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Abstract 

The purpose of this paper is to perform a comprehensive 

study on the performance of different deep learning 

models for detection of thunderstorm gale. We construct 

a benchmark dataset from the radar echo images in 

Guangdong province of China. Each radar image is 

partially labeled according to the wind velocities recorded 

by meteorological observation stations. We design four 

deep learning models to address the thunderstorm gale 

detection problem, including a simple convolution neural 

network (CNN), a recurrent neural network (S-RCNN), a 

time context recurrent convolutional neural network (T-

RCNN), and a spatio-temporal recurrent convolutional 

neural network (ST-RCNN). Ten traditional machine 

learning algorithms are selected as comparison baselines. 

Experimental results demonstrate that four deep learning 

models can achieved better detection performance than 

traditional machine learning algorithms. 

Keywords: Radar echo images, Thunderstorm gale 

detection, Machine learning, Deep learning 

1 Introduction 

Accurate prediction the meteorological disaster is a 

very important and meaningful task. Thunderstorm 

gale is typical disaster that often produces very badly 

destructive damages to agricultures, industries and 

economics. However, the thunderstorm prediction is 

very challenging, compared to mesoscale meteorological 

phenomenon because of its small scale, rapid birth and 

growth. In the literature, many studies and methods 

have been conducted and developed by meteorological 

scientists to address the problem. 

A typical line of studies is to leverage the priori 

knowledge and experiences of meteorologist for the 

detection. For instance, Johns et al. [1] found that the 

bow-like echo map features play a distinct and 

important role in the thunderstorm gale detection. 

Based on the extensive correlation analysis between 

thunderstorm gale and echo top, Darrah el al. [2] found 

an important phenomenon, namely the thunderstorm 

gale has a lower top than that of echo top of hail, which 

can be leveraged its detection. In [3], Yu et al. 

developed a method to detect thunderstorm gale with a 

combination of the mid-altitude radial convergence 

(MARC) and bow-like echo features. Dong et al. [4] 

found that vertical integrated liquid (VIL) is a 

distinguish factor for thunderstorm detection. If the 

VIL is larger than 30kg/m2, the likelihood that 

thunderstorm gale may appear is high. Once the VIL is 

larger than 40kg/m2, the confidence becomes very 

strong. In [5], Yan et al. showed that if the VIL and 

center of a storm decrease rapidly and simultaneously, 

a thunderstorm gale is quite likely to appear. In [6], the 

correlation and connection between squall line and 

thunderstorm gale were studied. In [7], Wang et al. 

showed two important features for thunderstorm gale 

detection: (1) the thunderstorm gale often appears in 

isolated storms; (2) the position of appear at the bow-

like echo region or the tail part of a jet inflow. In [8], 

Zhou et al. showed that four features are important to 

detect thunderstorm gale, which are a high radar 

reflectivity factor, a high VIL, a fast-moving speed, a 

decrease of echo top and MARC. Liao et al. [9] 

developed a detection method based on the shape 

features, VIL and wind fields. In [10-11], a fuzzy logic 

model was developed with six heuristic features for 

thunderstorm gale detection. We can see that all the 

existing methods for thunderstorm gale detection are 

quite simple, heuristic and experience based, which 

cannot deliver robust prediction performance. 

Moreover, all the methods require users to construct 

features manually. 

With the rapid development and great success of 

machine learning and deep learning techniques, it is 

interesting to study whether it is possible to leverage 

such techniques for thunderstorm detection. Different 

from the existing experience-based models, machine 

learning and deep learning models are able to 

automatically optimize their parameters based on 

historical observations, namely training samples. 

Moreover, the deep learning models can learn without 

a feature engineering procedure. 

In this paper, we focus on the investigation of deep 

learning methods to the thunderstorm gale detection 

problem. We consider the investigation based on a 
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benchmark data set from Guangdong province. As for 

a comparison, we also introduce ten conventional 

machine learning approaches as baselines. The ten 

approaches include Decision Tree Regressor (DT), 

Linear Regression (LR), Ridge regression (Ridge), 

Lasso regression (Lasso), Random Forest Regressor 

(RFR), K-nearest Neighbor Regressor (KNNR), 

Bayesian Ridge Regressor (BR), Adaboost Regressor 

(AR), Support Vector Regressor (SVR), and Gradient 

Boosting Regressor (GBR). To apply the ten models, 

ten important manual features are also constructed. 

Different from conventional machine learning 

appraoches, which needs manual features as a 

prequiresite, deep learning methods are able to make 

predictions without a feature engineering step. Hence, 

we design four deep learning architectures to address 

the thunderstrom gale detection problem, including a 

simple convolution neural network architecture (CNN), 

a recurrent neural network architecture (S-RCNN), a 

time context recurrent convolutional neural network(T-

RCNN), and a spatio-temporal recurrent convolutional 

neural network architecture (ST-RCNN). In the models, 

CNN simply fuses the spatial and temporal contexts for 

thunderstorm gale detection; S-RCNN and T-RCNN 

recursively exploit the spatial context and temporal 

context, respectively; ST-RCNN recursively leverages 

both the spatial and temporal contexts. 

The four deep learning models are compared with 

the aforementioned ten traditional machine learning 

methods that use manual extraction features. 

Experimental results show that machine learning 

approaches can effectively identify thunderstorm gale 

from radar images, and the deep learning methods 

perform better. We note that the paper is an extension 

to our conference paper in [12]. The key difference is 

that in our conference paper we mainly focus on the 

comparison of conventional machine learning 

approaches for thunderstorm gale detection, while in 

this paper we introduce and design some deep learning 

models to address the problem. 

2 Methodology 

2.1 Problem Statement 

The thunderstorm gale refers to the wind whose 

velocity is larger than 17m/s. The thunderstorm gale 

detection task is to find where a thunderstorm gale 

appears based on the radar images. In reality, the radar 

images are switched by the local images captured by 

multiple Doppler radars. For Guangdong, the switched 

radar image covers 700 km × 900km, which is 

composed of local images captured by seven radars. 

Each radar scans every six-minute, and the scanned 

height is from 500m to 19500m, where the scanned 

height interval is 1000m. In the radar images, each 

pixel represents a 1 km×1km region. Hence, every six-

minute, we obtain 20 radar images of 700×900. A lot 

of automatic meteorological stations are distributed in 

Guangdong province, which can record the wind 

velocity, rainfall, humidity, temperature, and air 

pressure. Each record can be corresponded to a pixel in 

radar image. Based on such correspondence, we can 

label the wind velocity of 1 km×1km regions and thus 

construct the training set. Our aim is to predict the 

wind velocity of each region based on its radar pixel 

features. This is essentially a machine learning 

problem, i.e., regress a real value from the radar pixel 

features to denote the wind velocity. Specifically, we 

divide the radar image into M N×  patches, and select 

K height level, and T time steps. By doing so, each 

sample can be represented as a tensor M N K T
X R

× × ×

∈ . 

If we let W denote the corresponding wind velocity, 

the thunderstorm detection then aims to find a function 

( )W f X= . With the prediction function, we are able 

to calculate the wind velocity and the detection is 

conducted by thresholding the velocity with 17m/s. 

2.2 Feature Engineering 

Next, we elaborate the feature engineering procedure 

for machine learning approaches. In this paper, ten 

important features are constructed by referring the 

conventional experiences from meteorologists. 

Radar echo intensity：This is original pixel value in 

radar images, which is usually ranged in [0, 80] and the 

unit is dBZ. 

Radar reflectivity factor: The factor is proportional 

to the spectral diameter of raindrop. The connection of 

the feature to radar echo intensity is: 

 1010

dbz

Z =   

Radar combined reflectivity: As there are K height 

level radar images, we can calculate an image based on 

them. Each pixel in the image denotes the maximum 

radar reflectivity factor value of the pixels located in 

the same position in the K radar images. The calculated 

image is radar combined reflectivity. 

Vertical integrated liquid (VIL): The feature denotes 

the integration of possible precipitation in unit column 

volume, which is computed as follows: 
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where 
i

Z  denotes the radar reflectivity factor of the i-

th height level, 
i
hΔ  is the height differences between 

the i-th and (i+1)-th height level, K is the number of 

levels. 

Radar echo top: This denotes the height that the 

maximal radar reflectivity factor lies in. 

The change of radar echo intensity w.r.t. time: The 

feature is calculated as: 
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where 
i

dbz  and 
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−

 represents the radar echo 

intensities of current and previous scans, respectively. 

The time difference is six minutes. 

The change of radar reflectivity factor w.r.t. time: 

The feature is formally expressed as: 
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i

Z  and 
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 indicates the radar reflectivity 

factors of current and previous scans, respectively. 

The change of radar combined reflectivity: 
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where 
i

Max
Z  denotes the radar combined reflectivity of 

current and previous scans, respectively. 

The change of VIL w.r.t. time:  
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Here 
i

Max
Z  and 

1i
Max

Z
−

 denotes the maximal VILs of 

current and previous scans, respectively. 

The decrease of echo top w.r.t. time: 

 
1i i
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h h h

−

Δ = −   

Here 
i

Max
h and 

1i
Max
h

−

 denote the echo tops of the 

current and previous scans. 

2.3 Traditional Machine Learning Approaches 

By utilizing the above features, we can conduct 

experiments and examine the performance of the 

traditional machine learning approaches. In this paper, 

we adopt ten regression methods, which employ the 

radar features as input the corresponding wind velocity 

as output. Next, we give a brief introduction to the ten 

methods. 

Decision Tree Regressor (DTR). It is a decision tree 

based regressor. Different from decision tree classifier, 

the tree grows by optimizing the mean square error of 

leaf nodes. In this paper, we leverage the ten types of 

features above to build the DTR. 

Linear Regression (LR). LR is a linear regression 

model, which leverage the linear combination of 

features to predict wind velocity. Similarly, the ten 

types of features are employed. 

Ridge Regression (Ridge). This is indeed the mean 

square error model with l-2 norm regularization on the 

parameters. By introducing the regularization term, we 

can avoid the non-singularity problem of the mean 

square error model and the results can be more stable. 

Lasso Regression (Lasso). Similar to Ridge regression, 

Lasso regression is the mean square error model with l-

1 norm regularization. 

Random Forest Regressor (RFR). RFR is an 

ensemble-based regression model. In this model, 

multiple trees based regressors are built based on 

randomly sampled subsets (from both instance and 

feature views) of training samples and final prediction 

is obtained by averaging the outputs of the multiple 

regressors. 

K-Nearest Neighbor Regressor (KNNR). Given a 

test sample, the model finds its K-nearest neighbors in 

the training set and utilizes their average as the final 

prediction. 

Bayesian Ridge Regressor (BR). This is a Bayesian 

based ridge regression model, which can incorporate 

and automatically optimize the priors on feature 

correlations and importance. 

Adaboost Regressor (AR). This is indeed an 

ensemble model, where multiple predictors are 

constructed sequentially. The (i+1)-th predictor aims to 

correct the mistakes made by the i-th predictor, which 

is achieved by sampling instances according to their 

derivations to the ground-truth in the i-th round, and 

then utilizing them to build the (i+1)-th predictor. 

Support Vector Regressor (SVR). It is a regression 

model based on the principle of support vector 

machine (SVM), which is a binary classification 

method. Different from SVM, SVR addresses the 

regression problem by designing a similar objective 

function to SVM. 

Gradient Boosting Regressor (GBR). GBR is also an 

ensemble learning method, which can learn multiple 

predictors from mistakes. The predictor is often 

decision trees. 

2.4 Deep Learning Approaches 

In this subsection, we introduce the developed deep 

learning approaches. Specifically, four deep learning 

architectures are designed, including a simple convolution 

neural network architecture (CNN), a recurrent neural 

network architecture (S-RCNN), a time context 

recurrent convolutional neural network(T-RCNN), and 

a spatio-temporal recurrent convolutional neural 

network architecture (SP-T-CNN). Next, we elaborate 

the four models, respectively. 

2.4.1 Overall Procedure 

Before going to the details of the models, we first 

explain the overall procedure of the deep learning 

detection models, which is shown as in Figure 1. Given 

a radar echo image at a time point, we first fetch the 

two images from two time points. As each image is 

composed of seven channels, putting all of them 

together we obtain a nine-layer radar echo image. 

Since our detection is pixel by pixel, we can filter out 

pixels that are obviously not thunderstorm gale to 

accelerate the detection speed. Hence, two filtering 

steps are conducted, namely checking whether the 30% 

of the radar echo intensity around the pixel is higher 

than zero and whether the pixel is inside a squall line 

region. After the filtering steps, a normalization step is 

performed and then the deep learning model is carried 
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out based on the patch centered at the pixel to predict 

whether the pixel belongs to thunderstorm gale. 

 

Figure 1. The procedure of deep learning-based 

thunderstorm gale detection 

2.4.2 Convolutional Neural Network (CNN)  

This model belongs to the deep learning techniques, 

which is composed of eight layers and the architecture 

is shown as in Figure 2. In CNN, we utilize 9 height 

levels of radar echo images and 3 time points. Hence, 

we have a 700-by-900-by-27 image. Then, we extract a 

13-by-13-by-27 patch to predict the wind velocity at its 

center position. In each convolution layer, the size of 

convolution filter is 3x3 and the number of filters is 30. 

The stride number is 1. To avoid overfitting, we utilize 

the dropout strategy in full connection layer and the 

dropout ratio is 0.5. Adam optimizer is leveraged to 

train the network and batch size is 500. The epoch is 

set to be 1000. Note that different from conventional 

machine learning approaches, the CNN can be directly 

applied to radar images and does not need the 

handcrafted features above. 

 

Figure 2. The architecture of CNN model 

2.4.3 Spatial Context Recurrent Convolutional 

Neural Network (S-RCNN) 

Thunderstorm gale detection systems identify the 

wind speed at the most central point. However, as the 

wind field are often continuous in space, it is important 

to consider the spatial context in the detection. 

However, it is also challenging to incorporate the 

context. As the radar pixels contribute differently to the 

center pixels in terms of their locations, we must be 

very careful to select the spatial range. If the range of 

selected image size is too large, the surrounding noise 

information will be introduced to interfere with the 

detection of thunderstorm and gale at the center 

position. On the contrary, if the selection range is too 

small, it will easily cause the loss of surrounding 

context information and lead to insufficient recognition 

accuracy. In order to make better use of the spatial 

context information of radar image, a spatial context 

recurrent convolution neural network model (S-RCNN) 

is designed to make full use of the surrounding 

information and reduce the influence of noise. 

S-RCNN has the structure of recurrent convolution 

neural network in spatial. In particular, the convolution 

kernels are shrunk at multiscale to convolute and 

extract features at different levels. During the 

procedure, the original radar echo image is also scaled 

and concatenated at each level to exploit the features. 

The architecture of S-RCNN is shown as in Figure 3. 

In S-RCNN, we also have a 700-by-900-by-27 image. 

Then, we extract a 13-by-13-by-27 patch to predict the 

wind velocity at its center position. In each convolution 

layer, the size of convolution filter is 3x3 and the 

number of filters is 30. The ReLU activation function 

is used between each convolution layer. The stride 

number is 1. Therefore, the feature maps generated by 

each convolution layer are 11-by-11-by-30, 9-by-9-by-

30 and 7-by-7-by-30. For spatial recurrent structure, 

the patch of the original radar echo data before 

convolution is taken as its center 7-by-7-by-9, and then 

combined with the last convolution layer by 

concatenation operator, and then three convolution 

layers are connected. The size of convolution kernel in 

each layer is 3-by-3, and the number of filters in each 

layer is 30. After that, the size of the feature map 

generated by each convolution layer is 5-by-5-by-30, 

3-by-3-by-30 and 1-by-1-by-30. The last layer is 

transformed into a one-dimensional vector, and the full 

connection layer is appended for the regression. To 

avoid overfitting, we utilize the dropout strategy in full 

connection layer and the dropout ratio is 0.5. Adam 

optimizer is leveraged to train the network and batch 

size is 500. The epoch is set to be 1000. Again, we 

observe that S-RCNN can be directly applied to radar 

images and does not need the handcrafted features 

using in traditional machine learning models. 
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Figure 3. The architecture of S-RCNN model 

2.4.4 Time Context Recurrent Convolutional 

Neural Network (T-RCNN)  

The S-RCNN model can make full use of the spatial 

scale information, but in the model the radar time 

series context is used as channels for convolution and 

cannot be modeled and exploited well. For general 

time series problems, the commonly used deep 

learning models are Recurrent Neural Network (RNN), 

Long Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU). However, when dealing with 

two-dimensional spatiotemporal data, these models 

take the image as a vector for full connection directly, 

which is not appropriate. It will bring a lot of 

redundancy for spatial data, and cannot describe the 

local characteristics of the image. Therefore, this paper 

designs a time context recurrent neural network model, 

which considers the two-dimensional information of 

radar echo images as well as time series.  

In T-RCNN, M × N is used to represent the height 

and width of each sample, K denotes the number of 

radar height layers, and T represents the time point. 

The features of thunderstorm gale samples can be 

expressed by the tensor M N K T
X R

× × ×

∈ . The wind 

speed at the center position is identified by the patch of 

radar echo images, and then the thunderstorm gale 

detection problem is the wind speed detection problem 

by radar spatiotemporal information. Instead of treating 

the temporal images as channels in X, we break them 

into Xt-2, Xt-1 and Xt as in Figure 4, and then perform 

RNN-like convolution to extract features as the time 

evolves. The detailed architecture of T-RCNN is 

shown as in Figure 5. 

2.4.5 Spatio-Temporal Recurrent Convolutional 

Neural Network (ST-RCNN)  

ST-RCNN regards the thunderstorm gale detection 

problem as an end-to-end regression problem. The 

input is radar echo images of multiple altitudes, 

multiple spatial scales and multiple time serieses, and 

the output is the wind speed of the location. ST-RCNN 

extends S-RCNN and T-RCNN by combining both 

strengths, namely appropriately modeling the spatial 

and temporal contexts at the same time. 

ST-RCNN can effectively consider a wider range of 

spatial context through spatial recurrent convolutions, 

and utilize the temporal information of radar echo nice. 

The input data of model design is shown in Figure 6. 

 

Figure 4. The Design sketch of T-RCNN  

 

Figure 5. The architecture of T-RCNN model 

 

Figure 6. The organization of input data for ST-RCNN 

ST-RCNN combines the design concepts of S-

RCNN and T-RCNN. Figure 7 presents its design 

sketch, and Figure 8 gives its detailed architecture. 

 

Figure 7. The Design sketch of ST-RCNN model  
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Figure 8. The detailed architecture of ST-RCNN 

model 

In summary, this section presents four deep learning 

thunderstorm gale detection methods. CNN is a simple 

convolutional neural network model and adopts time 

series and height information of radar echo as channels. 

S-RCNN considers the spatial context of radar echo by 

spatial circulation. T-RCNN generates models for time 

series, but can’t take into account the spatial context 

factors which are important for the detection of 

thunderstorms gales. ST-RCNN is a network model 

with cycle and convolution structure in both time series 

and spatial scale, which can obtain more sufficient 

space-time information and effectively reduce noise in 

spatial context. These models can not only deal with 

the detection of thunderstorm gale, but also can be 

used for classification or regression based on the 

characteristics of spatiotemporal series. 

3 Experiment 

3.1 Experimental Setup 

In this paper, we utilize the radar images and data 

from automatic meteorological stations to construct our 

thunderstorm gale detection data set. For evaluation, 

three metrics are adopted, which are Mean Absolute 

Error (MAE), Root Mean Square Error (RMSE) and 

R2-score. The smaller the MAE and RMSE are, the 

better the performance is. Larger R2-score indicates 

better performance. All the algorithms run on a 

computer with Intel Core i5-7500(3.40 GHz * 4), 

GeForce GTX 1080Ti GPU (12 GB) and 32 GB RAM. 

3.2 Data Construction 

The thunderstorm detection data set is collected by 

Shenzhen Meteorological Bureau, which record the 

radar images and data from automatic meteorological 

stations in Guangdong Province from 2015-2017. The 

resolution of each radar image is 700×900, and the 

spatial resolution is 0.01 °×0.01 ° , namely each pixel 

denotes 1km × 1km. From the height of 500m to 

19500m, a radar image is recorded for every 1000m. 

Hence, we have totally 20 height level of radar images. 

Those images are updated every 6-minute. In 

automatic meteorological stations, we record the wind 

velocity, rainfall, temperature, air pressure, humidity. 

As our main aim is to identify the thunderstorm gale, 

we only keep the records where the wind velocity is 

larger than 5m/s. Then, for each automatic 

meteorological station, we extract a 13×13×9×3 patch 

from the radar images. Here the patch is centered at the 

location of the station, 9 indicates that we select 9 

height levels and 3 means we utilize the radar images 

from three time points, which are current, 6-minute ago, 

and 12-minute ago. Hence, each sample is denoted as 

13 × 13 × 9 × 3 tensor, as introduced in the problem 

statement in Section 2.1. The wind velocity of each 

patch (sample) is denoted by the value recorded in the 

corresponding station. The details of experimental data 

are shown in Table 1. 

Table 1. Experiment data 

Gale 
Training 

Data 

Validation 

Data 

Testing 

Data 
Total

Yes 4000 1000 1000 6000 

No 16000 4000 4000 24000 

Total 20000 5000 5000 30000 

 

According to the structure of the neural network 

framework, four deep learning models are compared in 

the following experiments. Their processes are 

consistent, but the neural network structure and 

parameter settings are different, the details are shown 

in Table 2.  

Table 2. Parameters of the four models 

Model Channels
Recurrent Time 

Context 

Recurrent 

Space Context 

CNN 27 No No 

S-RCNN 27 Yes No 

T-RCNN 9 No Yes 

ST-RCNN 9 Yes Yes 

 

3.3 Experimental Results  

We conduct experiments on the constructed datasets 

to compare the performance of ten traditional models, 

namely DTR, LR, Ridge, Lasso, RFR, KNNR, BR, AR, 

SVR and GBR and four deep learning models, namely 

CNN, S-RCNN, T-RCNN and ST-RCNN. Except for 

deep learning models, the ten type of features 

constructed above are utilized. For deep learning 

models, they are end-to-end methods and do not need a 

feature engineering procedure. We record the average 

accuracy, precision, recall and F1-Score on the 5000 

test samples of those models as final results. The 

results are shown in Table 3. 

3.4 Experimental Analysis  

From the results, we find that ST-RCNN 

outperforms the other models in thunderstorm gale 

detection.  It achieves  the  best  results  in  accuracy, 
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Table 3. The comparison results 

Methods Accuracy Precision Recall F1-Score

DTR 75.2% 60.5% 63.5% 0.59 

LR 77.5% 73.2% 74.3% 0.67 

Ridge 77.3% 72.3% 73.6% 0.68 

Lasso 78.9% 72.8% 72.4% 0.70 

RFR 79.9% 76.8% 78.2% 0.72 

KNNR 76.3% 74.1% 74.6% 0.69 

BR 75.8% 70.2% 72.3% 0.67 

AR 77.4% 77.8% 72.5% 0.69 

SVR 79.2% 78.8% 76.3% 0.71 

GBR 81.3% 79.5% 78.3% 0.75 

CNN 76.90% 79.70% 78.10% 0.74 

S-RCNN 81.80% 80.70% 80.40% 0.77 

T-RCNN 82.10% 81.40% 81.50% 0.78 

ST-RCNN 83.50% 82.80% 83.40% 0.82 

 

precision, recall and F1-Score at the same time. S-

RCNN and T-RCNN are also better than the ten 

traditional machine learning methods. GBR deliver 

promising performance among the ten traditional 

machine learning methods.  

The reasons are discussed as follows: Firstly, the 

Recurrent Spatio-Temporal Convolutional Neural 

Network model can effectively integrate the temporal 

factors and spatial context, and can make better use of 

the spatiotemporal information in radar echo data. 

Secondly, the deep learning models learn the local 

features of two-dimensional images, and then abstract 

and combine the features level by level through local 

connection and weight sharing. The methodology is 

better than manual feature extraction utilized in 

traditional machine learning methods. Finally, it is 

found that ensemble models such as GBR and RFR 

perform well in thunderstorm gale detection tasks due 

to their good generalization ability. If the number of 

training samples is small, the proposed deep learning 

models will be slightly lower than the traditional 

ensemble models by manual feature extraction. When 

there are enough training samples, the effect of deep 

learning models is obviously better than the traditional 

machine learning methods. 

3.5 Thunderstorm Gale Detection System 

Based on our comparison study, we implement a 

thunderstorm gale detection system. The system will 

be deployed to meteorological bureau to help 

meteorological reporters. In this system, we utilize ST-

RCNN as a default model, because its performance is 

the best according to our comparative study. The 

system is quite easy to use, which mainly includes 

three steps. 

We can choose a radar image by specifying the file 

path of database and the filename of the image (shown 

as in Figure 9). After specifying the file path and 

filename, the system will load the corresponding radar 

image and visualize it. As there are 20 height levels 

and here, we visualize the radar image of 2500m, 

which is important and usefully according to 

meteorologists’ experiences. Note that here the image 

is 700×900, not a small patch. 

 

Figure 9. Choose a radar image 

We can press the “Recognition” button and then the 

system will output the regions that have thunderstorm 

gale based on our CNN prediction model (shown as in 

Figure 10). The identified regions are marked with 

black colors. The procedure carried out is as follows. 

For each pixel, we extract a 13×13×9×3 patch centered 

on it, as the instructions in Section 3.2. Then, we apply 

the CNN model to predict the wind velocity of the 

patch. If the prediction is larger than 17m/s, then we 

label it as a thunderstorm gale; otherwise, it is not a 

thunderstorm gale. 

 

Figure 10. Thunderstorm gale detection 

We can utilize the “AWS record” button to show the 

wind velocity records in the meteorological stations. 

Here the black square denotes the location where a 

meteorological station really records a thunderstorm 

gale. The red dots indicate the locations where the 

recorded wind velocity is larger than 10 m/s but 

smaller than 17 m/s. By doing so, we can visually 

validate whether the identified thunderstorm gale 

appears in reality. We note that our identified region 
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(in Figure 10) could be larger than the ground-truth 

region (in Figure 11). There are two reasons for this: (i) 

a thunderstorm gale really appears in the identified 

region, but due to lack of meteorological stations, we 

have no ground truth for the region; in real system, we 

make a prediction for each pixel instead of only for the 

ones with automatic meteorological stations in the 

above comparative study. (ii) a false alarm is reported 

due to the wrong prediction made by our model. 

4 Conclusion 

In this paper, we make a comparative study by 

utilizing ten traditional machine learning approaches 

and four deep learning methods to address the 

thunderstorm gale detection problem. To this end, a 

benchmark data set is constructed by using the radar 

images and data from automatic meteorological 

stations in Guangdong from 2015 to 2017. Ten  

important features are extracted to apply traditional 

 

Figure 11. Visual validation 

 

machine learning approaches. Experimental results 

show that the deep learning models deliver the 

promising performance, and ST-RCNN performs the 

best. Based on the comparative study, a deep learning-

based thunderstorm gale detection system is developed, 

which is very easy to use. In the future, we are 

interested in designing more sophisticated deep 

learning models that can better exploit the 

spatiotemporal information for thunderstorm detection. 
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