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Abstract 

Traffic flow prediction is an important while complex 

problem in transportation modeling and management. 

Many uncertain, non-linear and stochastic factors could 

have large influence on the prediction performance. With 

the recent development in deep learning, researchers have 

applied deep neural networks for the traffic flow 

prediction problem and achieved promising results. 

However, existing studies still have some issues 

unaddressed, e.g., the models only predict the traffic flow 

at next time step while travelers may need a sequence of 

predictions to make better, long-term decisions; temporal 

factors are (e.g., day of the week, national holiday) 

usually not well considered during prediction. To address 

these limitations, this paper proposed an attention-based 

recurrent neural network architecture for multi-step 

traffic flow prediction. Experimental results demonstrate 

that the proposed method has superior performance 

compared to the existing models. We also show how the 

method can be used to develop traffic anomaly detection 

systems. 

Keywords: Traffic flow prediction, Recurrent neural 

network, Attention mechanism, Deep 

Learning, long short-term memory 

1 Introduction  

With the development of Internet of Things (IoT), 

embedded devices, e.g., sensors, actuators, mobiles 

phones and RFIDs, can be built into every fabric of 

urban environments and connected with each other. 

Data generated by these devices can be preprocessed, 

integrated, and made available in standard formats 

through open services [1]. Many machine learning 

techniques, e.g. classification, regression and clustering 

methods, have been applied to process and analyse IoT 

data to extract useful knowledge. Real-world 

applications have been developed and deployed to help 

citizens better understand their surroundings and 

informs city authorities to provide better and more 

efficient public services, for example intelligent 

transportation [2], healthcare [3], environment 

monitoring [4], and public safety [5].  

Traffic flow information is crucial for individual 

travelers, business sectors, and government agencies to 

make better travel decisions, alleviate traffic 

congestion, and improve traffic operation efficiency [6]. 

With the rapid development and deployment of 

intelligence transportation systems (ITSs), traffic flow 

prediction has gained increasing attention in recent 

years. With the widespread traffic sensors, available 

traffic data (e.g., loop sensors, GPS, cameras, social 

media, etc.) for analysis is exploding; with advanced 

networking technologies, big traffic data can be 

efficiently and securely collected, processed, cached, 

shared and delivered [7-11]. Through sophisticated 

analysis of historical and real-time traffic data, ITSs 

enable users to make safer, more coordinated, and 

smarter use of the transport networks.  

Recently, deep learning has drawn a lot of academic 

and industrial attention in various areas, including 

intelligent transportation. It is a relatively “young” 

learning paradigm in the machine learning family, and 

has in fact its origin from Artificial Neural Networks 

(ANNs). It allows computational models that are 

composed of multiple processing layers to learn 

representations of data with multiple levels of 

abstraction and is able to discover intricate structures 

from natural data in its raw forms without the needs of 

sophisticated feature engineering and tuning [12]. 

Compared to traditional machine learning methods, 

deep learning can model extremely sophisticated 

functions through multiple layers of non-linear 

transformation trainable from the beginning to the end. 

Methods based on deep models have significantly 

improved the state-of-the-art in an array of problems, 

such as natural language processing (more specifically, 

neural machine translation) [13], computer vision [14], 

and speech recognition [15]. 

Deep learning-based methods have been applied to 

capture traffic patterns and provide traffic predictions 

even without prior knowledge in transportation areas, 

and have shown promising results [16-21]. However, 

these studies still leave some issues unaddressed. For 

example, they mostly only focus on predicting traffic 

flow at next time step (e.g. after 15 mins), while 
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travelers may need a sequence of traffic flow 

predictions (e.g., traffic flow sequence for the next few 

hours) in order to make better, longer-term travel 

decisions. Meanwhile, temporal information (e.g., time 

of the day, day of the week, national holiday) of traffic 

flow is usually not considered, e.g., weekdays, 

weekends and national holidays should be considered 

separately. To address the above limitations, we 

propose an Attention-Based Recurrent Neural Network 

architecture with Temporal Component (ABRNN_TC) 

for traffic flow prediction. The proposed model is 

compared to other baseline methods and shows 

superior performance. To further illustrate the use of 

the method, we present a case study in real-time traffic 

event detection. 

The rest of the paper is organised as follows. Section 

2 reviews the existing studies on traffic flow prediction. 

Section 3 presents the details of the proposed attention-

based recurrent neural network architecture for traffic 

flow prediction. Section 4 shows the experimental and 

evaluation results. The conclusion and future work are 

presented in Section 5. 

2 Related Work 

Over the past few decades, a number of traffic flow 

prediction models have been proposed, e.g., ARIMA 

[22], k-NN [23], SVR [24] and ANN [25]. The 

Autoregressive Integrated Moving Average (ARIMA) 

model focuses on finding the patterns of the temporal 

variation of traffic flow and has been applied to short-

term traffic flow prediction [22]. Due to the stochastic 

and nonlinear nature of traffic flow, nonparametric 

approaches, e.g., k-NN [23], SVR [24] and ANN [25], 

have attracted much more attention from researchers. 

Chang et al. presented a dynamic multi-interval traffic 

volume prediction model based on the k-NN 

nonparametric regression [23]. Jeong et al. presented 

an online learning weighted support vector regression 

(SVR) for short-term traffic flow prediction [24]. 

There are a few major limitations about these 

traditional methods. First, for time-series based 

methods like ARIMA, a linear architecture is often 

preferred. Meanwhile, the future traffic flow is only 

predicted based on historical traffic flows on a 

particular road regardless of others, although a 

transportation system is a highly correlated network. 

Second, complex hand-engineered features are usually 

needed, which requires prior knowledge of 

transportation domain and is extremely time-

consuming. Finally, most ANN based approaches use 

shallow architectures, e.g., one single hidden layer in 

[25], which may not be able to learn effective 

representation from the traffic flow data and results in 

poor performance. 

Simply speaking, when a neural network contains 

more than one hidden layer, it is considered as a ‘deep’ 

architecture. A gradient descent algorithm called 

backpropagation (BP) [26] was proposed in 1980s to 

train neural network and has played an important role 

in neural network training since then. However, one of 

the major reasons that ANNs with multiple fully 

connected layers have not gained popularity in many 

real-world applications for decades is the computation 

complexity. In 2006, a breakthrough research [27] first 

showed that training deep neural network in an 

unsupervised manner (pre-training), followed by a 

supervised fine-tuning, could result in good 

performance. In 2012, the research group led by 

Hinton won the ImageNet competition by using 

convolutional neural network that almost halve the 

classification error rate [14]. Since then, the study of 

deep learning has achieved a series of milestones in 

various domains and has been applied to transportation 

research. The work of Huang et al. [16] was the first 

study to apply deep learning for the traffic flow 

prediction problem by using Deep Belief Network 

(DBN) to learn effective features in an unsupervised 

fashion. In addition, it introduced a multitask 

regression layer on the top of DBN for supervised 

prediction and reported around 5% improvement over 

the state of the art. As traffic is usually affected by 

other factors such as weather condition, the work in 

[17] developed a DBN based deep learning model to 

fuse traffic data and weather data for more accurate 

prediction. The studies in both [18] and [19] applied 

Stacked Auto-Encoder (SAE) for traffic flow 

prediction. While the work in [18] used a sparse Auto-

Encoder for better feature extraction, the one in [19] 

used the Levenberg-Marquardt algorithm to train SAE 

for more stable convergence. As SAE and DBN cannot 

model temporal dependency in the data, Recurrent 

Neural Network (RNN) has also been applied for 

traffic flow/speed prediction [20-21]. Both work used 

LSTM based RNN for short-term traffic flow/speed 

prediction and reported better performance over other 

deep learning models.  

3 Attention-based Recurrent Neural Network 

Architecture 

In this section, we first briefly describe the 

technique background of RNN architecture, Long 

Short-Term Memory (LSTM) and encoder-decoder 

architecture. Then, we present the proposed Attention 

Based RNN (ABRNN) model. 

3.1 Recurrent Neural Network (RNN) 

A RNN contains links among neurons, and after 

unfolding it forms a directed graph along a sequence as 

shown in Figure 1. This allows RNN to process any 

type of data that can be modelled as temporal 

sequences of variable lengths, 
1 2

( , , , ).
T

X x x x= …  At 

each time step t, the hidden state ht of the RNN is 

updated according to Equation (1). 
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where f is a non-linear function, which can be as 

simple as a sigmoid function and as complex as a 

LSTM unit. RNNs use the internal states to capture 

dependency among input data in a sequence, which 

makes them suitable to tasks such as natural language 

processing, speech recognition and traffic flow 

prediction where data demonstrates strong temporal 

correlations. As vanilla RNNs suffer from various 

limitations, they have not been used in real-world 

applications. In practice, two RNN units: LSTM [28] 

and Gated Recurrent Unit (GRU) [29] have been 

widely used. In this paper, LSTM is chosen as the 

RNN unit. 

 

Figure 1. Illustration of a typical RNN architecture 

before and after unfolding 

3.1.1 Long Short-Term Memory (LSTM) 

As vanilla RNN suffers from the so-called exploding 

and vanishing gradient problem during training, a 

recurrent unit called LSTM [28] was proposed to solve 

the problem. The architecture of a standard LSTM unit 

is visualised in Figure 2. 

 

Figure 2. Long Short-Term Memory unit 

A LSTM unit contains a cell C, an input gate i, an 

output gate o and a forget gate f. The cell is responsible 

for remembering values over time steps. The three 

gates allow LSTM memory cell to store and access 

information over long periods of time, thereby 

mitigating the vanishing gradient problem. Each of the 

three gates can be considered as a neuron that 

computes a value using an activation function σ . 

Given a sequence of input 
1 2

( , , , ),
T

X x x x= …  a 

standard LSTM computes a sequence of outputs 

1 2
( , , , )

T
Y y y y= …  by iterating the following 

equations from (2) to (7): 

 
1

( [ , ] )t f t t ff W h x bσ
−

= ⋅ +  (2) 

 
1

( [ , ] )
t i t t i
i W h x bσ

−

= ⋅ +  (3) 

 
1 1

* * tanh( [ , ] )
t t t t c t t c

C f C i W h x b
− −

= + ⋅ +  (4) 

 
1

( [ , ] )
t o t t o
o W h x bσ

−

= ⋅ +   (5) 

 * tanh( )
t t t
h o C=  (6) 

 
t y t y
y W h b= ⋅ +  (7) 

Where 
t
f  represents the output of the forget gate, 

t
i  

denotes the output of the input gate, and 
t
o  is the 

output of the output gate. The cell state and hidden 

state are denoted as 
t

C  and 
t
h , respectively. The 

weight matrices W, bias vectors b and sigmoid 

functions σ  are utilised to build connections between 

input layer, hidden layer and output layer. 

3.1.2 Encoder-Decoder Architecture 

In some applications, e.g., machine translation, the 

input sentence and the desired target sentence usually 

have different lengths, which cannot be modeled with 

the standard RNN architecture. As such, the RNN 

based encoder-decoder architecture [29-30] has been 

proposed. It contains two RNNs, one learns to encode 

the source sequence into a vector representation and 

the other decodes the vector into the target sequence. 

This architecture allows to produce a sequence of 

predictions for time series data, e.g., traffic flow. Since 

each input time step may be of different importance to 

different output time step, an important extension is to 

add the attention mechanism [13], which adaptively 

selects the relevant hidden states from the encoder in 

order to produce the output at a particular time step. 

3.2 Attention-Based Recurrent Neural Network 

(ABRNN) 

The work in [20] and [21] using RNN for traffic 

flow prediction have three issues: (1) the last hidden 

state ht is used to predict the traffic flow at next time 

step only, so it is difficult to be applied to multi-step 

prediction; (2) traffic flow at different time steps may 

be of different importance for predicting results; (3) 

time information may significantly change traffic flow 

patterns, but it’s hard to be fed into the network 

directly. Therefore, we developed an Attention-Based 

RNN architecture with Temporal Component 

(ABRNN_TC) for traffic flow prediction (shown in 

Figure 3). The proposed architecture includes three 

major components: encoder-decoder architecture, 
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attention mechanism, and temporal component, to 

address the above issues, respectively. 

 

Figure 3. Attention-Based RNN architecture with 

Temporal Component 

The encoder is a LSTM layer that reads an input 

sequence 
1 2

( , , , )
T

X x x x= …  and generates a dynamic 

context vector c from the input sequence for each time 

step in the decoder, where 
t
c  is computed as a 

weighted sum of all hidden state of the encoder with 

Equation (8): 

  
1

T

t tj j

j

c hα

=

=∑   (8) 

the weight 
tj

α  of each hidden state 
j

h  is computed by 

Equation (9) and Equation (10):  

  

1

exp( )

tj

tj T

tk

k

e

e

α

=

=

∑
  (9) 

  
1

ˆ( , )
tj t j
e a h h

−

=   (10) 

where 
tj
e  indicates how well the input at time step j 

and the output at time step t match, and a is modeled as 

a feedforward neural network which can be jointly 

trained with all the other components in the 

architecture.  

Traffic flow has a strong correlation with the 

temporal factors, e.g., time of the day, day of the week 

and national holidays. The traffic pattern during 

weekdays, weekends and national holidays are usually 

very different. Previous work divided traffic flow into 

two different groups (e.g., weekdays and weekends) 

for prediction. In our model, a temporal component is 

added to handle these factors. As shown in Figure 3, 

we concatenate the temporal information (denoted as 

Et), the time of the day (values from 0 to 95), the day 

of the week (from 0 to 6) and whether it is national 

holiday (0 or 1), to the context vector 
t
c . 

Finally, another LSTM layer is used as decoder to 

generate the output sequence 
1 2

ˆ ˆ ˆ ˆ( , , , )
T T T

Y y y y
τ+ + +

= … . 

Unlike the LSTM described in Section 3.1.1, the 

decoder LSTM also includes the context vector c and 

the temporal component output Et as input while 

updating the hidden state. Hence, the hidden state of 

the decoder at time t is calculated using Equation (11) 

below. 

 
1 1

ˆ ˆ( , , , )
t t t t t
h f h y c E

− −

=   (11) 

where f  represents a LSTM unit here. 

4 Experiments & Evaluation 

4.1 Dataset 

The Caltrans Performance Measurement System 

(PeMS) [31] is a widely used dataset for traffic flow 

prediction [16-20]. The traffic data was collected every 

30 seconds from various types of vehicle detector 

stations throughout the state of California in the United 

States. Then, it was aggregated at a 5-min interval for 

each detector station. We further aggregated the data 

into 15-min interval, as suggested by the Highway 

Capacity Manual [32]. In this paper, we used the 

dataset that was collected from 243 vehicle detector 

stations in district 5 (including Monterey, San Benito, 

etc.) from May 1, 2017 to Feb 28, 2018. The data of 

the first nine months was used for training, and the data 

of the remaining one month was used for testing. 

4.2 Experiments 

Input and output. For the input layer, we collected 

data from all 243 vehicle detector stations at previous r 

time steps, i.e., 
1

, , ...,
t r t r t
x x x

− − +
. The data includes 

both the relationship of 243 detector stations and 

temporal correlations. For the output layer, we 

predicted the traffic flow of the 243 stations at the next 

τ  time steps, i.e. 
1 2
, , ...,

t t t
x x x

τ+ + +
. The dimension of 

the input shape is 243 γ× ; the dimension of the output 

shape is 243 τ× . As traffic flow volume of different 

stations may have different scales, the input data was 

further normalised to the range of [0, 1] by Equation 

(12). 

  min

max min

X X
X

X X

−
′ =

−

 (12) 

We chose r from {2, 4, 8, 12, 24, 48, 96}. After 

performing grid search, the best number of input time 

steps was 4, which means the traffic flow prediction 

mostly depends on the traffic flow of the previous one 

hour. The prediction performance dropped rapidly 

when r increased due to the difficulty in modelling 
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long historical time sequences. We used the proposed 

method to predict traffic flow volumes in next 1 hour, 

2 hours, and 3 hours, where τ  is 4, 8, and 12 

respectively. As the traffic flow of weekdays, 

weekends, and national holiday may have different 

patterns, we further collected time information as an 

additional input for the temporal component Et in the 

proposed model.  

Model parameters. With regard to the attention based 

RNN architecture, we need to determine the number of 

hidden layers, the number of hidden units, batch size, 

epochs, optimiser, and etc. Because training the 

attention based RNN model is time consuming, the 

number of hidden layers is set to 1 in this study. We 

chose the number of hidden units from {128, 256, 512, 

1024} and the number of batch size from {64, 128, 256, 

512}. We used early stopping to avoid overfitting. 

After performing grid search, the best model 

parameters were determined and shown in Table 1. 

These experiments were run using Keras 2.1.5, 

Tensorflow 1.3, python 3.6, and Windows 10 on a 

laptop with a i7-6700HQ CPU, 8GB RAM and GTX-

970M GPU. 

Table 1. Model parameter settings 

LSTM-ED model parameters 

Input length 4 Batch size 256 

Output length {4, 8, 12} Dropout 0 

Hidden layers 1 Epochs 100 

Hidden units 512 Optimiser Adam 

 

4.3 Evaluation 

Figure 4 presents the predicted results for three 

different vehicle detector stations at Freeway 1, 

Freeway 101 and Freeway 156. The actual traffic flow 

data is also plotted for comparison. The figure shows 

that the proposed model is able to learn the traffic flow 

patterns and provides accurate traffic predictions. To 

evaluate the effectiveness of the proposed model, we 

used the root mean square error (RMSE) and mean 

absolute error (MAE), which are calculated by 

Equations (13) and (14), respectively. 

 

2

1

1
ˆ| |

n

i i

i

RMSE y y
n

=

= −∑   (13) 

 
1

1
ˆ| |

n

i i

i

MAE y y
n

=

= −∑   (14) 

where 
i
y  is the observed traffic flow, and ˆ

i
y  is the 

predicted traffic flow.  

The performance of the proposed model was also 

compared with four other methods as briefly explained 

below.  

 

(a) Station at Freeway 1 

 

(b) Station at Freeway 101 

 

(c) Station at Freeway 156 

Figure 4. Traffic flow prediction results of three 

different stations. 

‧ AVG. It is a simple method that calculates the 

average traffic flow of each station at specific time 

(e.g. 9 AM on Monday).  

‧ k-NN [23]. It finds the k most similar traffic flow 

patterns to the current traffic flow and predicts 

future time steps on the basis of the averaged future 

data of the k patterns. 

‧ Seq2Seq [29]. It uses a standard RNN with LSTM 

units to encoder the input sequence into a context 

vector and another RNN to make predictions 

iteratively. 

‧ Attention-based RNN [13]. It introduces an 

attention mechanism to adaptively select the weight 

of hidden states from the encoder to produce the 

output sequence. 
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Table 2. Performance comparison of the RMSE and MAE for differnet models 

1-hour traffic flow prediction 2-hours traffic flow prediction 3-hours traffic flow prediction 
Method 

RMSE (10-2) MAE (10-2) RMSE (10-2) MAE (10-2) RMSE (10-2) MAE (10-2) 

AVG 6.86 4.42 6.86 4.42 6.86 4.42 

k-NN 4.95 3.26 4.86 3.15 4.89 3.14 

Seq2Seq 3.94 2.78 4.34 3.03 4.57 3.16 

ABRNN 3.92 2.74 4.29 2.99 4.53 3.15 

ABRNN_TC 3.89 2.71 4.26 2.96 4.48 3.08 

 

The best results of each method under different 

parameters were reported in Table 2. As expected, 

simply using the statistical AVG method led to 

inaccurate results. Following the idea of [23], using k-

NN provided better and robust traffic prediction results. 

In general, the deep learning models, i.e., Seq2Seq and 

ABRNN, outperformed other methods, which has also 

confirmed by other previous studies [16-21]. 

Compared to the standard Seq2Seq model, ABRNN 

models further improved the prediction accuracy due to 

the positive effects of the attention mechanism. Since 

there is not long temporal dependency in traffic flow 

data, only limited improvement could be observed with 

the addition of the attention mechanism. We expect 

attention-based mechanisms will be able to provide 

more notable improvement when applying to data with 

longer temporal correlations, e.g., air quality, water 

quality, etc. When adding the temporal information to 

the model, the MAE of attention based RNN model 

further decreased by around 2.2%. It should be noted 

that we only use the temporal information as the 

external data in this study. It is also possible to include 

more external factors that are relevant to traffic flow 

for further improvement, e.g., traffic speed, weather 

condition, accidents, and so on.  

4.4 Use Case: Traffic Anomaly Detection 

Traffic flow data follows a more or less recurring 

pattern. Meanwhile, it may vary abnormally due to 

various traffic events, road conditions, and other 

external factors. In these cases, the predicted traffic 

flow and the actual traffic flow may have significant 

differences. One interesting application is to analyse 

traffic anomalies to detect real-time traffic incidents or 

events. We demonstrate a use case that applies the 

proposed method together with social media 

information to detect traffic incidents and traffic events. 

Since the proposed method is able to capture traffic 

flow patterns, an unusually high prediction error is 

likely to indicate a real-world traffic anomaly. For 

example, in Figure 5 it shows that there are three traffic 

anomalies on highway 101 in February 2018. Although 

a threshold can be set to extract the temporal and 

spatial information of traffic anomaly, details (i.e., 

event type, cause and impact) of the traffic event is still 

missing.  

 

   

(a) (b) (c) 

Figure 5. Three Traffic events on Highway 101 detected from sensor data 

While social media data published by the citizen 

sensors differs semantically from sensing data 

generated by the physical devices to a great extent, it 

can be used as an important complementary source for 

traffic related applications. We further used the 

temporal and spatial information collected from the 

detected traffic anomalies to filter traffic related tweets 

posted by trusted organisations on Twitter. In Table 3, 

details of the traffic accidents, e.g., overturned truck or 

car crash, can be collected from tweets published by 

CaltransD5. 
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Table 3. Traffic event description from sensor and 

social meida data 

 Time Location Event 

(a) 
2018-02-02 

9: 00 - 12: 00 

Highway 101 off-ramp at 

Traffic Way in Atascadero

Overturned

truck 

(b) 
2018-02-09 

6: 00 - 8: 00 

Highway 101 near 

Highway 58 

Overturned

semi-truck

(c) 
2018-02-13 

14: 00 - 17: 00 

Highway 101 on Santa 

Maria Bridge 
2-car crash

 

This is a simple traffic anomaly detection example 

based on historical traffic data and official tweets. A 

real-time traffic anomaly detection system or more 

generally a physical and social data analysis system 

can be developed as illustrated in Figure 6. For a traffic 

event detection system, we can set a threshold for a 

particular case to be considered as traffic anomaly (e.g., 

difference between the actual and predicted values is 3 

times of the standard deviation). Meanwhile, we can 

use openly available city traffic event tool [33] to 

extract traffic event from twitter. Then, the anomalies 

can be explained by the social media data with 

temporal (within 1 hour) and spatial (within r km) 

overlapping with the detected event. With the 

development of IoT technologies and data analysis 

methods, the physical and social data may become 

more accessible and further applied to various city 

domains, e.g. transportation, energy, environment, 

public safety, etc.  

 

Figure 6. A physical and social data analysis 

framework 

5 Conclusion and Future Work 

We propose an Attention Based Recurrent Neural 

Network with Temporal Component (ABRNN_TC) 

model for predicting future traffic flow. The 

experimental results show that with the addition of the 

attention mechanism and the temporal component, the 

deep model can capture traffic patterns accurately and 

produce superior prediction results over other baseline 

methods. We also presented a use case of the proposed 

method for traffic anomaly detection with information 

found on the social media websites. For future work, 

we plan to incorporate more factors relevant to traffic 

flow into the proposed method and further evaluate 

their impact on the prediction accuracy. Another future 

work is to design a new deep learning model that can 

simultaneously process sensor data and social media 

data for traffic flow prediction and anomaly detection. 
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