
On Deep Learning Models for Detection of Thunderstorm Gale 909

On Deep Learning Models for Detection of Thunderstorm Gale

Yan Li1, Haifeng Li2, Xutao Li2, Xian Li2, Pengfei Xie2

1 School of Artificial Intelligence, Shenzhen Polytechnic, China
2 Shenzhen Key Laboratory of Internet Information Collaboration, Harbin Institute of Technology, Shenzhen, China

liyan@szpt.edu.cn; 253154285@qq.com; lixutao@hit.edu.cn; 2696693557@qq.com; 645992705@qq.com*

*Corresponding Author: Xutao Li; E-mail: lixutao@hit.edu.cn

DOI: 10.3966/160792642020072104001

Abstract

The purpose of this paper is to perform a comprehensive

study on the performance of different deep learning

models for detection of thunderstorm gale. We construct

a benchmark dataset from the radar echo images in

Guangdong province of China. Each radar image is

partially labeled according to the wind velocities recorded

by meteorological observation stations. We design four

deep learning models to address the thunderstorm gale

detection problem, including a simple convolution neural

network (CNN), a recurrent neural network (S-RCNN), a

time context recurrent convolutional neural network (T-

RCNN), and a spatio-temporal recurrent convolutional

neural network (ST-RCNN). Ten traditional machine

learning algorithms are selected as comparison baselines.

Experimental results demonstrate that four deep learning

models can achieved better detection performance than

traditional machine learning algorithms.

Keywords: Radar echo images, Thunderstorm gale

detection, Machine learning, Deep learning

1 Introduction

Accurate prediction the meteorological disaster is a

very important and meaningful task. Thunderstorm

gale is typical disaster that often produces very badly

destructive damages to agricultures, industries and

economics. However, the thunderstorm prediction is

very challenging, compared to mesoscale meteorological

phenomenon because of its small scale, rapid birth and

growth. In the literature, many studies and methods

have been conducted and developed by meteorological

scientists to address the problem.

A typical line of studies is to leverage the priori

knowledge and experiences of meteorologist for the

detection. For instance, Johns et al. [1] found that the

bow-like echo map features play a distinct and

important role in the thunderstorm gale detection.

Based on the extensive correlation analysis between

thunderstorm gale and echo top, Darrah el al. [2] found

an important phenomenon, namely the thunderstorm

gale has a lower top than that of echo top of hail, which

can be leveraged its detection. In [3], Yu et al.

developed a method to detect thunderstorm gale with a

combination of the mid-altitude radial convergence

(MARC) and bow-like echo features. Dong et al. [4]

found that vertical integrated liquid (VIL) is a

distinguish factor for thunderstorm detection. If the

VIL is larger than 30kg/m2, the likelihood that

thunderstorm gale may appear is high. Once the VIL is

larger than 40kg/m2, the confidence becomes very

strong. In [5], Yan et al. showed that if the VIL and

center of a storm decrease rapidly and simultaneously,

a thunderstorm gale is quite likely to appear. In [6], the

correlation and connection between squall line and

thunderstorm gale were studied. In [7], Wang et al.

showed two important features for thunderstorm gale

detection: (1) the thunderstorm gale often appears in

isolated storms; (2) the position of appear at the bow-

like echo region or the tail part of a jet inflow. In [8],

Zhou et al. showed that four features are important to

detect thunderstorm gale, which are a high radar

reflectivity factor, a high VIL, a fast-moving speed, a

decrease of echo top and MARC. Liao et al. [9]

developed a detection method based on the shape

features, VIL and wind fields. In [10-11], a fuzzy logic

model was developed with six heuristic features for

thunderstorm gale detection. We can see that all the

existing methods for thunderstorm gale detection are

quite simple, heuristic and experience based, which

cannot deliver robust prediction performance.

Moreover, all the methods require users to construct

features manually.

With the rapid development and great success of

machine learning and deep learning techniques, it is

interesting to study whether it is possible to leverage

such techniques for thunderstorm detection. Different

from the existing experience-based models, machine

learning and deep learning models are able to

automatically optimize their parameters based on

historical observations, namely training samples.

Moreover, the deep learning models can learn without

a feature engineering procedure.

In this paper, we focus on the investigation of deep

learning methods to the thunderstorm gale detection

problem. We consider the investigation based on a

910 Journal of Internet Technology Volume 21 (2020) No.4

benchmark data set from Guangdong province. As for

a comparison, we also introduce ten conventional

machine learning approaches as baselines. The ten

approaches include Decision Tree Regressor (DT),

Linear Regression (LR), Ridge regression (Ridge),

Lasso regression (Lasso), Random Forest Regressor

(RFR), K-nearest Neighbor Regressor (KNNR),

Bayesian Ridge Regressor (BR), Adaboost Regressor

(AR), Support Vector Regressor (SVR), and Gradient

Boosting Regressor (GBR). To apply the ten models,

ten important manual features are also constructed.

Different from conventional machine learning

appraoches, which needs manual features as a

prequiresite, deep learning methods are able to make

predictions without a feature engineering step. Hence,

we design four deep learning architectures to address

the thunderstrom gale detection problem, including a

simple convolution neural network architecture (CNN),

a recurrent neural network architecture (S-RCNN), a

time context recurrent convolutional neural network(T-

RCNN), and a spatio-temporal recurrent convolutional

neural network architecture (ST-RCNN). In the models,

CNN simply fuses the spatial and temporal contexts for

thunderstorm gale detection; S-RCNN and T-RCNN

recursively exploit the spatial context and temporal

context, respectively; ST-RCNN recursively leverages

both the spatial and temporal contexts.

The four deep learning models are compared with

the aforementioned ten traditional machine learning

methods that use manual extraction features.

Experimental results show that machine learning

approaches can effectively identify thunderstorm gale

from radar images, and the deep learning methods

perform better. We note that the paper is an extension

to our conference paper in [12]. The key difference is

that in our conference paper we mainly focus on the

comparison of conventional machine learning

approaches for thunderstorm gale detection, while in

this paper we introduce and design some deep learning

models to address the problem.

2 Methodology

2.1 Problem Statement

The thunderstorm gale refers to the wind whose

velocity is larger than 17m/s. The thunderstorm gale

detection task is to find where a thunderstorm gale

appears based on the radar images. In reality, the radar

images are switched by the local images captured by

multiple Doppler radars. For Guangdong, the switched

radar image covers 700 km × 900km, which is

composed of local images captured by seven radars.

Each radar scans every six-minute, and the scanned

height is from 500m to 19500m, where the scanned

height interval is 1000m. In the radar images, each

pixel represents a 1 km×1km region. Hence, every six-

minute, we obtain 20 radar images of 700×900. A lot

of automatic meteorological stations are distributed in

Guangdong province, which can record the wind

velocity, rainfall, humidity, temperature, and air

pressure. Each record can be corresponded to a pixel in

radar image. Based on such correspondence, we can

label the wind velocity of 1 km×1km regions and thus

construct the training set. Our aim is to predict the

wind velocity of each region based on its radar pixel

features. This is essentially a machine learning

problem, i.e., regress a real value from the radar pixel

features to denote the wind velocity. Specifically, we

divide the radar image into M N× patches, and select

K height level, and T time steps. By doing so, each

sample can be represented as a tensor M N K T
X R

× × ×

∈ .

If we let W denote the corresponding wind velocity,

the thunderstorm detection then aims to find a function

()W f X= . With the prediction function, we are able

to calculate the wind velocity and the detection is

conducted by thresholding the velocity with 17m/s.

2.2 Feature Engineering

Next, we elaborate the feature engineering procedure

for machine learning approaches. In this paper, ten

important features are constructed by referring the

conventional experiences from meteorologists.

Radar echo intensity：This is original pixel value in

radar images, which is usually ranged in [0, 80] and the

unit is dBZ.

Radar reflectivity factor: The factor is proportional

to the spectral diameter of raindrop. The connection of

the feature to radar echo intensity is:

 1010

dbz

Z =

Radar combined reflectivity: As there are K height

level radar images, we can calculate an image based on

them. Each pixel in the image denotes the maximum

radar reflectivity factor value of the pixels located in

the same position in the K radar images. The calculated

image is radar combined reflectivity.

Vertical integrated liquid (VIL): The feature denotes

the integration of possible precipitation in unit column

volume, which is computed as follows:

1

6 1

1

3.44 10 ()
2

K

i i

Max i

i

Z Z
q h

−

− +

=

+
= × × Δ∑

where
i

Z denotes the radar reflectivity factor of the i-

th height level,
i
hΔ is the height differences between

the i-th and (i+1)-th height level, K is the number of

levels.

Radar echo top: This denotes the height that the

maximal radar reflectivity factor lies in.

The change of radar echo intensity w.r.t. time: The

feature is calculated as:

On Deep Learning Models for Detection of Thunderstorm Gale 911

1i i

dbz dbz dbz
−

Δ = −

where
i

dbz and
1i

dbz
−

 represents the radar echo

intensities of current and previous scans, respectively.

The time difference is six minutes.

The change of radar reflectivity factor w.r.t. time:

The feature is formally expressed as:

1i i

Z Z Z
−

Δ = −

where
i

Z and
1i

Z
−

 indicates the radar reflectivity

factors of current and previous scans, respectively.

The change of radar combined reflectivity:

1i i

Max Max
R Z Z

−

Δ = −

where
i

Max
Z denotes the radar combined reflectivity of

current and previous scans, respectively.

The change of VIL w.r.t. time:

1i i

Max Max
q q q

−

Δ = −

Here
i

Max
Z and

1i
Max

Z
−

 denotes the maximal VILs of

current and previous scans, respectively.

The decrease of echo top w.r.t. time:

1i i

Max Max
h h h

−

Δ = −

Here
i

Max
h and

1i
Max
h

−

 denote the echo tops of the

current and previous scans.

2.3 Traditional Machine Learning Approaches

By utilizing the above features, we can conduct

experiments and examine the performance of the

traditional machine learning approaches. In this paper,

we adopt ten regression methods, which employ the

radar features as input the corresponding wind velocity

as output. Next, we give a brief introduction to the ten

methods.

Decision Tree Regressor (DTR). It is a decision tree

based regressor. Different from decision tree classifier,

the tree grows by optimizing the mean square error of

leaf nodes. In this paper, we leverage the ten types of

features above to build the DTR.

Linear Regression (LR). LR is a linear regression

model, which leverage the linear combination of

features to predict wind velocity. Similarly, the ten

types of features are employed.

Ridge Regression (Ridge). This is indeed the mean

square error model with l-2 norm regularization on the

parameters. By introducing the regularization term, we

can avoid the non-singularity problem of the mean

square error model and the results can be more stable.

Lasso Regression (Lasso). Similar to Ridge regression,

Lasso regression is the mean square error model with l-

1 norm regularization.

Random Forest Regressor (RFR). RFR is an

ensemble-based regression model. In this model,

multiple trees based regressors are built based on

randomly sampled subsets (from both instance and

feature views) of training samples and final prediction

is obtained by averaging the outputs of the multiple

regressors.

K-Nearest Neighbor Regressor (KNNR). Given a

test sample, the model finds its K-nearest neighbors in

the training set and utilizes their average as the final

prediction.

Bayesian Ridge Regressor (BR). This is a Bayesian

based ridge regression model, which can incorporate

and automatically optimize the priors on feature

correlations and importance.

Adaboost Regressor (AR). This is indeed an

ensemble model, where multiple predictors are

constructed sequentially. The (i+1)-th predictor aims to

correct the mistakes made by the i-th predictor, which

is achieved by sampling instances according to their

derivations to the ground-truth in the i-th round, and

then utilizing them to build the (i+1)-th predictor.

Support Vector Regressor (SVR). It is a regression

model based on the principle of support vector

machine (SVM), which is a binary classification

method. Different from SVM, SVR addresses the

regression problem by designing a similar objective

function to SVM.

Gradient Boosting Regressor (GBR). GBR is also an

ensemble learning method, which can learn multiple

predictors from mistakes. The predictor is often

decision trees.

2.4 Deep Learning Approaches

In this subsection, we introduce the developed deep

learning approaches. Specifically, four deep learning

architectures are designed, including a simple convolution

neural network architecture (CNN), a recurrent neural

network architecture (S-RCNN), a time context

recurrent convolutional neural network(T-RCNN), and

a spatio-temporal recurrent convolutional neural

network architecture (SP-T-CNN). Next, we elaborate

the four models, respectively.

2.4.1 Overall Procedure

Before going to the details of the models, we first

explain the overall procedure of the deep learning

detection models, which is shown as in Figure 1. Given

a radar echo image at a time point, we first fetch the

two images from two time points. As each image is

composed of seven channels, putting all of them

together we obtain a nine-layer radar echo image.

Since our detection is pixel by pixel, we can filter out

pixels that are obviously not thunderstorm gale to

accelerate the detection speed. Hence, two filtering

steps are conducted, namely checking whether the 30%

of the radar echo intensity around the pixel is higher

than zero and whether the pixel is inside a squall line

region. After the filtering steps, a normalization step is

performed and then the deep learning model is carried

912 Journal of Internet Technology Volume 21 (2020) No.4

out based on the patch centered at the pixel to predict

whether the pixel belongs to thunderstorm gale.

Figure 1. The procedure of deep learning-based

thunderstorm gale detection

2.4.2 Convolutional Neural Network (CNN)

This model belongs to the deep learning techniques,

which is composed of eight layers and the architecture

is shown as in Figure 2. In CNN, we utilize 9 height

levels of radar echo images and 3 time points. Hence,

we have a 700-by-900-by-27 image. Then, we extract a

13-by-13-by-27 patch to predict the wind velocity at its

center position. In each convolution layer, the size of

convolution filter is 3x3 and the number of filters is 30.

The stride number is 1. To avoid overfitting, we utilize

the dropout strategy in full connection layer and the

dropout ratio is 0.5. Adam optimizer is leveraged to

train the network and batch size is 500. The epoch is

set to be 1000. Note that different from conventional

machine learning approaches, the CNN can be directly

applied to radar images and does not need the

handcrafted features above.

Figure 2. The architecture of CNN model

2.4.3 Spatial Context Recurrent Convolutional

Neural Network (S-RCNN)

Thunderstorm gale detection systems identify the

wind speed at the most central point. However, as the

wind field are often continuous in space, it is important

to consider the spatial context in the detection.

However, it is also challenging to incorporate the

context. As the radar pixels contribute differently to the

center pixels in terms of their locations, we must be

very careful to select the spatial range. If the range of

selected image size is too large, the surrounding noise

information will be introduced to interfere with the

detection of thunderstorm and gale at the center

position. On the contrary, if the selection range is too

small, it will easily cause the loss of surrounding

context information and lead to insufficient recognition

accuracy. In order to make better use of the spatial

context information of radar image, a spatial context

recurrent convolution neural network model (S-RCNN)

is designed to make full use of the surrounding

information and reduce the influence of noise.

S-RCNN has the structure of recurrent convolution

neural network in spatial. In particular, the convolution

kernels are shrunk at multiscale to convolute and

extract features at different levels. During the

procedure, the original radar echo image is also scaled

and concatenated at each level to exploit the features.

The architecture of S-RCNN is shown as in Figure 3.

In S-RCNN, we also have a 700-by-900-by-27 image.

Then, we extract a 13-by-13-by-27 patch to predict the

wind velocity at its center position. In each convolution

layer, the size of convolution filter is 3x3 and the

number of filters is 30. The ReLU activation function

is used between each convolution layer. The stride

number is 1. Therefore, the feature maps generated by

each convolution layer are 11-by-11-by-30, 9-by-9-by-

30 and 7-by-7-by-30. For spatial recurrent structure,

the patch of the original radar echo data before

convolution is taken as its center 7-by-7-by-9, and then

combined with the last convolution layer by

concatenation operator, and then three convolution

layers are connected. The size of convolution kernel in

each layer is 3-by-3, and the number of filters in each

layer is 30. After that, the size of the feature map

generated by each convolution layer is 5-by-5-by-30,

3-by-3-by-30 and 1-by-1-by-30. The last layer is

transformed into a one-dimensional vector, and the full

connection layer is appended for the regression. To

avoid overfitting, we utilize the dropout strategy in full

connection layer and the dropout ratio is 0.5. Adam

optimizer is leveraged to train the network and batch

size is 500. The epoch is set to be 1000. Again, we

observe that S-RCNN can be directly applied to radar

images and does not need the handcrafted features

using in traditional machine learning models.

On Deep Learning Models for Detection of Thunderstorm Gale 913

Figure 3. The architecture of S-RCNN model

2.4.4 Time Context Recurrent Convolutional

Neural Network (T-RCNN)

The S-RCNN model can make full use of the spatial

scale information, but in the model the radar time

series context is used as channels for convolution and

cannot be modeled and exploited well. For general

time series problems, the commonly used deep

learning models are Recurrent Neural Network (RNN),

Long Short-Term Memory (LSTM) and Gated

Recurrent Unit (GRU). However, when dealing with

two-dimensional spatiotemporal data, these models

take the image as a vector for full connection directly,

which is not appropriate. It will bring a lot of

redundancy for spatial data, and cannot describe the

local characteristics of the image. Therefore, this paper

designs a time context recurrent neural network model,

which considers the two-dimensional information of

radar echo images as well as time series.

In T-RCNN, M × N is used to represent the height

and width of each sample, K denotes the number of

radar height layers, and T represents the time point.

The features of thunderstorm gale samples can be

expressed by the tensor M N K T
X R

× × ×

∈ . The wind

speed at the center position is identified by the patch of

radar echo images, and then the thunderstorm gale

detection problem is the wind speed detection problem

by radar spatiotemporal information. Instead of treating

the temporal images as channels in X, we break them

into Xt-2, Xt-1 and Xt as in Figure 4, and then perform

RNN-like convolution to extract features as the time

evolves. The detailed architecture of T-RCNN is

shown as in Figure 5.

2.4.5 Spatio-Temporal Recurrent Convolutional

Neural Network (ST-RCNN)

ST-RCNN regards the thunderstorm gale detection

problem as an end-to-end regression problem. The

input is radar echo images of multiple altitudes,

multiple spatial scales and multiple time serieses, and

the output is the wind speed of the location. ST-RCNN

extends S-RCNN and T-RCNN by combining both

strengths, namely appropriately modeling the spatial

and temporal contexts at the same time.

ST-RCNN can effectively consider a wider range of

spatial context through spatial recurrent convolutions,

and utilize the temporal information of radar echo nice.

The input data of model design is shown in Figure 6.

Figure 4. The Design sketch of T-RCNN

Figure 5. The architecture of T-RCNN model

Figure 6. The organization of input data for ST-RCNN

ST-RCNN combines the design concepts of S-

RCNN and T-RCNN. Figure 7 presents its design

sketch, and Figure 8 gives its detailed architecture.

Figure 7. The Design sketch of ST-RCNN model

914 Journal of Internet Technology Volume 21 (2020) No.4

Figure 8. The detailed architecture of ST-RCNN

model

In summary, this section presents four deep learning

thunderstorm gale detection methods. CNN is a simple

convolutional neural network model and adopts time

series and height information of radar echo as channels.

S-RCNN considers the spatial context of radar echo by

spatial circulation. T-RCNN generates models for time

series, but can’t take into account the spatial context

factors which are important for the detection of

thunderstorms gales. ST-RCNN is a network model

with cycle and convolution structure in both time series

and spatial scale, which can obtain more sufficient

space-time information and effectively reduce noise in

spatial context. These models can not only deal with

the detection of thunderstorm gale, but also can be

used for classification or regression based on the

characteristics of spatiotemporal series.

3 Experiment

3.1 Experimental Setup

In this paper, we utilize the radar images and data

from automatic meteorological stations to construct our

thunderstorm gale detection data set. For evaluation,

three metrics are adopted, which are Mean Absolute

Error (MAE), Root Mean Square Error (RMSE) and

R2-score. The smaller the MAE and RMSE are, the

better the performance is. Larger R2-score indicates

better performance. All the algorithms run on a

computer with Intel Core i5-7500(3.40 GHz * 4),

GeForce GTX 1080Ti GPU (12 GB) and 32 GB RAM.

3.2 Data Construction

The thunderstorm detection data set is collected by

Shenzhen Meteorological Bureau, which record the

radar images and data from automatic meteorological

stations in Guangdong Province from 2015-2017. The

resolution of each radar image is 700×900, and the

spatial resolution is 0.01 °×0.01 ° , namely each pixel

denotes 1km × 1km. From the height of 500m to

19500m, a radar image is recorded for every 1000m.

Hence, we have totally 20 height level of radar images.

Those images are updated every 6-minute. In

automatic meteorological stations, we record the wind

velocity, rainfall, temperature, air pressure, humidity.

As our main aim is to identify the thunderstorm gale,

we only keep the records where the wind velocity is

larger than 5m/s. Then, for each automatic

meteorological station, we extract a 13×13×9×3 patch

from the radar images. Here the patch is centered at the

location of the station, 9 indicates that we select 9

height levels and 3 means we utilize the radar images

from three time points, which are current, 6-minute ago,

and 12-minute ago. Hence, each sample is denoted as

13 × 13 × 9 × 3 tensor, as introduced in the problem

statement in Section 2.1. The wind velocity of each

patch (sample) is denoted by the value recorded in the

corresponding station. The details of experimental data

are shown in Table 1.

Table 1. Experiment data

Gale
Training

Data

Validation

Data

Testing

Data
Total

Yes 4000 1000 1000 6000

No 16000 4000 4000 24000

Total 20000 5000 5000 30000

According to the structure of the neural network

framework, four deep learning models are compared in

the following experiments. Their processes are

consistent, but the neural network structure and

parameter settings are different, the details are shown

in Table 2.

Table 2. Parameters of the four models

Model Channels
Recurrent Time

Context

Recurrent

Space Context

CNN 27 No No

S-RCNN 27 Yes No

T-RCNN 9 No Yes

ST-RCNN 9 Yes Yes

3.3 Experimental Results

We conduct experiments on the constructed datasets

to compare the performance of ten traditional models,

namely DTR, LR, Ridge, Lasso, RFR, KNNR, BR, AR,

SVR and GBR and four deep learning models, namely

CNN, S-RCNN, T-RCNN and ST-RCNN. Except for

deep learning models, the ten type of features

constructed above are utilized. For deep learning

models, they are end-to-end methods and do not need a

feature engineering procedure. We record the average

accuracy, precision, recall and F1-Score on the 5000

test samples of those models as final results. The

results are shown in Table 3.

3.4 Experimental Analysis

From the results, we find that ST-RCNN

outperforms the other models in thunderstorm gale

detection. It achieves the best results in accuracy,

On Deep Learning Models for Detection of Thunderstorm Gale 915

Table 3. The comparison results

Methods Accuracy Precision Recall F1-Score

DTR 75.2% 60.5% 63.5% 0.59

LR 77.5% 73.2% 74.3% 0.67

Ridge 77.3% 72.3% 73.6% 0.68

Lasso 78.9% 72.8% 72.4% 0.70

RFR 79.9% 76.8% 78.2% 0.72

KNNR 76.3% 74.1% 74.6% 0.69

BR 75.8% 70.2% 72.3% 0.67

AR 77.4% 77.8% 72.5% 0.69

SVR 79.2% 78.8% 76.3% 0.71

GBR 81.3% 79.5% 78.3% 0.75

CNN 76.90% 79.70% 78.10% 0.74

S-RCNN 81.80% 80.70% 80.40% 0.77

T-RCNN 82.10% 81.40% 81.50% 0.78

ST-RCNN 83.50% 82.80% 83.40% 0.82

precision, recall and F1-Score at the same time. S-

RCNN and T-RCNN are also better than the ten

traditional machine learning methods. GBR deliver

promising performance among the ten traditional

machine learning methods.

The reasons are discussed as follows: Firstly, the

Recurrent Spatio-Temporal Convolutional Neural

Network model can effectively integrate the temporal

factors and spatial context, and can make better use of

the spatiotemporal information in radar echo data.

Secondly, the deep learning models learn the local

features of two-dimensional images, and then abstract

and combine the features level by level through local

connection and weight sharing. The methodology is

better than manual feature extraction utilized in

traditional machine learning methods. Finally, it is

found that ensemble models such as GBR and RFR

perform well in thunderstorm gale detection tasks due

to their good generalization ability. If the number of

training samples is small, the proposed deep learning

models will be slightly lower than the traditional

ensemble models by manual feature extraction. When

there are enough training samples, the effect of deep

learning models is obviously better than the traditional

machine learning methods.

3.5 Thunderstorm Gale Detection System

Based on our comparison study, we implement a

thunderstorm gale detection system. The system will

be deployed to meteorological bureau to help

meteorological reporters. In this system, we utilize ST-

RCNN as a default model, because its performance is

the best according to our comparative study. The

system is quite easy to use, which mainly includes

three steps.

We can choose a radar image by specifying the file

path of database and the filename of the image (shown

as in Figure 9). After specifying the file path and

filename, the system will load the corresponding radar

image and visualize it. As there are 20 height levels

and here, we visualize the radar image of 2500m,

which is important and usefully according to

meteorologists’ experiences. Note that here the image

is 700×900, not a small patch.

Figure 9. Choose a radar image

We can press the “Recognition” button and then the

system will output the regions that have thunderstorm

gale based on our CNN prediction model (shown as in

Figure 10). The identified regions are marked with

black colors. The procedure carried out is as follows.

For each pixel, we extract a 13×13×9×3 patch centered

on it, as the instructions in Section 3.2. Then, we apply

the CNN model to predict the wind velocity of the

patch. If the prediction is larger than 17m/s, then we

label it as a thunderstorm gale; otherwise, it is not a

thunderstorm gale.

Figure 10. Thunderstorm gale detection

We can utilize the “AWS record” button to show the

wind velocity records in the meteorological stations.

Here the black square denotes the location where a

meteorological station really records a thunderstorm

gale. The red dots indicate the locations where the

recorded wind velocity is larger than 10 m/s but

smaller than 17 m/s. By doing so, we can visually

validate whether the identified thunderstorm gale

appears in reality. We note that our identified region

916 Journal of Internet Technology Volume 21 (2020) No.4

(in Figure 10) could be larger than the ground-truth

region (in Figure 11). There are two reasons for this: (i)

a thunderstorm gale really appears in the identified

region, but due to lack of meteorological stations, we

have no ground truth for the region; in real system, we

make a prediction for each pixel instead of only for the

ones with automatic meteorological stations in the

above comparative study. (ii) a false alarm is reported

due to the wrong prediction made by our model.

4 Conclusion

In this paper, we make a comparative study by

utilizing ten traditional machine learning approaches

and four deep learning methods to address the

thunderstorm gale detection problem. To this end, a

benchmark data set is constructed by using the radar

images and data from automatic meteorological

stations in Guangdong from 2015 to 2017. Ten

important features are extracted to apply traditional

Figure 11. Visual validation

machine learning approaches. Experimental results

show that the deep learning models deliver the

promising performance, and ST-RCNN performs the

best. Based on the comparative study, a deep learning-

based thunderstorm gale detection system is developed,

which is very easy to use. In the future, we are

interested in designing more sophisticated deep

learning models that can better exploit the

spatiotemporal information for thunderstorm detection.

Acknowledgments

The research was supported by the Shenzhen

Science and Technology Program under Grant

JCYJ20170811160212033. In this paper, Haifeng Li is

co-first author.

References

[1] R. H. Johns, W. D. Hirt, Derechos: Widespread Convectively

Induced Windstorms, Weather Forecasting, Vol. 2, No. 1, pp.

32-49, March, 1987.

[2] R. P. Darrah, On the Relationship of Severe Weather to Radar

Tops, Monthly Weather Review, Vol. 106, No. 9, pp. 1332-

1339, July, 2009.

[3] X. Yu, X. Zhou, X. Wang, The Progress of Forecasting

Technology for Thunderstorms and Strong Convections

Weather, Journal of Meteorology, Vol. 70, No. 3, pp. 311-

337, June, 2012.

[4] G. Dong, T. Wu, Application of Vertically Integrated Liquid

(VIL) Water in Disastrous Wind Nowcasting, Meteorological

Science and Technology, Vol. 35, No. 6, pp. 877-881, June,

2007.

[5] X. Yan, X. Zhang, J. Zhu, Application of CINRAD / SA

Radar Storm Trend Products in Hail and Strong Wind

Warning, Meteorological technology, Vol. 37, No. 2, pp. 230-

233, February, 2009.

[6] F. Wang, S. Wu, B. Zheng, The Application of Doppler

Radar data in the Prediction of Thunderstorm Gale, Shandong

Meteorology, Vol. 26, No. 4, pp. 15-16, December, 2006.

[7] J. Wang, J. Zhang, Y. Wang, Echo Characteristics of

Thunderstorm Gale Doppler Weather Radar in Eastern Hubei

Province, Rainstorm Disaster, Vol. 28, No. 2, pp. 143-146,

April, 2009.

[8] J. Zhou, M. Wei, T. Wu, Research on Doppler Radar Data

Identification Method for Convective Windy Weather, 28th

Annual Meeting of the Chinese Meteorological Society,

Beijing, 2011.

[9] Y. Liao, Z. Pan, Q. Guo, A Strong Convective Weather

Forecast Warning Method Based on Single Doppler Weather

Radar Products, Meteorological science, Vol. 26, No. 5, pp.

564-571, October, 2006.

[10] G. Li, L. Liu, Z. Lian, Using Radar Echo Three-dimensional

Puzzle Data to Identify Thunderstorm Gale Statistics

Research, Journal of Meteorology, Vol. 72, No. 1, pp. 168-

181, February, 2011.

[11] G. Li, L. Liu, B. Zhang, Automatic Identification of

Convective Ground Winds Based on 3D Radar Network Data,

Journal of Meteorology, Vol. 71, No. 6, pp. 1160-1171,

December, 2013.

[12] H. Li, Y. Li, X. Li, Y. Li, Y. Ye, X. Li, Pengfei Xie, A

Comparative Study on Machine Learning Approaches to

Thunderstorm Gale Identification, 11th International

Conference on Machine Learning and Computing, Zhuhai,

2019, pp. 12-16.

On Deep Learning Models for Detection of Thunderstorm Gale 917

Biographies

Yan Li received the Ph.D. degree in

the Department of Computing,

Hongkong Polytechnic. She is

currently an Associate Professor in

Shenzhen Polytechnic. Her research

interests include data mining and

machine learning.

Haifeng Li received the Bachelor

degree from Tianjin Polytechnic

University, Tianjin, China in 2016. He

is currently pursuing the Master

degree in the Shenzhen Graduate

School, Harbin Institute of

Technology. His research interests is

image processing.

Xutao Li is now an Associate

Professor in the Shenzhen Graduate

School, Harbin Institute of

Technology. He received the Ph.D.

and Master degrees in Computer

Science from Harbin Institute of

Technology in 2013 and 2009, and the

Bachelor from Lanzhou University of Technology in

2007. His research interests include data mining,

machine learning, graph mining and social network

analysis, especially tensor based learning and mining

algorithms.

Xian Li received the Bachelor degree

fromHenan University, Kaifeng, China

in 2018. He is currently pursuing the

Master degree in the Shenzhen

Graduate School, Harbin Institute of

Technology. His research interests

include data mining, computer vision

and remote sensing.

Pengfei Xie received the Master

degree from HIT, ShenZhen, China in

2020. He currently works as an

algorithm engineer in Alibaba group.

His research interests include data

mining, machine learning.

918 Journal of Internet Technology Volume 21 (2020) No.4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

