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Abstract 

In recent years, new generation botnets tend to use an 

evasion technique based on Domain Name System (DNS) 

called Fast-Flux Service Network (FFSN) to hide the 

actual location of their malicious servers. Detection of 

FFSN continues to be a challenging issue because of the 

similar behavior between FFSN and other legitimate 

infrastructures, such as Content Delivery Networks 

(CDNs) and Round Robin Domain Name System 

(RRDNS). In this paper, we present a novel approach 

based on analyzing the passive DNS traffic traces to 

detect malicious FFSNs. By analyzing DNS traces, we 

extracted ten key features and employed on the popular 

machine learning algorithms to build classifiers aim to 

classify a domain as either malicious flux service or 

legitimate. The seven among the ten features are first 

introduced in this study. The effectiveness of selected 

features is illustrated by comparing the distribution of 

95% confidence interval for the mean and standard errors 

between legit, malware and fast-flux domain names on 

each feature. The statistical results show that there are 

discernible biases in the distribution of the feature values 

between benign and malicious domain names. The 

experimental results show that our proposed approach 

achieves the higher detection accuracy and lower false 

positive rate than the previous methods. 

Keywords: Domain-flux, DGA-based botnet, Malicious 

domains, Botnet detection 

1 Introduction 

One of the most serious threats currently on the 

Internet is Botnet. In most large-scale coordinated 

cyber-attacks, botnets are recognized as the platform 

serving the attacks, such as it can be used to perform 

distributed denial of service (DDoS), send spam or 

steal data, etc. Detecting botnet is therefore of great 

importance and some security researchers have 

concerned about this threat and proposed many 

effective botnet detection approaches. 

However, botnet developers are constantly 

developing new techniques in order to improve their 

bot and evade detection from security researchers. In 

recent years, new generation botnets tend to use a 

technique called Fast-Flux Service Network (FFSN) to 

hide the true location of their botnet servers. The main 

idea of FFSN is one or more domain names that are 

resolved to multiple (hundreds or even thousands) 

different IP addresses with a short Time-To-Live 

(TTL), and the rapidly change in DNS answers [1-2]. 

These IP addresses are chosen in a round-robin fashion 

from a pool of thousands addresses of the infected 

machines in the botnet, called flux agents, which the 

user host can connect to [3]. Each time the user host 

requests to visit a site (e.g., flux.example.com), it will 

reach one of the flux agents to process its requests. 

Instead of processing the request itself, it continues 

redirects the request to a different server, called 

mothership [4, 10]. The responses from mothership 

will be sent back to the flux agent. Finally, the user 

host will receive the result from the flux agent (Figure 

1). It is very difficult to find mothership, because they 

are often hidden behind the flux agents [10]. 

Furthermore, the flux agents are often distributed in 

may different places on the networks [5].  

 

Figure 1. The basic idea of fast flux service networks 
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There are some approaches have been recently 

proposed to detect FFSN [5, 6-8, 9-22]. As previous 

mentioned, the characteristics of FFSN is one or more 

domain names are resolved to hundreds or even 

thousands different IP addresses (flux agents) and the 

rapidly change in DNS answers. The approaches that 

are proposed by [4, 13-15, 18, 21-22] use a small 

amount of active DNS traffic traces, so it cannot obtain 

multiple IP addresses associated with malicious fast 

flux networks. This disadvantage may enhance false 

positive and false negative rates. However, if the 

passive DNS replication method is installed, this limit 

can be overcome. We can reconstruct a partial view of 

the avaiable data in DNS by implementing DNS 

replication into DNS log databases. Based on the DNS 

Log databases we can answer questions such as where 

did this domain name point to in the past? What 

domain names point into a given IP network? What 

domain names are hosted by a given name-server? 

What subdomains exist below a certain domain name? 

etc.  

By analyzing passive DNS traffic traces, we extract 

ten key features and employ on the popular machine-

learning algorithms to build classifiers aim to classify a 

domain as either malicious flux service or 

legitimate/non-flux service.  

To summarize, in this work we make the following 

contributions: 

‧ We develop a tool based on Passive DNS [23] to 

collect DNS records passively from a network 

interface. From a large the number of the raw DNS 

data obtained, we define a DNS data aggregator aim 

to facilitate tracking and management of the DNS 

query/response information related to each domain. 

‧ We introduce to extract ten key features based on 

the obtained DNS traffic data to train classifiers that 

be able to distinguish legitimate domains from 

malicious fast-flux ones. The seven features among 

the ten introduced features are first introduced in this 

study. The effectiveness of selected features is 

illustrated by comparing the distribution of 95% 

confidence interval for the mean and standard errors 

between legit, malware and fast-flux domain names 

on each feature. The statistical results show that 

there are discernible biases in the distribution of the 

feature values between benign and malicious domain 

names. 

‧ We experiment on various MLAs and show that 

Random Forest is the best classifier to determine 

whether a domain name is malicious or legitimate. 

We also evaluate the effectiveness on the Recorded 

Dataset, the detection rate that we observed is 

similar to the detection rate estimated by the 

percentage split and cross-validate evaluations on 

the training set.  

The remaining of this paper is organized as follows: 

Section 2 reviews a number of related works. The 

proposed approach, system architecture and the 

methods to extract features are presented in Section 3. 

The experimental results and evaluation are presented 

in Section 4, and finally, we conclude this paper in 

Section 5. 

2 Related Works 

The issue of fast flux networks was reported for the 

first time by the Honeynet project [1]. Although Fast 

Flux attacks certainly cause more difficulty to be 

detected, there have been also many related literatures 

about detecting Fast Flux.  

To detect malicious Fast Flux domains, Holz et al [4] 

proposed to use features: number of unique NS records, 

number of unique A records and number of unique 

autonomous numbers (ASN). These features derived 

from several active DNS queries. They proposed a 

method of weighed linear regression to assign a flux-

score to a domain for classifying Fast-flux domains. 

Ammar Almomani [8] developed a system called the 

fast-flux hunter to detect unknown “zero-day” online 

fast-flux botnets. This system supported an evolving 

fuzzy neural network algorithm to enhance learning 

from inherent features of the FFSNs to distinguish the 

fast-flux botnet domain from legitimate domains. All 

the features are converted into digit numbers and 

ranked it to identify the most effective features in 

FFSN.  

Passerini et al. [22] pointed out that TTL is one of 

important features in detecting a fast-flux domain. 

Personal registration information which is detected 

from a fast-flux domain can be used in Passerini et al.’ 

classification to find malicious domains, because the 

victim’s personal information or randomly generated 

domain names are often used by hackers to register 

malicious domain names. 

Chen et al. [6] proposed a method to detect malicious 

FFSN based on LSTM network. They studied to use 

three characteristics as input of LSTM model. First 

characteristic is related to the conversion of domain 

name characters. Second characteristic is related to 

empirical information. Third characteristic is related to 

geographical and time. CDN servers in a content 

distribution system are often deployed in many 

different geographical areas. When users in different 

geographic areas query the domain name, the nearest 

server will handle it. The FFSN system has a quite 

small number of IPs dedicated to C&C server, it does 

not have distributed deployment capability [6]. 

Therefore, the FFSN system does not have the 

geographical discrimination characteristic of the 

resolution result, while the CDN has the geographical 

characteristic of the resolution result [6]. 

In addition to some of our proposed features are F2, 

F7, F9, F10, which are a bit similar to those suggested 

by Chen et al. [6], we also suggest some other features 

that can clearly distinguish between FF and CDN 

domain name. Because it is difficult to obtain HTTP 
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traffic due to privacy policy, our work does not access 

to HTTP traffic generated by individual customers. We 

only focus on privacy-preserving passive analysis of 

DNS traffic. This study proposes using ten features 

from DNS responses to develop a detection model. 

3 Proposed Methods 

3.1 System Overview 

Figure 2 shows an overview of our detection system. 

The system’s input is a stream of DNS traffic that is 

collected through Security Information Exchange (SIE) 

[24]. For each passive DNS sensor, the DNS 

queries/responses from/to the users’ machines are 

monitored in a predefined period (e.g. One day), and 

store raw DNS traffic information in a database (DNS 

logs). In order to facilitate storage and access from the 

DNS logs, it is essential to build a data structure that is 

able to easily access to the fields of raw DNS data. 

 

 

 

Figure 2. Overview of the proposed detection system 

However, the amount of DNS traffic has been often 

overwhelming. Therefore, in order to reduce the 

analyzed traffic, we apply some filtering rules. All 

DNS messages related to d domain are assemblaged 

into a higher-level DNS message named Q(d) (more 

details will be described in Section 3.2). 

The Data Pre-filtering module: This module is 

responsible for filtering out messages that are not alike 

flux domains. The main function of this module is to 

reduce the computational cost of the system and reduce 

the volume of the data (more details will be described 

in Section 3.3). 

The feature extraction module performs extracting 

DNS features. By examining a large amount of DNS 

data, we identified 10 different features, four of which 

were used in previous research [25], the remaining six 

features is first proposed in this study. Our principle 

for selecting these features are explained in detail in 

Section 3.4. 

Finally, some popular machine learning algorithms 

are applied to train the models and automatically 

classify domain names as legitimate or malicious 

(more details are described in Section 4). 

3.2 Data Aggregator 

In order to facilitate the description of the statistical 

features that our system extracts from DNS traffic data, 

the essential information must be gathered and 

expressed in a summary form. First, how DNS queries 

and related responses work should be defined. Suppose 

1 2
{ , , , }

n
D d d d= …  is a set of n domains. Let ( )

j
Q d  is 

an aggregate of DNS queries/responses related to the 

domain 
j

d , which is performed by users during a 

given interval of time Δ . The information in the 

queries and its related response is aggregated by 

formula 1: 

 
1 2

( ) ( , , , , , , )
j j j j j j

Q d d c I T S t t=  (1) 

where 
j

d  is the queried domain name; 
j

c  is the 

number of DNS queries/responses for domain 
j

d ; 
j

T  

is the set of Time-To-Live (TTL) of the DNS responses. 

j
I  is the cumulative set of distinct resolved IP 

addresses as request/response to domain 
j

d ; 
1
t  is 

timestamp of the first seen and 
2
t  represent timestamp 

of the last seen regarding 
j

d . 
j

S  is the set of all 

subdomains of the domain 
j

d . In other words, ( )
j

Q d  

includes information such as the number of DNS 

queries to the domain 
j

d  during Δ  time; the number 

of the IP addresses mapped to 
j

d ; time-to-live (TTL), 

etc. 

Summing up, after the data aggregating procedure, 

we have a dictionary of domains, where domain dj is 

key and 
j

c , 
j
I , 

j
T , 

j
S , 

1
t , 

2
t  are values. 

3.3 Data Pre-filtering 

In large networks, recursive DNS traffic is often 

very large. Therefore, we must first apply some 
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filtering rules to remove DNS that is clearly related to 

non-flux domain so that can reduce the volume DNS 

traffic. 

The fast-flux domains often have the following main 

features: (1) the time-to-live of DNS resources records 

is very short; (2) The high rate of changes of IP sets 

that is responded by each query; (3) There are a large 

number of IP addresses that can be resolved by 

querying the same domain name over time; and (4) the 

resolved IP addresses are usually scattered across many 

different networks [1]. 

We use the filtering policy as suggested by Perdisci 

et al [25] to select candidate flux domains with the 

following conditions: 

‧ Time-To-Live of a domain must be less than 3 hours 

(i.e., TTL<=10800 s). 

‧ Minimum number of distinct resolved IP addresses 

for the domain (i.e., | |
j
I  > = 3, or if a set of 

resolved IPs | |
j
I  < 3, must have a very low TTL 

<=30 seconds). 

‧ Diversity of networks for a domain (i.e., 

entropy(prefix(-Ij))>=0.333). The resolved IP 

addresses with the same prefix /16 are likely to 

belong to the same network. Diversity is calculated 

as entropy of /16 prefix networks in 
j
I  for a given 

domain dj.  

However, not all these candidate flux domains are 

actually malicious flux domains. There are also some 

legitimate services, such as CDNs or RRDNS are 

served through sets of domain names that share some 

similar properties with flux domains. 

The domains related to legitimate CDNs often have 

a very low TTL and resolve to multiple IP addresses 

located in many different networks [1]. For instance, 

weibo.com, a legitimate CDN domain has a short TTL 

(60 seconds) and constantly changes its A record IPs, 

resulting in the accumulation of almost 117 IP 

addresses during our monitoring period. It is difficult 

to identify and distinguish malicious fast-flux domains 

if only using each individual feature, but if combined 

with many features it will allow to detect malicious 

fast-flux domains more exactly. 

Summing up, a list of candidate flux domains and 

their related DNS information is considered as the 

output of this module. At the end of each candidate 

flux domain, we measure the features described in 

Section 3.4 to train classifier aim to automatically 

classify a domain as either legitimate or malicious flux. 

3.4 Feature Extraction 

Selection of discriminative features plays a critical 

role for machine learning based approaches. Therefore, 

we collected the DNS usage of several thousand well-

known benign and malicious samples. After analysis 

period, we extracted ten important features that can be 

included in machine learning algorithms to train 

detection models. 

- NumIPs (F1): Conventional benign domains 

usually have either one or few IP addresses 

associated with them. On fast-flux networks, a 

domain name is mapped to multiple IP addresses 

rather than a single IP address, with the goal of 

providing high availability and greater performance 

to the end user. 

- MinTTL (F2): The Time-To-Live (TTL) of each 

DNS query is stored in the DNS record. Flux hosts 

typically use a shorter TTL than legitimate hosts, 

which is usually in the order of a few minutes [1]. 

The shorter the TTL, the faster a host can change its 

A records. Therefore, the MinTTL feature is chose 

to extract in our detection system. 

- PreEntro (F3): The fast-flux agents are often 

distributed scattered across many different networks 

[1]. Most legitimate domain names are usually 

resolved to one or few separate network addresses. 

Domains related to malicious flux services often 

resolve to multiple IP addresses located in many 

different networks [1]. Based on matching IP 

addresses by prefix /16, we can distinguish them 

from the same network or different networks. 

Therefore, we choose this feature to estimate the 

degree of scattering of IP addresses among different 

networks, computed as formula 2: 

 2

2

( ) log ( )

log | |

x
p x p x

PreEntro
P

−Σ ⋅
=  (2) 

where P is the set of all the /16 IP prefixes in I. (e.g., 

the /16 prefixes of [78.46.45.16; 80.93.217.196] is 

[78.46; 80.93]); and ( ) ( ) / | |p x count x P=  is the 

relative frequency of the /16 prefix.  

If the value of PreEntro is equal zero that means that 

either all distinct resolved IP addresses in I pointed to 

domain d belonging to the same network, (the same /16 

network prefixes) or only a distinct IP address pointed 

to a domain d. In contrast, if all distinct resolved IP 

addresses are completely different (not the same /16 

prefixes), the value of PreEntro will be equal 1. The 

PreEntro value is closer to 1, that means there are 

multiple IP addresses belong to different networks or 

organizations pointed to domain d; conversely, the 

PreEntro value is closer to zero. 

- NumSub (F4): Most normal users when want to add 

new subcategories into their existing site, they rarely 

use subdomains. For example, a legitimate company 

owns example.com domain, if the company wants to 

add subcategories to their website, they often extend 

the URL (e.g. example.com/products) instead of 

using a third-level domain (3LD) (e.g. product. 

example.com). This allows web developers to avoid 

complicated DNS updates when adding new content 

to the site. 

In contrast, bot-masters often use 3LD domains 

instead of subdirectories for their communication. 
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They may purchase for second-level domain (2LD), 

e.g., example.com from a registrar. In order to avoid 

increased costs and additional risks, bot-masters tend 

to create botnets within third-level subdomains (3LD), 

all under a common 2LD. For example, botnet1. 

example.com, botnet2.example.com, etc., Bot-master 

sees advantages in using subdomains. If service to a 

3LD is suspended, service to other 3LDs within the 

same 2LD is usually not disrupted (i.e., if botnet1. 

example.com is blocked, traffic to botnet2.example. 

com is not disrupted). This lets bot-masters create 

multiple redundant DDNS services for their networks, 

all using the same 2LD. 

- MEntrSub (F5) and SDEntrSub (F6): Given the 

subdomain X with letters 
1 2
, , ,

k
x x x…  and 

respective probability values of 
1 2

( ), ( ), , ( )
k

p x p x p x… , 

the Shannon Entropy of X is calculated by using 

following formula (3):  

 
2

1

( ) ( ) log ( )
n

i i

i

H X p x p x
=

= − ⋅∑  (3) 

This feature computes the entropy of the character 

distribution for each subdomain in S. Then, we 

compute the Mean (F5 feature) and Standard 

Deviation (F6 feature) of the set of values 

1...| |{ ( ) }j j SH X
=

. 

- StabIPs (F7): Fast-flux service networks often 

belong to private organizations and are scattered 

across on the world [1]. Therefore, a malicious 

domain name can be resolved to different IP 

addresses belonging to different networks. On the 

other hand, to ensure the purpose of load balancing, 

legitimate domain names are often mapped to IP 

addresses belonging to the same network because 

they are owned in the same company. If the same 

domain name is resolved to many different networks, 

the server is likely compromised and used as a flux 

agent. Therefore, in order to distinguish fast-flux 

service networks are legitimate or malicious, we 

define a formula (4) as follows: 

 

| |

1

( ( ))

| |

D

j

j

unique prefix I

StabIPs
D

=

=

∑
 (4) 

where 
j
I  is the set of IP addresses associated with 

domain 
j

d ; ( )
j

pref ix I  is an extraction /16 prefix 

network of 
j
I ; | |D  is the total number of relative 

domains. 

- EntrSubL (F8): Given a domain X and the list of 

related subdomains S with the length of 
1 2
, , ,

k
l l l…  

and respective probability values are 

1 2
( ), ( ), , ( )

k
p l p l p l… , the Shannon Entropy of S is 

calculated by using following formula (5): 

 
2

1

2

( ) log ( )

( )
log | |

k

i i

i

p l p l

E X
S

=

− ⋅

=

∑
 (5) 

where ( ) ( ) / | |
i i

p l count l S= . This feature checks the 

information certainty on the length of the subdomains 

on each domain. 

- The Expected Score of Domain names (ESOD) 

(F9): This feature aims to measure the expected 

score for a domain which can distinguish bot-

generated domain names and human-generated ones. 

We first calculate frequency of occurrence of each 

Ngrams (with N = 3, 4, 5) across the domain name 

strings of Alexa Top 100,000 sites [26]. We then 

assign score for each i-th Ngrams in the following 

way: 

Table 1. List of selected features 

Features Feature Name Features Description 

F1 NumIPs The number of resolved IP addresses per each of domain 

F2 MinTTL The minimum value of Time-To-Live 

F3 PreEntro The Entropy of /16 network prefixes 

F4 NumSub The Number of Subdomains per each domain 

F5 MEntrSub The Mean of Entropy of Subdomains 

F6 SDEntrSub The Standard Deviation of Entropy of Subdomains 

F7 StabIPs The Stability of IP addresses pool 

F8 EntrSubL The Entropy of Subdomain Length 

F9 ESOD The Expected Score of Domain name 

F10 SeenTime The Time between the first Seen and the last Seen 

 

 ( ) 10 ( )log ( )Ngrams i Ngrams iS count=  (6) 

We extract 23,613 Ngrams and compute score for 

each of their Ngrams (see Table 2). These Ngrams 

scores are referred to calculate the expected score for 

each observed domain. 

Given a domain name X, we extract k Ngrams of X 

as 
1 2
, , ,

k
Ngrams Ngrams Ngrams…  (with N=3, 4, 5). 

The expected score of domains (ESOD) of X is 

computed by the following formula: 



1066 Journal of Internet Technology Volume 21 (2020) No.4 

 

Table 2. Excerpt of some Ngrams scores (N=3, 4, 5) in 

legitimate domain names from Alexa Top 100,000 

sites 

Ngrams Counts SNgrams 

ame 1314 3.118595 

res 1305 3.115611 

onl 1303 3.114944 

for 1293 3.111599 

sta 1286 3.109241 

nlin 1237 3.092370 

new 1222 3.087071 

onli 1212 3.083503 

nline 1210 3.082785 

onlin 1195 3.077368 

… … … 

 

 
( )

1

( )
k

Ngrams i

i

ESOD X S

=

=∑  (7) 

where k is the number of Ngrams of domain X, 

( )
grams

S i  is the score of i-th Ngrams which is 

referenced from 23,613 Ngrams scores (as shown in 

Table 1). 

For example, for a given two domains google.com 

and jvxzqy.net, we first extract the second-level domain 

(2LD) of each domain, and for each 2LD domain we 

compute its ESOD by applying the formula (6) and the 

reference N-grams scores as described in formula (5), 

we have: 

ESON (‘google’) goo oog ogl gle goog ooglS S S S S S= + + + + +  

ogle googl oogleS S S+ + +  

= 2.418 + 1.939 + 1.986 + 2.298 + 

1.763 + 1.799 + 1.799 + 1.724 + 

1.770 = 17.496 

ESOD (‘jvxzqy’) 
jvx vxz xzq zqy jvxz vxzq

S S S S S S= + + + + +  

xzqy jvxzq vxzqy
S S S+ +  

0 0 0 0 0 0 0 0 0 0= + + + + + + + + =  

ESOD(‘jvxzqy’) = 0, this shows that Ngrams 

(N=3,4,5) of domain ‘jvxzqy’ rarely appears or matches 

Ngrams of legitimate domains. In contrary, ESOD 

(‘google’) = 17.496 implies that Ngrams of ‘google’ 

appear frequently in legitimate domains. Therefore, the 

higher ESOD value is, the higher ability of legitimate 

domain is. 

- SeenTime (F10): This feature measures the period 

life between the first seen (timestamp t1) and the last 

seen (timestamp t2) of a domain 
j

d . 

 
2 1

( ) ( ) / 3600
j

SeenTime d t t= −  (8) 

We use five popular machine learning algorithms 

along with all the proposed features to train the 

classifier aim to detect a domain as malicious flux 

service or legitimate/non-flux service. Afterward, the 

best classifier will be chosen to classify domains. 

4 Experimental and Evaluation 

All the experiments related to the collecting DNS 

traffic data and preprocessing data are conducted on a 

4-core 2.13GHz machine with 16GB of RAM for our 

experiments. 

4.1 Data Set 

In our experiment, all authoritative DNS queries/ 

responses in the live DNS traffic were recorded. In 

addition, in order to increase the number and variety of 

flux domains in traffic, we also manually retrieved the 

list of domain names on ATLAS [27], hphosts [14] and 

DNS-BH [15] websites. During the period of three 

months monitoring (from Jan 01 to Apr 01, 2016), we 

have recorded more than 44.1 million DNS queries that 

aggregated about 5.4 million distinct domain names. 

We refer to this data as DAT dataset. In order to obtain 

the labeled data set (LDS), we used semi-manual 

processes as following describes. 

- For Legit Domain Names (LDN): We derived a 

large white-list of benign domain names from the 

Alexa Top global domains list [26] with ranking 

from1 to 10000. From these benign domains, we 

check and examine in DAT dataset to get out 

legitimate DNS traffic that is queried by users 

during period from Jan 01 to Apr 01, 2016. Overall, 

we obtained the number of popular legitimate 

domain names that often appears in DAT dataset. 

We label this legitimate data set as LDN (see Table 

3). 

Table 3. Labeled DAT dataset based on known flux-domain, known malware domains, and legitimate domains 

Date # DNS Queries # Distinct Domains # LDN # KMD # KFFD # Unknown 

Jan-01, 2016 2,668,445 261,484 4,569 2,909 772 253,234 

Jan-02, 2016 2,793,057 283,918 4,792 2,874 763 275,489 

Jan-03, 2016 2,591,310 260,824 4,732 2,869 736 252,487 

Jan-04, 2016 2,433,658 241,388 4,681 2,800 722 233,185 

Jan-05, 2016 2,405,839 248,518 4,710 2,741 736 240,331 

... ... ... ... ... ... ... 

Jan-14, 2016 4,038,918 775,365 4,808 3,629 845 766,083 

Jan-15, 2016 3,457,537 455,928 4,723 2,860 758 447,587 

... ... ... ... ... ... ... 
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- For Known Fast Flux Domains (KFFD): We 

gathered a dataset of known fast-flux domains from 

some known botnets such as Zeus, SpyEye, Palevo, 

and Feodo, which are classified and reported by 

abuse.ch website. The collected dataset contains 

domain names classified as flux. We will refer to 

these domains as the KFFD dataset (see Table 3). 

- For Known Malware Domain names (KMD): We 

first collect the malicious domains from multiple 

sources such as Malware Domain List [28], 

Malware Domain [29], PhishTank [30], hpHosts 

[31], and CyberCrime Tracker [32]. Overall, we 

obtained 242,498 of malicious domains. Then, we 

examine and match these known malware domains 

in DAT dataset to get out malicious domain names, 

and label them as KMD. The reason we using the 

KMDs are because the number of KFFD is often 

very small, and it rarely appears in DAT dataset. In 

addition, not all KMDs are related to flux networks, 

but if a malware domain m exhibits characteristics of 

a flux network (see Section 3.3) it will be flagged as 

a Known Fast Flux Domain (KFFD). In these cases, 

we identify them manually. Overall, we obtained the 

number of KFFDs as shown in Table 3. There are 

also some domains that we cannot find enough 

reliable information to label them, we marked those 

domains as “Unknown” (see Table 3). 

4.2 Experimental Results 

We evaluate the results of our experiment based on 

the labeled data set. We use labeled data set for two 

purposes: (1) for training classifier models, and (2) for 

estimating the accuracy of the classifier models. 

4.2.1 Comparing the Feature Values  

Figure 4 shows the distribution of 95% Confidence 

Interval (CI) for mean and Standard Errors (SE) 

between legitimate, malware and fast flux domains on 

each the extracted feature. The statistical results show 

that there are discernible biases in the distribution of 

the selected feature values between benign and 

malicious domain names. In other words, these 

selected features exhibit important characteristics that 

are useful for training classifiers to be able to classify 

domains as malicious or legitimate. 

4.2.2 Training and Evaluation of the Classifiers 

We use the labeled data set (LDS) described in 

Section 4.1 to train classifier models. In this study, we 

use five machine learning algorithms (Naïve Bayes 

(NB) [33], Nearest neighbors (KNN) [34], Assistive 

Vector Machines (SVM) [35], Decision Trees (J48) 

[36] and Random Forest (RF) [36]) to train and build 

classification models. The most performance model is 

selected to be implemented in our detection system. 

In addtion, we use two validation methods known as 

tenfold cross-validation and percentage split to 

evaluate the accuracy of the classifier algorithms. 

- Tenfold Cross-Validation (10-fold CV): We 

performed tenfold cross validation on labeled data 

set by employing various five Machine Learning 

Algorithms (MLAs) to train and build classification 

models. We split the data set into 10 smaller random 

subset, of which nine subsets were used for training, 

the remaining one was used for evaluation. This 

process was repeated 10 times to ensure that all 

samples were tested. The 10-fold CV estimate is the 

average of these 10 measures [38]. 

- Percentage split: To ensure unbiased results in 

training phase, the dataset is divided into two 

portions. The first one is 75 percent for training and 

the rest 25 percent is used to check the correctness, 

so that the classifier can be evaluated on data that 

had not been seen previously. 

The following measure parameters are used to 

evaluate predictive performance of classifiers: 

- Accuracy: is the total number of correctly classified 

domains divided by the total number of the 

classified domains (formula 7).  

 
TP TN

Accuracy
TP FN FP TN

+
=

+ + +

 (7) 

- Precision: is the number of the correctly predicted 

malicious domains divided by the total number of 

the domains that are predicted as malicious (formula 

8). 

 Pr
TP

ecision
TP FP

=

+

 (8) 

The results in Figure 3 show that the detection rate 

of the Random Forest (RF) classifier is the best with 

Accuracy around 95.5% and Precision around 91.6%. 

 

(a) Use Percentage Split (b) Use 10-fold Cross 

Figure 3. Classification accuracy and precision 

Moreover, we also use the Receiver Operating 

Characteristic (ROC) curve [37] to compare 

predictions efficiency between classifiers, line in the 

plot is the closest to the left-hand border and the top 

border compared to other lines, indicating that it offers 

the better prediction result among other methods. From 

the training results of the two experiments are shown in 
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Figure 5, we found that the 10-fold CV usually 

produces better results. Herein, the Random Forest (RF) 

classifier achieves the best prediction result with an 

area under the ROC curve (AUC) of 0.99 for both the 

10-fold CV and percentage split (see Figure 5). These 

results confirm that our proposed approach can detect 

malicious flux domain with high accuracy. Therefore, 

the RF classification algorithm is the best choice to 

train and build a model for detecting unknown 

malicious domains in our detection system. 

 

 

(a) The distribution of 95% CI of Mean  

and SE for NumIPs feature 

(b) The distribution of 95% CI of Mean 

and SE for MinTTL feature 

(c) The distribution of 95% CI of Mean  

and SE for PreEntro feature 

(d) The distribution of 95% CI of Mean 

and SE for NumSub feature 

  

(e) The distribution of 95% CI of Mean  

and SE for MEntrSub feature 

(f) The distribution of 95% CI of Mean 

and SE for SDEntrSub feature 

Figure 4. Comparing the distribution of 95% Confidence Interval (CI) for Mean and Standard Error (SE) 

between benign, malware and fast-flux domains on each the extracted-feature 
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(g) The distribution of 95% CI of Mean  

and SE for StabIPs feature 

(h) The distribution of 95% CI of Mean 

and SE for EntrSubL feature 

  

(i) The distribution of 95% CI of Mean  

and SE for ESOD feature 

(j) The distribution of 95% CI of Mean 

and SE for SeenTime feature 

Figure 4. Comparing the distribution of 95% Confidence Interval (CI) for Mean and Standard Error (SE) between 

benign, malware and fast-flux domains on each the extracted-feature (continue) 

  

(a) use percentage split (b) use 10-fold CV 

Figure 5. ROC Curve compares the prediction performance of classifiers by signifying the tradeoff between True 

Negative (TN) rate and True Positive (TP) rate 
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4.2.3 Evaluation on the Recorded Dataset 

- Evaluation of True Positives (TP): The 

experimental results indicate that the accuracy rate 

of the RF classifier is approximately 95.5%. In order 

to detect malicious domains that have not been seen 

previously in our training set, we collected the 

malware domains from various sources such as 

Malware Domain List [28], Malware Domain [29], 

which we have never used in our training. 

During the period performed the experiments, the 

Malware Domain List [28], Malware Domain [29] 

reported 242,498 domains as being malicious. Out of 

these 242,498 domains, we examined and obtained 

7,006 malware domains appear in the recorded dataset 

from Jan 09 to Jan 15, 2016. The remaining 235,948 

domains were not requested in our recorded dataset. 

Therefore, we used 7,006 malware domains to evaluate 

our detection rate (True positive rate). 

We apply filtering stage proposed by Perdisci et al. 

[25] to filter out candidate fast-flux domains. If a 

malware domain m exhibit characteristic of a flux 

network (e.g., NUM-IPS ≥30 and MINTTL ≤ 10800 

seconds and PreEntro ≥ 0.333), domain m will be 

flagged as a fast-flux domain. Overall, we manually 

confirmed and marked 456 of 7,006 malicious domains 

as fast-flux. Finally, we fed 7,006 malicious domains 

(includes 6,550 malware domains and 456 fast-flux 

domains that were previously unknown in the training 

set) to our system, the experimental results showed that 

6,289 of 6,550 malware domains were correctly 

classified as malware (TP = 96%) by our detection 

system, and 431 of 456 fast-flux domains were 

correctly classified as fast-flux (TP = 94.52%) (see 

Table 4). 

Table 4. The detection results on dataset that was not 

seen previously 

Prediction 

Malicious   
Legitimate 

Malware Fast-Flux 

 

Legitimate 10,583 471 14 11,068

Malware 246 6,289 15 6,550 

A
c
tu

a
l 

c
la

s
s
 

Fast-Flux 10 15 431 456 

  10,839 6,775 460  

 

- Evaluation of False Positive (FP): To measure the 

false positive rate, we collected the benign domains 

from Alexa Top global domains list [26] with 

ranking from 10000 to 30000 (which were not seen 

in training dataset). We examined and obtained 

11,068 of popular legit domains appear in the 

recorded DNS data from Jan 09 to Jan 15, 2016. To 

evaluate false positive rate, we checked how many 

domains in legitimate dataset (which were 

previously unknown in training set) were 

misclassified as malicious by our system. Through 

experiments, we found that only 14 of 11,068 

legitimate domains were misclassified as Fast-Flux 

domains (FP = 0.13%), and 471 of 11,068 legitimate 

domains were misclassified as malware domains (FP 

= 4.25 %) (see Table 4). 

- Evaluation of True Negative (TN): To measure the 

true negative rate, we checked the 11,068 legitimate 

domains, and found that 10,583 domains were 

correctly classified as legitimate domains (TN = 

95.62%) (see Table 4). 

- Evaluation of False Negative (FN): To measure the 

false negative rate, we checked the number of the 

domains belonging to the 6,550 malware domains 

were classified as legitimate, and how many of the 

domains belonging to the 456 fast-flux domains 

were classified as legitimate. We found that 246 of 

the 6,550 malware domains were misclassified as 

legitimate (FN = 3.76%), and 10 of 456 fast-flux 

domains were misclassified as legitimate (FN = 

2.19%) (see Table 4). 

To compare to previous works such as Zhou et al. 

[7], we performed this experiment on the same our 

dataset, and used the RF classifier (which is considered 

the best classifier in five classifiers) to compare the 

effectiveness of detection. 

The results of the two comparative experiments are 

presented in Table 5. Our approach achieved a higher 

prediction accuracy (98.79 %) compared to an 

accuracy of 93.12 % achieved by Zhou et al. [7]. Our 

proposed method received the FN rate of 2.19%, lower 

than Zhou’s approach with the FN rate of 8.9%. This is 

because some of our proposed features have the 95% 

CI clearer than the 95% CI of some of the features 

proposed by Zhou. Figure 6 is an example to show that 

the “sub_growth_8” feature proposed by Zhou et al. [7] 

is difficult to clearly distinguish between malware 

doamain, Fast-flux domain and Legitimate domain. 

 

Figure 6. The distribution of 95% Confidence Interval 

(CI) for Mean and Standard Error (SE) between benign, 

malware and fast-flux domains of a feature proposed 

by [7] 
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Table 5. The performance comparison between our 

approach and [7] 

Method TP% FP% TN% FN% Acc% Prec%

Zhou [7] 91.3 4.8 94.2 8.9 93.12 95.01

Our approach 94.52 0.13 95.62 2.19 98.79 99.86

5 Conclusion 

In this work, we have presented a system for 

detecting Fast-Flux domains. We conducted a 

controlled experiment with a real-world dataset 

consisting of billions of DNS requests, and use 10 

features that we extracted to characterize different 

properties of domain names. Among the ten introduced 

features, there are seven features are first proposed in 

this study. In addition, this work also shows the 

effectiveness of features by comparing the distribution 

of 95% confidence interval for mean and standard error 

between benign, malware and fast-flux domain names 

on each feature. We have experimented on various 

MLAs and show that Random Forest is the best 

classifier to detect a domain is malicious or legitimate. 

We also evaluate the effectiveness on the recorded 

dataset, the detection rate we observed is similar to the 

detection rate estimated by the percentage split and 

cross-validate evaluations on the training set. 

Obviously, our approach is able to detect a high 

number of unknown malicious domains includes fast-

flux domains from DNS traffic with a significant 

detection effect. 
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