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Abstract 

Object detectors based on CNN are now able to 

achieve satisfactory accuracy, but their ability to deal 

with some targets with geometric deformation or 

occlusion is often poor. This is largely due to the fixed 

geometric structure of the convolution kernel and the 

single inflexible network structure. In our work, we use 

dual branch parallel processing to extract the different 

features of the target area to coordinate the prediction. To 

further enhance the performance of the network, this 

study rebuilds the feature extraction module. Finally, our 

detector learns to adapt to a variety of different shapes 

and sizes. The proposed method achieves up to 81.76% 

mAP on the Pascal VOC2007 dataset and 79.6% mAP on 

the Pascal VOC2012 dataset. 

Keywords: Dual-branch structure, Convolution neural 

network, Deformable object detection 

1 Introduction 

Object recognition, such as fingerprint recognition 

and face recognition, plays an important role in the 

security field. As we know, the first step in object 

recognition is object detection. Therefore, object 

detection is also essential in the field of security. 

Object detection is widely used to precisely locate and 

classify kinds of targets in an image or video. To 

perform properly, these detectors need to “learn” as 

many different categories of feature representations as 

possible. Also, they need to learn the different scales, 

poses, viewing angles, and even non-rigid body 

deformations which the same individual may present 

differently in different images. 

In this work, we propose to create an object detector 

that can view images in the same way that humans do. 

When a human identifies an object, the first thing to be 

observed is the overall shape of the target object, 

which represents the global information about the 

target. Based on the shape and the scale of the object, a 

human can preliminarily judge the general 

characteristics of the object. Next, a human will 

gradually identify the specific features of the target 

based on the upper, lower, left, and right sides of the 

object. This is known as local information. By 

considering the local and global information 

combinedly, humans can make precise judgments 

about the target object. Our objective in this study is to 

design a detection model that can adapt to different 

shapes of objects, in other words, obtain both local 

and global information simultaneously. Natural 

language processing; Dialogue act recognition; 

Inference model. 

We have assessed existing object detectors based on 

Convolutional Neural Networks (CNN). Fast/Faster R-

CNN [5, 19] and Region-based Fully Convolutional 

Networks (RFCN) [1] are two representative region-

based CNN approaches. Fast/Faster R-CNN uses a 

subnetwork to predict the category and bounding box 

of each region proposal. Unlike Fast/Faster R-CNN, R-

FCN proposes the concept of a position-sensitive score 

map and conducts the inference with a position-

sensitive region of interest pooling (PSRoIPooling). 

The reason why R-FCN achieves more accuracy is that 

it focuses on details of the target object and sensitivity 

of the location. Inspired by their work [1], this study 

uses position-sensitive RoI pooling to extract the local 

information of the object and employing Faster R-CNN 

to extract global information. Besides, a dual branch 

structure based on Faster R-CNN has been used to 

rebuild the network in the proposed method, which 

improves the performance significantly. 

Besides, we employ deformable convolution and 

deformable position-sensitive RoI pooling to enable 

the detection model to handle the geometric 

transformations, which is inspired by [2]. These two 

new modules can greatly enhance the capability of the 

model to handle different shapes or poses of the same 

object. Therefore, our model can achieve performance 
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beyond the current level of some detectors for objects 

with deformation, occlusion, and overlap. We have 

also achieved outstanding results on objects with high 

similarities, such as chairs and tables. 

The remainder of the paper is organized as follows. 

In Section II, the related works are presented. Section 

III describes the methodology of the proposed 

approach. Section IV presents the experimental results. 

Section V concludes our work with a summary. 

2 Related Work 

With the rapid development of deep convolutional 

networks [9, 12, 18, 23, 24-28], many object detection 

methods have been proposed and made substantial 

improvements in this field. Some of the recent object 

detection works are introduced as follows.  

R-CNN: Region-based CNN (R-CNN) [6] achieves 

high accuracy by extracting features via deep neural 

networks. Following R-CNN, a large number of 

variants of R-CNN have evolved. In Faster R-CNN 

[19], Region Proposal Network is introduced to 

generate proposals and RoIPooling is adopted in the 

subnetwork on each proposal. Following Faster R-

CNN [19], R-FCN [1] proposes the Position-sensitive 

RoIPooling, which also speeds up the detection when 

dealing with a large number of proposals. Feature 

Pyramid Networks (FPN) [15] construct feature 

pyramids with the inherent multi-scale pyramidal 

hierarchy of deep convolutional networks. Mask R-

CNN [8] further implements a mask predictor by 

adding an extra branch in parallel based on Faster R-

CNN. It also incorporates a RoIAlign layer that 

removes the harsh quantization of RoIPooling. 

RetinaNet [16] is an FPN-based single stage detector 

that employs FocalLoss to address the class imbalance 

issue caused by extreme foreground-background ratio. 

STN: Spatial Transform Networks (STN) [11] is the 

first work that learns spatial transformation from image 

datasets by deep neural networks. STN warps the 

feature map employing a global parametric 

transformation, for example, affine transformation. 

Such warping is expensive, and it is quite difficult to 

infer the transformation parameters. STN is effective to 

solve the classification problem on small-scale images. 

The inverse STN method [14] is then proposed to 

address the aforementioned problems by replacing the 

expensive feature warping with efficient transformation 

parameter propagation. 

DPM: Deformable Part Models [4] is a shallow model 

that can maximize the classification score by learning 

the spatial deformation of object parts. Its inference 

process equals to CNNs [7] when treating the distance 

transform as a special pooling operation. However, the 

training process is not end-to-end and involves manual 

adjustments, including the selection of components and 

hyper-parameter. 

Deformable Convolution: Convolutional neural 

networks (CNNs) are inherently restricted to model 

geometric transformations, due to the fixed geometric 

structure in the module construction. The Deformable 

Convolution Network [2] indicates that the pixels in a 

receptive field have a different impact on the output 

response. The pixels on the object contribute greater 

than others. Therefore, Deformable Convolution 

Networks enable the receptive field to distinguish 

objects from the background. With this improvement, a 

convolution filter can autonomously attain the ability 

to sense the object. It rebuilds the convolution filter, 

introducing two new modules (Deformable Convolution 

and Deformable PSRoIPooling) which greatly enhance 

CNN’s capability of modeling geometric transformation. 

During network training, offsets can be learned by 

additional convolution layers so that different locations 

can be sampled more flexibly. 

Multi-Branch: Single-branch networks often have 

limitations, such as fixed receptive field and simple 

hierarchy, which can result in the network not being 

able to make full use of feature diversity. However, in 

recent network structure, like CoupleNet [28] and 

Mask R-CNN [8], which both adopted multi-branch 

structure. CoupleNet uses multi-branch to obtain 

feature maps of different inclination which then 

merged. Mask R-CNN uses two-branch to 

collaboratively perform segmentation and detection of 

two related tasks and achieves mutually beneficial 

results. 

Our model draws on the idea of feature fusing that is 

easily overlooked in many of recent work, continuing 

the multi-branch structure of CoupleNet [28] and 

MASK RCNN [8]. Based on the multi-branch of 

CoupleNet, we carefully verified its theory and 

experimental details. Unlike the CoupleNet, we choose 

the structure of dual-branch while retaining some of 

the fully-connected layers. With experimental support, 

we design Branch B which keeps the fully-connected 

layer (the experimental data in Table 4 proves that our 

determination’s correction). In Branch A, the 

convolution layer is used instead of a fully-connected 

layer. Combining two different branches, our network 

can not only take into account the number of model 

parameters but also ensure accuracy. At the same time, 

we add a Deformable module in Branch B, which 

greatly improved the ability of the Branch to adapt to 

the deformation of an object (experiment results are 

shown in Table 1 and Table 2). 

3 The Proposed Approach 

In this section, we first present the architecture of 

the proposed detection model and then describe design 

details. 
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Table 1. Results on PASCAL VOC 2007 test set (trained on VOC 2007 trainval and VOC 2012 trainval)  

Method SSD 512 Faster R-CNN R-FCN D-R-FCN Mask R-CNN Ours* our§ ours† ours 

mAP 78.5 77.1 79.2 81.8 80.5 80.0 80.5 81.1 81.6 

aero 90.0 79.2 78.5 81.2 84.6 81.2 83.3 85.6 83.4 

bike 85.3 84.1 85.8 87.5 87.6 87.6 86.1 86.1 88.2 

bird 77.7 77.4 80.1 84.3 79.4 78.4 79.0 80.3 80.5 

boat 64.2 68.7 70.8 79.4 78.2 74.4 74.6 74.8 75.5 

bottle 58.4 59.1 68.4 69.4 68.4 65.5 67.8 68.5 67.3 

bus 85.3 86.1 85.1 89.0 88.5 86.9 87.2 88.7 87.4 

car 84.4 84.9 86.9 88.7 85.4 87.9 87.9 88.1 88.3 

cat 92.5 86.0 88.4 92.4 90.3 88.2 88.3 88.9 88.6 

chair 61.3 60.9 65.6 66.5 63.2 64.8 66.7 67.4 69.1 

cow 83.4 86.4 86.8 89.4 88.4 87.2 87.1 87.2 88.1 

table 65.0 72.8 73.1 72.3 70.1 73.9 73.8 74.0 74.6 

dog 89.8 88.0 88.4 91.3 90.2 89.7 89.5 88.4 88.9 

horse 88.5 85.1 88.6 90.1 87.3 87.9 87.8 88.0 88.9 

mbike 88.2 83.8 80.4 83.2 84.4 83.1 84.5 85.1 84.0 

person 85.5 79.0 80.6 80.4 80.5 83.3 84.2 85.6 85.8 

plant 54.4 49.4 52.3 57.3 54.3 56.8 57.0 57.3 57.4 

sheep 82.4 80.9 80.3 85.0 84.9 82.6 82.9 83.3 85.6 

sofa 70.7 76.0 80.1 80.6 75.3 78.2 78.5 79.2 81.2 

train 87.1 78.3 84.7 89.2 88.3 84.3 84.3 86.2 88.4 

tv 75.4 76.4 78.5 78.6 79.7 76.9 78.7 80.3 81.2 

Note. Ours*: only includes Branch A and Branch B. Ours§: includes Branch A and Branch B with RoIAlign. Ours†: includes 

Branch A and Branch B with RoIAlign and deformable module. 

Table 2. Results on PASCAL VOC 2012 test set (trained on VOC 2007 trainval+test and VOC 2012 trainval) 

Method SSD512 Faster R-CNN R-FCN D-R-FCN Mask R-CNN ours 

mAP 77.7 73.8 77.6 79.4 78.3 79.6 

aero 88.9 86.5 86.9 86.9 88.4 88.1 

bike 84.3 81.6 83.4 86.4 83.2 85.7 

bird 76.9 77.2 81.5 78.6 78.3 81.6 

boat 63.2 58.0 63.8 72.2 67.8 71.2 

bottle 57.8 51.0 62.4 64.6 62.8 64.0 

bus 85.0 78.6 81.6 83.4 83.2 83.2 

car 83.4 76.6 81.1 84.3 84.3 83.9 

cat 91.8 93.2 93.1 94.2 90.3 93.1 

chair 60.7 48.6 58.0 60.0 59.3 61.2 

cow 83.1 80.4 83.8 81.2 80.3 83.0 

table 64.0 59.0 60.8 64.3 63.5 65.6 

dog 88.2 92.1 92.7 93.0 93.9 92.3 

horse 88.1 85.3 86.0 90.1 89.3 88.1 

mbike 87.9 84.8 84.6 83.2 86.4 85.6 

person 84.5 80.7 84.4 84.3 86.3 87.5 

plant 53.8 48.1 59.0 59.9 58.8 62.0 

sheep 81.6 77.3 80.8 85.0 80.0 83.0 

sofa 69.7 66.5 68.6 71.5 68.4 71.6 

train 86.5 84.7 86.1 88.4 86.0 87.2 

tv 74.4 65.6 72.9 76.4 74.5 74.3 

 

3.1 Network Architecture 

Figure 1 shows the architecture of our model. The 

proposed detector is mainly composed of two 

components. The first one is RPN (Region Proposal 

Network), which is in charge of generating candidate 

proposals. The second is R-CNN subnetwork which 

makes the final location and classification. The R-CNN 

subnetwork involves two separate branches: (A) a 

RoIAlign to gather global feature information for an 

RoI, and (B) Deformable PSRoIPooling to encode 

details and local feature information of an RoI. Our 

network is initialized in the same way as the pre-

trained ImageNet model, ResNet101 [9]. To realize the 

detection task, we remove the last average pooling 

layer and FC (Fully-Connected) layer. All proposals 

produced by RPN are fed to Branch A and Branch B. 

Finally, the outputs of the two branches are fused to do 

classification and box regression. 
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Figure 1. Our detector: In Feature Extractor, this study 

uses Deformable Conv5. In the R-CNN subnetwork, 

we employ a dual branch (branch A and branch B). 

Branch A: for the 2000 proposals produced by RPN, 

we process all the proposals by RoIAlgin. We replace 

the last two FC layers by a full convolution layer. 

Branch B: for the 2000 proposals produced by RPN, 

we use Deformable PSRoIPooling and then add one 

fully connected layer. Finally, we fuse the two feature 

maps produced by branch A and branch B to predict 

the final classification and location 

3.2 Regional Proposal Networks (RPN) 

The RPN is based on a sliding-window class-

agnostic object detector and it uses features extracted 

from the 4th stage, following [19]. Specifically, the 

RPN pre-defines a set of anchors that are related to 

scales and aspect ratios. In the proposed approach, 

three aspect ratios are set to {1: 2, 1: 1, 2: 1} and three 

scales are set to {1282, 2562, 5122} separately to 

cover objects of different shapes, to the extent possible. 

Besides, many proposals are redundant with each other, 

which is addressed by non-maximum suppression 

(NMS), and the intersection-over-union (IoU) 

threshold of NMS is set to 0.7 in our approach. The 

anchor is assigned with a label if its IoU is the highest 

or exceeds 0.7 with any ground-truth box. On the other 

hand, if an anchor’s IoU is smaller than 0.3 with all the 

ground-truth boxes, it will be assigned with a negative 

label. After processing by RPN, each input image 

outputs 2000 proposals, which is then used in the R-

CNN subnet. 

3.3 R-CNN Subnetwork 

In this section, we discuss the R-CNN subnetwork in 

our approach in four aspects. Also, we provide the 

topology of our network for readers in Figure 2. 

Maintain Spatial Information. For Faster R-CNN 

which is presented in Figure 3, we find that two 1024-d 

FC layers bring plenty of computations. Meanwhile, 

the FC layer forces the features to be compressed to a 

one-dimensional vector. The reduction of dimension is 

not conducive to a detection task that is sensitive to 

spatial location. Inspired by [21], we replace the two 

FC layers by two Conv (convolution) layers and use a 

1 × 1 convolution to do classification and location. 

 

Figure 2. The Topology of our network 

 

Figure 3. Faster R-CNN [19]: the whole network can 

be divided into two parts: RPN and R-CNN subnet. 

After feature extracting network (like VGG or 

ResNets), the feature map flows into RPN. Then RPN 

produces 2000 proposals, which is then used in the R-

CNN subnet. In the R-CNN subnet, each proposal is 

used to make classification and location regression 

Accurate Quantification. Faster R-CNN [19] uses 

RoIPooling to extract features from each candidate box, 

and the extracted features are then used in 

classification and box regression. As discussed in [8], 

RoIPooling inevitably involves quantization two times. 

The quantization introduces misalignments between 

the RoI and the extracted features. To a large extent, it 

affects the accuracy of localization. Inspired by the 

work [8], we remove the RoIPooling to reduce the 

misalignments caused by quantization. Instead, we use 

bilinear interpolation [11] in RoIAlign to compute the 

exact values of the input features sampled at four 

regularly locations in each RoI bin and then aggregate 

the output with max or average pooling strategies. The 

experimental results show that the RoIAlign operator 

brings substantial improvement to our detector. 

Feature Combination. Based on our analysis of Faster 

R-CNN [19], RoIPooling transforms an arbitrary-sized 

input rectangular region into specified features (e.g., 

7×7). The output features from RoIPooling tend to 

describe overall information of an RoI while ignoring 
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the details of objects such as internal orientation and 

hierarchy. 

Therefore, we extend an extra branch in parallel like 

[8] to extract features in detail. Inspired by the work [1, 

13], we attach a 490-dim 1×1 convolutional layer to 

construct a position-sensitive score map. Considering 

computational efficiency, we choose 490dim (10 × 7 × 

7) rather than 1029-dim (21 × 7 × 7) for the output 

channel of our score map, and yet achieve equal 

accuracy. 

For the position-sensitive score map, our detector 

conducts PSRoIPooling on the 72 scores and then vote 

on the RoI, producing a 10-dim vector for each RoI. 

The score map can be divided into 7×7 small grids, 

which can encode the cases of {top-left, top-center, 

top-right, ..., bottom-right} of an object category. 

Through the analysis above, PSRoIPooling represents 

the local and detailed feature information. We then 

attach two simple FC layers to do the classification and 

regression, in which the dimension is raised to 21 and 

84 (4 × 21). Note that we use a layer rather than a 

convolutional layer here. The experimental results 

show that this branch gets lower mAP when using the 

convolutional layer. 

Finally, the detector uses element-wise to fuse class 

probability and box prediction value, which are 

produced by Branch A and Branch B and then outputs 

the final class and box prediction. 

Effective Receptive Field. For the object detection 

task, we find that the pixels in a receptive field have a 

different impact on the output response, and the pixels 

on the object contribute greater than others. Based on 

this information, we hope the receptive field to 

distinguish objects against the background. In other 

words, we utilize the receptive field to sense the target 

autonomously. Inspired by the work [2], we find that 

the deformable convolution can make an adaptive 

adjustment based on the scale and shape of the objects, 

and therefore greatly enhances the capability of 

modeling geometric transformations for the 

convolution kernel. 

Motivated by [2], we add deformable convolution to 

the last stage of ResNet. Then, the 2D offsets extracted 

from the preceding feature map via convolutional 

layers are added to the regular grid sampling locations 

in the standard convolution. As for PSRoIPooling, an 

offset is also added to each bin position in the regular 

bin partition of the previous PSRoIPooling [1-2]. 

Therefore, our detector can accommodate geometric 

variations or model geometric transformations in 

object scale, pose, viewpoint, and part deformation. 

Meanwhile, the localization capability is improved, 

especially for non-rigid objects. By using the receptive 

field, the detector can learn semantic information 

adaptively and effectively and handle the overlapping 

and semi-occlusion issues. 

4 Experiments 

We first evaluate Faster R-CNN [19], and it 

achieves a 77.1% mAP on the VOC2007 test set and 

73.8% mAP on the VOC2012 test set. Our detector, by 

contrast, achieves 81.6% mAP on the VOC2007 test 

set and 79.6% mAP On the VOC2012 test set, which 

largely surpasses our baseline model 81.6% vs. 77.1% 

and 79.6% vs. 73.8%, and other detection models, such 

as R-FCN [1] (81.6% vs. 79.2% and 79.6% vs. 77.6%). 

In the meantime, we also compare our detector with 

SSD [17], D-R-FCN [2] (R-FCN with Deformable 

Convolution) and Mask R-CNN [8]. The results in 

Table 1, Table 2 and Table 3 validate the effectiveness 

of our method over Faster R-CNN. In the meantime, 

we also compare our model with the SSD method [17]. 

In the following discussion, we present the training 

details as well as ablation experiments. 

Table 3 Results on the test set of PASCAL VOC 2007 

mAP 
Method 

mAP@0.5 (%) mAP@0.7 (%)

Faster R-CNN [19] 77.1 61.0 
R-FCN [1] 79.2 62.8 

D-R-FCN [2] 81.8 68.0 
Mask R-CNN [8] 80.5 65.7 

ours 81.6 68.3 

Table 4. Results on comparing using a fully-connected 

(fc) layer and convolutional (conv) layer in Branch B 

Branch B mAP 

fc layer 81.6 
conv layer 78.8 

 

4.1 Implementation Details 

Our approach is trained on 2 NVIDIA TITAN X 

GPUs, where the weight decay is set to 0.0005 and the 

momentum is set to 0.9. The batch size for each GPU 

is 2 and each image has 2000/1000 ROIs for the 

training and testing phase. Besides, the learning rate is 

0.001 for the first 80k iterations and decrease to 0.0001 

for later 30k iterations. During the training phase, the 

image scale is randomly sampled from {480, 570, 670, 

760, 860}, and the shorter edge of the image is resized 

to the sampled scale. We adopt online hard example 

mining (OHEM) [22] techniques. The backbone 

network in our approach is initialized according to the 

pre-trained ImageNet [20] unless explicitly noted. 

Besides, the parameters of stages 2, 3 and 4 in the base 

model are also adjusted and batch normalization is also 

fixed to improve the training speed. 

Next, a series of ablation experiments are conducted 

to validate the effectiveness of the proposed approach. 

All the ablation experiments use single-scale training 

and testing. 
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4.2 Ablation Experiments 

We conduct experiments on PASCAL VOC 2007 

[3], which includes 20 object categories for a detailed 

evaluation of the proposed approach. Table 1 lists the 

detailed comparison results of Faster R-CNN [19], R-

FCN [1], SSD [17], D-R-FCN [2], Mask RCNN [8] 

and the proposed method. Specifically, the proposed 

detector is trained on the union set of VOC 2007 

trainval and VOC 2012 trainval, and is evaluated on 

VOC 2007 test set. To be fair, we only provide the 

experimental results of a single model without multi-

scale testing. All the methods use ResNet-101 as a base 

network (except SSD512, which uses VGG16). Note 

that Faster means Faster R-CNN method. D-R-FCN 

means R-FCN with the Deformable Convolution. Mask 

R-CNN reimplemented in our experiment is the one 

without FPN. We find that our method achieves 81.6% 

mAP, which outperforms R-FCN by 1.6 percent point. 

The standard mAP (mean Average Precision) score [3] 

is adopted to evaluate the performance of all methods. 

Besides, we also perform experiments on PASCAL 

VOC 2012. The models are trained on the union set of 

VOC 2007 trainval+test and VOC 2012 trainval, and 

are evaluated on VOC 2012 test set as shown in Table 

2. To be fair, we only provided the experimental results 

of a single model without multi-scale testing. The 

present comparison on PASCAL VOC 2012 dataset, 

our method achieves 79.6% mAP, which outperforms 

R-FCN by 2.0 percent point. 

As discussed above, our model can sense the objects 

of different geometric transformations, which can also 

adapt to part deformation, occlusion, and partial 

overlap. As shown in Table 1 and Table 2, the 

proposed model achieves better performance on the 

sofa, person, chair, and table, which validates the 

effectiveness of our model. 

In Table 3 we compare three models’ mAP scores 

with IoU thresholds being set to 0.5 or 0.7. Our 

detector gets a higher accuracy even at a high IOU 

threshold, which strongly verifies the efficiency. 

For visual comparison, we present detected images 

in Figure 4 and Figure 5. In Figure 4, our model (top) 

shows great robustness for geometric deformation and 

semi-occluded objects. For example, the proposed 

model successfully detects the regions for the sofa and 

the animal lies on the sofa in the first image, the red 

bus in the third image and the chair in the fourth image. 

However, Faster R-CNN fails to capture these objects 

with geometric deformation or occlusion. The images 

in Figure 4 include overlapping objects which should 

be detected separately. Compared to R-CNN, our 

model can distinguish overlapping objects. 

Demonstrated by the quantitative metric assessment 

and visual comparison, the proposed model is effective 

for the object detection task. We extract features both 

globally and locally and combinedly take advantage of 

deformable convolution and pooling to make our  

 

Figure 4. Visualization detection results of our 

detector (top) and Faster R-CNN (bottom). It is 

obvious that our detector has great robustness for 

geometric deformation and semi-occluded objects. It 

verifies our model’s capability to learn geometric 

deformation and the ability to fuse global and local 

features to make predictions 

 

Figure 5. Comparison of overlapping object detection. 

Images in the first row (top) show the detection results 

by our proposed model. Images in the second row 

(bottom) are the detection results produced by R-CNN. 

The comparison demonstrates the superior ability of 

our model to distinguish overlapping objects 

model adaptive to objects with geometric deformation, 

occlusion and overlapping. 

5 Conclusions 

In this paper, we present a novel and adaptive object 

detection model. The proposed approach can 

adaptively adjust geometric variations and model 

geometric transformations in object scale, pose and 

part deformation. Especially, we adopt the state-of-the-

art image classification methods as backbones and also 

add deformable modules into our framework to 

enhance the capability of transformation modeling. 

Besides, our method fuses the feature produced by R-

FCN and Faster R-CNN, then generates the final 

feature for accurate prediction. In general, our detector 

provides a novel idea that utilizes a dual branch that 

combines global and local feature information to make 

further classification and location. Benefiting from the 

architecture, our detector can well adapt to objects with 

occlusion or deformation, even at a high IoU threshold, 

which strongly verifies that the approach we propose is 

robust and efficient. In the future, we will try to 

optimize the structure and efficiency of the proposed 

approach to obtain real-time detection results. 
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