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Abstract 

Industrial product defect detection has been known for 

a while to make sure the released products meet the 

expected requirements. Earlier, product defect detection 

was commonly done manually by humans; they have 

detected whether the products consist of defects or not by 

using their human senses based on the standard. In this 

industrial era, product defect detection is expected to be 

faster and more accurate, while humans could be 

exhausted and become slower and less reliable. Deep 

learning technology is very famous in the field of image 

processing, such as image classification, object detection, 

object tracking, and of course the defect detection. In this 

study, we propose a novel automated solution system to 

identify the good and defective products on a production 

line using deep learning technology. In the experiment, 

we have compared several algorithms of defect detections 

using a data set, which comprises 20 categories of objects 

and 50 images in each category. The experimental results 

demonstrated that the proposed system had produced 

effective results within a short time. 

Keywords: Deep learning, Image processing, Defect 

detection, CNN 

1 Introduction 

The manufacturing process takes place in the 

production system. Industrial product defect detection 

has been known for a while to make sure the released 

products meet the expected requirements. Earlier, 

product defect detection was performed manually by 

humans. However, such detection is very time 

consuming, inefficient, and can contribute to a serious 

limitation of the production capacity [1]. 

Internet is not a strange term since decades ago. It 

has been utilized all over the world as it is almost like a 

primary human need nowadays. It is also implemented 

in manufacturing sectors. A Cloud-ICT Convergence 

Service Architecture to construct an open and elastic 

digital information ecosystem is proposed by [2]. A 

method to model and analyze adaptive resource 

management for cloud applications that can be 

implemented in industry sector is also proposed by [3]. 

An automated metallic object defect detection using 

convolutional neural networks has been proposed by 

[4], and it performs well when detecting clear defects 

such as damage spots, dusts, and fibers but does not 

work well with vague defects and low-contrast 

scratches such as glues spots and scratches. The similar 

work has also been implemented by [5] to detect brain 

tumor, but it tends to miss the defect detection. Defect 

detection using improved Otsu method was also 

proposed by [6], but it easily over-detects which results 

in a large amount of background noise also being 

segmented [16]. 

Various algorithms are available to identify an 

object and detect the parameters, such as the size and 

appearance of its edges using image recognition 

technology. One of the examples is Convolutional 

Neural Network (CNN). CNN is a special type of 

multi-layer neural network inspired by the mechanism 

of the optical system of living creatures [7].  

In the past, image recognition technology needed 

more time for computation and producing its result. 

Moreover, in the applications on dynamic motion 

detection, plenty of images were calculated. Therefore, 

applying deep learning is one of the solutions to reduce 

the time on calculation and to detect dynamic objects 

fast with high accuracy. Previously, the high accuracy 

and precision were challenging to achieve. To get 

results with high accuracy, some reinforcements of 

detection types of equipment were used: infrared 

devices, radar, and microscope-level AOI types of 

equipment [15]. 

The algorithms used in this paper are Yolo V3, SSD, 

R-CNN, and Mask R-CNN. Several categories of 

object defect, such as irregular shape, dent, scratch, 

damage, spot, and dirt. The algorithms attempt to 

identify the defects on an object in the images. Some 

devices are used to help the algorithms to identify the 

defects as a whole system. Therefore, high accuracy 

identification result is expected. We conducted the 

experiments using several algorithms of image 

processing to detect object defects. Besides, we used 

the CNN database as the image data set, which consists 

of 20 categories of objects. Each category includes 50 
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images, and the total dataset consists of 1000 images. 

The paper is organized as follows: Section 2 

presents related studies about different types of 

detectors and related techniques. Section 3 introduces 

the implementation of proposed model. Section 4 

describes experiments and results. Finally, the section 

6 describes the discussion and Conclusion. 

2 Related Studies 

2.1 YOLO (You Only Look Once) 

Current detection systems re-planning classifiers to 

perform detection. In order to detect an object, these 

systems use a classifier and evaluate it at various 

locations and scales in a test image. Systems like 

deformable parts model (DPM) use a sliding window 

approach where the classifier could run at evenly 

spaced locations over the entire image [8]. YOLO 

reframes object detection as a single regression 

problem, straight from image pixels to bounding box 

coordinates and class probabilities. In this work, we 

use YOLO to predict what objects are present and what 

they are.  

In YOLO, a single convolutional network 

simultaneously predicts multiple bounding boxes and 

class probabilities for those boxes. YOLO trains on full 

images and directly optimizes detection performance. 

This unified model has several benefits over traditional 

methods of object detection. YOLO is a high-speed 

algorithm that processes an image in real-time at 45 

frames per second. Another version of YOLO, Fast 

YOLO, processes 155 frames per second while still 

achieves double the mAP of other real-time detectors. 

Figure 1 shows how the YOLO detection system works. 

 

Figure 1. Representation of YOLO detection system. 

YOLO resizes the input image to 448 × 448. It runs a 

single convolutional network on the image and 

thresholds the resulting detections by the model’s 

confidence 

2.2 SSD (Single Shot Multibox Detector) 

SSD is an algorithm for detecting objects in images 

using a single deep neural network. SSD discretizes the 

output spaces of bounding boxes into a set of default 

boxes over different aspect ratios and scales per feature 

map location [9].  

When predicting defects, the network generates 

confidence scores for the existence of each object in 

the categories in each default box and makes 

adjustments to the box to match the object better. Also, 

the network combines predictions from several feature 

maps of different resolutions to comply with objects of 

various sizes. 

SSD could be more simple relative to algorithms 

which require object proposals because it eliminates 

proposal generation and subsequent pixel or feature 

resampling stages and encapsulates the whole 

computation in a single network. 

SSD results exhibit in significant improvement in 

speed for high-accuracy detection (59 FPS with mAP 

74.3% on VOC2007). The improvement in speed is 

caused by eliminating the bounding box proposal and 

the subsequent pixel or feature resampling stage. SSD 

also improves accuracy compared to the other 

algorithms, which do a similar step by using a small 

convolutional filter to detect object categories and 

offset in bounding box locations using separate filters 

for other aspect ratio detections. Then apply those 

filters to several feature maps from the next stages of a 

network to perform prediction at multiple scales [9]. 

2.3 R-CNN 

The deep convolutional neural network (CNN) has 

recently been achieved remarkable results in various 

fields. Especially in the area of visual recognition 

category in the large-scale visual recognition challenge. 

The main idea of CNN is that multiple convolutional 

layers, associated weights, and pooling layers are now 

included in the features proposed in the computer 

vision literature. 

R-CNN is a simple and scalable detection algorithm 

which combines two key insights. First, we apply high-

capacity convolutional neural networks (CNNs) to 

bottom up region proposals to localize and segment 

objects. Second, when labeled training data is scarce, 

supervised pre-training for an auxiliary task, followed 

by domain-specific fine-tuning, yields a significant 

performance boost [10]. Therefore, R-CNN combines 

region proposals with CNN features. R-CNN system 

overview is shown in Figure 2. 

 

Figure 2. Representation of R-CNN system. It (1) 

takes an input images, (2) extracts about 2000 bottom-

up region proposals, (3) computes features for each 

proposal using a large CNN, then (4) classifies each 

region using class-specific linear SVMs 

R-CNN has other two upgraded versions: Fast R-

CNN and Faster R-CNN. Compared to R-CNN, Fast 

R-CNN has improved in three aspects: (1) The speed 

of the test is faster because it solves the problem where 

R-CNN overlaps with a large number of frames 
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proposals within images which results in a 

considerable amount of redundancy in the extraction 

feature operations. (2) The speed of training is also 

faster. (3) It requires smaller storage compared to the 

R-CNN, which requires a large number of features as 

training samples. 

Faster R-CNN has several upgrades, such as R-CNN 

and Fast R-CNN. Its most significant difference from 

the previous two is the four steps required for target 

detection, which are region proposal generation, 

feature extraction, classification, and regression. All 

those four steps are done in the deep neural network 

and run on GPU, which significantly improves the 

efficiency of the operation. Figure 3 shows the 

structure comparison of R-CNN, Fast R-CNN, and 

Faster R-CNN. 

 

Figure 3. The structure comparison representation 

between R-CNN, Fast R-CNN, and Faster R-CNN 

Faster R-CNN uses CNN to extract image features, 

then uses region proposal network (RPN) to extract 

ROI. Next, it uses ROI pooling to turn these ROIs into 

fixed size, then feeds the fully connected layer for 

bounding box regression and classification prediction. 

2.4 Mask R-CNN 

Mask R-CNN (MRCNN for short) is based on the 

R-CNN series, feature-based pyramid network (FPN), 

and fast causal inference (FCI). In general, it often 

improves Faster R-CNN. The main idea of Mask R-

CNN is a Faster R-CNN whose each region proposal 

has two outputs, the category tag and the offset of the 

box. Then, Mask R-CNN adds another branch based on 

Faster R-CNN and adds another output, the object 

mask [11].  

Mask R-CNN is an image processing algorithm 

which is conceptually simple, flexible, and general 

framework for object instance segmentation. It should 

efficiently detect objects in an image while 

simultaneously generating a high-quality segmentation 

mask for each instance. It can also be used to estimate 

human moves or poses in the same framework. 

Mask R-CNN extends Faster R-CNN by adding a 

branch for predicting an object mask in parallel with 

the existing branch for bounding box recognition, 

while it is simple to train and only adds a small 

overhead compared to Faster R-CNN.  

3 Implementation of Proposed System 

In this paper, we conducted experiments using 

several algorithms to detect defects on objects based on 

object categories. The goal of this work is to 

implement a system which utilizes the best algorithms 

in terms of prediction accuracy and time consumption 

during the training and testing phase along with our 

infrastructure as a whole system. We applied several 

open-source frameworks, such as TensorFlow, Keras, 

and Pytorch, to support the experiments. Some 

algorithms were implemented by utilizing more than 

one frameworks. Besides, we conducted experiments 

on each of them to produce results. 

The algorithms we used in this paper include YOLO 

V3, SSD300, SSD512, Faster R-CNN, and Mask R-

CNN. The main concern of the result comparison is the 

accuracy of the prediction against the images in the 

data set. 

We used several auxiliary devices to conduct the 

experiments, such as CCD lens, lighting sources, PCs, 

and graphic card or GPU. CCD lens was used to take 

images of the objects, while lighting sources were 

supposed to support the image taking to make sure that 

the objects are illuminated properly. Therefore, the 

images produced are expected to be more acceptable as 

data set. Also, graphics cards or GPUs were installed 

into the PCs. They were supposed to help the 

computation to be more productive and to make the 

computation time shorter. The setting of the devices 

used is shown in Figure 4. To make sure the 

experiments run correctly, we prepared an area with a 

size of about 200cm × 200cm.  

 

Figure 4. The setting of the devices used to conduct 

the experiments. The CCD lens is placed in a fixed 

position with enough lightings above the objects whose 

images are about to be taken with a pad below them 

3.1 Equipment Installation 

The object aspects concerned include light 

reflections, arcs, surfaces, a field of view, contours, 

and other common geometric shapes. The defects 

expected to be detected are scratches, shavings, white 

spots, cracks, and uneven paint.  

To ensure the experiments run well, we selected the 

CCD lens and other hardware correctly concerning the 
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quality. Then, we conducted lighting and optical test to 

make sure that the objects were illuminated 

appropriately to produce clear images. The next things 

to be tested before the experiments were the AOI 

image processing algorithms we used. 

3.2 Image Data Collection 

Next, we collected image data by taking pictures 

using the pieces of equipment prepared. CCD lens 

captures pictures of the object of each categories. The 

image format is .jpeg, and the image size is 1920 × 

1080 pixels. There are 20 object categories and 50 

images for each categories. Therefore, there is a total 

of 1000 images for the data set. In the experiments, we 

annotated the defects on object images using LabelImg 

application. We divided the image data set into training 

and testing set along with the XML annotations 

produced by LabelImg by a ratio of 8:2. Image data 

category examples are shown in Figure 5 and Figure 6. 

 

Figure 5. A sample of object image data used in our 

experiments called category 1 

 

Figure 6. Another sample of object image data used in 

our experiments called category 2 

3.3 Defect Detection Experiments 

After collecting the data, we conducted the testing 

using the AI deep learning framework and algorithms 

we used to make sure there is no fault or bug inside 

them. Then, we placed settings and adjustments to the 

AOI and AI, so they could work together to achieve 

our goal.  

We defined the scope and threshold of the defect 

detection according to the customized requirements of 

each object to meet the requirements of actual quality. 

The scope and threshold were the parameters for the 

classification to decide which class an object in the 

image is. Figure 7 shows several examples of defects 

on object in the images. There were 4 categories of 

object defect, they were shavings, uneven paint, 

scratch, and damage. Those defects can make an item 

as a fail one, so that it cannot be released or sold to the 

public.  

 

Figure 7. Examples of defects on objects 

We started the experiments once the required 

settings were confirmed. Before doing training, we did 

data augmentation. The purpose of data augmentation 

is to acquire good-quality data and prevent uneven 

class balance within the datasets [12-13]. Next, we 

created a model using the algorithms defined above 

with the training data set as the input data. After 

getting models from the training process, we 

performed testing on the models against the testing 

data. Each object image was classified using all the 

algorithms and frameworks mentioned. They were 

classified into one out of two classes, either OK or NG. 

The OK class indicates that the object in the image is 

qualified as a good one. On the contrary, the NG class 

indicates that the object in the image is not qualified 

and does not meet the requirements. The prediction 

results of each algorithms were then compared against 

the ground truth. Finally, we obtained the accuracy 

results of each algorithms on each image categories 

and recorded them. 

4 Experiments and Results 

Deep learning is a branch of machine learning based 

on a set of algorithms which model high-level 

abstractions or pattern in data using multiple 

processing layers with complex structures or multiple 

non-linear transformations [11-16]. It is an algorithm 

that uses artificial neural networks as a framework to 

characterize and learn data. Therefore, most deep 

learning methods use a neural network architecture, 

which is why deep learning models are often referred 

to as deep neural networks [17-18]. 

The image processing problem has been long one of 

the most discussed areas in deep learning or the 

machine learning field. When it comes to digital image 
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processing, there are many supporting algorithms to be 

used with input data and we can avoid some processing 

problems like noise creation and signal distortion at 

some point in signal processing as an advantage over 

analog image processing [19]. As technology grows, 

the need for automation in many segments also rises. 

Not only processing speed, but accuracy has also been 

the most concerned parameter. An image processing 

system should be able to detect or predict an object 

with high accuracy within the expected processing time. 

In the industrial sector in this globalization era, a 

rapid decision in production is necessary. Therefore, 

product defect detection could help in the quality 

assurance sector to decide whether a product meets the 

requirements or standards or not. The automated defect 

detection system is required to meet the needs of quick 

decision and accuracy and to make sure the quality 

assurance runs swiftly. 

In our experiments, preparing the sample object 

images was a crucial step. Even the conditioning or 

setting of the image taking has to be concerned to get 

the expected quality of the data set. In order to make 

sure the experiments give the most optimum and 

objective results, the algorithms and frameworks used 

in the model were tested before conducting the real 

experiments, confirming there was no error or bug 

inside them. 

4.1 YOLO (You Only Look Once) 

YOLO unifies the separate components of object 

detection into a single neural network. The network 

uses features from the entire image to predict each 

bounding box. It also predicts all bounding boxes for 

an image simultaneously. It means that the network 

reasons globally about the full image and all the 

objects in the image. YOLO designs make end-to-end 

training and real-time speeds possible while 

maintaining high precision [8]. 

YOLO’s final layer predicts class probabilities and 

bounding box coordinates. Besides, YOLO uses a 

linear activation function for the final layer, and all 

other layers use the following modified linear 

activation function: 

 
, 0

( )
0.1 ,

x if x
x

x otherwise
φ

>⎛
= ⎜
⎝

 (1) 

YOLO predicts several bounding boxes for each 

grid cell. During the training period, only one 

bounding box predictor was assigned for one object. 

We assigned one predictor to predict objects based on 

which prediction has the highest current IOU with the 

ground truth. This matter causes specialization between 

the predictors. Each predictor becomes specialized at 

predicting specific sizes, aspect ratios, or object’s 

classes which makes it better to detect particular 

objects and improve the prediction accuracy. Figure 8 

shows the architecture of YOLO. 

 

Figure 8. The architecture of YOLO. The detection 

network has 24 convolutional layers followed by 2 

fully connected layers. It pretrains the convolutional 

layers on the ImageNet classification task at half the 

resolution (224 × 224) then double the resolution for 

detection 

4.2 SSD (Single Shot Multibox Detector) 

SSD is based on a feed-forward convolutional 

network that makes fixed-size bounding boxes and 

scores for the existence of an object in those boxes 

with a non-maximum step to get the final detections [9]. 

In the training stage, the significant difference 

between SSD and other algorithms in object detection 

that uses region proposals is that ground truth was 

assigned to specific outputs. If the assignment is 

determined, it applies loss function and 

backpropagation end-to-end. During the training, it is 

necessary to determine which default boxes correspond 

to ground truth and train the network accordingly. For 

each ground truth box, it selects from the default boxes 

of various locations, aspect ratio, and scale. Then, it 

compares every ground truth box to the default box 

with the best Jaccard overlap, which is higher than a 

threshold (0.5). This process lets the network to predict 

high scores for several overlapping default boxes with 

the ground truth boxes. So, it does not only pick the 

one with maximum overlap. SSD Framework is shown 

in Figure 9. 

 

Figure 9. A representation of SSD framework 

4.3 R-CNN 

R-CNN consists of three modules: The first one 

produces category-independent region proposals; these 

proposals determine the candidate detections available 

to the detector. The second one is a big convolutional 

neural network which extracts a fixed-length feature 

vector from every region. The third one is a collection 

of linear SVMs, which is specific to classes.  
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4.4 Mask R-CNN 

Like in Fast R-CNN, a region proposal was 

considered as positive if it has IoU of a minimum of 

0.5. Otherwise, it is considered negative. The mask 

loss Lmask is determined only on positive region 

proposals. The mask target is the intersection between 

a region proposal and its corresponding ground-truth 

mask. 

4.5 Result Comparison 

We recorded the experiment results with several 

parameters. The parameters were training time in hours, 

testing time in seconds, and accuracy. We compared 

the results of each algorithms and frameworks. The 

experiment results are shown in Figure 10, Figure 11, 

and Figure 12. 

 

Figure 10. Performance comparison between the 

algorithms and frameworks on each categories in terms 

of accuracy 

 

Figure 11. Performance comparison between the 

algorithms and frameworks on each categories in terms 

of training time (in hours) 

 

Figure 12. Performance comparison between the 

algorithms and frameworks on each categories in terms 

of testing time (in seconds) 

Based on the results, looking at the accuracy average, 

we can see that SSD300 algorithms with Pytorch 

framework are the best ones. However, we conducted 

the experiments using the algorithms and framework 

for only once with one category. Therefore, it is not 

valid to conclude based on this stage. SSD300 with 

Keras as the framework gives the best accuracy at 

average. It predicts category 1 and 16 correctly but 

does inadequate for category 7 and 8. Therefore, 

SSD300 in Keras is the best at average but is not 

consistent. In terms of consistency, Mask R-CNN in 

Keras could be considered the most consistent one. 

Training time is also an important parameter to 

evaluate the effectiveness of an algorithm. Based on 

the results above, SSD300 in Keras has the lowest 

average training time, while Mask R-CNN in Keras 

results in the longest one. It has proven that SSD300 

could outperform Faster R-CNN in both speed and 

accuracy using the VOC data set. The training speed 

rate of SSD300 is most likely because it eliminates 

region proposal generation and subsequent pixel or 

feature resampling and encloses the whole computation 

in a single network. We also measure the performance 

of algorithms by how fast the model can detect objects. 

Our experiment results in testing time show that 

SSD300 in Pytorch produces the best results. However, 

it is tested only once using one category. Both SSD300 

in Keras and Tensorflow spend the lowest time in the 

testing phase. If we combine the result with the one in 

Pytorch, we can completely conclude that SSD300 is 

the fastest algorithm in the testing phase. 

SSD300 has not only the best accuracy but also 

proves that it has the fastest time for the training and 

testing phase. Even though its accuracy is not 

consistent over the categories, it is still the best one at 

average. Faster R-CNN is an upgraded version of CNN 

that has shorter processing time, but SSD300 still 

outperforms it in terms of both accuracy and either 

training and testing time. SSD300 can even be 

modified by changing the base network with a faster 

one to speed up its training and testing time. 

5 Discussion and Conclusion 

Defect detection of the product image was discussed 

in this paper. Due to the fast development of 

technology, image processing fields become more 

accessible. Nowadays, there are speedier hardware 

available that can be used to accelerate computations. 

Those hardware may help experiments to be more 

effective in terms of time. In the past, the graphics 

processing unit (GPU) was only used to support the 

display on the monitor. However, these days, GPU 

may also be used to help in mathematical computation 

and could be faster than a regular processor. Image 

processing, including defect detection, could be called 

a field with heavy computation, which needs excellent 

infrastructures to be more effective in terms of time. 
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Therefore, we used four computers and GPUs to do our 

experiments. 

In the industrial field, quick defect detection on 

products is necessary because of the rapidity of the 

production itself. Before being released to the public, 

products must be confirmed to be qualified and meet 

the requirements and standards. The defective ones 

must be separated from the qualified one. Beside 

quickness, automation is also a need, because manual 

defect detection by human has drawbacks as humans 

might get tired and make the wrong decision. 

Therefore, automatic defect detection using image 

processing technology is a solution. 

The contribution of this paper is to build a system 

with the best algorithm in the field of image processing 

based on our experiments by comparing multiple 

existing algorithms, along with our infrastructures, in 

order to implement an automated object’s defect 

detection in real time. The algorithms we compared in 

this paper include You Only Look Once (YOLO), 

Single Shot Multibox Detector (SSD), Faster R-CNN, 

and Mask R-CNN. Those algorithms have been 

discussed in the world of object detection. They have 

shown excellent results in terms of accuracy and 

training time. Thus, we conducted experiments to 

compare them using our own produced data set. The 

parameters compared in this paper are accuracy, 

training time (in hours), and testing time (in seconds). 

We wanted to identify which algorithms have the 

fastest time in the training and testing phase and which 

one predicts defects on objects the best in terms of 

accuracy. 

Based on our experiment result, SSD300 shows 

excellent results. It outperforms all algorithms in 

accuracy and either training and testing time. Even 

though it does not confirm consistent accuracy over 

object categories, it is still an excellent algorithm for 

outperforming the others in those three parameters. We 

also compared several similar algorithms but in 

different frameworks, and they do not show significant 

differences against the accuracy, but the visible 

difference in training and testing time. Most likely, it is 

caused by code implementation only, but how the 

algorithm works is still the same. 
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