
A Novel Mechanism for Anomaly Removal of Firewall Filtering Rules 949 

 

A Novel Mechanism for Anomaly Removal of  

Firewall Filtering Rules 

Chi-Shih Chao1, Stephen J. H. Yang2 

1 Communications Eng. Department, Feng Chia University, Taiwan 
2 Computer Sciences and Information Eng. Department, National Central University, Taiwan 

cschao@fcu.edu.tw, Stephen.Yang.Ac@gmail.com* 

                                                           
*Corresponding Author: Chi-Shih Chao; E-mail: cschao@fcu.edu.tw 

DOI: 10.3966/160792642020072104005 

Abstract 

Firewalls are always treated as the core devices for 

network security to protect networks from being attacked. 

Still, properly configuring firewall rules is no easy task 

due to its laboring and time-consuming characteristic. In 

some cases, firewall rules need to be added, deleted, 

modified, or order-changed from time to time to fit in the 

dynamic of network traffic. As a result, firewalls are 

subject to rule anomalies caused by misconfigurations 

such that network security holes can be created 

accordingly, and then damage the managed networks and 

even worse the firewalls themselves. In this paper, an 

enhanced firewall rule management approach is proposed 

where it can not only pinpoint the anomalies among 

firewall rules effectively and efficiently, but also provide 

a novel mechanism for correct and speedy removal of 

rule anomalies. As a demonstration, a visualized firewall 

rule anomaly removal system has been realized and 

performance evaluations on anomaly removal have been 

also conducted, in which our developed mechanism 

shows its excellence and feasibility. 

Keywords: Firewall rule anomaly diagnosis, Rule 

anomaly removal, DDoS on firewalls, 

System feasibility 

1 Introduction 

In Internet, firewalls play an extremely important 

role to defense the protected networks from attacks. 

Configuring a firewall properly is not at all a simple 

task since there are usually hundreds or even thousands 

of rules equipped in an enterprise-level firewall [1]. 

For this, it can often be found that there are conflicts 

among firewall rules, say rule anomalies [2], because 

firewall rule configurations would need to be changed 

or adapted to the dynamic of network traffic [3]. There 

are times that system administrators with little 

knowledge of network security would also make these 

anomalies on rules, and these rule anomalies can lead 

to security holes or vulnerabilities for network 

attackers [4]. This explains why researchers [5] like to 

compare the firewall configuring task to programming 

a distributed system in assembly language. In some 

cases, firewalls, themselves, could become targets of 

network attacks, e.g., DDoS (Distributed Denial of 

Service), and those rule anomalies can be used by 

attacks which send tons of small unmatched attacking 

packets to choke firewalls and the protected networks 

[4, 6]. 

Among the literature in this topic, E. Al-Shaer and H. 

Hamed first define a rule anomaly as a duplicate or 

multiple rule-matching for a packet in a rule set. Based 

on the concept, they formally define several different 

intra-/inter-ACL (Access Control List) anomalies 

among the firewall rules [2, 7]. Nevertheless, since a 

Finite-State-Machine (or FSM)-based comparison 

between each pair of filtering rules for anomaly 

diagnosis should be conducted, their rule anomaly 

inspection algorithm will meet an inefficiency as the 

number of rules or firewalls grows [8]. To lower the 

comparisons between firewall rules needed in [2], Y. 

Yin et al. [9] segment the IP address space, which is 

formed by the managed source and destination 

networks, into blocks where each block is precisely 

split by the IP addresses in the conditional field of each 

firewall rule. With these varying-sized blocks, a 

SIERRA tree is built and two conflict rules would be 

hanged on the same branch of the tree [10]. Network 

managers only needs to do the anomaly inspections or 

check-ups on rules in the same spatial block(s) (or on 

the same branches in the SIERRA tree), as opposing to 

wasting enormous time to conduct comprehensive pair-

wise rule comparisons. Yet, this approach would lead 

to a fatal drawback in a networking environment with 

frequent rule updates. Besides, a clean-slate reconstruction 

of the SIERRA tree is very possibly unavoidable if a 

simple rule deletion or insertion is administored [8]. It 

is because space blocks are precisely sliced according 

to the IP addresses of each rule. So, once one rule 

changes, the whole spatial rule relationship would 

change, and the corresponding data structures could be 

reconstructed. This drawback also reveals that the local 

diagnosis results, i.e., the intra-ACL diagnosis results, 



950 Journal of Internet Technology Volume 21 (2020) No.4 

 

can hardly be re-used for the diagnosis of inter-ACL 

rule anomalies. By the same token, modification or 

reconfiguration of firewall rules for new demands of 

network security could fail their system to go live in 

time for varying threats. 

We have gotten involved in this topic for a decade 

and the research results were hailed as one of the most 

useable systems in the world by far [11]. At very 

beginning, a RAR tree (Rule Anomaly Relation tree) 

data structure was designed to rule out firewall rules 

having no relationship (or intersection) between each 

other in packet filtering so as to reduce the time-

consuming pairwise rule comparisons needed by [2]. 

With the innate characteristic of this tree structure, 

local diagnosis results can be easily integrated for 

cross/inter-firewall rule anomaly diagnosis [12]. After 

two-year striving, an upgrade version was proposed 

where a new data structure was implemented, called 

ARAR tree (Adaptive Rule Anomaly Relation tree), 

which can not only slice the packet filtering space 

more properly and then fasten the diagnosis, but also 

keep the advantage of tree structure for system 

extensibility. After that, a further improved data 

structure was provided in our system development, 

named Enhanced ARAR tree, in which it incorporates 

more accurate coordinates to do slicing work on packet 

filtering space such that a better performance on 

diagnosis can be obtained [8]. Meanwhile, a user-

friendly visualized interface had been up as part of our 

developed system prototype. Users can promptly do 

correct reactions to deal with firewall misconfigurations 

via the visualized diagnosis interface [8, 12]. 

Looking at all of the developments in this topic, 

most of research mainly put their focus on firewall rule 

anomaly diagnosis, rather than effective anomaly 

removal or recovery [11]. In this paper, considering the 

high possibility of network attacks caused by rule 

anomalies, an anomaly removal mechanism is 

proposed, which can eliminate redundancy anomalies 

and shadowing anomalies effectively and efficiently, 

and also identify the other types of anomalies among 

firewall rules correctly. For this purpose, based on our 

Enhanced ARAR tree structure and a new two-

dimensional traffic-filtering matrix, an anomaly 

removal mechanism which contains a two-phased rule 

refinement procedure is designed and implemented. A 

visualized interface is also developed and integrated in 

our previously developed prototype system to 

effectively help users doing rule removal. The rest of 

this paper is organized as follows: We organize 

Session 2 to brief the basis of rule anomalies and how 

an Enhanced ARAR tree is created based on the 

collected firewall rules. In Session 3, we spell out how 

the tree structure combined with an associated matrix 

can be used in our developed mechanism to facilitate 

the correct and fast removal of firewall rule anomalies. 

As a demonstration, Section 4 presents the system 

implementation and performance evaluations for our 

developed mechanism, and Section 5 concludes this 

paper and shows some directions of our system 

development in the upcoming future. 

2 Rule Anomalies and Enhanced ARAR 

Tree 

Serving as an essential part in the context of this 

article, this section provides a short brief on rule 

anomalies and our Enhanced ARAR tree for those who 

are unfamiliar with what we have done before. For 

further information, please kindly refer to [2] and [8]. 

2.1 Firewall Rule Anomalies 

For the anomalies between firewall rules, they are 

completely defined and classified by E. Al-Shaer et al 

[2]. Based on the <Action> field of ACL rules, 

filtering area, and rule order in ACL, there are five 

anomalies between each pair of firewall rules. As 

shown in Figure 1, shadow anomaly means the filtering 

area of rule R2 is totally covered by that of rule R1, but 

R1 and R2 have different values of <Action>. In this 

case, R2 is “shadowed” since it will not be triggered 

forever due to R1. In contrast, redundancy anomaly 

stands for the filtering area of R2 is totally covered by 

that of R1, and R1 and R2 have the same values of 

<Action>, e.g., both are “accept” or “deny.” In this 

situation, R2 fully reveals its redundancy and 

unnecessity on filtering function. In addition, there is 

another situation which can be called rule redundancy, 

where the filtering area of R2 contains that of R1 and 

they two have the same value of <Action>. In most of 

cases, R1 can be removed since its filtering function 

can be completely replaced by R2. Generalization 

anomaly means the filtering area of R2 contains that of 

R1 and they two have different values of <Action>. 

Correlation anomaly is that R1 and R2 have 

intersection between each other and they two have 

different values of <Action>. At last is non anomaly, 

as shown in Figure 1, in which two rules have no 

interaction or have intersections but with the same 

action values. 

2.2 Enhanced ARAR Tree 

To fasten the anomaly diagnosis of firewall rules, a 

rule which does not affect the others can be ruled out 

from the time-consuming pairwise rule comparisons 

[8]. To do so, a two-dimensional traffic-filtering 

diagram is built, on which the filtering area of each 

firewall rule can be depicted as a rectangle at its proper 

location. Later, referring to the coding-tree data 

structures widely used in image/video compression, the 

traffic diagram will be split recursively and reverse-

exponentially until a split block finds (a) there is no 

rule filtering space within it, (b) there is only one rule 

filtering space within it, or (c) there are more than two 

rule filtering spaces within it and the split block is  



A Novel Mechanism for Anomaly Removal of Firewall Filtering Rules 951 

 

 

Figure 1. Types of firewall rule anomalies 

exactly the same as those rule filtering spaces. After 

that, the address space of a firewall rule can be 

recorded in our Enhanced ARAR tree in the form of 

― ―...― ― ―...― , where  contains the 

IP address ranges of the source network domain and 

destination network domain of a designated routing 

path,  is used to indicate the split block(s) spanned 

by the address space of the rule,  shows the label (or 

the order) of the rule. By dealing with each rule in this 

fashion, the Enhanced ARAR tree depicting the 

structural configuration can be created. Nodes which 

are hung under a tree branch stands for rules of the 

nodes can have filtering effect on the flows within the 

traffic area indicated by the branch. We call these rules 

are “related” and send them to further checks for types 

of anomalies [8]. Figure 2 is an example rule set which 

will be used throughout the paper and the filtering area 

of each rule in the traffic-filtering diagram is depicted 

in Figure 3. Figure 4 shows the corresponding 

Enhanced ARAR tree of the rule set in Figure 2 and 

Figure 5 contains detailed information about leaf nodes 

of the tree. 

3 Rule Anomaly Removal 

A firewall itself can become the target of DDoS 

attacks, while rule anomalies can raise the risk of 

exposing the firewall under such attacks [4, 6]. For  

 

Figure 2. Example firewall rule set 

 

Figure 3. Two-dimensional traffic-filtering diagram 

 

Figure 4. The corresponding enhanced ARAR tree of 

Figure 2 

example, redundancy anomalies in a firewall can 

dramatically slow down its performance of packet 

filtering because a great number of mismatches by 

malicious packets could be created by the anomalies. 

Section 3.1 and Section 3.2 comprise our two-phased 

procedure which is developed to effectively and 

efficiently remove these anomalies. 



952 Journal of Internet Technology Volume 21 (2020) No.4 

 

 

Figure 5. Detailed information of leaf nodes in Figure 

4 

3.1 Anomaly Removal Phase I 

In this phase, focus is put on the removal of shadow 

anomalies and redundancy anomalies, to ward off the 

firewall DDoS attacks. It is because these two rule 

anomalies can easily incur attacks using packet 

mismatches to choke firewalls, and can be removed 

without hesitation, whereas the other types of rule 

anomalies need the interventions from network experts 

or administrators to tackle them and providing 

identificatons can be the only as well as proper choice 

that diagnosis systems can make [7]. Be aware that, in 

this phase, we remove these two types of anomalies 

caused by “being shadowed.” For the redundant 

anomalies which are caused by “not being shadowed,” 

i.e., a rule with smaller filtering area which is fully 

cotained by another rule with same filtering action and 

lower order, they will be handled in Section 3.2. So, in 

this phase, if the filtering area of a rule is completely 

shadowed by some other rules, the rule should be 

removed from the rule set no matter what action the 

rule takes or what anomaly it has. On the basis of this 

fact, we can achieve the phase I anomaly removal with 

little extra effort while establishing our Enhanced 

ARAR tree. 

 

Algorithm Rule_Anomaly_Removal_Phase_I (R) 

Input:  A firewall rule set R 

Output: A firewall rule set R’ without rules being 

shadowed. 

Step 1:  While adding a new leaf node of a rule in the 

Enhanced ARAR tree, just check if it is the 

first leaf (or rule) of a branch. 

Step 2: If it is, nothing should be done; otherwise cut 

the shadowed filtering area indicated by that 

branch from the rule. 

Step 3: Once the size of the effective filtering area of 

the rule is found to become zero after the 

construction of the tree, the rule will be 

deleted from the original rule set due to its 

redundancy. 

 

To clearly describe this process, the example rule set 

shown in Figure 2 is used. According to its 

corresponding Enhanced ARAR tree in Figure 4, there 

are rules R3 and R7 beneath the branch labeled (00, 

00). Since the filtering portion of R7 indicated by that 

branch is covered (or shadowed) by that of R3, the 

effective filtering area of R7 can be subtracted by the 

area of that branch. In this fashion, the process is 

applied to each rule (or leaf) which is under the first 

rule (or leaf) of each branch of the Enhanced ARAR 

tree. After the construction of the whole tree, rules 

whose size of the entire effective filtering area 

becomes zero can be deleted from the original rule set. 

In our example, it can be found the size of the effective 

filtering area for R8 and R9 becomes zero (shown in 

Figure 6), which means they two can be matched by no 

packet in the rule set, and will be eliminated forever. 

 

Figure 6. Rule effective filtering area after phase I 

3.2 Anomaly Removal Phase II 

In this phase, a rule which can be completely 

replaced by some other rules having lower filtering 

orders will be removed. We have to be very careful 

that the filtering diagram of a rule set should not be 

changed from what it looks like originally, after any 

redundancy removal [7]. For this, a rule, on top of 

some other rules with the same filtering action and also 

being contained (or included) by them and without 

rules having different action in-between them, can be 

viewed as a redundant one also. In our work, an 

algorithm is developed to speed up the job in this phase: 

While establishing the Enhanced ARAR tree, we can 

simultaneously build a two-dimensional matrix which 

records what filtering blocks a rule spans and what 



A Novel Mechanism for Anomaly Removal of Firewall Filtering Rules 953 

 

filtering action the rule takes in those blocks. For 

example, according to the distribution and numbering 

of filtering blocks of the rule set shown in Figure 3 and 

Figure 7, respectively, a two-dimensional matrix can 

be built (shown in Figure 8) where the value of 0 

represents “deny,” 1 stands for “accept,” and empty 

means no filtering effect on the designated block for a 

rule. 

 

Figure 7. Block numbering of traffic filtering diagram 

 

Figure 8. Two-dimensional traffic filtering matrix 

To correctly remove the rules which can be replaced 

by some other rules with lower orders, the following 

algorithm is used: 

 

Algorithm Rule_Anomaly_Removal_Phase_II (M, R’)

Input:  A firewall rule set R’ passing the process of 

Phase I and its two-dimensional filtering 

matrix M 

Output:  A refined firewall rule set R* without any 

redundant anomaly 

Step 1: From the top of the matrix M, check the rule 

with its non-empty blocks and look 

downwards for each of these blocks if there 

exists another non-empty block with the same 

filtering action and no block(s) with different 

action in-between them. 

Step 2: If the answer is yes, the rule can be removed 

safely from the matrix M and go to Step 3; 

Otherwise go to Step 3 directly. 

Step 3: Pick the next rule up from M and do the same 

check from Step 1 until all of the rules in the 

matrix have been checked. 

 

As an illustration, in Figure 9, checks are first 

conducted for blocks (11,00) and (11,01) of R0. After 

the comparison between the values of block (11,00) in 

R0 and R1, it can be found that R0 cannot be removed 

since they two have different filtering actions in this 

block. In the second round of the checks, with the same 

fate as rule R0 has, R1 can also be found non-

removable from the matrix since one of its filtering 

blocks, blocks (10,00), has a corresponding block right 

beneath it and with opposite filtering action; i.e., R1’s 

(10,00) is “deny” and R4’s (10,00) is “accept.” So, 

after the check of R1, the rule set remains unchanged, 

as shown in Figure 10. 

 

Figure 9. Redundancy check for rule R0 

 

Figure 10. Redundancy check for rule R1 

Now it is the turn for the check of rule R2. 

According to the Phase II algorithm, all of the filtering 

blocks of R2, blocks (00,01) and (01,01) in Figure 11, 

have their corresponding blocks right beneath them 

with the same filtering action, i.e., R3’s blocks (00,01) 

and (01,01). It represents that R2 can totally be 

contained by R3 and they two have the same action of 

“accept.” R2 can be deleted from the rule set forever. 

In this fashion, after checking the last rule in the rule 

set, a refined rule set (Figure 12) with the same 

network traffic filtering effect as the original rule set 

has can be obtained (please comparing Figure 3 with 

Figure 13), after our two-phased rule anomaly removal. 



954 Journal of Internet Technology Volume 21 (2020) No.4 

 

 

Figure 11. Redundancy check for rule R2 

 

Figure 12. Rule set after two-phased redundancy 

removal 

 

Figure 13. Traffic filtering diagram after two-phased 

redundancy removal 

3.3 Anomaly Identification 

In our work, the other three types of anomalies, i.e., 

generalization anomaly, correlation anomaly, and non 

anomaly can be identified also from a rule set by our 

mechanism with easy: 

(1) For correlation anomaly and generalization 

anomaly, we can apply the same idea and process 

mentioned in Section 3.2 to the matrix refined from our 

two-phased anomaly removal mechanism to check if 

each pair of rules has intersection with each other. If 

there is, check further if the intersection is equal to any 

one of them. If the answer is yes, the diagnosis comes 

to generalization anomaly of the pair of rules; 

otherwise correlation anomaly. As an example in 

Figure 12 (the refined rule set), R4 has intersection 

with R7, which is totally equivalent to R4. R4 can be 

called being “generalized” by R7. Another example of 

rule intersection in Figure 12 happens between R1 and 

R4, in which the intersection is just part of each one of 

them two, i.e., block (10.00). We can call these two 

rules have a correlation anomaly, accordingly. 

(2) For non anomaly, it can be easily figured out by 

slashing the rules with the four other anomalies, and 

the left can be concluded as rules with “non anomaly.” 

Be noticed that the three rule anomalies mentioned 

in this subsection cannot be removed or modified 

without the interaction or intervention with the 

administrators or experts of the managed network [7]. 

Thus, the only thing we can do for these three 

anomalies is to provide proper diagnosis identifications/ 

indications about them. 

The analysis of the time-complexity of our 

mechanism can be broken down as follows: 

(1) For the first phase removal of shadowing 

anomalies and redundancy anomalies in Section 3.1, it 

depends on the time of the establishment of an 

Enhanced ARAR tree and the number of anomalies. 

Thus, its time complexity can be represented as 

O(m*n), where m is the average number of occurred 

anomalies on a rule set with n rules. 

(2) The second phase anomaly removal sweeps out 

those redundant rules which cannot be dealt with in 

Phase I, by using the two-dimensional filtering matrix. 

Since each rule of the rule set would be checked at 

most once, the execution time of this phase can be 

bounded by O(m*n) if the two dimensional circular 

linked list for spare matrix [13] is used to do the matrix 

implementation. The reason that our Enhanced ARAR 

tree is not used in this phase is there would be a entire-

tree traversal needed for each one of rules and a node 

in the tree can be visited twice for checking anoamlies, 

while one-time visit for each node in the two-

dimensional filtering matrix is required. 

(3) From (1) and (2), we can summarize the rule 

anomaly removal of our mechanism has time 

complexity of O(m*n). 

(4) The last function of our mechanism, mentioned 

in this subsection, is to identify three other types of 

rule anomalies in the refined rule set. Since the 

calculation of intersections between each pair of rules 

in the refined set is required, the time complexity of 

this function goes to O(b
2*r

2), where b is the average 

number of blocks in a rule and r is the number of rules 

in the refined rule set. 

4 System Implementation and Performance 

Evaluation 

This paper is focused and centered on the 

introduction and elaboration of our newly developed 

rule anomaly removal mechanism, which has become 



A Novel Mechanism for Anomaly Removal of Firewall Filtering Rules 955 

 

part of our previously developed firewall rule anomaly 

diagnosis platform/system [8]. It is the first time the 

mechanism is shown in public, and also first time this 

function has been realized and implemented in this 

research field. For more information regarding the rule 

anomaly diagnosis, visualize the diagnosis results, do 

the diagnosis performance evaluation, make comparisons 

between [2], etc., please refer to [8]. Figure 14 is our 

firewall rule-editing interface (dedicated for service 

port 80 in the case) and Figure 15 shows its corresponding 

visualized two-dimensional traffic filtering diagram. 

The visualized interface shown in Figure 15 can do 

some interactions with users where we can highlight or 

hide a rule by clicking it, identify a suspicious filtering 

area by moving the mouse on top of it, and do anomaly 

removal by just pushing the “Optimize Confirm” 

button. Figure 16 shows the status before and after the 

execution of our anomaly removal mechanism, and we 

can find the number of rules in the rule set is refined 

from thirty, at the very beginning, down to five only. 

 

Figure 14. Rule-editing interface 

 

Figure 15. Visualized two-dimensional traffic filtering 

diagram 

 

After Anomaly Removal

 

Figure 16. Before and after anomaly removal 

Performance evaluation of our mechanism is also 

conducted and all of the experiments are run on our 

PC-based test platform which is equipped with an Intel 

core i5-4570 CPU @ 3.20GHz, 8GB RAM, and 

Windows 10 operating system. Experiments are 

grouped by the number of the rules in a rule set, and 

are designed systematically according the rule-

generating policies defined in [14]. A hundred of 

experiments are performed for each of the 

experimental groups which contains 100 to 2000 rules 

in a rule set. Figure 17 and Figure 18 show the time in 

milliseconds and space in kilobytes, respectively, while 

doing our anomaly removal. Both reveal the excellence 

of our enhancement in the removal of anomalies in a 

firewall rule set. 

0

50

100

150

200

250

300

350

400

100 500 1000 1500 2000

m
s

Number of Rules

System Execution Time

 

Figure 17. Time needed for anomaly removal 



956 Journal of Internet Technology Volume 21 (2020) No.4 

 

0

50

100

150

200

250

300

350

400

450

100 500 1000 1500 2000

k
b
y
te
s

Number of Rules

System Memory Requirement

 

Figure 18. Space needed for anomaly removal 

In addition to the mechanism provided in our work, 

several other approaches with different mathematical 

optimization strategies are also proposed and 

implemented for removal of firewall rule anomalies 

[15]. However, none of them can be competent at the 

job, because: 

(1) For those algorithms solving problems on a 

phase-by-phased basis, e.g., greed method or dynamic 

programming, their solutions are hard to fulfill the 

requirements of anomaly removal. Depending on the 

accumulation of local optimizations or profits, these 

algorithms fail to achieve the goal of our anomaly 

removal where it can be found these algorithms may 

not always beget the same filtering effects as the input 

(original) rule set does. 

(2) For the algorithms leveraging some approximating 

strategies, they are revealed not be suitable for this job 

since a difficult and error-prone process for the 

problem transformation and adaptation is needed. For 

example, genetic algorithm is tried in our work and 

found how to design proper adaptation function and 

mutation process is a long-term battle with huge 

uncertainty. 

5 Conclusion and Future Work 

Anomaly removal is an essential but not easy task 

for the management of firewall rules. Removing rules 

with anomalies from a firewall cannot only fasten the 

packet matching of firewall rules, but also reduce the 

impacts of the firewall while being attacked. Different 

from those research which have been up so far in this 

topic, in this paper, a novel anomaly removal approach 

with new data structure and algorithms is proposed, 

where it can not only provide a speedy and correct 

removal for redundant and shadowing anomalies, but 

also identify the other types of rule anomaly effectively. 

A visualized firewall rule anomaly removal mechanism 

has been realized based on the approach and the 

performance evaluations show its effectiveness and 

efficiency. As an augmented enhancement, the novel 

mechanism is integrated properly in our previously 

developed anomaly diagnosis system. 

As the next steps, to accommodate the new demands 

of anomaly diagnosis, more interesting ingredients and 

many of technical challenges have to be taken into 

account [16], e.g., migrating the current mechanisms to 

IPv6/IoT networking environment, adding inspection 

functions for behavior mismatching among firewalls, 

and handling port configuration anomalies. For these, 

with hard working a whole new version is expected to 

be rolled out at the end of 2020. 

Acknowledgments  

This work is supported by MOST, R.O.C., under 

contract MOST-108-2221-E-035-030. 

References 

[1] E. Al-Shaer, Automated Firewall Analytics, Springer, 2014. 

[2] E. Al-Shaer, H. Hamed, R. Boutaba, M. Hasan, Conflict 

Classification and Analysis of Distributed Firewall Policies, 

IEEE Journal on Selected Areas in Communications, Vol. 23, 

No. 10, pp. 2069-2084, October, 2005. 

[3] K. Golnabi, R. K. Min, L. Khan, E. Al-Shaer, Analysis of 

Firewall Policy Rules Using Data Mining Techniques, 2006 

IEEE/IFIP Network Operations and Management Symposium, 

Vancouver, BC, Canada, 2006, pp. 305-315. 

[4] A. X. Liu, A. R. Khakpour, J. W. Hulst, Z. Ge, D. Pei, J. 

Wang, Firewall Fingerprinting and Denial of Firewalling 

Attacks, IEEE Transactions on Information Forensics and 

Security, Vol. 12, No. 7, pp. 1699-1712, July, 2017. 

[5] T. Wong, On the Usability of Firewall Configuration, The 4th 

Symposium on Usable Privacy and Security, Pittsburgh, PA, 

USA, 2008, pp. 180-185. 

[6] T. Samak, A. El-Atawy, E. Al-Shaer, FireCracker: A 

Framework for Inferring Firewall Policies Using Smart 

Probing, The IEEE International Conference on Network 

Protocols, Beijing, China, 2007, pp. 294-303. 

[7] E. Al-Shaer, Automated Firewall Analytics: Design, Configuration 

and Optimization, Springer, 2014. 

[8] C. S. Chao, S. J.-H. Yang, Towards a Usable Anomaly 

Diagnosis System among Internet Firewalls’ Rules, Journal 

of Internet Technology, Vol. 20, No. 3, pp. 789-799, May, 

2019. 

[9] Y. Yin, Y. Katayama, N. Takahashi, Detection of Conflicts 

Caused by a Combination of Filters Based on Spatial 

Relationships, Journal of Information Processing Society of 

Japan, Vol. 49, No. 9, pp. 3121-3135, September, 2008. 

[10] Y. Yin, R. S. Bhuvaneswaran, Y. Katayama, N. Takahashi, 

Implementation of Packet Filter Configurations Anomaly 

Detection System with SIERRA, The 7th International 

Conference on Information and Communications Security, 

Bejing, China, 2005, pp. 467-480. 

[11] A. Voronkov, L. H. Iwaya, L. A. Martucci, S. Lindskog, 

Systematic Literature Review on Usability of Firewall 

Configuration, ACM Computing Survey, Vol. 50, No. 6, 

Article No. 87, January, 2018. 

[12] C. S. Chao, S. J.-H. Yang, A Novel Three-Tiered Visualization 



A Novel Mechanism for Anomaly Removal of Firewall Filtering Rules 957 

 

Approach for Firewall Rule Validation, Journal of Visual 

Languages and Computing, Vol. 22, No. 6, pp. 401-414, 

December, 2011. 

[13] E. Horowitz, S. Sahni, S. Anderson-Freed, Fundamentals of 

Data Structures in C, 2nd Ed., Silicon Press, 2007. 

[14] E. Al-Shaer, A. El-Atawy, T. Samak, Automated Pseudo-Live 

Testing of Firewall Configuration Enforcement, IEEE 

Journal on Selected Areas in Communications, Vol. 27, No. 3, 

pp. 302-314, April, 2009. 

[15] C. S. Chao, I. T. Jeng, A Genetic Algorithm for Firewall Rule 

Anomaly Optimization, TANet2018, 2018, Taichung, Taiwan, 

P-0003. 

[16] M. M. Noor, W. H. Hassan, Current Research on Internet of 

Things (IoT) Security: A Survey, Computer Networks, Vol. 

148, pp. 283-294, January, 2019. 

Biographies 

Chi-Shih Chao currently is an 

associated professor at the 

Communications Engineering Dept. of 

Feng Chia University, Taiwan. His 

research interests include network 

security, network fault management, 

high-speed networks, and wireless 

LANs. Dr. Chao received the Annual Best Paper 

Awards from Taiwan TANet in 2015 and IMP in 2016, 

respectively. He also serves for plenty of relevant 

conferences, journals, and industrial committees. In 

addition, he is a member of IEEE and Phi-Tau-Phi. 

 

Stephen J. H. Yang is the Vice 

President of Asia University, Taiwan. 

He is also associated with the National 

Central University as the Distinguished 

Professor of Department of Computer 

Science & Information Engineering. 

Dr. Yang received his Ph.D. degree in 

Electrical Engineering & Computer Science from the 

University of Illinois at Chicago in 1995. Dr. Yang has 

published over 60 SSCI/SCI journal papers, his 

research interests include Big Data, learning analytics, 

Artificial Intelligence, educational data mining, and 

MOOCs. Dr. Yang received the Outstanding Research 

Award from Ministry of Science & Technology (2010) 

and Distinguished Service Medal from Ministry of 

Education (2015).  



958 Journal of Internet Technology Volume 21 (2020) No.4 

 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9.354330
      /MarksWeight 0.141730
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


