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Abstract 

Cache resource allocation is of great significance for 

the advanced cellular networks, especially for fog radio 

access networks (F-RANs). Many cache resource 

allocation schemes have been proposed to increase the 

performance of F-RANs optimally. However, it is still 

challenging to apply these schemes and attain live 

performance in F-RAN systems since most of them need 

accurate and real-time data which shows radio link 

information or other network information. This paper 

presents a cache resource allocation strategy based on 

deep neural network (DNN) along with the training 

method required to train the neural networks. Simulation 

results in terms of DNN accuracy are shown to validate 

that the performance of proposed method approaches to 

that of the conventional iterative method in most cases. 

Keywords: Cache resource allocation, Fog access point, 

Optimal, Deep neural network 

1 Introduction 

The phenomenon of the increasing number of user 

equipments (UEs) and the rapidly growing demand on 

broadband communication services has caused an 

exponential growth of requirements for data processing, 

storage and communications [1-2]. To alleviate the 

problem associated with the increasing demand for 

mobile data traffic much research has been focused on 

the design of next generation cellular communication 

systems. Among many research activities related to the 

development of advanced cellular architecture, F-

RANs have been considered as a promising paradigm 

for improving the spectral efficiency (SE) [2-3]. 

F-RAN compensates the drawbacks of conventional 

cellular architecture such as cloud radio access 

networks (C-RANs) as it pays more attention towards 

the improvement of user experience by minimizing the 

latency occurring in the backhaul link [4-5]. In F-

RANs, the fog access points (F-APs) and fog user 

equipments (F-UEs) are equipped with caching. 

Besides, the F-APs can execute radio signal processing 

locally and can manage their caching memories 

flexibly [6-7]. With the increasing demand for the 

mobile data traffic, the limited nature of caching and 

signal processing capabilities of F-APs cannot tackle 

the heavy burden occurring on the fronthaul of the F-

RAN system. Recently, much attention has been 

addressed for achieving ultra-low latency and 

maximize delivery rate by allocating proper cache 

resource of the F-APs [8] from different aspects. 

1.1 Related Works 

There are some related works worth mentioning. 

The work in [8-9] focused on maximizing the delivery 

rate by assuming that the requested content is already 

available in the cache memory of the fog nodes. The 

authors in [10] studied a joint resource allocation and 

content caching problem which targeted at minimizing 

the maximum content request rejection rate. The work 

in [11] studied a problem of joint caching, channel 

assignment, and interference management of small-cell 

cellular networks to maximize the system throughput. 

The paper in [12] presented a two-step iterative method 

to determine caching placement for two network slices. 

Similarly, the work in [13] focused on designing a 

dynamic resource allocation strategy to balance the 

load in fog environment. Likewise, in [14] joint 

optimization framework for low power fog nodes, data 

service operators, and data service subscribers is 

presented to achieve optimal resource allocation 

schemes in a distributed fashion. However, an efficient 

optimal cache resource allocation strategy in fog 

computing is still absent. The high computational 

requirement for the iterative algorithms used in above 

works makes their real-time implementation 

challenging because they are typically executed in a 

time frame of milliseconds. 

1.2 Contributions and Organizations 

Inspired by the fact that the use of machine learning 

approach to design resource allocation schemes has 

tremendous potential to lessen the system complexity 

and obtain real-time performance [15-17], we have 
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applied the deep neural network (DNN) to develop 

optimal cache resource allocation strategies for 

maximizing total delivered data contents. The DNN 

model with moderate size can allocate resource in 

almost real time as the passing of the inputs through 

DNN layers only requires a small number of simple 

operations [15, 18]. In this paper, the training method 

is provided to obtain the parameters of DNN. 

The rest of this paper is organized as follows. The 

system model is described in section 2. Section 3 

formulates the cache resource allocation problem. 

Section 4 presents the simulation results. Finally, 

Section 5 concludes the paper and provides future 

direction of this work. 

2 System Model  

In this section, a downlink N M×  F-RAN system 

composed of N multi-antenna (UEs) devices, M multi-

antenna F-APs, one base-band unit (BBU), and one 

centralized cloud is modeled which is shown in Figure 

1. We have (1,2,..., )U N=  UEs requesting data from 

(1,2,..., )F M=  F-APs. In the system model diagram, 

the solid lines denotes fronthaul links whereas dashed 

lines indicate air interface links. The every UEs are 

served by the every other F-APs that are connected to a 

BBU pool in the cloud via common public radio 

interface (CPRI) cables. 

 

Figure 1. A system model for fog radio access 

networks 

The model deals only with F-RAN cache delivery 

phase, so for a full caching case, all the requested files 

are assumed to be stored in the local cache such that it 

can be retrieved directly from the F-AP without 

downloading it from BBU. Since the single F-AP with 

edge cache is not enough to store all the information, 

the model assumes that the portion of the information 

requested by the users is present in many F-APs [9]. 

The single UE can be connected to multiple F-APs at 

the same time based on the concept of global cloud 

radio access network mode [6]. The link capacity 

between UEs and F-APs is determined by Shannon 

capacity limit i.e., 
2

log (1 )B SIR× + , where B is the 

channel bandwidth. The channel distribution of the air 

interface link is assumed to be a Rayleigh distribution, 

while the fronthaul link capacity is fixed. 

Let 
,

Ai

i jC  be the air interface link capacity between 

UE ( )i i U∈  and access point ( )j j F∈ , 
,1

FH

j
C  be the 

fronthaul link capacity between access point j and 

cloud 1, and 
j

F be the cache capacity of F-AP j. 

Similarly, let 
i

R  be the data to be received by the UE i, 

i
V  be the minimum data volume requested by UE i, 

and 
,i j

φ  be the optimal cache resource allocation 

parameter and can be defined as the portion of user i 

requested content in F-AP j. 

3 Resource Allocation Problem 

In this section, the total data volume maximization 

and cache resource allocation problems are studied. 

The cache resource allocation framework based on 

DNN is presented along with the training method. 

3.1 Problem Formulation 

The maximum total data volume that can be 

delivered in a multi F-APs F-RAN system can be 

realized by solving the cache resource allocation 

problem presented in section 2 with the arbitrary 

number of users, N. The total data obtained by all the 

users at any timeslot is given by 
1

N

total i

i

R R

=

=∑ , where 

i
R  is 

,

1

M

i j j

j

Fφ
=

∑ . For cache-level transmission, to 

maximize the total sum of receivable data contents of 

all users can be formulated as (P1) which is given as 

[19]: 

 (P1) 
,

1 1

max

N M

i j j

i j

Fφ
= =

⎡ ⎤
⎢ ⎥
⎣ ⎦
∑∑  (1) 

 s.t. 
,

,

i j j Ai

i j

F
C

φ

τ
≤   ,i j∀  (2) 
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,

1

M

i j j i

j

F Vφ
=

≥∑   i∀  (3) 

 
,

1

1

N

i j

i

φ
=

≤∑   j∀  (4) 

 
,

1
i j
φ ≥   ,i j∀  (5) 

where the transmission delay τ  is the sum of the signal 

processing and information exchange time between F-

AP j and the BBU pool. For simplicity, τ  is assumed 

to be same for all F-APs. In (P1), constraint (2) shows 

that the portion of user data delivery rate 
,

( / )
i j j
Fφ τ  

obtained from specific F-AP is bounded by the air 

interface link capacity connecting user to that F-AP i.e., 

,

Ai

i jC . Likewise, constraint (3) denotes that the total 

data volume obtained by the user must be greater 

than or equal to the volume of the data requested by 

them. Similarly, constraint (4) means that the sum of 

the portion of contents that can be accessed by all the 

users from any particular F-AP cannot be more than 

100% of its total capacity. Furthermore, constraint 

(5) ensures that the portion of content that any user i 

can access from F-AP j is non-negative. 

For the feasible solution of (P1) all the constraints 

representing it need to be satisfied. The complexity of 

the iterative problem (P1) increases with the increase 

of UEs and F-APs. Furthermore, above formulated 

cache resource allocation strategy is based on the 

perfect air link channel between UEs and F-APs. It is 

still challenging to carry out this strategy and attain 

real-time performance in practice when there exist 

immense UEs and F-APs. 

3.2 Cache Resource Allocation Based on DNN 

In this part, in order to achieve the optimal cache 

resource allocation strategy and obtain live 

performance, DNN based cache resource allocation 

framework is presented.  

Based on the problem statement (P1), we propose a 

cache resource allocation framework based on DNN to 

optimize the cache resource of F-RANs. For simplicity, 

we model a DNN based framework for 3× 2 F-RAN 

system as shown in Figure 2. The modeled framework 

consists of three layers, they are; the input layer, two 

hidden layers, and the output layer. The inputs are the 

random air interface link capacity between UEs and F-

APs, F-AP cache capacity, user data volume 

requirement, and transmission delay, i.e., C(1, 1), C(1, 

2), C(2, 1), C(2, 2), C(3, 1), C(3, 2), and 
j

F  

respectively. These inputs have continuous probability 

density functions (PDF). The outputs are the optimal 

values of the cache resource, i.e., 
1,1
,φ  

1,2
,φ  

2,1
,φ  

2,2
,φ  

3,1
,φ  and 

3,2
,φ  respectively. In this paper, the optimal 

values of the F-APs cache resource are used to 

maximize the receivable total data volume i.e. 
total

R . 

The activation function for the hidden layers is 

rectified linear unit (ReLU), namely, max(0, )y x= , 

where x and y indicate the input and output of the 

neurons (neural unit), respectively. Similarly, the 

activation for output layer is sigmoid, namely, 

1/(1 )ba e
−

= + , where a and b denote the input and 

output of the neural unit, respectively. We have used 

sigmoid activation function in the output layer to 

obtain outputs between 0 and 1 [20-21]. The bias 

inputs to the neurons is considered at every layer. 

The other parameters used for the proposed neural 

network is given in the simulation results. 

 

Figure 2. Cache resource allocation framework for 

3× 2 F-RAN system on DNN 

The DNN needs to be trained to get the weights of 

each neurons. Figure 3 illustrates the training process 

for the proposed cache resource allocation framework 

based on DNN. In the training process, the mean 

squared error minimization criterion is implemented as 

it is a multi-variant regression problem [22]. Adam 

optimizer is used to update the weight and learning rate 

values since it is straightforward to implement, 

computationally efficient and has little memory 

requirements [23]. 

 

Figure 3. Cache resource allocation training process 

based on DNN 
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The fog nodes in the F-RAN system are responsible 

for computation, communication, and storage. Each F-

APs consists of two layers of fog nodes. The fog nodes 

in fog layer 1 are responsible as a gateway to edge 

devices, as they are well equipped with the routers. 

Similarly, fog nodes in layer 2 cover larger area as they 

are connected to the cloud and fog nodes in the first 

layer via fiber. These nodes are well equipped with the 

faster CPUs, more cores, dedicated Graphic Processing 

Units (GPUs), and larger storage [24]. Since the fog 

nodes in layer 2 are computationally powerful, they 

can be used for training the datasets for prediction. 

3.3 Data Generation 

For training the DNN model, we first generate a 

large set of optimal cache portion 
,

( )
i j

φ  for 3 2×  F-

RAN system by solving the iterative problem presented 

in (P1), using the MATLAB simulation platform. For 

simplicity, the value of 
j

F , 
,

Ai

i jC , 
i

V , and τ  are fixed, 

for all ,i j . The average value of SIR to calculate the 

,

Ai

i jC  is assumed to be 5 dB, and channel bandwidth is 

considered to be 20 MHz, respectively. For each 
j

F , 

training and validation data samples are obtained, 

considering the value of 
j

F  between 1 to 6 Mb. The 

different data samples are then combined to get the 

entire training data set, as well as the validation data 

set. The optimal values of cache portions are realized 

over the 1×102 different communication channels for 

the fixed values of other system parameters. The zero 

and negative values of the cache portions representing 

the non-optimal solutions were removed from the 

datasets. The size of the validation dataset is assumed 

to be smaller than that of the training dataset as per the 

ongoing trend. The test datasets are taken as the 

validation datasets. 

3.4 Algorithm for Training DNN 

In this paper, the training method for the obtained 

dataset is based on Adam optimizer to lessen the time 

required to train the DNN model with a very large data 

samples. The weight for datasets are updated by 

computing moment estimates, which is presented in 

[23]. Since the training the DNN with a very large data 

samples is resource consuming, mini-batch gradient 

descent (MBGD) algorithm is used to train the 

proposed DNN based model. The total datasets are 

divided into K batches of size B. For each batch, the 

datasets are trained, and the loss function for each 

batch is calculated using mean square error (MSE). 

The loss function for each batch of size B is calculated 

using, 
* 2

, , , ,

1 1 1

1
( ) ( )

6

B N M

i j b i j b

b i j

J
B

θ φ φ
= = =

= −∑∑∑ , where 
, ,i j bφ , 

and *

, ,i j bφ  is the actual and predicted values of the cache 

portions, respectively. The DNN weights ( )θ  is 

updated at each batch by minimizing the loss function. 

The weight is updated using, 
1

ˆ ˆ/( )
k k k k

a m vθ θ
−

= − ⋅ +∈ , 

where, a, ˆ
k

m , and ˆ
k
v  is the learning rate, time varying 

first moment estimate, and time varying second 

moment estimate, respectively.  

The detail procedure is shown in Algorithm 1. 

 

Algorithm 1. DNN based framework 

i. Input: link capacity, user volume requirement, 

transmission delay, cache capacity; 

ii. Output: optimal values of cache portion for each 

users are obtained by the conventional scheme 

proposed in (P1); 

iii. Training Data: Divide the training data into I 

batches of size B; 

iv. Initialize: learning rate (a), exponential decay 

rate 
1 2

( , [0,1])β β ∈  for moment estimates 

v. For each batch ( 1,2,..., )
k
b k K= do 

a. Calculate the DNN accuracy using MSE 

* 2

, , , ,

1 1 1

1
( ) ( )

6

B N M

i j b i j b

b i j

J
B

θ φ φ
= = =

= −∑∑∑  

b. Compute the updated DNN weight θ  by 

minimum loss function and moment estimates 

ˆ ˆ( , )
k k

m v ; 

1
ˆ ˆ/( )

k k k k
a m vθ θ

−

= − ⋅ +∈  

 endfor 

vi. Save the better accuracy producing DNN model 

4 Performance Evaluation 

In this section, simulation results are shown to 

evaluate the performance of our proposed cache 

resource allocation based framework on the DNN 

model. We have used Keras library on top of 

TensorFlow framework in Python 3.6 as a programming 

platform. The training process for our datasets is 

performed by using a computation server with one 

Intel core i7 CPU, four Intel Xeon E7-1680 processors, 

and 128 GB random access memory. The results are 

obtained by using a computer with 16 GB random 

access memory and Intel Core i7-8700 processor. 

4.1 Simulation Parameters 

Table 1 given below summarizes the simulation 

parameters and their values which are taken into 

account. The number of neurons used in each hidden 

layer is 100. The initial value of learning rate (a) for 

the 32 batch size (B) is taken as 0.0001. Similarly, the 

values of exponential decay rate i.e., 
1

β , and 
2

β  are 

taken as 0.9 and 0.999, respectively. The training 

process is based on the data obtained by using the 

scheme proposed in (P1). The total size of input dataset 

is 22,402 in which 16,801 entries are used for training 

the model, whereas remaining 5,601 entries are used as 

the validation data sets to predict the optimal values of 
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the cache portion. 

Table 1. Simulation parameters 

Parameters Values 

Training Size 16,801 

Test Size 5,601 

Number of UEs 3 

Number of F-APs 2 

Number of Hidden Layers 3 

Neurons used in each Hidden Layer 100 

Number of Inputs 8 

Number of Outputs 6 

Epoch 1-1,000 

 

Detailed configuration of the parameters for 

proposed model is listed in Table 2. 

Table 2. Configuration of parameters for DNN based 

model 

Layer Name Shape Trainable Parameters 

0 Inputs (1,8) ______ 

1 Dense (ReLU) (1,100) 9,00 

2 Dense (ReLU) (1,100) 10,100 

3 Dropout (0.2) _____ ____ 

4 Dense (ReLU) (1,100) 10,100 

5 Dense (Sigmoid) (1,6) 6,06 

4.2 Simulation Results 

In this sub-section, performance of test data set, the 

prediction accuracy of optimal cache portions 
,

( )
i j

φ  

and the objective function ( )
total

R  is shown for 

different values of training epoch. Here, the values of 

optimal cache portions, and objective function 

obtained from (P1) are referred to as actual values of 

optimal cache portions and objective function, and are 

represented as 
,i j

φ , and
total

R , respectively. Similarly, 

the values of optimal cache portions, and objective 

function predicted from the DNN model are referred 

to as predicted values of optimal cache portions and 

objective function, and are represented as *

,i j
φ , and 

*

total
R , respectively. The MSE is used for loss function, 

and normalized root mean square error (NRMSE) 

method is used for calculating the overall accuracy of 

the trained model. As the values of 
,i j

φ  lies within 0 

and 1, and the values of 
total

R  is normally greater than 

one, the normalization method is taken into account 

for calculating accuracy. 

4.2.1 Prediction of Test Data Set 

Figure 4 shows the performance of the DNN model 

for different training epochs. In Figure 4, MSE 

performance of test data sets against training data set is 

shown, provided that the test data set is not exclusively 

used during the training phase. The ‘cyan curve’ in the 

graph shows the MSE during training the DNN model, 

while the ‘magenta curve’ denotes the testing error. 

From the graph we can conclude that, there is no over-

fitting problem in the trained model as the gap between 

the training and the testing error is very less. Moreover, 

we can also say that the direction of convergence on 

the target data set is desirable, as there is minimal 

fluctuation on testing error.  

 

Figure 4. Performance of the model on the test data set 

which is exclusively generated after the training phase 

4.2.2 Prediction of Optimal Values 
*

,
( )

i j
φ  

Figure 5 to Figure 8 show how the predicted optimal 

values *

,
( )

i j
φ  converge around the regression line. The 

values of *

,i j
φ  illustrated in the figures below are from 

5,601 entries of test data sets. The total number of *

,i j
φ  

plotted in the figures given below are 6×5601. The 

solid blue straight line going from the origin, as shown 

in the figures, is the regression line. Regression line 

helps in the graphical interpretation of the errors 

obtained in every training epoch. The distance between 

each predicted point and the regression line is referred 

to as a prediction error. The cumulative sum of every 

deviation gives the overall error of the model. If the 

predicted points are below the regression line, then the 

error obtained is negative, else it is positive. If the 

points are along the regression line then there is 

no/minimal error in the system.  

 

Figure 5. Actual vs. Predicted optimal cache portions, 

when the training Epochs = 1 
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Figure 5 shows that the trained model for only one 

training epoch doesn’t predict the optimal values of the 

cache portion at all, as we can see most almost all of 

the predicted data are away from the regression line. 

Similarly, Figure 6 to Figure 8 show that the 

predicted optimal values of cache portions lie nearer to 

the regression line whenever the model training epochs 

is increased, i.e., for 10, 100, and 1,000 epochs, 

respectively. 

 

Figure 6. Actual vs. Predicted optimal cache portions, 

when the training Epochs = 10 

 

Figure 7. Actual vs. Predicted optimal cache portions 

when the training Epochs = 100 

 

Figure 8. Actual vs. Predicted optimal cache portions, 

when the training Epochs = 1000 

From Figure 7 and Figure 8, we can see that the 

predicted outputs are almost similar irrespective of the 

training epochs. Thus, we can conclude that the larger 

training epoch saturates the prediction. 

4.2.3 Prediction of Objective Values 
*( )
total

R  

Figure 9 to Figure 12 shows how the predicted 

values of objective function fit along the regression 

line for the training epochs, 1, 10, 100, and 1,000, 

respectively. The predicted values of the objective 

function *( )
total

R  is obtained by multiplying the 

predicted results of the *

,i j
φ  (from portion 4.2.2) with 

the corresponding 
j

F , as defined in the problem 

statement (P1). The values of *

total
R  illustrated in the 

Figure 9 to Figure 12 are from 5,601 entries of test 

data sets. The total number of *

total
R  plotted in the 

figures given in this part are 1×5601. 

 

Figure 9 Actual vs. Predicted objective value, when 

the training Epochs = 1 

 

Figure 10. Actual vs. Predicted objective value when 

the training Epochs = 10 
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Figure 11. Actual vs. Predicted objective value, when 

the training Epochs = 100 

 

Figure 12. Actual vs. Predicted objective value when 

the training Epochs = 1000 

Figure 9 shows that for the lower value of the 

training epoch, the predicted values of 
total

R  i.e., *

total
R  

are sparsely distributed along the regression line and 

densely distributed in the region away from the 

regression line. Whereas, Figure 12 shows that *

total
R  

almost approaches to 
total

R  (fitting along the 

regression line) when the value of training epoch is 

very high. 

If we compare the results obtained in the part 4.2.2 

and 4.2.3, we can say that the predicted data points of 

total
R  are sixth times lesser than that of 

,i j
φ , as we 

have considered 3×2 F-RAN system in our paper. 

4.2.4 Overall Performance 

Figure 13 shows the NRMSE (normalized root mean 

square error) while predicting the values of 
,i j

φ , and 

total
R  for different values of the training epoch. From 

the figure, it can be seen that, for the lower value of 

training epoch, the NRMSE for predicting the values of 

,i j
φ , and 

total
R , almost equals unity. However, for the 

higher value of the training epoch, the NRMSE is 

lower than 0.2 for the prediction of both entities. As 

per the simulation results, we can see that the NRMSE 

is slightly less while predicting the value of objective 

function than optimal cache portion, independent of the 

training epoch.  

 
Figure 13. NRMSE while predicting 

,i j
φ  and 

total
R  for 

different values of training epochs 

Finally, Figure 14 plots the accuracy of DNN model 

for predicting the value of 
,i j

φ , and 
total

R  for different 

training epochs. The DNN accuracy for predicting both 

the entities is almost similar for lowest value of 

training epoch, whereas it is found that the accuracy is 

marginally more for predicting the value of 
total

R  than 

,i j
φ  for the higher value of training epoch. It is 

mathematically verified in the portion 4.3. From the 

figure, it can also be seen that the accuracy for 

predicting data points is greater for high value (1,00 

epoch) of training epoch, but it almost saturates when 

the epoch is very high (1,000 epoch). The DNN 

accuracy of the predicted values of 
total

R , and 
,i j

φ  are 

almost similar to the results obtained from the 

conventional iterative method for higher value of the 

training epoch i.e., 0.96 and 0.89 times accurate for 

1,000 epoch, respectively.  

 

Figure 14. DNN model accuracy while predicting 
,i j

φ  

and 
total

R  for different values of the training epochs 
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4.3 Mathematical Quantification 

For simplicity, let us assume that there is 2×1 F-

RAN system. Referring to (P1), we can say, 
1,1
φ , and 

2,1
φ  are the possible optimal cache portion. Similarly 

1
F  is available F-AP capacity of the F-RAN system. 

The total value of 
total

R  for this scenario can be 

written as: 

 
1,1 2,1 1

( )
total

R Fφ φ= +  (6) 

Let *

1,1
φ , and *

2,1
φ , be the predicted value of cache 

portion using DNN method. The predicted value of 

total
R  can be written as: 

 * * *

1,1 2,1 1
( )

total
R Fφ φ= +  (7) 

The NRMSE for predicting optimal cache portions 

can be written as [25]: 

 

* 2 * 2

1,1 1,1 2,1 2,1

2 2

1,1 2,1

( ) ( )φ φ φ φ

φ φ

− + −

+

 (8) 

Similarly, NRMSE for 
total

R  can be written as: 

 
* 2

2

( )

( )

total total

total

R R

R

−

 (9) 

Replacing the values of variables in (9) by (6) and 

(7), and mathematically simplifying it, we can write (9), 

as: 

 

2 2 2 2

1,1 2,1 1,1 2,1

2 2

1,1 2,1 1,1 2,1

( ) ( ) 2( ) ( )

2

e e e eφ φ φ φ

φ φ φ φ

+ +

+ +

 (10) 

where, 
1,1 1,1 1,1

( )e eφ φ φ= − , and *

2,1 2,1 2,1
( )eφ φ φ= − , and are 

referred to as erroneous values. 

If we compare (8) and (10), we can say that 

( )NRMSE φ  is greater than ( )
total

NRMSE R , as the 

addition of extra part in the numerator of (10) is lesser 

than the denominator of (10), i.e., 
2 2

1,1 2,1 1,1 2,1
2( ) ( ) 2e eφ φ φ φ< . 

Conversely, DNN accuracy for predicting 
,i j

φ  is 

lesser than predicting 
total

R , as DNN accuracy is 

1 .NRMSE−  

5 Conclusion  

This paper studied the optimal cache resource 

allocation process in F-RAN system using a machine 

learning technique. To achieve real-time performance, 

and realize low implementation complexity, DNN 

based framework has been proposed to predict the 

optimal portion of cache resource of F-RAN system 

such that it is fully utilized. Simulation results showed 

that our proposed DNN based cache resource 

allocation framework almost approaches to that of the 

conventional iterative method of cache resource 

allocation scheme. For future works, our DNN based 

framework should be used for the massive number of 

UEs and F-APs case using different DNN based 

algorithms. 
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