
Roofline-based Data Migration Methodology for Hybrid Memories 849

Roofline-based Data Migration Methodology for

Hybrid Memories

Jongmin Lee1, Kwangho Lee1, Mucheol Kim2, Geunchul Park3, Chan Yeol Park3

1 Department of Computer Engineering, Won-Kwang University, Korea
2 School of Software, Chung-Ang University, Korea

3 National Institute of Supercomputing and Networking, Korea Institute of Science and Technology Information, Korea

square55@wku.ac.kr, lkh002@wku.ac.kr, mucheol.kim@gmail.com, gcpark@kisti.re.kr, chan@kisti.re.kr*

*Corresponding Author: Chan Yeol Park; E-mail: chan@kisti.re.kr

DOI: 10.3966/160792642020052103022

Abstract

High-performance computing (HPC) systems provide

huge computational resources and large memories. The

hybrid memory is a promising memory technology that

contains different types of memory devices, which have

different characteristics regarding access time, retention

time, and capacity. However, the increasing performance

and employing hybrid memories induce more complexity

as well. In this paper, we propose a roofline-based data

migration methodology called HyDM to effectively use

hybrid memories targeting at Intel Knight Landing (KNL)

processor. HyDM monitors status of applications running

on a system and migrates pages of selected applications

to the High Bandwidth Memory (HBM). To select

appropriate applications on system runtime, we adopt the

roofline performance model, a visually intuitive method.

HyDM also employs a feedback mechanism to change

the target application dynamically. Experimental results

show that our HyDM improves over the baseline

execution the execution time by up to 44%.

Keywords: Performance, Data migration, Roofline

model

1 Introduction

With the ever-shrinking feature size in the CMOS

process technology and increasing performance

demands, modern processors typically integrate

multiple cores and the number of cores in the same

chip area has grown significantly. Continuous

technology scaling realizes a many-core processor with

hundreds of cores on a single chip [1-3]. These trends

necessitate larger DRAMs to accommodate more and

bigger programs in the main memory. DRAMs have

been popularly used to implement the main memory

because of their high densities and low prices. Due to

the scaling limitation of DRAMs and the high

bandwidth demands, hybrid storage architectures,

which contain heterogeneous memories, are likely to

be the future memory systems in high-performance

computing (HPC) systems [4-7].

Knights Landing (KNL) is the code name for the

second-generation Intel Xeon Phi product family [1, 8].

The KNL processor contains tens of cores and it

provides the HBM 3D-stacked memory as a Multi-

Channel DRAM (MCDRAM). DRAM and MCDRAM

differ significantly in terms of access time, bandwidth

and capacity. Because of those differences between

DRAM and MCDRAM, performance will vary

depending on the application characteristics and the

usage of memory resources. The efficient use of these

systems requires prior application knowledge to

determine which data of applications to place in which

of the available memories. A common goal is to

shorten the execution time of applications, which

translates to place applications in the fastest memory.

However, fast memory is a limited resource in terms of

capacity. As a result, it is important to identify the

appropriate data object of applications and host the

most profitable applications in fast memory. The

switch to multi/many-core processors and hybrid

memories means that microprocessors will become

more diverse. The growing complexity in HPC

environments makes difficult for users to determine the

performance of applications quantitatively.

In this paper, we propose a roofline-based data

migration strategy for hybrid memories (HyDM). The

roofline performance model is a simple and visual

model that offers insights for performance analysis [9].

Rather than simply using percent-of-peak estimates,

the model can be used to evaluate the quality of

attainable performance including locality, bandwidth,

and computational throughput.

HyDM periodically monitors the application’s

behavior using a performance monitoring tool and it

selects appropriate applications, which require more

memory bandwidth and show memory locality, with a

regression-based prediction. By migrating pages of the

applications to the high bandwidth memory (i.e.

MCDRAM), HyDM improves the memory usages on

850 Journal of Internet Technology Volume 21 (2020) No.3

hybrid memories. In order to trace performance

changes of applications during their executions, HyDM

employs a feedback mechanism to change target

applications dynamically. Our experimental results

demonstrate that HyDM significantly improves the

performance of mixed application sets on the Intel

KNL processor. HyDM enhances performance by up to

44% compared to the baseline execution time.

The rest of this paper is organized as follows. We

provide related works in the next section. Section 3

presents background. Section 4 presents our proposed

data migration strategy using the roofline model.

Experimental results are given in Section 5. Finally,

Section 6 concludes this paper.

2 Related Work

There are some categories of works that are closely

related to this paper.

Hybrid memories. Many memory devices have been

developed for decades to replace DRAM, which has

fast but non-volatile characteristics [17-18]. PRAM is

easier to integrate than DRAM, but the number of

writable times per cell is limited thus memory life is

short. STT-RAM has a fast write speed and good write

durability, but it is relatively hard to integrate, and

therefore, there is less need to replace DRAM in terms

of economy. When examining the new memory

technology to date, it is difficult to pursue universal

memory, and it is judged to be a non-volatile

technology that lacks performance rather than DRAM.

To use those memories, many researches have been

done on hybrid memories in the form of DRAM and

other types of memories together. One of the hybrid

memory systems uses DRAM as a cache and PRAM as

a main memory [19-20]. They mitigate the durability

of PRAM and write delay by filtering the write

operations to the main memory using the DRAM cache.

In [21], DRAM and PRAM are located at the same

level. In order to compensate for the delay in the write

operation and the lifetime of the PRAM, a page

manager selectively allocates pages among PRAM and

DRAM. All of the above techniques are designed to

reduce write activities in PRAM, however, this paper

addresses the usage of HBM with DRAM.

GPU is the most commonly used hybrid memory to

date in HPC [22]. GPU employs GDDR as high-speed

memory and relatively slow DRAM as main memory.

By storing critical data using prefetch techniques in

GDDR, GPU supports fast operation. The GPU

operates as an accelerator with respect to DRAM. By

comparison, our research explores general processors

for HPC environments.

Roofline performance model. The roofline model is

used in a number of scientific applications to analyze

bottlenecks in the performance of an architecture and

to guide software optimizations [9]. Various types of

roofline models are proposed in previous works [6, 23-

25]. In [23], energy version of the roofline model is

proposed to show bounds on performance due to

energy limitations. This model focuses on identifying

the balance between performance and energy in

architectural design. In [24], the roofline model is

extended to support the cache hierarchy. Recently, the

roofline model is extended for specific applications and

platforms such as GPUs [6].

Page migration. A variety of page migration methods

using NUMA nodes have been studied [26-29]. A basic

methodology to efficiently use memories in a NUMA

system is to store the data in the same location as the

processor that frequently references the data. In [26],

the migration of the pages between nodes is performed

by using the characteristic that the memory access

pattern repeatedly appears in applications. In [29], a

sampling-based approach is used in which pages with

excessive remote references are migrated to nodes

close to the accessing core. The system continuously

samples the excess miss counters to produce a list of

candidate pages for migration and replication.

We propose a dynamic memory management

methodology using the roofline model, the key

contribution of our work is the algorithm that

efficiently uses different types of memories in HPC

systems without any hardware or software

modifications. Although our proposed HyDM targets

the Intel KNL processor in this paper, adopting the

methodology to the systems employing hybrid

memories is possible.

3 Background

3.1 Intel Xeon Phi Processor

Our target processor is the Intel Xeon Phi, which is a

series of x86 many-core processors. The Knight

Landing (KNL) is the code name for the second-

generation Intel Xeon Phi product and it is also a

recent example of the hybrid memory systems. The

processor is popularly used in HPC systems such as

TACC’s flagship system, Stampede2, and Berkeley

Lab’s CORI supercomputer.

In this section, we briefly summarize the main

features of the Intel KNL processor, especially we

focus on its memory system. Figure 1 illustrates the

KNL processor and its connection to the hybrid

memories. The KNL processor integrates up to 72

cores together with eight Multi-Channel DRAM

(MCDRAM) memories, which support 16GB of

memory and they provide the peak bandwidth of

400GB/second. The processor also integrates six

DDR4 channels supporting up to 384GB of memory

with the peak bandwidth of 100GB/second. The

MCDRAMs are positioned on-chip while DRAMs are

off-chip.

Roofline-based Data Migration Methodology for Hybrid Memories 851

Figure 1. A structure of Intel Knight Landing processor

Figure 1 shows 36 tiles in the KNL processor and

each tile consists of the two cores sharing 1MB L2

cache. Tiles are connected through a 2D-mesh network

on-chip and they can be clustered in several NUMA

configurations. In this paper, we use the Quadrant

cluster configuration where the tiles are partitioned in

four quadrants as it reduces the latency of L2 cache

misses because the worst-case path is shorter. This

configuration is the one recommended by Intel as a

symmetric multi-processor [10]. MCDRAAM can be

configured at boot time in three modes: cache, flat or

hybrid mode. The Flat mode configures MCDRAMs to

the same address space with DRAMs, Cache mode

configures MCDRAMs as a last-level cache. The

Hybrid mode separates MCDRAMs as two parts and

one is used for an additional addressable memory with

DRAMs and another is used for a last-level cache. In

this work, we consider the Flat mode. For more details

on KNL processor can be found in [1, 11].

Because DRAM and MCDRAM exhibit different

memory characteristics, it is necessary to map data

objects to appropriate memory in order to run

applications efficiently on the systems. However,

programming a hybrid memory system and identifying

the best object-to-memory mapping is a complex task.

3.2 Roofline Performance Model

The roofline performance model is a visually

intuitive method used to bound the performance of

floating-point programs running on multi/many-core

processors [9]. To evaluate performance, the roofline

model ties floating-point performance (GFlops/second),

arithmetic intensity (Flops/Byte), and memory bandwidth

(GB/second) together. The peak floating-point

performance and the peak memory bandwidth

represent the attainable performance on a system and

the arithmetic intensity shows a ratio of computations

to memory accesses. By combining memory usage,

computation throughput, and bandwidth, the model

assesses the quality of attained performance of

applications and provides insights on both the

implementation and inherent performance limitations.

Although the roofline model does not show precise

performance evaluations, it is simple and effective to

observe behavior of applications running on systems.

Figure 2 shows the roofline model of the Intel KNL

processor with NAS parallel benchmark suites [12].

We executed each benchmark alone and periodically

record the position of each benchmark to see

performance changes of each benchmark over time.

Detailed experimental methodologies will be shown in

Section 5. The lines on the top show the peak

performance of KNL processor with DRAM,

MCDRAM, and floating-point units, respectively. The

x-axis shows the arithmetic intensity that is the ratio of

total floating-point operations to total data movement.

The y-axis represents performance that is the number

of floating-point operations completed by the cores. As

shown in Figure 2, most benchmarks are changing their

positions over time and some benchmarks are located

under the memory-bound area with small arithmetic

intensities. Arithmetic intensity with a small number

means there are more memory requests, and the

opposite case means more computations. Thus, one of

the straightforward approaches to enhance the

performance is moving data of the applications, which

require more memory bandwidth, to the high

bandwidth memory.

Figure 2. Roofline performance model for NPB

applications

4 Proposed Techniques

In this section, we introduce a data migration

methodology for hybrid memories called HyDM.

4.1 Overview

Figure 3 shows an overview of HyDM method.

HyDM employs three stages to enhance the performance

of applications on the KNL processor.

852 Journal of Internet Technology Volume 21 (2020) No.3

Figure 3. HyDM Methodology Overview

We first monitor the applications during system

runtime using hardware monitoring tools. Then, based

on the historical data, we select a candidate application,

which requires more memory bandwidth, using the

roofline model. Next, we migrate data stored in both

MCDRAM and DRAM dynamically. By managing

application data on MCDRAM and DRAM, HyDM

effectively uses hybrid memories.

Algorithm 1 shows the implementation of HyDM. If

running applications exist, HyDM makes the list of

running application L (line 1). L stores unique PIDs for

each application. The three stages of HyDM are

repeatedly performed in a time window p. At each time

window, historical monitored data from each

application are stored in the list W = {W0, W1, …, Wn}

(line 2). Figure 4 shows the structure of list W. W0 is

the current time window and the time window W1 is the

previous time window. Wn represents the n-th previous

window.

Figure 4. Structure of monitored data

After the Selection procedure with the lists L and W,

HyDM returns the candidate application b for

migration (line 3). The pages of selected application b

are migrated by the Migration procedure (line 4). We

present the details of our method in the following

subsections.

4.2 Monitoring

During the system runs, HyDM monitors

applications using hardware monitoring tools. Most

processors now include hardware support for

performance monitoring such as perf_event [13] and

LIKWID [14]. In this paper, we use perf_event. In

Algorithm 2, the inputs include the list of running

application L and the list of windows for monitoring

data W. Let M denote the list of monitored data for

running applications in the current time window. Let

Mi denote i-th application. The Monitoring procedure

collects the number of floating-point operations (Mi.fp),

page references (Mi.pref) and page faults (Mi.pf), and it

stores those values into the entry corresponding to each

type in Mi (line 1-4). Mi.fp and Mi.pref will be used to

compute the arithmetic intensity of each application.

The for loop stops when i is equal to the size of

length(L). Then, M is inserted to the W0 to prepare the

next stage (line 5). Because HyDM only stores a few

types of monitoring data, the storage overhead is very

small compared to the total memory.

Roofline-based Data Migration Methodology for Hybrid Memories 853

4.3 Selection

Algorithm 3 shows the Selection procedure that

chooses an application as a candidate for migration. In

order to select an application, which requires more

memory bandwidth, HyDM uses the roofline model.

When the execution status of applications is mapped to

the roofline model, HyDM chooses an application with

the lowest arithmetic intensity in the memory-bound

area. The strategy in HyDM is to give more chances to

the application that shows the highest ratio of memory

references to computations.

The regressionAndSort procedure first computes the

arithmetic intensity of each application using historical

floating-point operations and page references stored in

W (i.e. Wtime.appid.fp and Wtime.appid.pref). After that, we

perform the linear regression to predict the next

arithmetic intensity value for each application, and the

results are stored into a list S. Finally, the application

list (S) are sorted in ascending order according to the

next arithmetic intensity values (line 1). Since all

candidate applications are sorted in the list S, the first

application of the list is considered for migration. In

order to filter applications with low memory locality,

HyDM employs a simple technique using a number of

page faults monitored in the Monitoring procedure.

HyDM compares the number of page faults from the

first application with the average number of page faults

(pfavg) from all applications (line 3). If the candidate

application shows a higher value in page faults, the

next application in the list S is considered for migration.

If all operations are finished, the Selection procedure

returns the candidate application b for migration (line

5).

4.4 Migration

Algorithm 4 shows the Migration procedure.

Because of the capacity limitation of MCDRAM

(16GB), we identify the possibility before performing

the data migration. We check that the total memory

usage, including the current memory usage of the

selected application, does not exceed the threshold

parameter t (e.g. 90%). If the usage of MCDRAM is

less than the threshold t, HyDM migrates the

referenced pages during time window W to MCDRAM

(line 1). Note that, the page grouping techniques for

selecting the critical pages of the entire page in the

application are applicable to our proposed scheme [15-

16].

When the usage of MCDRAM is larger than the

threshold t, the selectVictim procedure chooses a

victim application to migrate pages from MCDRAM to

DRAM (line 2). Since migrating pages back to DRAM

frequently induces additional performance overheads,

we employ a strict methodology based on a priority.

Figure 5 shows priorities of running applications in

HyDM and operations in the selectVictim procedure.

We categorize applications into four priorities

according to memory requirements and the arithmetic

intensity values. For example, if an application

represents an amount of memory request that is higher

than the average memory request amount of all running

applications in the current time window (i.e. W0) and

the corresponding arithmetic intensity is below the

peak MCDRAM bandwidth region of the roofline

model (i.e. left side), we assign priority 1. In the

opposite case, priority 4 is assigned. After determining

the priority for each application, we decide to migrate

to DRAM in the order shown in Figure 5. Migration to

DRAM is performed only when the candidate application

b has a priority value of 1 and an application having

priority 4 in the MCDRAM is found (line 3-6). The

concept behind the selectVictim procedure is to provide

more opportunities for applications in MCDRAM. By

employing the feedback mechanism, HyDM effectively

uses hybrid memories when many applications are

running on a system.

854 Journal of Internet Technology Volume 21 (2020) No.3

Figure 5. selectVictim procedure

5 Experimental Results

In this section, we present the methodologies for

evaluations and their results with discussion.

5.1 Methodology

The experimental system is equipped with the Intel

Xeon Phi(TM) CPU 7250@1.40GHz, 68 cores per

socket, 4 threads per core, and a total of 272 threads

available with the hyper-threading technology. The

system includes 96GB DDR4 (DRAM) and 16GB

HBM (MCDRAM).

We evaluated NAS Parallel Benchmark (NPB)

related to computational fluid dynamics [12]. The NPB

consists of five kernel benchmarks (IS, EP, CG, MG,

FT) and three pseudo benchmarks (BT, SP, LU). For

all experiments, we used standard test problems

(CLASS-C). Table 1 shows the benchmark execution

results when they were run on the system alone

including average execution times, floating-point

operations, memory accesses, and the amount of peak

memory use, respectively.

Table 1. NAS Parallel Benchmarks (NPB)

characteristics

Name

Average

execution

time (sec.)

FP

operatioms

(GFop)

Memory

accesses

(read/write)

(mil.)

Peak

memory

use (MB)

IS.C 31 23 758 / 338 1,572

EP.C 462 494 2,739 / 1,028 20

CG.C 319 261 31,174 / 2,940 1,102

MG.C 129 213 7,507 / 2,940 3,536

FT.C 335 837 18,555 / 10,197 7,188

BT.C 920 2,560 45,682 /17, 270 1,676

SP.C 626 1,918 92,526 / 47,727 1,416

LU.C 733 2,504 84,716 / 38,302 760

Table 2 shows the design parameters of HyDM and

their values used in evaluations. The minimum time

unit of perf_event is 1ms. When hardware events for

monitoring are executed frequently, however, we

observed that performance degradation occurred. We

adjusted the numerical values without affecting system

performance through a heuristic method. To assume

the situation of the system running a number of

applications that require much larger capacity than the

capacity of MCDRAM, we perform the NPB programs

in the number of multiples (e.g. bt0, bt1, bt2, bt3). All

experiments were conducted using four threads per

application. Therefore, when 32 applications are

running in parallel, a total of 128 threads were created.

We randomly assigned programs to the cores using the

default policy. Because the Intel KNL processor is a

tile structure, performance will vary depending on how

threads are allocated. The study of how to allocate

threads in the proper place is beyond the scope of this

paper and is not covered.

Table 2. HyDM design parameters

Descriptions Values

The time window period: p 100 (ms)

The number of applications: Length (L) 32

Size of monitoring windows:
0 1

{ , , ..., }
n

W W W W= 5, 10

The threshold ratio of MCDRAM use: t 90 (%)

5.2 Performance Evaluation Results

To evaluate the performance impact of the proposed

HyDM, we calculated the average execution times.

Figure 6 illustrates the average execution times for 100

runs with 5 monitoring windows. In the legend,

Default indicates that HyDM is not applied, which uses

MCDRAM and DRAM in interleaving mode, and

Random indicates that running applications were

randomly selected for migration. HyDM indicates that

the proposed technique is applied. We added the

Random method to compare the effects of the proposed

HyDM. We normalized the results to Default. Data

migration using HyDM and Random methods reduced

execution times on most benchmarks. This performance

improvement is because memory-intensive applications,

which have many memory accesses as shown in Table

2, were executed on MCDRAMs after migration.

Especially, several benchmarks showed large

reductions with HyDM in the execution time such as

cg (42%~45%), ft (13%~16%), and sp (14%~17%).

HyDM is superior to Random on most benchmarks

because the proposed technique provides a better

choice of selecting applications with more memory

requests. However, when HyDM and Random schemes

were applied, is benchmark showed increase in

execution times (2%~7%). This is because is benchmark

has random memory access patterns to perform integer

sort operations and its short execution time. If the

execution time of an application is short, the overhead

of stopping the execution and performing the migration

may seem relatively large. In addition, due to the

nature of the memory pattern of is, many page faults

occurred and MCDRAM supporting high memory

Roofline-based Data Migration Methodology for Hybrid Memories 855

bandwidth was not used effectively. On average, the

reduced execution times are 18% and 12% with HyDM

and Random, respectively. The average execution

times of applications are shown in Table 3. Figure 7

shows average execution times of the proposed HyDM

when the number of monitoring windows varied from

five to ten. We normalized the results to Default. When

we applied 10 monitoring windows, the overall

execution time was 2% higher than 5 monitoring

windows. As the size of the monitoring windows

increases, HyDM collects more historical data. HyDM

uses the past information to predict future, but too old

records do not reflect the characteristics of the current

working sets. Therefore, it is more effective to make a

prediction using five monitoring windows.

Figure 6. Average execution time results normalized to that of the baseline

Table 3. Average execution times

Application

bto bt1 bt2 bt3 cg0 cg1 cg2 cg3

Default 145.6705 1437.0035 1455.0347 1456.4611 1211.8204 1226.5472 1225.0381 1210.2273

Random 1397.8919 1374.6753 1365.6279 1379.9398 862.26799 904.2012 877.38188 875.9205

HyDM 1354.1377 1343.1216 1349.0682 1319.5702 693.5221 679.97567 704.3997. 666.17277

 ep0 ep1 ep2 ep3 ft0 ft1 ft2 ft3

Default 368.533 362.45586 372.86993 362.03356 566.74406 532.34749 540.34991 577.36135

Random 375.89024 365.28827 370.48978 374.02926 464.2835 452.9071 467.89133 474.9293

HyDM 360.71978 358.63339 362.7888 371.4111 440.01775 428.69139 441.0862 430.21907

 is0 is1 is2 is3 lu0 lu1 lu2 lu3

Default 45.547779 45.090701 45.380379 45.105202 1227.4246 1241.1089 1227.9619 1216.829

Random 47.249491 46.956435 47.844231 47.406987 1113.3445 1107.7117 1101.0334 1112.3716

HyDM 47.842015 48.495822 47.416234 48.158338 1056.3436 1051.4723 1059.6893 1058.1215

 mg0 mg1 mg2 mg3 sp0 sp1 sp2 sp3

Default 164.1152 159.81184 157.41794 162.38472 1159.6789 1150.2174 1172.766 1159.743

Random 149.60807 147.07064 146.96972 149.85035 1005.484 1021.416 996.74817 1009.4771

Execution

Time

(sec.)

HyDM 156.87207 152.70091 159.9955 159.44007 989.12922 971.90131 964.4554 993.0762

Figure 7. Sensitivity analysis of the number of

monitoring windows

5.3 Case Analysis Results

In this subsection, we analyze the proposed HyDM

in several cases. Figure 8 and Figure 9 shows the

roofline performance models and the bandwidth results

respectively for one evaluation case. Due to the

limitation of space, we select several benchmarks

which show notable features.

In Figure 8, benchmarks show different shapes in

the roofline models during execution. We adjusted the

number of points in each item to twenty to improve the

readability of graphs. While bt and mg show small

changes over time in the roofline models, cg and is

show large changes. This indicates how the

characteristics of the working sets change over time. In

856 Journal of Internet Technology Volume 21 (2020) No.3

Figure 8. Roofline performance model

Figure 9. Bandwidth results with linear regression

order to indicate the benchmarks that migrated to

MCDRAM with HyDM, “Migration to MCDRAM” is

shown on the figures. In this case, bt and cg were

migrated to MCDRAM and is and mg were not

migrated. In bt benchmarks, the average floating point

operations increased by about 9% and the cg

benchmarks showed about 80% increases in floating

point operations. In cg benchmarks, when HyDM was

applied, floating point operations are noticeably

increased (0.06 to 0.12). It can be interpreted as a lot of

memory requests being used for floating point

operations.

Figure 9 shows the bandwidth results of applications

that performed linear regression for the same case as

described above. The x-axis represents time and the y-

axis represents bandwidth. We graphically show when

the data migration happened. In bt and cg, the

bandwidth was increased with HyDM. However, is and

mg, the changes of bandwidth are small because

migration is not performed with HyDM.

Finally, Figure 10 provides a visual representation of

the case where migration to DRAM occurs. The left

figure shows the execution time of each application

and the time of migrations, and the right figure shows

the accumulated number of applications on MCDRAM.

In left figure, the occurrence of the migration to

MCDRAM is indicated by a cross (x), and the

occurrence of migration to DRAM is indicated by a

star (*). In particular, the candidate application that

caused the migration to DRAM is shown in a small

square. Because migration back to DRAM may cause

performance degradation, HyDM adopted a strict

policy. In this case, migration to DRAM occurred

twice in total. When 32 applications were executed, up

to 15 applications were executed on MCDRAM as

shown in the right figure.

Roofline-based Data Migration Methodology for Hybrid Memories 857

Figure 10. Data migration case analysis

6 Conclusion

The hybrid memory is a promising memory

technology for future HPC systems. However,

effective use of the system is becoming increasingly

difficult as the HPC environment is diversifying. In

this paper, we proposed a dynamic data migration

strategy using the roofline performance model called

HyDM. HyDM uses a hardware monitoring tool to

observe the status of programs running on the system

and perform migration based on the collected data.

Also, a feedback mechanism is implemented for the

case where the total memory usage used for the

programs is larger than the size of the high bandwidth

memory. We demonstrated that the proposed HyDM

significantly improves the performance of mixed

application sets on the Intel KNL processor. HyDM

enhances performance by up to 44% compared to the

baseline execution time. In the future, we plan to

change our target system from a single node system to

a multi-node system, which includes multiple HPC

processors connected by network. We are also

planning to adapt the proposed scheme to various

computing environments such as cache memory, big

data, and network systems [30-34].

Acknowledgments

This Research was supported by the Korea Institute

of Science and Technology Information (KISTI).

References

[1] A. Sodani, Knights Landing (KNL): 2nd Generation Intel

Xeon Phi Processor, IEEE Hot Chips 27 Symposium,

Cupertino, CA, USA, 2015, pp. 1-24.

[2] R. R. Ronen, Larrabee - A Many-Core Intel Architecture for

Visual Computing, the 6th ACM conference on Computing

frontiers (ACM CF), Ischia, Italy, 2009, pp. 225-225.

[3] A. K. Singh, M. Shafique, A. Kumar, J. Henkel, Mapping on

Multi/Many-core Systems - Survey of Current and Emerging

Trends, 2013 50th ACM/EDAC/IEEE Design Automation

Conference (DAC), Austin, TX, USA, 2013, pp. 1-10.

[4] I. B. Peng, R. Gioiosa, G. Kestor, P. Cicotti, E. Laure, S.

Markidis, Exploring the Performance Benefit of Hybrid

Memory System on HPC Environments, 2017 IEEE

International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), Lake Buena Vista, FL, USA, 2017, pp.

683-692.

[5] I. B. Peng, R. Gioiosa, G. Kestor, J. S. Vetter, P. Cicotti, E.

Laure, S. Markidis, Characterizing the Performance Benefit

of Hybrid Memory System for HPC Applications, Parallel

Computing, Vol. 76, pp. 57-69, August, 2018.

[6] A. Lopes, F. Pratas, L. Sousa, A. Ilic, Exploring GPU

Performance, Power and Energy-efficiency Bounds with

Cache-aware Roofline Modeling, 2017 IEEE International

Symposium on Performance Analysis of Systems and

Software (ISPASS), Santa Rosa, CA, USA, 2017, pp. 259-268.

[7] O. Mutlu, Memory Scaling: A Systems Architecture Perspective,

2013 5th IEEE International Memory Workshop (IMW),

Monterey, CA, USA, 2013, pp. 21-25.

[8] I. Jabbie, G. Owen, B. Whiteley, Performance Comparison of

Intel Xeon Phi Knights Landing, SIAM Undergraduate

Research Online, Vol. 10, pp. 268-281, December, 2017.

[9] S. W. Williams, A. Waterman, D. A. Patterson, Roofline: An

Insightful Visual Performance Model for Floating-point

Programs and Multicore Architectures, Technical Report No.

UCB/EECS-2008-134, October, 2008.

[10] Colfax, Clustering Modes in Knights Landing Processors,

2016.

[11] J. Jeffers, J. Reinders, A. Sodani, Knights Landing architecture,

Intel Xeon Phi Processor High Performance Programming,

2nd Edition, Morgan Kaufmann, 2016.

[12] D. Bailey, J. Bartion, T. Lasinski, H. Simon, The NAS

Parallel Benchmarks, Technical Report RNR-91-002, NASA

Ames Research Center, August 1991.

[13] V. M. Weaver, Linux perf_event Features and Overhead,

Second International Workshop on Performance Analysis of

Workload Optimized Systems (FastPath Workshop), Austin,

TX, USA, 2013, pp. 1-7.

[14] J. Treibig, G. Hager, G. Wellein, LIKWID: A Lightweight

Performance-Oriented Tool Suite for x86 Multicore

Environments, 2010 39th International Conference on Parallel

Processing Workshops (ICPPW), San Diego, CA, USA, 2010,

pp. 207-216.

858 Journal of Internet Technology Volume 21 (2020) No.3

[15] L. E. Ramos, E. Gorbatov, R. Bianchini, Page Placement in

Hybrid Memory Systems, International Conference on

Supercomputing (ICS), Tucson, Arizona, USA, 2011, pp. 85-

95.

[16] D. Shin, S. Park, S. Kim, K. Park, Adaptive Page Grouping

for Energy Efficiency in Hybrid PRAM-DRAM Main

Memory, ACM Research in Applied Computation Symposium,

San Antonio, Texas, USA, 2012, pp. 395-402.

[17] J. Meena, S. Sze, U. Chand, T.-Y. Tseng, Overview of

Emerging Nonvolatile Memory Technologies, Nanoscale

Research Letters, vol. 9, no. 1, p. 526, September, 2014.

[18] R. F. Freitas, W. W. Wilcke, Storage-class Memory: The

Next Storage System Technology, IBM Journal of Research

and Development, vol. 52, no. 4.5, pp. 439-447, July, 2008.

[19] M. K. Qureshi, V. Srinivasan, J. A. Rivers, Scalable High

Performance Main Memory System Using Phase-change

Memory Technology, ACM SIGARCH Computer Architecture

News, Vol. 37, No. 3, pp. 24-33, June, 2009.

[20] Y. Ro, M. Sung, Y. Park, J. H. Ahn, Selective DRAM Cache

Bypassing for Improving Bandwidth on DRAM/NVM Hybrid

Main Memory Systems, IEICE Electronics Express, Vol. 14,

No. 11, pp. 20170437-20170437, May, 2017.

[21] G. Dhiman, R. Z. Ayoub, T. Rosing, PDRAM - A Hybrid

PRAM and DRAM Main Memory System, 2009 46th

ACM/IEEE Design Automation Conference (DAC), San

Francisco, CA, USA, 2009, pp. 664-669.

[22] K. Nakano, The Hierarchical Memory Machine Model for

GPUs, in IEEE International Symposium on Parallel &

Distributed Processing, Workshops and Phd Forum (IPDPSW),

Cambridge, MA, USA, 2013, pp. 591-600.

[23] J. Choi, D. Bedard, R. J. Fowler, R. W. Vuduc, A Roofline

Model of Energy, 2013 IEEE 27th International Symposium

on Parallel and Distributed Processing (IPDPS), Boston,

MA, USA, 2013, pp. 661-672.

[24] A. Ilic, F. Pratas, L. Sousa, Cache-aware Roofline Model -

Upgrading the Loft, Computer Architecture Letters, Vol. 13,

No. 1, pp. 21-24, January-June, 2014.

[25] D. Doerfler, J. Deslippe, S. Williams, L. Oliker, B. Cook, T.

Kurth, M. Lobet, T. M. Malas, J.-L. Vay, H. Vincenti,

Applying the Roofline Performance Model to the Intel Xeon

Phi Knights Landing Processor, International Conference on

High Performance Computing (ISC Workshops), Frankfurt,

Germany, 2016, pp. 339-353.

[26] W. J. Bolosky, R. P. Fitzgerald, M. L. Scott, Simple But

Effective Techniques for NUMA Memory Management, The

twelfth ACM symposium on Operating systems principles

(SOSP), Litchfield Pk., AZ, USA,1989, pp. 19-31.

[27] R. P. LaRowe, C. S. Ellis, M. A. Holliday, Evaluation of

NUMA Memory Management through Modeling and

Measurements, IEEE Transactions on Parallel and

Distributed Systems, Vol. 3, No. 6, pp. 686-701, November,

1992.

[28] Z. Majo and T. R. Gross, Memory Management in NUMA

Multicore Systems: Trapped between Cache Contention and

Interconnect Overhead, The International Symposium on

Memory Management (ISMM), San Jose, California, USA,

2011, p. 11-20.

[29] L. Noordergraaf, R. van der Pas, Performance Experiences on

Sun’s Wildfire Prototype, ACM/IEEE Conference on

Supercomputing, Portland, OR, USA, 1999, pp. 1-16.

[30] W. Zhang, Z. Zhang, H.-C. Chao, Cooperative Fog

Computing for Dealing with Big Data in the Internet of

Vehicles: Architecture and Hierarchical Resource

Management, IEEE Communications Magazine, Vol. 55, No.

12, pp. 60-67, December, 2017.

[31] H. F. Rashvand, H. C. Chao, Dynamic Ad-Hoc Networks, The

Institution of Engineering and Technology, 2013.

[32] F.-H. Tseng, W.-C. Chien, S.-J. Wang, C. F. Lai, H.-C. Chao,

A Novel Cache Scheme based on Content Popularity and

User Locality for Future Internet, 2018 27th Wireless and

Optical Communication Conference (WOCC), Hualien, Taiwan,

2018, pp.1-5.

[33] A. Pollard, Flow in Tee Junction, Ph.D. Thesis, University of

London, London, UK, 1978.

[34] R. Agrawal, R. Rajan, Performance Bounds for Guaranteed

and Adaptive Services, IBM Research Report RC 20649,

December, 1996.

Biographies

Jongmin Lee received the integrated

master’s Ph.D. degree in computer

science from Korea Advanced

Institute of Science and Technology,

Korea, in 2015. Dr. Lee joined the

faculty of the Department of

Computer Engineering at Wonkwang

University, Korea, in 2018. He is interested in

computer architectures, memory systems, and

embedded systems/software.

Kwangho Lee received the B.S.

degree in computer engineering from

Wonkwang University, Korea, in

2019. He is currently a graduate

student at Wonkwang University,

Korea. He is interested in embedded

systems/software, operating systems, computer

architectures.

Mucheol Kimm is a faculty in the

School of Computer Science and

Engineering at Chung-Ang University.

He received the BS, MS, Ph.D.

degrees from the school of Computer

Science and Engineering at Chung-

Ang University, Seoul, Korea in 2005,

2007 and 2012, respectively. He was an assistant

professor in a department of computer & software

engineering at Wonkwang University (2017-2018). In

2014-2016, he was an assistant professor of

Department of Media Software at Sungkyul University,

Korea. In 2011-2014, he had been working as a Senior

Roofline-based Data Migration Methodology for Hybrid Memories 859

Researcher in Korea Institute of Science and

Technology Information (KISTI), Daejeon, Korea. His

research interests include Data Mining, Information

Retrieval, Web Technology, Social Networks and High

Performance Computing

Geunchul Park is currently a

researcher at center for development

of supercomputing system in the

National Institute of Supercomputing

and Networking at Korea Institute of

Science and Technology Information

(KISTI). His research interests are in

high performance and distributed computing, parallel

program optimization, system software in HPC, etc.

Chan Yeol Park is currently a

principal researcher at The Center for

Development of Supercomputing

System in Korea Institute of Science

and Technology Information (KISTI).

His research interests are in the

integrated implementation of HPC

system with fault tolerance and performance

optimization, etc.

860 Journal of Internet Technology Volume 21 (2020) No.3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

