
Deep Learning Approaches for Dynamic Object Understanding and Defect Detection 783

Deep Learning Approaches for Dynamic Object

Understanding and Defect Detection

Yuan-Tsung Chang
,

 W. K. T. M. Gunarathne, Timothy K. Shih

Department of Computer Science and Information Engineering, National Central University, Taiwan

{harry.500net, tharanga.gunarathne, timothykshih}@gmail.com *

*Corresponding Author: Timothy K. Shih; E-mail: timothykshih@gmail.com
DOI: 10.3966/160792642020052103015

Abstract

Industrial product defect detection has been known for

a while to make sure the released products meet the

expected requirements. Earlier, product defect detection

was commonly done manually by humans; they have

detected whether the products consist of defects or not by

using their human senses based on the standard. In this

industrial era, product defect detection is expected to be

faster and more accurate, while humans could be

exhausted and become slower and less reliable. Deep

learning technology is very famous in the field of image

processing, such as image classification, object detection,

object tracking, and of course the defect detection. In this

study, we propose a novel automated solution system to

identify the good and defective products on a production

line using deep learning technology. In the experiment,

we have compared several algorithms of defect detections

using a data set, which comprises 20 categories of objects

and 50 images in each category. The experimental results

demonstrated that the proposed system had produced

effective results within a short time.

Keywords: Deep learning, Image processing, Defect

detection, CNN

1 Introduction

The manufacturing process takes place in the

production system. Industrial product defect detection

has been known for a while to make sure the released

products meet the expected requirements. Earlier,

product defect detection was performed manually by

humans. However, such detection is very time

consuming, inefficient, and can contribute to a serious

limitation of the production capacity [1].

Internet is not a strange term since decades ago. It

has been utilized all over the world as it is almost like a

primary human need nowadays. It is also implemented

in manufacturing sectors. A Cloud-ICT Convergence

Service Architecture to construct an open and elastic

digital information ecosystem is proposed by [2]. A

method to model and analyze adaptive resource

management for cloud applications that can be

implemented in industry sector is also proposed by [3].

An automated metallic object defect detection using

convolutional neural networks has been proposed by

[4], and it performs well when detecting clear defects

such as damage spots, dusts, and fibers but does not

work well with vague defects and low-contrast

scratches such as glues spots and scratches. The similar

work has also been implemented by [5] to detect brain

tumor, but it tends to miss the defect detection. Defect

detection using improved Otsu method was also

proposed by [6], but it easily over-detects which results

in a large amount of background noise also being

segmented [16].

Various algorithms are available to identify an

object and detect the parameters, such as the size and

appearance of its edges using image recognition

technology. One of the examples is Convolutional

Neural Network (CNN). CNN is a special type of

multi-layer neural network inspired by the mechanism

of the optical system of living creatures [7].

In the past, image recognition technology needed

more time for computation and producing its result.

Moreover, in the applications on dynamic motion

detection, plenty of images were calculated. Therefore,

applying deep learning is one of the solutions to reduce

the time on calculation and to detect dynamic objects

fast with high accuracy. Previously, the high accuracy

and precision were challenging to achieve. To get

results with high accuracy, some reinforcements of

detection types of equipment were used: infrared

devices, radar, and microscope-level AOI types of

equipment [15].

The algorithms used in this paper are Yolo V3, SSD,

R-CNN, and Mask R-CNN. Several categories of

object defect, such as irregular shape, dent, scratch,

damage, spot, and dirt. The algorithms attempt to

identify the defects on an object in the images. Some

devices are used to help the algorithms to identify the

defects as a whole system. Therefore, high accuracy

identification result is expected. We conducted the

experiments using several algorithms of image

processing to detect object defects. Besides, we used

the CNN database as the image data set, which consists

of 20 categories of objects. Each category includes 50

784 Journal of Internet Technology Volume 21 (2020) No.3

images, and the total dataset consists of 1000 images.

The paper is organized as follows: Section 2

presents related studies about different types of

detectors and related techniques. Section 3 introduces

the implementation of proposed model. Section 4

describes experiments and results. Finally, the section

6 describes the discussion and Conclusion.

2 Related Studies

2.1 YOLO (You Only Look Once)

Current detection systems re-planning classifiers to

perform detection. In order to detect an object, these

systems use a classifier and evaluate it at various

locations and scales in a test image. Systems like

deformable parts model (DPM) use a sliding window

approach where the classifier could run at evenly

spaced locations over the entire image [8]. YOLO

reframes object detection as a single regression

problem, straight from image pixels to bounding box

coordinates and class probabilities. In this work, we

use YOLO to predict what objects are present and what

they are.

In YOLO, a single convolutional network

simultaneously predicts multiple bounding boxes and

class probabilities for those boxes. YOLO trains on full

images and directly optimizes detection performance.

This unified model has several benefits over traditional

methods of object detection. YOLO is a high-speed

algorithm that processes an image in real-time at 45

frames per second. Another version of YOLO, Fast

YOLO, processes 155 frames per second while still

achieves double the mAP of other real-time detectors.

Figure 1 shows how the YOLO detection system works.

Figure 1. Representation of YOLO detection system.

YOLO resizes the input image to 448 × 448. It runs a

single convolutional network on the image and

thresholds the resulting detections by the model’s

confidence

2.2 SSD (Single Shot Multibox Detector)

SSD is an algorithm for detecting objects in images

using a single deep neural network. SSD discretizes the

output spaces of bounding boxes into a set of default

boxes over different aspect ratios and scales per feature

map location [9].

When predicting defects, the network generates

confidence scores for the existence of each object in

the categories in each default box and makes

adjustments to the box to match the object better. Also,

the network combines predictions from several feature

maps of different resolutions to comply with objects of

various sizes.

SSD could be more simple relative to algorithms

which require object proposals because it eliminates

proposal generation and subsequent pixel or feature

resampling stages and encapsulates the whole

computation in a single network.

SSD results exhibit in significant improvement in

speed for high-accuracy detection (59 FPS with mAP

74.3% on VOC2007). The improvement in speed is

caused by eliminating the bounding box proposal and

the subsequent pixel or feature resampling stage. SSD

also improves accuracy compared to the other

algorithms, which do a similar step by using a small

convolutional filter to detect object categories and

offset in bounding box locations using separate filters

for other aspect ratio detections. Then apply those

filters to several feature maps from the next stages of a

network to perform prediction at multiple scales [9].

2.3 R-CNN

The deep convolutional neural network (CNN) has

recently been achieved remarkable results in various

fields. Especially in the area of visual recognition

category in the large-scale visual recognition challenge.

The main idea of CNN is that multiple convolutional

layers, associated weights, and pooling layers are now

included in the features proposed in the computer

vision literature.

R-CNN is a simple and scalable detection algorithm

which combines two key insights. First, we apply high-

capacity convolutional neural networks (CNNs) to

bottom up region proposals to localize and segment

objects. Second, when labeled training data is scarce,

supervised pre-training for an auxiliary task, followed

by domain-specific fine-tuning, yields a significant

performance boost [10]. Therefore, R-CNN combines

region proposals with CNN features. R-CNN system

overview is shown in Figure 2.

Figure 2. Representation of R-CNN system. It (1)

takes an input images, (2) extracts about 2000 bottom-

up region proposals, (3) computes features for each

proposal using a large CNN, then (4) classifies each

region using class-specific linear SVMs

R-CNN has other two upgraded versions: Fast R-

CNN and Faster R-CNN. Compared to R-CNN, Fast

R-CNN has improved in three aspects: (1) The speed

of the test is faster because it solves the problem where

R-CNN overlaps with a large number of frames

Deep Learning Approaches for Dynamic Object Understanding and Defect Detection 785

proposals within images which results in a

considerable amount of redundancy in the extraction

feature operations. (2) The speed of training is also

faster. (3) It requires smaller storage compared to the

R-CNN, which requires a large number of features as

training samples.

Faster R-CNN has several upgrades, such as R-CNN

and Fast R-CNN. Its most significant difference from

the previous two is the four steps required for target

detection, which are region proposal generation,

feature extraction, classification, and regression. All

those four steps are done in the deep neural network

and run on GPU, which significantly improves the

efficiency of the operation. Figure 3 shows the

structure comparison of R-CNN, Fast R-CNN, and

Faster R-CNN.

Figure 3. The structure comparison representation

between R-CNN, Fast R-CNN, and Faster R-CNN

Faster R-CNN uses CNN to extract image features,

then uses region proposal network (RPN) to extract

ROI. Next, it uses ROI pooling to turn these ROIs into

fixed size, then feeds the fully connected layer for

bounding box regression and classification prediction.

2.4 Mask R-CNN

Mask R-CNN (MRCNN for short) is based on the

R-CNN series, feature-based pyramid network (FPN),

and fast causal inference (FCI). In general, it often

improves Faster R-CNN. The main idea of Mask R-

CNN is a Faster R-CNN whose each region proposal

has two outputs, the category tag and the offset of the

box. Then, Mask R-CNN adds another branch based on

Faster R-CNN and adds another output, the object

mask [11].

Mask R-CNN is an image processing algorithm

which is conceptually simple, flexible, and general

framework for object instance segmentation. It should

efficiently detect objects in an image while

simultaneously generating a high-quality segmentation

mask for each instance. It can also be used to estimate

human moves or poses in the same framework.

Mask R-CNN extends Faster R-CNN by adding a

branch for predicting an object mask in parallel with

the existing branch for bounding box recognition,

while it is simple to train and only adds a small

overhead compared to Faster R-CNN.

3 Implementation of Proposed System

In this paper, we conducted experiments using

several algorithms to detect defects on objects based on

object categories. The goal of this work is to

implement a system which utilizes the best algorithms

in terms of prediction accuracy and time consumption

during the training and testing phase along with our

infrastructure as a whole system. We applied several

open-source frameworks, such as TensorFlow, Keras,

and Pytorch, to support the experiments. Some

algorithms were implemented by utilizing more than

one frameworks. Besides, we conducted experiments

on each of them to produce results.

The algorithms we used in this paper include YOLO

V3, SSD300, SSD512, Faster R-CNN, and Mask R-

CNN. The main concern of the result comparison is the

accuracy of the prediction against the images in the

data set.

We used several auxiliary devices to conduct the

experiments, such as CCD lens, lighting sources, PCs,

and graphic card or GPU. CCD lens was used to take

images of the objects, while lighting sources were

supposed to support the image taking to make sure that

the objects are illuminated properly. Therefore, the

images produced are expected to be more acceptable as

data set. Also, graphics cards or GPUs were installed

into the PCs. They were supposed to help the

computation to be more productive and to make the

computation time shorter. The setting of the devices

used is shown in Figure 4. To make sure the

experiments run correctly, we prepared an area with a

size of about 200cm × 200cm.

Figure 4. The setting of the devices used to conduct

the experiments. The CCD lens is placed in a fixed

position with enough lightings above the objects whose

images are about to be taken with a pad below them

3.1 Equipment Installation

The object aspects concerned include light

reflections, arcs, surfaces, a field of view, contours,

and other common geometric shapes. The defects

expected to be detected are scratches, shavings, white

spots, cracks, and uneven paint.

To ensure the experiments run well, we selected the

CCD lens and other hardware correctly concerning the

786 Journal of Internet Technology Volume 21 (2020) No.3

quality. Then, we conducted lighting and optical test to

make sure that the objects were illuminated

appropriately to produce clear images. The next things

to be tested before the experiments were the AOI

image processing algorithms we used.

3.2 Image Data Collection

Next, we collected image data by taking pictures

using the pieces of equipment prepared. CCD lens

captures pictures of the object of each categories. The

image format is .jpeg, and the image size is 1920 ×

1080 pixels. There are 20 object categories and 50

images for each categories. Therefore, there is a total

of 1000 images for the data set. In the experiments, we

annotated the defects on object images using LabelImg

application. We divided the image data set into training

and testing set along with the XML annotations

produced by LabelImg by a ratio of 8:2. Image data

category examples are shown in Figure 5 and Figure 6.

Figure 5. A sample of object image data used in our

experiments called category 1

Figure 6. Another sample of object image data used in

our experiments called category 2

3.3 Defect Detection Experiments

After collecting the data, we conducted the testing

using the AI deep learning framework and algorithms

we used to make sure there is no fault or bug inside

them. Then, we placed settings and adjustments to the

AOI and AI, so they could work together to achieve

our goal.

We defined the scope and threshold of the defect

detection according to the customized requirements of

each object to meet the requirements of actual quality.

The scope and threshold were the parameters for the

classification to decide which class an object in the

image is. Figure 7 shows several examples of defects

on object in the images. There were 4 categories of

object defect, they were shavings, uneven paint,

scratch, and damage. Those defects can make an item

as a fail one, so that it cannot be released or sold to the

public.

Figure 7. Examples of defects on objects

We started the experiments once the required

settings were confirmed. Before doing training, we did

data augmentation. The purpose of data augmentation

is to acquire good-quality data and prevent uneven

class balance within the datasets [12-13]. Next, we

created a model using the algorithms defined above

with the training data set as the input data. After

getting models from the training process, we

performed testing on the models against the testing

data. Each object image was classified using all the

algorithms and frameworks mentioned. They were

classified into one out of two classes, either OK or NG.

The OK class indicates that the object in the image is

qualified as a good one. On the contrary, the NG class

indicates that the object in the image is not qualified

and does not meet the requirements. The prediction

results of each algorithms were then compared against

the ground truth. Finally, we obtained the accuracy

results of each algorithms on each image categories

and recorded them.

4 Experiments and Results

Deep learning is a branch of machine learning based

on a set of algorithms which model high-level

abstractions or pattern in data using multiple

processing layers with complex structures or multiple

non-linear transformations [11-16]. It is an algorithm

that uses artificial neural networks as a framework to

characterize and learn data. Therefore, most deep

learning methods use a neural network architecture,

which is why deep learning models are often referred

to as deep neural networks [17-18].

The image processing problem has been long one of

the most discussed areas in deep learning or the

machine learning field. When it comes to digital image

Deep Learning Approaches for Dynamic Object Understanding and Defect Detection 787

processing, there are many supporting algorithms to be

used with input data and we can avoid some processing

problems like noise creation and signal distortion at

some point in signal processing as an advantage over

analog image processing [19]. As technology grows,

the need for automation in many segments also rises.

Not only processing speed, but accuracy has also been

the most concerned parameter. An image processing

system should be able to detect or predict an object

with high accuracy within the expected processing time.

In the industrial sector in this globalization era, a

rapid decision in production is necessary. Therefore,

product defect detection could help in the quality

assurance sector to decide whether a product meets the

requirements or standards or not. The automated defect

detection system is required to meet the needs of quick

decision and accuracy and to make sure the quality

assurance runs swiftly.

In our experiments, preparing the sample object

images was a crucial step. Even the conditioning or

setting of the image taking has to be concerned to get

the expected quality of the data set. In order to make

sure the experiments give the most optimum and

objective results, the algorithms and frameworks used

in the model were tested before conducting the real

experiments, confirming there was no error or bug

inside them.

4.1 YOLO (You Only Look Once)

YOLO unifies the separate components of object

detection into a single neural network. The network

uses features from the entire image to predict each

bounding box. It also predicts all bounding boxes for

an image simultaneously. It means that the network

reasons globally about the full image and all the

objects in the image. YOLO designs make end-to-end

training and real-time speeds possible while

maintaining high precision [8].

YOLO’s final layer predicts class probabilities and

bounding box coordinates. Besides, YOLO uses a

linear activation function for the final layer, and all

other layers use the following modified linear

activation function:

, 0

()
0.1 ,

x if x
x

x otherwise
φ

>⎛
= ⎜
⎝

 (1)

YOLO predicts several bounding boxes for each

grid cell. During the training period, only one

bounding box predictor was assigned for one object.

We assigned one predictor to predict objects based on

which prediction has the highest current IOU with the

ground truth. This matter causes specialization between

the predictors. Each predictor becomes specialized at

predicting specific sizes, aspect ratios, or object’s

classes which makes it better to detect particular

objects and improve the prediction accuracy. Figure 8

shows the architecture of YOLO.

Figure 8. The architecture of YOLO. The detection

network has 24 convolutional layers followed by 2

fully connected layers. It pretrains the convolutional

layers on the ImageNet classification task at half the

resolution (224 × 224) then double the resolution for

detection

4.2 SSD (Single Shot Multibox Detector)

SSD is based on a feed-forward convolutional

network that makes fixed-size bounding boxes and

scores for the existence of an object in those boxes

with a non-maximum step to get the final detections [9].

In the training stage, the significant difference

between SSD and other algorithms in object detection

that uses region proposals is that ground truth was

assigned to specific outputs. If the assignment is

determined, it applies loss function and

backpropagation end-to-end. During the training, it is

necessary to determine which default boxes correspond

to ground truth and train the network accordingly. For

each ground truth box, it selects from the default boxes

of various locations, aspect ratio, and scale. Then, it

compares every ground truth box to the default box

with the best Jaccard overlap, which is higher than a

threshold (0.5). This process lets the network to predict

high scores for several overlapping default boxes with

the ground truth boxes. So, it does not only pick the

one with maximum overlap. SSD Framework is shown

in Figure 9.

Figure 9. A representation of SSD framework

4.3 R-CNN

R-CNN consists of three modules: The first one

produces category-independent region proposals; these

proposals determine the candidate detections available

to the detector. The second one is a big convolutional

neural network which extracts a fixed-length feature

vector from every region. The third one is a collection

of linear SVMs, which is specific to classes.

788 Journal of Internet Technology Volume 21 (2020) No.3

4.4 Mask R-CNN

Like in Fast R-CNN, a region proposal was

considered as positive if it has IoU of a minimum of

0.5. Otherwise, it is considered negative. The mask

loss Lmask is determined only on positive region

proposals. The mask target is the intersection between

a region proposal and its corresponding ground-truth

mask.

4.5 Result Comparison

We recorded the experiment results with several

parameters. The parameters were training time in hours,

testing time in seconds, and accuracy. We compared

the results of each algorithms and frameworks. The

experiment results are shown in Figure 10, Figure 11,

and Figure 12.

Figure 10. Performance comparison between the

algorithms and frameworks on each categories in terms

of accuracy

Figure 11. Performance comparison between the

algorithms and frameworks on each categories in terms

of training time (in hours)

Figure 12. Performance comparison between the

algorithms and frameworks on each categories in terms

of testing time (in seconds)

Based on the results, looking at the accuracy average,

we can see that SSD300 algorithms with Pytorch

framework are the best ones. However, we conducted

the experiments using the algorithms and framework

for only once with one category. Therefore, it is not

valid to conclude based on this stage. SSD300 with

Keras as the framework gives the best accuracy at

average. It predicts category 1 and 16 correctly but

does inadequate for category 7 and 8. Therefore,

SSD300 in Keras is the best at average but is not

consistent. In terms of consistency, Mask R-CNN in

Keras could be considered the most consistent one.

Training time is also an important parameter to

evaluate the effectiveness of an algorithm. Based on

the results above, SSD300 in Keras has the lowest

average training time, while Mask R-CNN in Keras

results in the longest one. It has proven that SSD300

could outperform Faster R-CNN in both speed and

accuracy using the VOC data set. The training speed

rate of SSD300 is most likely because it eliminates

region proposal generation and subsequent pixel or

feature resampling and encloses the whole computation

in a single network. We also measure the performance

of algorithms by how fast the model can detect objects.

Our experiment results in testing time show that

SSD300 in Pytorch produces the best results. However,

it is tested only once using one category. Both SSD300

in Keras and Tensorflow spend the lowest time in the

testing phase. If we combine the result with the one in

Pytorch, we can completely conclude that SSD300 is

the fastest algorithm in the testing phase.

SSD300 has not only the best accuracy but also

proves that it has the fastest time for the training and

testing phase. Even though its accuracy is not

consistent over the categories, it is still the best one at

average. Faster R-CNN is an upgraded version of CNN

that has shorter processing time, but SSD300 still

outperforms it in terms of both accuracy and either

training and testing time. SSD300 can even be

modified by changing the base network with a faster

one to speed up its training and testing time.

5 Discussion and Conclusion

Defect detection of the product image was discussed

in this paper. Due to the fast development of

technology, image processing fields become more

accessible. Nowadays, there are speedier hardware

available that can be used to accelerate computations.

Those hardware may help experiments to be more

effective in terms of time. In the past, the graphics

processing unit (GPU) was only used to support the

display on the monitor. However, these days, GPU

may also be used to help in mathematical computation

and could be faster than a regular processor. Image

processing, including defect detection, could be called

a field with heavy computation, which needs excellent

infrastructures to be more effective in terms of time.

Deep Learning Approaches for Dynamic Object Understanding and Defect Detection 789

Therefore, we used four computers and GPUs to do our

experiments.

In the industrial field, quick defect detection on

products is necessary because of the rapidity of the

production itself. Before being released to the public,

products must be confirmed to be qualified and meet

the requirements and standards. The defective ones

must be separated from the qualified one. Beside

quickness, automation is also a need, because manual

defect detection by human has drawbacks as humans

might get tired and make the wrong decision.

Therefore, automatic defect detection using image

processing technology is a solution.

The contribution of this paper is to build a system

with the best algorithm in the field of image processing

based on our experiments by comparing multiple

existing algorithms, along with our infrastructures, in

order to implement an automated object’s defect

detection in real time. The algorithms we compared in

this paper include You Only Look Once (YOLO),

Single Shot Multibox Detector (SSD), Faster R-CNN,

and Mask R-CNN. Those algorithms have been

discussed in the world of object detection. They have

shown excellent results in terms of accuracy and

training time. Thus, we conducted experiments to

compare them using our own produced data set. The

parameters compared in this paper are accuracy,

training time (in hours), and testing time (in seconds).

We wanted to identify which algorithms have the

fastest time in the training and testing phase and which

one predicts defects on objects the best in terms of

accuracy.

Based on our experiment result, SSD300 shows

excellent results. It outperforms all algorithms in

accuracy and either training and testing time. Even

though it does not confirm consistent accuracy over

object categories, it is still an excellent algorithm for

outperforming the others in those three parameters. We

also compared several similar algorithms but in

different frameworks, and they do not show significant

differences against the accuracy, but the visible

difference in training and testing time. Most likely, it is

caused by code implementation only, but how the

algorithm works is still the same.

References

[1] D. Tabernik, S. Šela, J. Skvarč, D. Skočaj, Segmentation-

Based Deep-Learning Approach for Surface-Defect Detection,

Journal of Intelligent Manufacturing, Vol. 31, No. 3, pp. 759-

776, March, 2020.

[2] L. J. Tan, Q. Wu, C. M. Wu, An Elastic Reconstruction of 5G

Network Oriented Cloud-ICT Convergence Service, Journal

of Internet Technology, Vol. 18, No. 5, pp. 1203-1214,

September, 2017.

[3] L. Chen, G. Fan, H. Yu, Formally Modeling and Analyzing

the Adaptive Resource Management for Cloud Applications,

Journal of Internet Technology, Vol. 18, No. 5, pp. 1003-

1015, September, 2017.

[4] T. Kalaiselvi, P. Nagaraja, A Rapid Automatic Brain Tumor

Detection Method for MRI Images Using Modified Minimum

Error Thresholding Technique, International Journal of

Imaging Systems and Technology, Vol. 25, No. 1, pp. 77-85,

March, 2015.

[5] X. Tao, D. Zhang, W. Ma, X. Liu, D. Xu, Automatic Metallic

Surface Defect Detection and Recognition with

Convolutional Neural Networks, Applied Sciences, Vol. 8, No.

9, Article 1575, September, 2018.

[6] X. Yuan, L. S. Wu, Q. Peng, An Improved Otsu Method

Using the Weighted Object Variance for Defect Detection,

Applied Surface Science, Vol. 349, pp. 472-484, September,

2015.

[7] F. Sultana, A. Sufian, P. Dutta, Advancements in Image

Classification Using Convolutional Neural Network, Fourth

International Conference on Research in Computational

Intelligence and Communication Networks, Kolkata, India,

2018, pp. 122-129.

[8] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only

Look Once: Unified, Real-Time Object Detection, IEEE

Conference on Computer Vision and Pattern Recognition,

Las Vegas, NV, USA, 2016, pp. 779-788.

[9] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y.

Fu, A. C. Berg, SSD: Single Shot Multibox Detector,

European Conference on Computer Vision, Amsterdam, The

Netherlands, 2016, pp. 21-37.

[10] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich Feature

Hierarchies for Accurate Object Detection and Semantic

Segmentation, IEEE conference on computer vision and

pattern recognition, Columbus, Ohio, USA, 2014, pp. 580-

587.

[11] K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN,

IEEE International Conference on Computer Vision, Venice,

Italy, 2017, pp. 2980-2988.

[12] A. Mikołajczyk, M. Grochowski, Data Augmentation for

Improving Deep Learning in Image Classification Problem,

International Interdisciplinary PhD Workshop, Swinoujście,

Poland, 2018, pp. 117-122.

[13] L. Deng, D. Yu, Deep Learning: Methods and Applications,

Foundations and Trends in Signal Processing, Now

Publishers, Vol. 7, No. 3-4, pp. 197-387, June, 2014.

[14] Y. Bengio, Learning Deep Architectures for AI, Foundations

and Trends in Machine Learning, Vol. 2, No. 1, pp. 1-127,

January, 2009.

[15] Y. Bengio, A. Courville, P. Vincent, Representation Learning:

A Review and New Perspectives, IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 35, No. 8, pp.

1798-1828, August, 2013.

[16] J. Schmidhuber, Deep Learning in Neural Networks: An

Overview, Neural Networks, Vol. 61, pp. 85-117, January,

2015.

[17] Y. LeCun, Y. Bengio, G. Hinton, Deep Learning, Nature, Vol.

521, pp. 436-444, May, 2015.

[18] I. Arel, D. C. Rose, T. P. Karnowski, Deep Machine

790 Journal of Internet Technology Volume 21 (2020) No.3

Learning- A New Frontier in Artificial Intelligence Research

[Research Frontier], IEEE Computational Intelligence

Magazine, Vol. 5, No. 4, pp. 13-18, November, 2010.

[19] J. Kuruvilla, D. Sukumaran, A. Sankar, S. P. Joy, A Review

on Image Processing and Image Segmentation, International

Conference on Data Mining and Advanced Computing,

Ernakulam, India, 2016, pp. 198-203.

Biographies

Yuan-Tsung Chang is the CEO of a

Computer System integration

company in Taiwan and received his

master’s degree in Computer Science

and Information Engineering at

Tamkang University. He is currently a

Ph.D. candidate in the Department of Computer

Science and Information Engineering, National Central

University, Taiwan. His research interests include

machine learning, Image Processing, RFID signal

Processing, System integration solutions and

techniques.

W. K. T. M. Gunarathne received

his B.Sc. in Computing Science and

M.Sc. degree in E-Business from

Staffordshire University, in the United

Kingdom. He is currently a Ph.D.

candidate in the Department of

Computer Science and Information Engineering,

National Central University, Taiwan. His research

interests include e-learning, information retrieval and

extraction, social data mining, and recommendation

techniques.

Timothy K. Shih is a Distinguished

Professor at the National Central

University, Taiwan. He was the Dean

of the College of Computer Science,

Asia University, Taiwan and the

Chairman of the CSIE Department at

Tamkang University, Taiwan. Prof.

Shih is a Fellow of the Institution of Engineering and

Technology (IET). He was also the founding Chairman

Emeritus of the IET Taipei Local Network. In addition,

he is a senior member of ACM and a senior member of

IEEE. (http://www.csie.ncu.edu.tw/~tshih/)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

