
A Method for Acquiring Network Information from Linux Memory Image in Software-Defined Networking 899

A Method for Acquiring Network Information from Linux

Memory Image in Software-Defined Networking

Shumian Yang1,2,3, Lianhai Wang1,2,3, Shuhui Zhang1,2,3, Dawei Zhao1,2,3, Lijuan Xu1,2,3

1 Qilu University of Technology (Shandong Academy of Sciences), China
2 Shandong Computer Science Center (National Supercomputer Center in Jinan), China

3 Shandong Provincial Key Laboratory of Computer Networks, China

yangshm@sdas.org, wanglh@sdas.org, zhangshh@sdas.org, zhaodw@sdas.org, xulj@sdas.org*

*Corresponding Author: Lijuan Xu; E-mail: xulj@sdas.org

DOI: 10.3966/160792642020052103027

Abstract

Software defined network (SDN) is a novel network

architecture which separates the control plane from the

data plane of a network. Owing to its openness,

programmability and centralized control, SDN accelerates

the development of network technology. However, it also

brings new security problems, such as SDN control

security, external distributed denial of service (DDoS)

attacks and the northbound-southbound interface security.

Aiming at the various security attack problems in SDN,

the physical memory forensic analysis method is applied

to this new framework of SDN, which can extract and

analyze the digital evidence including running status of

the computer, the behaviour characteristics of the user,

network information, opened file and register. The

method in this paper mainly obtains the network

information from the physical memory image file in real-

time, including the address resolution protocol (ARP),

network configuration information, and the network

connection information. It does not depend on the kernel

symbol table and system version. We have extracted the

network information under a wide range of operating

system versions. Finally, the method is verified on the

ubuntukylin 14.04 system, by obtaining various network

information, and the experiment results show that the

method has high accuracy and effectiveness on

comparing with the Volatility tool.

Keywords: Software-defined networking (SDN), Linux

memory analysis, Software defined

architecture security, Memory forensics

1 Introduction

Software-defined networking (SDN) is a revolutionary

new network framework which achieves the separation

of network control plane and the data plane [1]. While

providing the centralized control and software

programming, the network itself faces many security

problems, and a series of corresponding protection

strategies are proposed for the possible security risks in

SDN. Security threats detection is the premise and key

link of all the strategies. By analyzing the physical

memory image file in real time, monitoring the running

status of the network in real time, it actively discovers

intrusion intentions and initiates corresponding security

response to effectively improve the security performance

of the entire network system. It is an important part of

the network security problem.

Although, software-defined networking provides the

separation of control level and data level, simplifies the

process of the underlying hardware and network

configuration, opens the network programming interface,

and promotes network innovation and network operation,

the layered and opens interfaces provided by SDN, it

also increases the network attack surface, resulting in

many new security problems. In view of these various

security problems in SDN, the scholars at home and

abroad have made preliminary research and analysis on

the vulnerability of controllers [2-3], the legality and

consistency of flow rules [4-5], the vulnerability of

Open Flow Protocol for south-facing interface [6-7],

the security and standardization of north-facing

interface [8-9]. Mahjabin et al., surveyed the distributed

denial-of-service attack, prevention, and mitigation

techniques [10] whereas, Wang et al., developed a

software defined security networking mechanism

(SDSNM) against DDoS attacks [11]. Fan et al,

proposed an improved integrated prediction method of

cyber security situation [12]. Liu et al, proposed

monitoring DDoS by using SDN [13]. At present, most

of the controlled environments in software definition

networks are installed with simplified Linux operating

system, which generally lacks reliable forensic security

mechanism. Through self-adaptive audit mechanism

[14], secure system management model and Linux

system log record, the protection and evaluation of

Linux kernel system were realized. This paper applies

the physical memory forensic analysis method to the

new network for the first time. Software-defined

networking has positive significance for solving

security problems under the new network architecture.

900 Journal of Internet Technology Volume 21 (2020) No.3

The physical memory image file is a copy of the

running memory data, when the host is running. It

saves many key elements of information security event

tracing and intrusion forensics analysis. By analyzing

the memory image file, we can extract the memory

information, network information, the running process

information, loaded driver information, opened file

information, registry and other volatile data, which are

lost when the system shuts down. Therefore, it is of

great significance to obtain the real-time information

for reconstructing the scene of the case.

Since the network information exists in the physical

memory image file, it can describe the communication

situation of the computer with the outside world when

it is being investigated, and can be used as an

important evidence to judge whether the attacker is

engaged in illegal network activities or not. Network

attacks and crimes usually generate network

connection information, such as IP address, the port

number, etc. In computer online forensics, the network

information can be obtained from the physical disk or

through commands such as “tcpview” and “netstat”,

but the data obtained may change. Hence, we started

with the physical memory image file to get real-time

system information and network information from the

host.

Network connection information resides in a

physical memory as volatile data, and its acquisition

depends on the correct physical memory analysis

method. At present, there are many tools for analysing

the information. Schuster et al., suggested a method to

extract network information. In 2010, Ligh M et al.,

proposed another method to obtain the network

information based on internal hash table. Ligh M et al.,

also presented a method for discovering malicious code

hidden network connections through memory analysis.

L Wang studied the method of extracting the network

information from physical memory image files of

Windows, Vista and Windows 7 systems [15-16]. The

most advanced memory forensic tool is Volatility [17].

Volatility must rely on tedious configuration and it also

depends on the system symbol of Linux kernel to make

the profile file. The configuration method is cumbersome

and has a great impact on the system from the

perspective of forensics. The method (which is named

SDN-NIMA) used in this paper acquires a volatile

memory from Linux and Linux-based devices [18]

which are analysed to find the network connection

information, network configuration information,

address resolution protocol information, and does not

depend on the kernel symbol table, system version, and

does not require complicated configuration steps. The

calculations involved in the whole method are

relatively less. The network information is quickly

accessible with high acquisition efficiency, in addition

it is also convenient to implement strongly through

C++. The acquisition of network information through

physical memory image files can be applied to the

investigation and forensics. Thus, it is possible to

check the information security threats, various

computer network crime cases, and the abnormal

behaviour detection under the new network

architecture.

The outline of this paper is organized as follows.

Section 1 introduces the security problems in the

software definition networking and some important

security solutions; Section 2, dwells on the

development history and current situation of memory

analysis, and intrduces important achievements of

some scientists in memory analysis. The method of

obtaining network information, including the method

of obtaining network configuration information and

obtaining address resolution protocol are elaborated in

Section 3. Section 4 presents the comparative results

obtained by the proposed method and Volatility

forensic tools, and also give the advantages of the

method. Section 5 summarises the content of the article

and indicates the opportunities for future work in this

field.

2 Related Work

Memory analysis started in 2002 as evinced by

Kornblum’s article published in DFRWS (Digital

Forensic Research Workshop) on investigating volatile

memory information for comprehensive and accurate

access to cyber attacks and cybercrime information

[19]. In 2005, a challenge game for the memory

forensic analysis of the Windows system was

organized (DFRWS Forensics Challenge, 2005), which

mainly extracted the hidden process information

contained in the physical memory dump file [20]. In

2006, A. Schuster proposed the process and thread

search method in the Windows system image file [21];

Zhang et al. proposed a physical memory analysis

method based on the KPCR (kernel processor control

region) to locate process control block [22]. Whereas,

Wang proposed a method for obtaining network

connection information from 64-bit Windows

operating systems [23]. Since then, the physical

memory analysis was the prime area of research and

development.

In comparison to the memory forensic analysis of

Windows, the research work on Linux operating

system is relatively less, but with the advent of new

technologies such as cloud computing, big data,

software-defined networking, etc., Linux forensics

work becomes more and more important. The forensic

analysis of Linux memory image files is even more

important. A toolkit for analysing physical memory

usage was developed from the Linux kernel [24].

DFRWS launched a memory forensic analysis

challenge for Linux system [25]. In addition, the well-

known Haker Conference (Black Hat, Def Con, Shmoo

Con, etc.) started holding symposiums on memory

forensic analysis from 2006. Gao proposed methods

A Method for Acquiring Network Information from Linux Memory Image in Software-Defined Networking 901

for searching process according to init linear queue,

hash table, process and queue, and further searched for

other volatile information [26-27]. Zhang and others

suggested the physical memory analysis method of

Linux system based on kernel code reconstruction, but

did not give the specific network information

acquisition method [28]. This paper refers to the kernel

data structure learning and the Linux kernel related

books, and analyzes the physical memory image file

for obtaining network configuration information and

address resolution protocol.

This method can obtain network information

correctly, including address resolution protocol,

network configuration information and network

connection information, which has been verified in the

various kernel system versions. This method does not

need to load complicated processes such as kernel files

and system versions. It has less impact on the system,

and its speed is relatively fast. It has positive effect and

science for acquiring malicious behaviour in SDN

environment.

3 Getting the Network Information

3.1 The Method for Obtaining Network

Configuration Information

The structure layouts vary greatly depending upon

the configuration parameters. For example, the layout

of the net structure depends on the values of optional

configuration parameters such as CONFIG_SYSCTL,

CONFIG_IPV6, CONFIG_XFRM and CONFIG_

NETFILTER. Thus, to properly analyze a Linux image,

the offsets of important structure members must be

identified.

To obtain the configuration information of the

network from the physical memory, we first need to

find the starting virtual address of Dinit_net (Dinit_net

is the default network namespace, which contains one

or more network devices) in the kernel symbol table to

obtain all the network card information. Each net

structure has “dev_base_head” global variable which

points to the “net_device structure” information.

Secondly, we find the *ip_ptr global variable from

net_device structure which points to the “in_device

structure” information, and obtain information such as

network interface, IP address, and network

promiscuous mode from in_device structure.

3.1.1 The Relationship between Several Related

Structures is Illustrated Below

The relationship among several structures for

obtaining the network configure information is shown

in Figure 1:

Figure 1. The relationship among several structures for obtaining the network configure information

3.1.2 Several Important Structures Information

The network namespace (net_namespace) in the

kernel is represented by the struct net structure. In the

Linux kernel, each network device (struct net_device)

has its own network namespace. The net structure of

the network namespace contains many fields, because

in a network namespace, there may be many network

devices, which are organized in the form of double

linked list. The dev_base_head is the linked list head of

the network device double-linked list; by default, in the

Linux kernel, there will be a default network

namespace named init_net as a global variable. All the

network devices are organized by structure “list_head

dev_base_list” in the form of double-linked lists.

The network abstraction layer uses the “net_device”

structure to store information such as the device name,

the mac address, the promiscuous mode, and IP

address where, the pointer variable *ip_ptr points to

the “in_device” structure.

The IP layer network device uses the in_device

structure to store the IP address and ARP parameter

information of the neighbour table. The structure and

the offset of structural variables in memory are shown

in Figure 2.

3.1.3 The Algorithm of Getting network

Configuration Information

(1) Get the page directory address and virtual

address of the system kernel symbol Dinit_net

Take the ubuntu kylin 14.04 system as an example.

Firstly, use the liME tool, which is loadable kernel

902 Journal of Internet Technology Volume 21 (2020) No.3

Figure 2. The structure and the offset of structural

variables in memory

module to obtain the physical memory image file of the

ubuntu kylin 14.04 system. Obtain the operating

system version information and the virtual address of

the system kernel variable swapper_pg_dir

(0xC1A93000) by searching for “OSRELEASE=” in

the image file. The value of swapper_pg_dir is the

virtual address of the page directory in memory. If the

operating system version information contains the

“i686” character or the swapper_pg_dir value is 8-bit

hexadecimal address, the system is a 32-bit operating

system; if the operating system version information

contains “x86_64” characters or the swapper_pg_dir

variable value is a 16-bit hexadecimal address, the

system is a 64-bit operating system, the base address of

the system kernel variable swapper_pg_dir is the key

to address translation. By searching the “vmcoreninfo”

or “_text” strings, we can get all the system symbol

tables’ virtual addresses which include the Dinit_net

structure’s virtual address in memory.

(2) Address translation

According to the address of the page directory,

which is “swapper_pg_dir”, and the operating system

version, you can get the address translation between

the virtual address and the physical address. If the

system version is 32_bit operating system, the

PAGE_OFFSET is 0xC0000000 between the virtual

address and the physical address; if the system is 64-bit,

the PAGE_OFFSET is 0xffffffff80000000, for

example if the virtual address of the page directory is

0xC1A93000, since the ubuntu kylin 14.04 system is

32_bit, the physical address of the page directory is

0x1A93000.

(3) According to the page directory address obtained

in step 1 and the virtual address of the system kernel

symbol Dinit_net, we can obtain the physical address

of the Dinit_net symbol, and go through all the net

structures in the memory image file according to the

physical address of the Dinit_net, which is the default

network namespace.

(4) Obtain the dev_base_head structure address at

offset 0x6C by the physical address value of the net

structure.

For each net structure, there may be multiple

network devices in a network namespace, which are

organized in a doubly linked list. Dev_base_head is a

structure variable of “list_head” type in the net

structure, which points to the header of the device’s

double-linked list of network devices.

Translate the virtual address of the net structure into

the physical address and locate the address in the

memory image file. Put 0x08 bytes from this position

into a buffer. Read 4 bytes at buffer’s offset 0x6c and

judge whether the value is a pointer, which points to a

net_device structure or not. If the value is a pointer

which points to a net_device structure, go to step 5

otherwise, it indicates that the node’s structure’s

address is zero and exits the procedure.

(5) Obtain the value of the dev_base_head variable

in step 4, and obtain the starting address of the first

net_device structure

Each net_device structure contains the network card

in a promiscuous mode and MAC information. By

analyzing the net_device structure, we can obtain

MAC value information at offset 0x10C, and obtain the

promiscuous mode of the network card at offset 0x160,

this process is shown in Figure 3.

(6) Get the in_device structure according to the

starting address “net_device” structure in step 5:

Since the *ip_ptr pointer is a kernel variable in the

net_device structure, it points to the in_device structure

which describes the device information in the IP layer.

The address of the kernel variable ip_ptr pointer, that is,

the starting address of the in_device structure, can be

obtained at offset 0x174.

(7) Obtain the virtual address of the in_device

structure in step 6, then obtain the virtual address of the

pointer variable *if_list at the offset 0x0C, that is, the

IP address list of the network card.

(8) Obtain the address of the next structure header,

and judge whether the structure header is a

dev_base_head structure, and if it is YES, then

program will go to the step 3, otherwise go to the step

4. The flowchart is shown in Figure 4.

A Method for Acquiring Network Information from Linux Memory Image in Software-Defined Networking 903

Figure 3. The offset of net_device structure in memory

Figure 4. The flow of acquire network configure information

904 Journal of Internet Technology Volume 21 (2020) No.3

3.2 The Method of Obtaining the Address

Resolution Protocol

The method of obtaining the address resolution

protocol is similar to the method of obtaining the

network configuration information. Taking the

physical memory of the ubuntu kylin 14.04 system as

an example, firstly, judge the operating system version,

the page directory, and translate the virtual address and

the physical address according to the system version

and the page directory, and obtain all the system kernel

symbol tables by searching the “vmcoreninfo” and

“_text” strings. Locate the start address of the kernel

symbol Dneigh_tables (0XC1B6F6BC), which is a

pointer to neigh_table structure. By analyzing the

structure of neigh_table, the starting addresses of

the global structure variables viz. neigh_parms

(0xF6A4B720), delayed_work, work_struct, timer_list

and so on are found, and the starting addresses of the

structure of neigh_hash_table are located. Because

neigh_table is influenced by neigh_parms, delayed_

work, work_struct and other structures, the layout of

these structures is influenced by the core variables such

as CONFIG_LOCKDEP, CONFIG_TIMER_STATS

and CONFIG_NET_NS. Since ubuntu kylin 14.04 is a

32-bit operating system, there is no lockdep_map

structure defined, the int type is 8 bytes, the pointer

type is 4 bytes, and unsigned long type is 4 bytes. The

neigh_table structure occupies 0x148 bytes.

From the starting address of neigh_hash_table

structure, locate the global variable ** hash_bucket

structure (the starting address neighbour list in the hash

bucket), hash_shift (the number of neighbours in the

hash bucket), and obtain the starting addresses of each

neighbour structure in the bucket. Finally, the MAC

address, IP address and the device name of each

neighbour item are obtained from the neighbour

structure. Wherein, 31 four-byte positions in the

neighbour structure are the MAC address, the first and

second start of the last locations in the neighbour

structure are the IP address and the device name. Then

save the MAC address, IP address, device name to the

file and html file. The relationship between several

related structures is shown in Figure 5.

Figure 5. The relationships among several structures for obtaining the address resolution protocol

3.3 The Method of Obtaining the Network

Connection Information

To obtain the network connection information, we

need the Linux kernel structure including task_struct,

files_struct, files, and other structures. From task_

struct->file->fd_array [fd], fd is the file descriptor. The

file structure is found by fd which contains the

directory item f_dentry. The f_dentry contains the

inode, and the f_dentry can find the socket just by the

inode structure, so the socket is found through the

process descriptor. In the inode structure unsigned char

i_sock variable is to record whether the inode is a

socket, so you can find sockets, further, the network

connection information is obtained.

4 Experiment

4.1 Compare the Results with Volatility

Forensic Tool

We have done variable test across a wide range of

operating system versions. In this paper, we use ubuntu

kylin 14.04 as an example for verification testing.

Firstly, install and configure the ubuntu kylin 14.04

environment in the virtual machine, and use “Lime”

forensic tool to obtain the physical memory image file.

The software part of the environment is as follows: In

Linux 64-bit operating systems and 32-bit operating

systems, the SDNProject command line program is

developed separately using codeblocks 13.12 software.

This program does not require the system.map system

kernel file and Linux operating system version

information, only the physical memory image file is

required. Information such as network configuration

information and network connection information and

address resolution protocols can be analyzed. We store

the information in the “configinfo_*.dat” and

“arpinfo_*.dat” files respectively. Where, the “*”

symbol represents the operating system version

number. The network information obtained is shown in

Figure 6 and Figure 7.

Install the ubuntu kylin 14.04 system, configure the

volatility software, and create a profile file according

to the usage method of volatility. The data obtained by

using the volatility tool is shown in Figure 8 and

Figure 9.

The obtained network connection information is

shown in Figure 10.

A Method for Acquiring Network Information from Linux Memory Image in Software-Defined Networking 905

Figure 6. The network configuration information obtained by memory analysis method

Figure 7. The address resolution protocol obtained by the memory analysis method

Figure 8. The network configuration information obtained by the volatility forensics tool

Figure 9. The address Resolution Protocol obtained by volatility forensics tool

Figure 10. The socket network information obtained by memory analysis method

906 Journal of Internet Technology Volume 21 (2020) No.3

The information obtained by the memory analysis

method in this paper is compared with that obtained by

the Volatility forensic tool, and the result of obtaining

the network information is the same which verifies the

correctness and reliability of this method. The time for

obtaining the network information is compared through

multiple comparisons. It is found that the proposed

method is shorter than the Volatility by testing in

different version systems, the result is shown in Figure

11. From the perspective of forensics, this method does

not require cumbersome production steps and has less

impact on the system.

Figure 11. The execution time comparison by SDN-

NIMA and Volatility

4.2 The Advantages of the Algorithm

The memory analysis method presented in the paper

has general applicability, it does not depend on the

kernel symbol table and system version, and does not

require complicated configuration steps and provides a

more general analysis method for Linux system

memory analysis.

The calculations involved in the whole method are

relatively less. The network information is quickly

obtained, the acquisition efficiency is high, the method

can also be easily implemented by C++ program, and

the implementation is strong.

The physical memory stores the key information

when the system is online. The method of obtaining

network information from the volatile physical

memory is an important task to solve the network

security problem. It is of great significance to

understand the mechanism of network attacks, respond

quickly, and curb cybercrimes.

5 Conclusion

This article first introduced the security threats faced

in SDN and related work on security issues, and gave

the progress and problems of memory forensic. In view

of the security problems in the SDN environment, we

carried out research on the physical memory forensic

analysis, and studied the characteristics of the Linux

kernel object structure and the address translation

under different versions. Finally, we proposed a

method for extracting network information based on

the Linux physical memory image file in the software-

defined networking environment. The extraction

method can obtain network information, including the

network configuration information, the address

resolution protocol, and the network connection

information, which can be used to understand the

network communication established between the target

system and the external device, and can analyze

whether the target system is attacked by the network or

used to perform network attacks on other devices. By

testing and verifying under ubuntukylin 14.04, the

experimental results show that the physical memory

analysis method adopted in this paper is correct,

feasible, and the method can provide some clues for

the security of the controller, southbound and

northbound interfaces under the new network

architecture. At the same time, we also give existing

questions in the method. The next step is to expand the

system version, solve the problem of the structures

which depends on the system version, and build a

sample library, strengthen the correlation analysis of

online evidence, use the memory analysis technology

and deep learning method to solve malicious code

detection problems in the software-defined networking.

Acknowledgements

This work is supported by the Shandong Provincial

Natural Science Foundation of China (Grant Nos.

ZR2016YL011, ZR2016YL014), the National Natural

Science Foundation of China (Grant Nos. 61702309),

and the Shandong provincial Key Research and

Development Program of China (Grant Nos.

2019JZZY020127, 2019JZZY020129, 2019JZZY010134,

2018CXGC0701, 2018GGX106005, 2017CXGC0701,

and 2017CXGC0706).

References

[1] Open Networking Foundation, Software-defined Networking:

The New Norm for Networks, ONF White Paper, April, 2012.

[2] P. Porras, S. Cheung, M. Fong, K. Skinner, V. Yegneswaran,

Securing the Software-defined Network Control Layer, 2015

Annual Network and Distributed System Security Symposium

(NDSS), San Diego, California, 2015, pp. 1-15.

[3] H. Wang, L. Xu, G. Gu, FloodGuard: A DoS Attack

Prevention Extension in Software-defined Networks, 45th

Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), Rio de Janeiro, Brazil, 2015,

pp.1-12.

[4] B. Dai, H.-Y Wang, G. Xu, J. Yang, Opportunities and

Threats Coexist in SDN Security, Application Research of

Computers, Vol. 31, No. 8, pp. 2254-2262, August, 2014.

A Method for Acquiring Network Information from Linux Memory Image in Software-Defined Networking 907

[5] W.-F. Xia, Y.-G. Wen, C.-H. Foh, D. Niyato, H. Xie, A

Survey on Software-defined Networking, IEEE Communications

Surveys & Tutorials, Vol. 17, No. 1, pp. 27-51, First Quarter,

2015.

[6] A. Lara, A. Kolasani, B. Ramamurthy, Network Innovation

Using OpenFlow: A Survey, IEEE Communications Surveys

& Tutorials, Vol. 16, No. 1, pp. 493-512, First Quarter, 2014.

[7] Open Networking Foundation, OpenFlow Switch Specification

(Version 1.5.1), ONFTS-025, https://www.opennetworking.

org/images/stories/downloads/sdn-resources/onf-pecifications/

openflow/openflow-switch-v1.5.0.noipr.pdf.

[8] X. Wen, Y. Chen, C. Hu, C. Shi, Y. Wang, Towards a Secure

Controller Platform for Openflow Applications, 2nd ACM

SIGCOMM Workshop on Hot Topics in Software Defined

Networking, Hong Kong, China, 2013, pp.171-172.

[9] J. Brazil, The Northbound API is the Key to OpenFlow’s

Success, https://www.sdxcentral.com/articles/contributed/the-

northbound-api-is-the-key-to-openflows-success/2012/11/.

[10] T. Mahjabin, Y. Xiao, G. Sun, W. Jiang, A Survey of

Distributed Denial-of-service Attack, Prevention, and

Mitigation Techniques, International Journal of Distributed

Sensor Networks, Vol. 13, No. 12, pp. 1-33, September, 2017.

[11] X.-L. Wang, M. Chen, C.-Y. Xing, Z. Sun, Q.-F. Wu,

Software Defined Security Networking Mechanism Against

DDoS Attacks, Ruan Jian Xue Bao/Journal of Software, Vol.

27, No. 12, pp. 3104-3119, December, 2016.

[12] Z. Fan, Z. Tan, C. Tan, X. Li, An Improved Integrated

Prediction Method of Cyber Security Situation Based on

Spatial-Time Analysis, Journal of Internet Technology, Vol.

19, No. 6, pp. 1789-1800, November, 2018.

[13] C.-H. Liu, Y.-T. Yeh, Monitoring DDoS by Using SDN,

Journal of Internet Technology, Vol. 17, No. 2, pp. 341-348,

March, 2016.

[14] L. Zeng, Y. Xiao, H. Chen, Auditing Overhead, Auditing

Adaptation, and Benchmark Evaluation in Linux, (Wiley

Journal of) Security and Communication Networks, Vol. 8,

No. 18, pp. 3523-3534, December, 2015.

[15] J. Okolica, G. L. Peterson, Windows Operating Systems

Agnostic Memory Analysis, Digital Investigation, Vol. 7, pp.

48-56, August, 2010.

[16] M. Ligh, S. Adair, B. Hartstein, M. Richard, Malware

Analyst’s Cookbook and DVD: Tools and Techniques for

Fighting Malicious Code, Wiley, 2010.

[17] Volatility: Linux Memory Forensics, https://code.google.

com/archive/p/volaitility/vikis/Linux Memory Forensics.wiki.

[18] LiME~ Linux Memory Extractor, https://github.com/

504ensicsLabs/LiME

[19] J. Kornblum, Preservation of Fragile Digital Evidence by

First Responders, 2002 Digital Forensic Research Workshop,

Syracuse, New York, NY, USA, 2002, pp. 1-11.

[20] DFRWS 2005 Forensics Challenge, http://old.dfrws.org/

2005/challenge/index.shtml.

[21] A. Schuster, Searching for Processes and Threads in

Microsoft Windows Memory Dumps, Digital Investigation,

Vol. 3, pp. 10-16, September, 2006.

[22] R.-C. Zhang, L.-H. Wang, S.-H. Zhang, Windows Memory

Analysis Based on kpcr, Fifth International Conference On

Information Assurance and Security, Xi’ An, China, 2009, pp.

677-680.

[23] L.-H. Wang, L.-J. Xu, S.-H. Zhang, Network Connections

Information Extraction of 64-bit Windows 7 Memory Images,

Forensics in Telecommunications, Information, and

Multimedia, Shanghai, China, 2010, pp. 90-98.

[24] P. Movall, W. Nelson, S. Wetzstein, Linux Physical Memory

Analysis, Proceedings of Freenix Track: 2005 Usenix Annual

Technical Conference, Anaheim, CA, USA, 2005, pp. 23-32.

[25] DFRWS 2008 Forensics Challenge, http://old.dfrws.org/

2008/challenge/index.shtml.

[26] H. Gao, Y.-H. Gao, L.-Y. Zhou, Analysis of Linux Internal

Access License Based on Process Organization, China

Science and Technology Expo, No. 22, pp. 150-150, October,

2009.

[27] Y.-H. Gao, H. Gao, Y.-Q Ji, P. Bao, Analysis of Linux

Internal access Credentials Based on Hash Table Lookup

TCP Connection, Silicon Valley, No. 20, pp. 92, November,

2009.

[28] S.-H. Zhang, X.-X. Meng, L.-H. Wang, An Adaptive

Approach for Linux Memory Analysis Based on Kernel Code

Reconstruction, EURASIP Journal on Information Security,

Vol. 2016, No. 1, pp. 1-13, December, 2016.

Biographies

Shumian Yang is currently an

Associate Research Fellow with the

Shandong Computer Science Center

(National Supercomputer Center in

Jinan), China. She received a master’s

degree in computer science and

technology from Shandong Normal

University, in 2007. Her main research interests

include computer forensics, memory forensics and

network security.

Lianhai Wang is currently a

Research Fellow at Shandong

Computer Science Center (National

Super Computer Center in Jinan),

China. He received Ph.D. degree in

computer science and technology

from Shandong University, China. His

research interests include information security and

computer forensic and block chain.

Shuhui Zhang is now an Associate

Research Fellow at the Shandong

Computer Science Center (National

Supercomputer Center in Jinan), She

received Ph.D. degree from the

Department of Computer Science and

Technology at Shandong University

of China in 2019. Her current research interests include

908 Journal of Internet Technology Volume 21 (2020) No.3

computer forensics, cloud forensics, blockchain, and

network security etc.

Dawei Zhao is currently an Associate

Research Fellow with the Shandong

Computer Science Center (National

Supercomputer Center in Jinan), China.

He received Ph.D. degree in cryptology

from the Beijing University of Posts

and Telecommunications in 2014. His

main research interests include

network security, complex network, and epidemic

spreading dynamics.

Lijuan Xu is currently an Associate

Research Fellow with the Shandong

Computer Science Center (National

Supercomputer Center in Jinan),

China. She received a master’s degree

in computer science and technology

from Shandong University, in 2007.

Her main research include network security, industrial

internet security and computer forensics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

