more, in some parts of class or state, the 

recognition rate falls to a shallowvalue. We believe this 
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happens since we try to keep the smoothness of the 

hand gesture, while the feature was not able to 

distinguish it correctly. Therefore, it is essential to 

select more additional hand features to overcome this 

issue. Another reason is that, because of the difficulty 

of finding training data for each specific class/state. It 

ends up creating augmented synthetic data that have 

not variated enough comparing to the real data 

produced by a human. Moreover, smooth the finger 

movement, the difficulty of creating the training data 

and increase the size of classes are the main drawbacks 

or limitations of this approach that we need to be 

solved in the future. 

4.3 Comparison with Existing Method 

Previous work such as [15-17] able to extract the 

finger position from the depth data similar to our 

approach but they are mosly fail due to self occlusion 

such as finger bending. Do to the help of tracking on 

FSM model, whenever the data missing by some 

occlusion, the finger position still could be extracted by 

finding the neighbor hand state in the current time. 

Thus, our approach never have a missing finger or 

false labeling. Jittering finger also reduced since our 

finger position result is a fixed. Work on [21] also use 

the same approach that training RGB image of finger 

using SVM as the classifier to detect the finger position. 

But those approach are only work in the current hand 

position and can’t get the real world finger position. 

The limitation of our work is that for now is its only 

work on repeating-like motion or action. By the nature 

of simple FSM model and Machine learning approach 

our proposed method is fast comparing any Model 

based approach such as in [4, 5, 19]. Our approach 

could run in Real-Time speed on the low end machine 

specification. Thus, it is possible to extend our method 

into embedded system. 

5 Conclusion and Future Works 

This work proposed a novel finger pose tracking 

based FSM algorithm. The proposed method consists 

of two main algorithms —first, the FSM-Builder 

system, which created to extract the FSM model from 

the finite-repeating action sequence. The system is 

clustering the similar hand poses into one and represent 

it as a state. Each state consists of a representation of 

the correct finger position and the relationship with 

other states. This relationship then used for the second 

part of the FSM-FT system called the FSM-Runner 

system. Given the FSM model from FSM-Builder, the 

Runner system helps to guide the input hand images 

and point cloud into the correct state of the hand hence 

to produce the right finger position.  

Our first experiment is to select the best combination 

of features that we proposed and the result shows that 

the AFD + HOG method has achieved a significant 

performance compared to the other combinations. The 

second experiment is to test the robustness of the small 

SVM tree of the FSM-FT Runner system by using the 

best combination of features. The result shows that it 

gained an average of 83% recognition rate of the 

system. However, in some states, the result does not 

have a high accuracy rate because of the feature that 

we selected was not enough to discriminate for each 

class. Another reason is that it does not have enough 

variation in the training data due to the difficulty of 

collecting some specific classes training data.  

As our future directions, we plan to improve our 

research problem by selecting more features in the 3D 

point cloud side using a 3D point cloud descriptor such 

as a histogram of 3D facet [20], instead WFD because 

of its missing data. Besides, we hope to apply optical 

flow on the 2D side of data as an additional feature. It 

also will increase the size of the dataset to improve the 

system as well. Another promising idea is to apply 

deep learning techniques, convolutional neural 

networks as the FSM-FT Runner to extract the 2D 

features. 
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