
Secure Fine-grained Attribute-based Access Control with Hidden Policy for Electronic Health Record System 941

Secure Fine-grained Attribute-based Access Control with

Hidden Policy for Electronic Health Record System

Sai Ji1, Xin Jin1, Jin-Feng Lai3, Jian Shen1,2

1 School of Computer & Software, Nanjing University of Information Science & Technology, China
2 Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen, China

3 School of Information and Communication Engineering, University of Electronic Science and Technology of China, China

jisai@nuist.edu.cn, ndghtxx@163.com, lcf2018@uestc.edu.cn, s_shenjian@126.com*

*Corresponding Author: Jin-Feng Lai; E-mail: lcf2018@uestc.edu.cn

DOI: 10.3966/160792642020072104004

Abstract

Electronic health record system (EHRs) has become an

important part of medical system, which has more

meaningful benefits compared with paper-based records.

However, how to conduct secure fine-grained access

control remains challenging. Although ciphertext-policy

attribute-based encryption (CP-ABE) is a promising

candidate for solving the above challenges. It is still not

suitable for EHRs when considering privacy preserving.

The access policy is uploaded to cloud in plaintext form,

which may leak sensitive personal privacy. In this paper,

we present a secure fine-grained attribute-based access

control with hidden policy for electronic health record

system. In the proposed scheme, a novel attribute name

randomization scheme is designed to randomize each

entity’s attribute names. Therefore, each entity’s attribute

name set is different and unreadable. In addition, we

utilize garbled bloom filter (GBF) to hide necessary

values which are used to help decrypt ciphertext. At the

same time, only user has corresponding secret keys can

he reveal the hidden values. Moreover, security and

performance analysis demonstrate that our scheme is

secure and privacy-preserving with low overhead.

Keywords: Electronic health record system, CP-ABE,

Access control, Hidden policy

1 Introduction

To date, the development of information technology

has raised health care system [1-4] to a new height. In

response to this trend, progressively more medical

treatment records are recorded digitally and stored in

electronic equipment. And traditional paper-based

records are replaced by electronic health record (EHR)

[5] gradually. EHR is a series of collection of patient’s

digital medical information. The electronic health

record system (EHRs) can be shared or researched

between medical institutions or scientific research

institution. EHRs can manage patient data more

efficiently [6]. It also greatly improves the efficiency

and quality of health care services. More importantly,

EHRs can meaningfully improve patient safety,

providing full data chart to help doctor diagnose

patient condition.

In order to realize secure and efficient patient data

sharing [7], it is necessary to set strict access control in

EHRs [8]. According to the feature of patient data, it

contains many various data form which can be

classified by different attributes. In addition, the data

owner does not know the identity information of

decryptor in advance. In another word, data owner

does not know exactly which entity he wants to share

his sensitive health data with. He may be only known

that the receiver should satisfy some certain conditions.

Under such condition, ciphertext-policy attribute-based

encryption (CP-ABE) [9-12] becomes a suitable

solution for the above challenges. CP-ABE grants data

owner the ability to encrypt data under specified access

policy, so that ciphertext cloud only be decrypted by

some user whose attributes satisfy access policy. CP-

ABE greatly enriches the flexibility of encryption

strategies [13-14]. It is also a fine-grained one-to-many

data sharing pattern. Therefore, CP-ABE based access

control scheme can achieve the purpose of protecting

patient sensitive data in EHR system.

However, the existing CP-ABE based access control

schemes are flawed in terms of privacy protection [15-

20]. Access policy contains a series of descriptive

information. And it is uploaded to cloud in plaintext

form along with ciphertext. This issue is especially

important in EHRs. It may leak patient sensitive

information. For instance, patient A encrypts his data

under access policy “(otitis media AND varicose veins)

OR ENT doctors OR vascular surgery doctors”. This

access policy shows that patient A has two types of

diseases. Anyone who can access EHRs can see this

access policy and infer that patient A may suffer from

some physical illness, which leaks sensitive privacy

information. This behavior seriously violates the

patient’s privacy rights. Hereafter, although some

access control schemes with privacy preserving have

942 Journal of Internet Technology Volume 21 (2020) No.4

been researched [21-23], a secure and fine-grained

scheme with hidden policy is still to be developed.

Some policy hidden schemes [24-25] only hide

attribute values, but the attribute names are still

exposed to the public. Malicious entities can still

analyze sensitive privacy information in non-negligible

probability. What’s more, most of the above schemes

do not support complicated access structures.

Thus, this motivates us to design a secure fine-

grained attribute-based access control with hidden

policy for EHR system, which could solve above

problems. Note that, the access policy is expressed by

linear secret sharing scheme (LSSS) [26]. The

contributions of the proposed scheme can be concluded

as follows:

(1) We utilize chameleon hash function to design

attribute name randomization scheme, which is used to

hide the true attribute names and randomize them.

According to this scheme, central authority (CA) can

randomize initial attribute names to assign each data

owner and user special attribute names. And the

randomized attribute names which in processed from

the same initial attribute names correspond to the same

attribute value.

(2) A novel attribute garbled bloom filter (GBF) is

designed to replace the mapping function ρin LSSS

access structure (,)M ρ . There are no attribute name

nor value in GBF. This attribute GBF also support

expressive access policy.

(3) Due to the use of one-way anonymous key

agreement, the proposed scheme can realize efficient

secret parameter reconstruction. We use one-way

anonymous key agreement to generate intermediate

keys which correspond to attribute names. The

intermediate keys are the values which are inserted into

the above designed GBF. Only the user has the

corresponding secret keys, can he/she reconstruct the

intermediate keys which could further help user

reconstruct secret parameter.

We will now explain the layout for the remaining of

this paper. In the next three sections (i.e. Sections 2 to

3), we will briefly describe the relevant background

materials, and the problem statement. In Section 4, we

will present our proposed scheme. The security and

performance analysis of the proposed scheme are given

in Sections 5 and 6. This paper is concluded in the last

section.

2 Background Materials

2.1 Chameleon Hash Functions

We introduce chameleon hash functions as it is

described in [27]. Not like common hash functions,

chameleon hash functions are a trapdoor collision

resistant hash function. It has a special key pair

(,)
CH CH

pk sk . Public key
CH

pk is utilized to generate

hash value for each input. Secret key
CH

sk can be

utilized to easily find collisions for given hash value. A

chameleon hash function has the following polynomial

time algorithms:.

(1) SPGen(k) → SP. It takes a security parameter k

as input. Then, it outputs the system parameters SP.

(2) KeyGen(SP) → (,)
CH CH

pk sk . It takes system

parameters SP as input. Then, this algorithm generates

a trapdoor key pair (,)
CH CH

pk sk .

(3) (, ,)
CH CH CH

H pk m r → h. It takes public key

CH
pk , a message m, and an auxiliary random integer

*

CH qr Z∈ as input. Then, it generates hash value h.

(4) ComputeCollision (, , ,)
CH CH

sk m r m′ →
CH
r′ .

This algorithm takes secret key
CH

sk , a message m, an

auxiliary random integer
CH
r as input. Then, it

generates a new auxiliary random integer
CH
r′ which

satisfy (, ,) (, ,)
CH CH CH CH CH CH

H pk m r H pk m r′ ′= .

A secure chameleon hash function has the properties

of collision resistance and semantic security.

2.2 Garbled Bloom Filters

GBF is a variant of Bloom filters [28] and

incorporates (k, k) secret sharing scheme. With the

help of [29], the construction of GBF is described as

follows:

(1) Initialization. Create an array of m bit strings,

whose index numbers over the range [0, m-1]. Each

element in GBF is λ bit, where λ is security parameter.

And they firstly are set to NULL. Choose k

independent uniform hash functions *:{0,1}
i

H →

[0, 1], 1 .m i k− ∀ ≤ ≤ The i-th element in GBF is

represented as GBF[i].

(2) Insert. For element x S∈ which will be added to

GBF, it is mapped to k positions which are computed

as
[1,]

()
i i k

H x
∈

 in turn. Write down the position idx

whose λ bit is NULL after the first hash. For the

hashed position after this, if the corresponding string is

empty, we randomly set it to a string of length λ.

Otherwise, it remains unchanged. We XOR the above

strings other than the string labeled position idx. Then,

we XOR the result with element x. The finally result is

assigned to GBF [idx]. After inserting all elements, all

the GBF [i] which are not assigned any string will be

assigned random string.

The construction of attribute GBF in our scheme

which is expressed by GBFBuild (,)M ρ algorithm is

similar to above. The process of GBF can refer to

Figure 1.

Secure Fine-grained Attribute-based Access Control with Hidden Policy for Electronic Health Record System 943

Figure 1. Garbled bloom filter

3 Problem Statement

3.1 System Model

Figure 2 describes our proposed scheme, which has

four entities. Namely, there are cloud servers, central

authority (CA), data owners (DOs) and users.

Figure 2. System model

Cloud servers provide electronic health record storage

service. It is not fully trusted here. It is honest but

curious.

Central authority initializes the whole system. And it

is fully trusted here. In EHRs, it may be led by

government or social public health agency.

Data owners are the data source in EHRs. They

encrypt their data and upload them to cloud servers.

They may play the role of patient or doctor. They are

fully trusted in EHR system.

Users are data consumers in EHRs. They are not fully

trusted in EHR system. They may collude together to

decrypt ciphertext.

3.2 Security Assumption

Decisional q -Parallel Bilinear Diffie-Hellman

Exponent Assumption (Decisional q-BDHE [11]): The

description of q-BDHE is as follows. Let p be the

prime order of group G . And randomly select

1 2
, , , ,...,

pq
a s b b b ∈Z . If an adversary is given y =

�

2 2

2 2

() () ()

/ (/)

(/) (/)

/ (/)

, , ,..., , ,...,

1 , , ,..., ,

,...,

1 , , , ,...,

q q q

q
j j j

q q
j j

q
j j k j

s a a a a

sb a b a b

a b a b

asb b a b b

g g g g g g

j q g g g

g g

j k q k j g g

+

+

∀ ≤ ≤

∀ ≤ ≤ ≠

it must remain hard to distinguish
1

(,)
q

Sa

e g g
+

∈
T

G

from a random element in
T

G .

An algorithm B that outputs {0,1}z∈ has advantage

∈ in dealing with decisional q-BDHE in G if

1

| [(,) (,)) 0]

[(,) 0

q
Sa

r

r

P B y T e g g

P B y T R

+

= =

− = = ≥∈

�

�

We say that the Decisional q -BDHE assumption

holds if no adversary can work out the decisional q-

BDHE problem in polynomial time with a non-

negligible advantage.

4 The Proposed Scheme

4.1 High-level Overview

CA firstly initialize the whole system and deal with

registration tasks. When DOs and users register with

CA, CA executes the attribute name randomization

scheme to randomize each entity’s initial attribute

names to assign each entity the corresponding unique

attribute names. DOs adaptively choose a symmetric

encryption algorithm to encrypt data. Then, DOs

encrypt the symmetric key under CP-ABE. For each

attribute in access policy (,)M ρ , DOs utilize one-way

anonymous key agreement to generate intermediate

key for each attribute name. After that, DOs hash

intermediate keys instead of attribute names to

construct GBF. The access policy (,)M ρ is replaced

as (M, GBF). Once user wants to decrypt ciphertext, he

firstly utilizes his own secret key to compute

intermediate key. Then, he searches GBF to check

whether he can further decrypt ciphertext. In the whole

process, the access structure is fully protected.

4.2 System Setup

CA chooses two cyclic multiplicative groups
1

G

and
2

G . All of them have the same prime order p. A

generator g∈
1

G is randomly selected. Let :e
1 1
×G G

→
2

G be a binary map. Then, CA randomly selects a

and α ∈
p

Z . For each initial attribute name

(1,2, ,)
i

ATName i n= … , CA randomly selects the

corresponding attribute value
i

d ∈
1

G . The initial

attribute name is the widely accepted official attribute

naming rule, for example, the attribute “psychologist,

heart disease, patient, depression and cough” and so on.

CA selects k secure strong collusion-resistant hash

functions () :
i

H
1

G → [0, 1], 1
GBF
L i k− ∀ ≤ ≤ , where

GBF
L is the maximum index number.

CA publishes public key as Eq. (1).

944 Journal of Internet Technology Volume 21 (2020) No.4

1 2

1

11 2

{ , ,...,

(,) , , (), ,...,

, , , , , () ,..., ()}

n

CH n

GBF k

PK ATName ATName ATName

e g g H hash d d

g g L H H

α

α

=

G G

 (1)

CA sets master secret key MSK g
α

= .

4.3 Attribute Name Randomization Scheme

Another mission of CA is to deal with each entity’s

registration process and execute attribute name

randomization scheme.

CA selects a secure chameleon hash function
*{0,1}

CH
H →

1
G . CA runs the SPGen(k) and KeyGen

(SP) algorithm to generate chameleon hash key pair

(,)
CH CH

pk sk .

When user registers with CA, CA will assign a

unique identity
j

GID . According to the initial attribute

names where the total number is n owned by user

,
j

GID CA randomize each one as follows. CA

calculates (, || ,).
CH CH i i Inti

H pk ATName d r Then, CA

randomly selects auxiliary integer (1)
i
r i n≤ ≤ and

utilizes chameleon hash secret key
CH

sk to run

ComputeCollision (, || , ,)
CH i i Inti i

sk ATName d r r to find

the string *

,
{0,1} (1)

j i
RT i n∈ ≤ ≤ , so that a collision is

successfully found. Finally, user’s attribute names are

randomized as
,j i

RT . The corresponding auxiliary

integers
i
r are also sent to user. So, user has attribute

value
i

d , the corresponding randomized attribute

names
,j i

RT and auxiliary integers
i
r , where

(1)i n≤ ≤ . For simplicity, we utilize
,

()
CH j i

H RT to

represent
,

(, ,)
CH CH j i i

H pk RT r which is equal to

(, || ,)
CH i i Inti

pk ATName d r . Here DO also needs to

register with CA to acquire his identity dojGID , his

randomized attribute names
,doj iRT , the corresponding

attribute values
i

d ,
,

()CH doj iH RT and auxiliary integers

doi
r , where (1)i n≤ ≤ . Each entity’s attribute set is

expressed as
jGID

S or
dojGID

S according to their roles.

4.4 Encryption Phase

First, DO whose identity string is dojGID randomly

selects number µ∈
2

G in secret. Then, DO encrypts

data M by using symmetric encryption algorithm under

the selected symmetric key µ . After this, DO will

encrypt symmetric key µ under CP-ABE algorithm

and generate the initial ciphertext. DO formulates the

access policy A according to his own interest. Then,

DO turns access policy A into LSSS access structure

(,)M ρ . As we introduce above, M is an l ×n matrix.

ρ is a injective function which maps each row of M

to attributes. DO randomly selects
2

, , ,
n

x y y ∈…

q
Z in

secret. Then, a vector
2

(, , ,)
n

v s y y=

�

… is constructed

by DO. At the same time, each
i i

M vλ =

� ┬

is computed,

where i=1, 2, …, l. Finally, DO randomly selects

1 2
, , ,

l
r r r ∈…

p
Z and utilizes PK to generate the

following initial ciphertext as Eq. (2).

()

(), (,) ,

1 , () ,i i i

as s

a

i i i

ES M C e g g C g

i to l C g d D g

δ

λ γ λ

ρ

µ

−

′= =

∀ = = ⋅ =

 (2)

Then, DO utilizes secret parameter s which is

selected in first step to compute intermediate key

, ,

(() , ())a s

RTdoj i CH doj iIK e g H RT= for each attribute name.

Following is the GBF construction phase. GBFBuild

(,)M ρ → GBF. This algorithm takes access policy

(,)M ρ as input, then outputs attribute GBF.

Following is the detailed process. DO sets a set of

elements
1 2

{ || || ... || },
insert n

S row row row= where
n

row ∈

*

q
Z represents the input of function and the output of

()
n

rowρ is same, and n is the number of the input

which has the same corresponding output. According

to the algorithm defined in [29], DO can construct

attribute GBF as follows. For each element
insert

e S∈ , it

is firstly shared with (k,k) secret sharing scheme.

Namely, DO randomly generates k-1 λ-bit strings s(i,e),

where 1 1i k≤ ≤ − . And DO sets
, 1, 2,

...

k e e e
s s s= ⊕ ⊕

1,k e
s e

−

⊕ ⊕ . Then, it utilizes hash functions ()
i

H and

intermediate key
,RTdoj iIK to compute each position.

Namely, DO will get the following position for

element e:
1 , 2 , ,
(), (),..., (),RTdoj i RTdoj i k RTdoj iH IK H IK H IK

where
,RTdoj iIK corresponds to the attribute name

associated with element e and
,

()k RTdoj iH IK represents

the position index. At the same time, DO assigns each

position the corresponding string
,i e

s .

Finally, the ciphertext CT is marked as Eq. (3).

()

(,) , , (,),

1 , () ,i i i

as as

ra

i i i

C e g g C g M GBF

i to l C g d D g
λ λ

ρ

µ

−

′= =

∀ = = ⋅ =
 (3)

4.5 Key Generation Phase

When user whose identity string is
j

GID wants to

decrypt ciphertext, he needs to acquire his secret key.

Firstly, user needs to interact with CA to verify his

legality. If user is legal, CA will go on to generate

secret key for user. Then CA will execute KeyGen (PK,

MSK, GIDjS) → SK algorithm to generate secret key. It

takes public key PK, master secret key MSK and s set

of user’s unique attribute,
GIDj

S as input. Then, CA

randomly selects t∈ *

q
Z and calculates Eq. (4).

Secure Fine-grained Attribute-based Access Control with Hidden Policy for Electronic Health Record System 945

,

, ,

, , ()

a at t

t a

GIDj x x x CH j x

K g g L g

x S K d T H RT

= =

∀ ∈ =

 (4)

4.6 Decryption Phase

The registered user can access ciphertext according

to their interests. But they cannot decrypt ciphertext

only if their attributes satisfy access policy A . So user

needs to reveal related parameter embedded in access

structure (M, GBF). User could decrypt ciphertext like

follows.

This phase is the process that user queries the

attribute GBF to acquire necessary row number

information, which can be marked as GBFQuery.

Firstly, user with identity
j

GID utilizes ciphertext and

secret key to reconstruct the intermediate key

, ,

(, ())s a

RTj i CH j iIK e g H RT= for each randomized

attribute name which belongs to him. If
,

()CH doj iH RT =

,

()CH j iH RT , then
,RTj i

IK =
,RTdoj iIK . For each

intermediate key
,

,
RTj i

IK user calculates the corresponding

index numbers in attribute GBF with the help of k hash

functions () 1
n

H n k∀ ≤ ≤ . Namely, user computes the

following positions: 1 , 2 , ,
(), (),..., ().RTj i RTj i k RTj iH IK H IK H IK

Then, user gets the corresponding strings from these

positions. After that, user reconstructs the element e:

1, 2, 1, ,
...

e e k e k e
e s s s s

−

= = ⊕ ⊕ ⊕ =
1, 2, 1,

...

e e k e
s s s

−

⊕ ⊕ ⊕ ⊕

1, 2, 1,
... .

e e k e
s s s e

−

⊕ ⊕ ⊕ ⊕ Therefore, user can reveal

the row number information embedded in e, where

1 2
{ || || ... || }.

n
e row row row= Finally, user can construct

his attribute matrix
U

M which is a sub-matrix of M

according to the revealed row number information. The

attributes in matrix
U

M make up the set
GIDj

S ′ . Note

that, the whole mapping function ρ is still kept secret.

If user has all attributes in access policy A , he still

cannot determine whether he has all attributes in

specified attribute GBF due to our attribute name

randomization scheme and intermediate key scheme.

If user’s attribute matrix
U

M satisfy the hidden

access policy (,)M ρ , then vector (1,0, ,0)e =

�

… is in

the span of matrix
U

M . Then user can compute

constant set { }
i i l

ω
∈

 in polynomial time, where

1 2 | |(, ,...)
l U

e Mω ω ω=

�

. After that, user can reconstruct

secret parameter s: s=(1, 0, …, 0)
2

(, ,...,)
n

s y y⋅

┬

. With

the above parameters, user can reveal symmetric key

µ with Eq. (5).

 ()

(,)

((,) (,))

(,)

i
i

i i i

as

e C K
C

i I e C L e D K

e g g

ϖ

ρ

′
=

∈ ⋅

=

∏ (5)

Therefore, the symmetric key µ can be calculated

as follows: / (,) / (,) .as as

k
C C e g g e g gµ µ= = Once µ

is restored, user can further decrypt plaintext M under

the selected symmetric algorithm.

5 Security Analysis

5.1 Data Confidentiality

Theorem 1: If the q-BDHE assumption holds, no

polynomial time adversary can selectively break our

scheme with a challenge matrix of size * *

,l n× where
* *

, .l n q≤

Proof: This phase is similar to that in [11], we do not

proof it here. Detailed proof can be found in [11].

5.2 Privacy Preservation

Theorem 2: The access policy is fully hidden in our

scheme and our scheme is privacy-preserving.

Proof: In most existing CP-ABE based schemes, the

access policy is expressed as LSSS structure (,)M ρ

and is attached to ciphertext in plaintext form. The

mapping function ρ fully reveals the readable attribute

name information and access structure information,

which leaks sensitive privacy information of DO and

user. In our proposed scheme, such mapping function ρ

is removed and is replaced by attribute GBF. Firstly, in

our novel attribute name randomization scheme, CA

computes (, || ,)
CH CH i i Inti

H pk ATName d r , where

parameter
Inti
r is kept secret. Then, CA utilizes

chameleon hash secret key
CH

sk run ComputeCollision

(, || , ,)
CH i i Inti i

sk ATName d r r to find the string
,j i

RT ∈

*{0,1} (1),i n≤ ≤ so that a collision is successfully

found. Therefore, each entity’s attribute names are

randomized as
,

{ }
j i

RT and there is no relation between

each randomized attribute name. Each entity’s attribute

names are unreadable and different from each other.

After that, DO utilizes his own special
,

()CH doj iH RT

to compute intermediate key
,

(() ,a s

RTdoj iIK e g=

,

()).CH doj iH RT Then, DO utilize
,RTdoj iIK to generate

GBF. In GBF, each element is a random string in the

eyes of others. Only user has the correct secret key, can

he compute the corresponding unique intermediate key

and further reveal the row mapping information. User

can only reveal row mapping information by

decrypting GBF. There is no sensitive privacy

information in GBF. Therefore, the access policy is

fully hidden and our scheme is privacy-preserving.

946 Journal of Internet Technology Volume 21 (2020) No.4

6 Performance Analysis

In this section, we firstly simulate the construction

and query time of GBF with Python 2.7.15rc1 and

MurmurHash3 2.5.1. Then, we simulate the encryption

and decryption cryptographic operation with C

Programming Language. Both the experiment environment

is on a VMware Workstation machine with Intel Core

i7-7700HQ processors running at 2.80 GHz with 4 GB

memory, and Ubuntu 18.04.1 LTS. The cryptography

library used is the PBC Library (pbc-0.5.14) and the

Libfenc Library (fenc-0.2.0).

Figure 3 and Figure 4 show the simulation result of

GBFBuild and GBFQuery. We set k=8, 16, 24 with the

help of MurmurHash functions. m is set as 1024 and λ

= 16. And n is the number of attributes. Form Figure 3,

we can find that time increases with the increase of

both number of hash functions and attributes. The

insert time of 50 attributes with 24 hash functions is

less than 2.4 ms. From Figure 4, we can find that the

query time is much smaller than insert operation. And

the query time of 50 attributes with 24 hash functions

is less than 0.90 ms.

Figure 3. GBFBuild

Figure 4. GBFQuery

Figure 5 shows the result of our encryption and

decryption simulation. Figure 5 also includes the

construction and query time of GBF, where k=16. The

number of attributes is marked as x-axis. It represents

the number of attributes in LSSS access structure,

ciphertext and user’s attribute set. To make sure that

each attribute will appear in encryption and decryption

phase, we set the access policy in the form of all AND-

gates. Namely, no OR-gate appears in our simulation.

The y-axis denotes the time cost which is measured in

seconds. Note that, we do not take the symmetric

encryption and decryption into consideration in our

simulation. We simulate each one for 20 times and take

the average value as the final result. From Figure 5, we

can find that both time increases linearly with the

increment of attribute number. We compare our

scheme with [10] from encryption and decryption

phase. The result is shown in Figure 6. Because our

scheme includes GBFBuild and GBFQuery, the total

time of ours is higher than [10]. However, the excess

time is so small. Ours takes about 1.8 ms more than [10]

in encryption phase and takes about 0.8 ms more than

[10]. We can find that the simulation result is

acceptable for real-world applications.

Figure 5. Simulation time

Figure 6. The comparison result between ours and [10]

7 Conclusion

The privacy protection is so important in EHRs. In

this paper, a hidden policy access control which

protects sensitive privacy in EHRs is proposed. Based

on the designed attribute name randomization scheme,

each entity’s attribute set is randomized which makes it

different from others’ and unreadable. The randomized

attribute name set is also utilized to generate

intermediate key. Then, a novel attribute GBF is

designed to replace the mapping function ρin LSSS

structure (,)M ρ . The hidden values in attribute GBF

Secure Fine-grained Attribute-based Access Control with Hidden Policy for Electronic Health Record System 947

are row number information. Moreover, we utilize one-

way anonymous agreement to design an intermediate

key scheme. The intermediate key is the inserted value

in attribute value. Note that, the intermediate key is

generated with the help of randomized attribute set.

And only the user has the correct corresponding secret

key, can he reconstruct the intermediate key and reveal

the hidden information in attribute GBF. The security

and performance analysis show that the proposed is

secure and privacy-preserving with low overhead.

Acknowledgments

This work is supported by the National Natural

Science Foundation of China under Grants No.

U1836115, No. 61672295, No. 61922045, No. 61672290,

the Natural Science Foundation of Jiangsu Province

under Grant No. BK20181408, the Foundation of State

Key Laboratory of Cryptology under Grant No.

MMKFKT201830, the Peng Cheng Laboratory Project

of Guangdong Province PCL2018KP004, the CICAEET

fund, and the PAPD fund.

References

[1] J. A. Linder, J. Ma, D. W. Bates, B. Middleton, R. S. Stafford,

Electronic Health Record Use and the Quality of Ambulatory

Care in the United States, Archives of Internal Medicine, Vol.

167, No. 13, pp. 1400-1405, July, 2007.

[2] P. C. Tang, J. S. Ash, D. W. Bates, J. M. Overhage, D. Z.

Sands, Personal Health Records: Definitions, Benefits, and

Strategies for Overcoming Barriers to Adoption, Journal of

the American Medical Informatics Association, Vol. 13, No. 2,

pp. 121-126, March, 2006.

[3] M. Li, S. Yu, Y. Zheng, K. Ren, W. Lou, Scalable and Secure

Sharing of Personal Health Records in Cloud Computing

Using Attribute-Based Encryption, IEEE Transactions on

Parallel & Distributed Systems, Vol. 24, No. 1, pp. 131-143,

January, 2013.

[4] A. Bahga, V. K. Madisetti, A Cloud-Based Approach for

Interoperable Electronic Health Records (EHRs), IEEE

Journal of Biomedical & Health Informatics, Vol. 17, No. 5,

pp. 894-906, September, 2013.

[5] K. Häyrinen, K. Saranto, P. Nykänen, Definition, Structure,

Content, Use and Impacts of Electronic Health Records: A

Review of the Research Literature, International Journal of

Medical Informatics, Vol. 77, No. 5, pp. 291-304, May, 2008.

[6] A. M. V. Ginneken, The Computerized Patient Record:

Balancing Effort and Benefit, International Journal of

Medical Informatics, Vol. 65, No. 2, pp. 97-119, June, 2002.

[7] C. Wang, J. Shen, Q. Liu, Y. Ren, T. Li, A Novel Security

Scheme Based on Instant Encrypted Transmission for Internet

of Things, Security and Communication Networks, Vol. 2018,

pp. 1-7, May, 2018.

[8] H. Yan, J. Li, X. Li, G. Zhao, S.-Y. Lee, J. Shen, Secure

Access Control of E-Health System with Attribute-Based

Encryption, Intelligent Automation & Soft Computing, Vol.

22, No. 3, pp. 345-352, February, 2016.

[9] V. Goyal, O. Pandey, A. Sahai, B. Waters, Attribute-Based

Encryption for Fine-Grained Access Control of Encrypted

Data, 13th ACM Conference on Computer and Communications

Security, Alexandria Virginia, USA, 2006, pp. 89-98.

[10] J. Bethencourt, A. Sahai, B. Waters, Ciphertext-Policy

Attribute-Based Encryption, 2007 IEEE Symposium on

Security & Privacy (SP’07), Berkeley, CA, USA, 2007, pp.

321 - 334.

[11] B. Waters, Ciphertext-Policy Attribute-Based Encryption: An

Expressive, Efficient, and Provably Secure Realization,

International Workshop on Public Key Cryptography,

Taormina, Italy, 2011, pp. 53-70.

[12] C.-J. Wang, Y. Liu, J.-T. Kim, An IND-CCA2 Secure Key-

Policy Attribute-Based Key Encapsulation Scheme, Journal

of Internet Technology, Vol. 11, No. 5, pp. 619-625,

September, 2010.

[13] W. Li, K. Xue, Y. Xue, J. Hong, Tmacs: A Robust and

Verifiable Threshold Multi-Authority Access Control System

in Public Cloud Storage, IEEE Transactions on Parallel and

Distributed Systems, Vol. 27, No. 5, pp. 1484-1496, May,

2016.

[14] S. Wang, J. Zhou, J. K. Liu, J. Yu, J. Chen, W. Xie, An

Efficient File Hierarchy Attribute-Based Encryption Scheme

in Cloud Computing, IEEE Transactions on Information

Forensics and Security, Vol. 11, No. 6, pp. 1265-1277, June,

2016.

[15] K. Xue, W. Chen, W. Li, J. Hong, P. Hong, Combining Data

Owner-Side and Cloud-Side Access Control for Encrypted

Cloud Storage, IEEE Transactions on Information Forensics

and Security, Vol. 13, No. 8, pp. 2062-2074, August, 2018.

[16] K. Yang, X. Jia, Expressive, Efficient, and Revocable Data

Access Control for Multi-Authority Cloud Storage, IEEE

Transactions on Parallel and Distributed Systems, Vol. 25,

No. 7, pp. 1735-1744, July, 2014.

[17] F. Guo, Y. Mu, W. Susilo, D. S. Wong, V. Varadharajan, CP-

ABE with Constant-Size Keys for Lightweight Devices, IEEE

transactions on Information Forensics and Security, Vol. 9,

No. 5, pp. 763-771, May, 2014.

[18] J. Li, W. Yao, J. Han, Y. Zhang, J. Shen, User Collusion

Avoidance CP-ABE with Efficient Attribute Revocation for

Cloud Storage, IEEE Systems Journal, Vol. 12, No. 2, pp.

1767-1777, June, 2018.

[19] J. Dong, Q. Zhao, Security Access Control Policy of

Information System under Multi-domain Mode, International

Journal of Internet Protocol Technology, Vol. 11, No. 1, pp.

44-50, May, 2018.

[20] Z. Qiu, Z. Zhang, S. Tan, J. Wang, X. Tao, Hierarchical

Access Control with Scalable Data Sharing in Cloud Storage,

Journal of Internet Technology, Vol. 20, No. 3, pp. 663-676,

May, 2019.

[21] T. Nishide, K. Yoneyama, K. Ohta, Attribute-Based Encryption

with Partially Hidden Encryptor-Specified Access Structures,

Applied Cryptography and Network Security, New York,

USA, 2008, pp. 111-129.

948 Journal of Internet Technology Volume 21 (2020) No.4

[22] J. Li, K. Ren, B. Zhu, Z. Wan, Privacy-Aware Attribute-

Based Encryption with User Accountability, International

Conference on Information Security, Pisa, Italy, 2009, pp.

347-362.

[23] D. Boneh, B. Waters, Conjunctive, Subset, and Range Queries

on Encrypted Data, Theory of Cryptography Conference,

Amsterdam, The Netherlands, 2007, pp. 535-554.

[24] J. Katz, A. Sahai, B. Waters, Predicate Encryption Supporting

Disjunctions, Polynomial Equations, and Inner Products,

Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Istanbul, Turkey,

2008, pp. 146-162.

[25] J. Lai, R. H. Deng, Y. Li, Fully Secure Cipertext-Policy

Hiding CP-ABE, International Conference on Information

Security Practice and Experience, Guangzhou, China, 2011,

pp. 24-39.

[26] A. Beimel, Secure Schemes for Secret Sharing and Key

Distribution, Ph.D. Thesis, Israel Institute of Technology,

Technion, Haifa, 1996.

[27] X. Chen, F. Zhang, K. Kim, Chameleon Hashing Without

Key Exposure, International Conference on Information

Security, Palo Alto, CA, USA, 2004, pp. 87-98.

[28] B. H. Bloom, Space/Time Trade-Offs in Hash Coding with

Allowable Errors, Communications of the ACM, Vol. 13, No.

7, pp. 422-426, July, 1970.

[29] C. Dong, L. Chen, Z. Wen, When Private Set Intersection

Meets Big Data: An Efficient and Scalable Protocol, 2013

ACM SIGSAC Conference on Computer & Communications

Security, Berlin, Germany, 2013, pp. 789-800.

Biographies

Sai Ji received his M.S. degree from

the Nanjing Aeronautics and

Astronautics University, Nanjing,

China, in 2006. He works as an

Associate Professor at the NUIST. His

research interests are in the areas of

computer measurement and control,

structural health monitoring, and

WSNs.

Xin Jin received the B.E. degree in

2017 and is currently working toward

the M.E. degree at Nanjing University

of Information Science and

Technology, Nanjing, China. He

focuses on information security and

access control. His research interests

include information security, access

control, and attribute-based encryption.

Jin-Feng Lai reis currently with
the School of Information and
Communication Engineering,
University of Electronic Science and
Technology of China. He has
authored or coauthored over 100
refereed papers in journals,

conferences, and workshop proceedings about his
research areas within four years. His research interests
include multimedia communications, sensor-based
healthcare, and embedded systems. He is a member of
the IEEE CIRCUITSAND SYSTEMS and the IEEE
Communications Societies.

Jian Shen received the Ph.D. degrees

in computer science from Chosun

University, South Korea, in 2012.

Since 2012, he has been a Professor

with the Nanjing University of

Information Science and Technology,

Nanjing, China. His research interests include public

cryptography, cloud computing, data auditing and

sharing, and information security systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

